
A Large-Scale Analysis of the Security of Embedded Firmwares

Andrei Costin, Jonas Zaddach, Aurélien Francillon and Davide Balzarotti

EURECOM
Sophia Antipolis

France
{name.surname}@eurecom.fr

Abstract

As embedded systems are more than ever present in

our society, their security is becoming an increasingly

important issue. However, based on the results of many

recent analyses of individual firmware images, embed-

ded systems acquired a reputation of being insecure. De-

spite these facts, we still lack a global understanding of

embedded systems’ security as well as the tools and tech-

niques needed to support such general claims.

In this paper we present the first public, large-scale

analysis of firmware images. In particular, we unpacked

32 thousand firmware images into 1.7 million individ-

ual files, which we then statically analyzed. We leverage

this large-scale analysis to bring new insights on the se-

curity of embedded devices and to underline and detail

several important challenges that need to be addressed in

future research. We also show the main benefits of look-

ing at many different devices at the same time and of

linking our results with other large-scale datasets such as

the ZMap’s HTTPS survey.

In summary, without performing sophisticated static

analysis, we discovered a total of 38 previously unknown

vulnerabilities in over 693 firmware images. Moreover,

by correlating similar files inside apparently unrelated

firmware images, we were able to extend some of those

vulnerabilities to over 123 different products. We also

confirmed that some of these vulnerabilities altogether

are affecting at least 140K devices accessible over the

Internet. It would not have been possible to achieve these

results without an analysis at such wide scale.

We believe that this project, which we plan to provide

as a firmware unpacking and analysis web service1, will

help shed some light on the security of embedded de-

vices.

1http://firmware.re

1 Introduction

Embedded systems are omnipresent in our everyday life.

For example, they are the core of various Common-

Off-The-Shelf (COTS) devices such as printers, mobile

phones, home routers, and computer components and pe-

ripherals. They are also present in many devices that are

less consumer oriented such as video surveillance sys-

tems, medical implants, car elements, SCADA and PLC

devices, and basically anything we normally call elec-

tronics. The emerging phenomenon of the Internet-of-

Things (IoT) will make them even more widespread and

interconnected.

All these systems run special software, often called

firmware, which is usually distributed by vendors as firm-

ware images or firmware updates. Several definitions for

firmware exist in the literature. The term was originally

introduced to describe the CPU microcode that existed

“somewhere” between the hardware and the software

layers. However, the word quickly assumed a broader

meaning, and the IEEE Std 610.12-1990 [6] extended

the definition to cover the “combination of a hardware

device and computer instructions or computer data that

reside as read-only software on the hardware device”.

Nowadays, the term firmware is more generally used

to describe the software that is embedded in a hard-

ware device. Like traditional software, embedded de-

vices’ firmware may have bugs or misconfigurations that

can result in vulnerabilities for the devices which run

that particular code. Due to anecdotal evidence, embed-

ded systems acquired a bad security reputation, gener-

ally based on case by case experiences of failures. For

instance, a car model throttle control fails [47] or can be

maliciously taken over [21, 55]; a home wireless router

is found to have a backdoor [48, 7, 44], just to name

a few recent examples. On the one hand, apart from a

few works that targeted specific devices or software ver-

sions [39, 27, 63], to date there is still no large-scale se-

curity analysis of firmware images. On the other hand,

http://firmware.re

manual security analysis of firmware images yields very

accurate results, but it is extremely slow and does not

scale well for a large and heterogeneous dataset of firm-

ware images. As useful as such individual reports are for

a particular device or firmware version, these alone do

not allow to establish a general judgment on the over-

all state of the security of firmware images. Even worse,

the same vulnerability may be present in different de-

vices, which are left vulnerable until those flaws are re-

discovered independently by other researchers [48]. This

is often the case when several integration vendors rely

on the same subcontractors, tools, or SDKs provided by

development vendors. Devices may also be branded un-

der different names but may actually run either the same

or similar firmware. Such devices will often be affected

by exactly the same vulnerabilities, however, without a

detailed knowledge of the internal relationships between

those vendors, it is often impossible to identify such sim-

ilarities. As a consequence, some devices will often be

left affected by known vulnerabilities even if an updated

firmware is available.

1.1 Methodology

Performing a large-scale study of the security of embed-

ded devices by actually running the physical devices (i.e.,

using a dynamic analysis approach) has several major

drawbacks. First of all, physically acquiring thousands of

devices to study would be prohibitively expensive. More-

over, some of them may be hard to operate outside the

system for which they are designed — e.g., a throttle

control outside a car. Another option is to analyze exist-

ing online devices as presented by Cui and Stolfo [29].

However, some vulnerabilities are hard to find by just

looking at the running device, and it is ethically ques-

tionable to perform any nontrivial analysis on an online

system without authorization.

Unsurprisingly, static analysis scales better than dy-

namic analysis as it does not require access to the physi-

cal devices. Hence, we decided to follow this approach in

our study. Our methodology consists of collecting firm-

ware images for as many devices and vendors as possi-

ble. This task is complicated by the fact that firmware

images are diverse and it is often difficult to tell firm-

ware images apart from other files. In particular, distri-

bution channels, packaging formats, installation proce-

dures, and availability of meta-data often depend on the

vendor and on the device type. We then designed and im-

plemented a distributed architecture to unpack and run

simple static analysis tasks on the collected firmware im-

ages. However, the contribution of this paper is not in

the static analysis techniques we use (for example, we

did not perform any static code analysis), but to show

the advantages of an horizontal, large-scale exploration.

For this reason, we implemented a correlation engine to

compare and find similarities between all the objects in

our dataset. This allowed us to quickly “propagate” vul-

nerabilities from known vulnerable devices to other sys-

tems that were previously not known to be affected by

the same vulnerability.

Most of the steps performed by our system are concep-

tually simple and could be easily performed manually on

a few devices. However, we identified five major chal-

lenges that researchers need to address in order to per-

form large scale experiments on thousands of different

firmware images. These include the problem of building

a representative dataset (Challenge A in Section 2), of

properly identifying individual firmware images (Chal-

lenge B in Section 2), of unpacking custom archive for-

mats (Challenge C in Section 2), of limiting the required

computation resources (Challenge D in Section 2), and

finally of finding an automated way to confirm the re-

sults of the analysis (Challenge E in Section 2). While

in this paper we do not propose a complete solution for

all these challenges, we discuss the way and the extent to

which we dealt with some of these challenges to perform

a systematic, automated, large-scale analysis of firmware

images.

1.2 Results Overview

For our experiments we collected an initial set of

759,273 files (totaling 1.8TB of storage space) from

publicly accessible firmware update sites. After filtering

out the obvious noise, we were left with 172,751 poten-

tial firmware images. We then sampled a set of 32,356

firmware candidates that we analyzed using a private

cloud deployment of 90 worker nodes. The analysis and

reports resulted in a 10GB database.

The analysis of sampled files led us to automatically

discover and report 38 new vulnerabilities (fixes for some

of these are still pending) and to confirm several that

were already known [44, 48]. Some of our findings in-

clude:

• We extracted private RSA keys and their self-signed

certificates used in about 35,000 online devices

(mainly associated with surveillance cameras).

• We extracted several dozens of hard-coded pass-

word hashes. Most of them were weak, and there-

fore we were able to easily recover the original pass-

words.

• We identified a number of possible backdoors such

as the authorized keys file (which lists the SSH

keys that are allowed to remotely connect to the

system), a number of hard-coded telnetd creden-

tials affecting at least 2K devices, hard-coded web-

login admin credentials affecting at least 101K de-

vices, and a number of backdoored daemons and

web pages in the web-interface of the devices.

• Whenever a new vulnerability was discovered (by

other researchers or by us) our analysis infrastruc-

ture allowed us to quickly find related devices or

firmware versions that were likely affected by the

same vulnerability. For example, our correlation

techniques allowed us to correctly extend the list of

affected devices for variations of a telnetd hard-

coded credentials vulnerability. In other cases, this

led us to find a vulnerability’s root problem spread

across multiple vendors.

1.3 Contributions

In summary this paper makes the following contribu-

tions:

• We show the advantages of performing a large-scale

analysis of firmware images and describe the main

challenges associated with this activity.

• We propose a framework to perform firmware col-

lection, filtering, unpacking and analysis at large

scale.

• We implemented several efficient static techniques

that we ran on 32,356 firmware candidates.

• We present a correlation technique which allows to

propagate vulnerability information to similar firm-

ware images.

• We discovered 693 firmware images affected by at

least one vulnerability and reported 38 new CVEs.

2 Challenges

As mentioned in the previous section, there are clear ad-

vantages of performing a wide-scale analysis of embed-

ded firmware images. In fact, as is often the case in sys-

tem security, certain phenomena can only be observed by

looking at the global picture and not by studying a single

device (or a single family of devices) at a time.

However, large-scale experiments require automated

techniques to obtain firmware images, unpack them, and

analyze the extracted files. While these are easy tasks for

a human, they become challenging when they need to be

fully automated. In this section we summarize the five

main challenges that we faced during the design and im-

plementation of our experiments.

Challenge A: Building a Representative Dataset

The embedded systems environment is heterogeneous,

spanning a variety of devices, vendors, architectures, in-

struction sets, operating systems, and custom compo-

nents. This makes the task of compiling a representative

and balanced dataset of firmware images a difficult prob-

lem to solve.

The real market distribution of a certain hardware ar-

chitecture is often unknown, and it is hard to compare

different classes of devices (e.g., medical implants vs.

surveillance cameras). Which of them need to be taken

into account to build a representative firmware dataset?

How easy is it to generalize a technique that has only

been tested on a certain brand of routers to other ven-

dors? How easy is it to apply the same technique to other

classes of devices such as TVs, cameras, insulin pumps,

or power plant controllers?

From a practical point of view, the lack of centralized

points of collection (such as the ones provided by an-

tivirus vendors or public sandboxes in the malware ana-

lysis field) makes it difficult for researchers to gather a

large and well triaged dataset. Firmware often needs to

be downloaded from the vendor web pages, and it is not

always simple, even for a human, to tell whether or not

two firmware images are for the same physical device.

Challenge B: Firmware Identification

One challenge often encountered in firmware analysis

and reverse engineering is the difficulty of reliably ex-

tracting meta-data from a firmware image. For instance,

such meta-data includes the vendor, the device product

code and purpose, the firmware version, and the proces-

sor architecture, among many other details.

In practice, the diversity of firmware file formats

makes it harder to even recognize that a given file down-

loaded from a vendor website is a firmware at all. Often

firmware updates come in unexpected formats such as

HP Printer Job Language and PostScript documents for

printers [24, 23, 27], DOS executables for BIOS, and ISO

images for hard disk drives [72].

In many cases, the only source of reliable informa-

tion is the official vendor documentation. While this

is not a problem when looking manually at a few de-

vices, extending the analysis to hundreds of vendors and

thousands of firmware images automatically downloaded

from the Internet is challenging. In fact, the information

retrieval process is hard to automate and is error prone, in

particular for certain classes of meta-data. For instance,

we often found it hard to infer the correct version num-

ber. This makes it difficult for a large-scale collection and

analysis system to tell which is the latest version avail-

able for a certain device, and even if two firmware images

corresponded to different versions for the same device.

This further complicates the task of building an unbiased

dataset.

Challenge C: Unpacking and Custom Formats

Assuming the analyst succeeded in collecting a repre-

sentative and well labeled dataset of firmware images,

the next challenge consists in locating and extracting im-

portant functional blocks (e.g., binary code, configura-

tion files, scripts, web interfaces) on which static analysis

routines can be performed.

While this task would be easy to address for tra-

ditional software components, where standardized for-

mats for the distribution of machine code (e.g., PE and

ELF), resources (e.g., JPEG and GZIP) and groups of

files (e.g., ZIP and TAR) exist, embedded software dis-

tribution lacks standards. Vendors have developed their

own file formats to describe flash and memory images.

In some cases those formats are compressed with non-

standard compression algorithms. In other cases those

formats are obfuscated or encrypted to prevent analysis.

Monolithic firmware, in which the bootloader, the oper-

ating system kernel, the applications, and other resources

are combined together in a single memory image are es-

pecially challenging to unpack.

Forensic strategies, like file carving, can help to ex-

tract known file formats from a binary blob. Unfortu-

nately those methods have drawbacks: On the one hand,

they are often too aggressive with the result of extract-

ing data that matches a file pattern only by chance. On

the other hand, they are computationally expensive, since

each unpacker has to be tried for each file offset of the bi-

nary firmware blob.

Finally, if a binary file has been extracted that does

not match any known file pattern, it is impossible to say

if this file is a data file, or just another container for-

mat that is not recognized by the unpacker. In general,

we tried to unpack at least until reaching uncompressed

files. In some cases, our extraction goes one step further

and tries to extract sections, resources and compressed

streams (e.g., for the ELF file format).

Challenge D: Scalability and Computational Limits

One of the main advantages of performing a wide-scale

analysis is the ability of correlating information across

multiple devices. For example, this allowed us to auto-

matically identify the re-use of vulnerable components

among different firmware images, even from different

vendors.

Capturing the global picture of the relationship be-

tween firmware images would require the one-to-one

comparison of each pair of unpacked files. Fuzzy hashes

(such as sdhash [62] and ssdeep [54]) are a common

and effective solution for this type of task and they have

been successfully used in similar domains, e.g., to cor-

relate samples that belong to the same malware fami-

lies [35, 15]. However, as described in more detail in

Section 3.4, computing the similarity between the ob-

jects extracted from 26,275 firmware images requires

1012 comparisons. Using the simpler fuzzy hash vari-

ant, we estimate that on a single dual-core computer this

task would take approximately 850 days2. This simple

estimation highlights one of the possible computational

challenges associated with a large-scale firmware ana-

lysis. Even if we had a perfect database design and a

highly optimized in-memory database, it would still be

hard to compute, store, and query the fuzzy hash scores

of all pairs of unpacked files. A distributed computational

infrastructure can help reduce the total time since the

task itself is parallelizable [57]. However, since the num-

ber of comparisons grows quadratically with the number

of elements to compare, this problem quickly becomes

impracticable for large image datasets. If, for example,

one would like to build a fuzzy hash database for our

whole dataset, which is just five times the size of the cur-

rent sampled dataset, this effort would already take more

than 150 CPU years instead of 850 CPU days. Our at-

tempt to use the GPU-assisted fuzzy hashing provided

by sdhash [62] only resulted in a limited speedup that

was not sufficient to perform a full-scale comparison of

all files in our dataset.

Challenge E: Results Confirmation

The first four challenges were mostly related to the col-

lection of the dataset and the pre-processing of the firm-

ware images. Once the code or the resources used by the

embedded device have been successfully extracted and

identified, researchers can focus their attention on the

static analysis. Even though the details and goals of this

step are beyond the scope of this paper, in Section 3.3 we

present some examples of simple static analysis and we

discuss the advantages of performing these techniques on

a large scale.

However, one important research challenge remains

regarding the way the results of static analysis can be

confirmed. For example, we can consider a scenario

where a researcher applies a new vulnerability detection

technique to several thousand firmware images. Those

images were designed to run on specific embedded de-

vices, most of which are not available to the researcher

and would be hard and costly to acquire. Lacking the

proper hardware platform, there is still no way to manu-

ally or automatically test the affected code to confirm or

deny the findings of the static analysis.

For example, in our experiments we identified a firm-

ware image that included the PHP 5.2.12 banner string.

This allowed us to easily identify several vulnerabilities

2 This is mainly because comparing fuzzy hashes is not a simple bit

string comparison but actually involves a rather complex algorithm and

high computational effort.

Figure 1: Architecture of the entire system.

associated with that version of the PHP interpreter. How-

ever, this is insufficient to determine if the PHP inter-

preter is vulnerable, since the vendor may have applied

patches to correct known vulnerabilities without this be-

ing reflected in the version string. In addition, the vendor

might have used an architecture and/or a set of compi-

lation options which produced a non-vulnerable build of

the component. Unfortunately, even if a proof of concept

attack exists for that vulnerability, without the proper

hardware it is impossible to test the firmware and con-

firm or deny the presence of the problem.

Confirming the results of the static analysis on firm-

ware devices is a tedious task requiring manual interven-

tion from an expert. Scaling this effort to thousands of

firmware images is even harder. Therefore, we believe

the development of new techniques is required to accu-

rately deal with this problem at a large scale.

3 Setup

In this section we first present the design of our dis-

tributed static analysis and correlation system. Then we

detail the techniques we used, and how we addressed the

challenges described in Section 2.

3.1 Architecture

Figure 1 presents an overview of our architecture. The

first component of our analysis platform is the firmware

data store, which stores the unmodified firmware files

that have been retrieved either by the web crawler or that

have been submitted through the public web interface.

When a new file is received by the firmware data store,

it is automatically scheduled to be processed by the ana-

lysis cloud. The analysis cloud consists of a master node,

and a number of worker and hash cracking nodes. The

master node distributes unpacking jobs to the worker

nodes (Figure 2), which unpack and analyze firmware

images. Hash cracking nodes process password hashes

that have been found during the analysis, and try to find

the corresponding plaintext passwords. Apart from co-

ordinating the worker nodes, the master node also runs

the correlation engine and the data enrichment system

modules. These modules improve the reports with results

from the cross-firmware analysis.

The analysis cloud is where the actual analysis of the

firmware takes place. Each firmware image is first sub-

mitted to the master node. Subsequently, worker nodes

are responsible for unpacking and analyzing the firm-

ware and for returning the results of the analysis back

to the master node. At this point, the master node will

submit this information to the reports database. If there

were any uncracked password hashes in the analyzed

firmware, it will additionally submit those hashes to one

of the hash cracking nodes which will try to recover the

plaintext passwords.

It is important to note that only the results of the ana-

lysis and the meta-data of the unpacked files are stored

in the database. Even though we do not currently use the

extracted files after the analysis, we still archive them for

future work, or in case we want to review or enhance a

specific set of analyzed firmware images.

The architecture contains two other components: the

correlation engine and the data enrichment system. Both

of them fetch the results of the firmware analysis from

the reports database and perform additional tasks. The

correlation engine identifies a number of “interesting”

files and tries to correlate them with any other file present

in the database. The enrichment system is responsible for

enhancing the information about each firmware image

by performing online scans and lookup queries (e.g., de-

tecting vendor name, device name/code and device cate-

gory).

In the remainder of this section we describe each step

of the firmware analysis in more detail so that our exper-

iments can be reproduced.

3.2 Firmware Acquisition and Storage

The first step of our experiments consisted in gathering

a firmware collection for analysis. We achieved this goal

by using mainly two methods: a web crawler that auto-

matically downloads files from manufacturers’ websites

and specialized mirror sites, and a website with a submis-

sion interface where users can submit firmware images

for analysis.

We initialized the crawler with tens of support pages

from well known manufacturers such as Xerox, Bosch,

Philips, D-Link, Samsung, LG, Belkin, etc. Second,

we used public FTP indexing engines 3 to search for

files with keywords related to firmware images (e.g.,

firmware). The result of such searches yields either di-

rectory URLs, which are added to the crawler list of

URLs to index and download, or file URLs, which are

directly downloaded by the crawler. At the same time,

the script strips filenames out of the URLs to create ad-

ditional directory URLs.

Finally, we used Google Custom Search Engines

(GCSE) [3] to create customized search engines. GCSE

provides a flexible API to perform advanced search

queries and returns results in a structured way. It also

allows to programmatically create a very customized

CSE on-the-fly using a combination of RESTful and

XML APIs. For example, a CSE is created using

support.nikonusa.com as the “Sites to Search” pa-

rameter. Then a firmware related query is used on the

CSE such as ‘‘firmware download’’. The CSE from

the above example returns 2,210 results at the time of

this publication. The result URLs along with associated

meta-data are retrieved via the JSON API. Each URL

was then used by the crawler or as part of other dynamic

CSE, as previously described. This allowed us to mine

additional firmware images and firmware repositories.

We chose not to filter data at collection time, but to

download files greedily, deciding at a later stage if the

collected files were firmware images or not. The reason

for this decision is two-fold. First, accompanying files

such as manuals and user guides can be useful for find-

ing additional download locations or for extracting con-

tained information (e.g., model, default passwords, up-

date URLs). Second, as we mentioned previously, it is

often difficult to distinguish firmware images from other

files. For this reason, filtering a large dataset is better than

taking a chance to miss firmware files during the down-

loading phase. In total, we crawled 284 sites and stopped

downloading once the collection of files reached 1.8TB

of storage. The actual storage required for this amount

of data is at least 3-4 times larger, since we used mir-

rored backup storage, as well as space for keeping the

unpacked files and files generated during the unpacking

(e.g., logs and analysis results).

The public web submission interface provides a means

for security researchers to submit firmware files for ana-

lysis. After the analysis is completed, the platform pro-

3FTP indexing engines such as: www.mmnt.ru,

www.filemare.com, www.filewatcher.com,

www.filesearching.com , www.ftpsearch.net,

www.search-ftps.com

duces a report with information about the firmware con-

tents as well as similarities to other firmware in our

database. We have already received tens of firmware im-

ages through the submission interface. While this is cur-

rently a marginal source of firmware files, we expect that

more firmware will be submitted as we advertise our ser-

vice. This will also be a unique chance to have access to

firmware images that are not generally available and, for

example, need to be manually extracted from a device.

Files fetched by the web crawler and received from

the web submission interface are added to the firmware

data store. Files are simply stored on a file system and a

database is used for meta-data (e.g., file checksum, size,

download location).

3.3 Unpacking and Analysis

The next step towards the analysis of a firmware image is

to unpack and extract the contained files or objects. The

output of this phase largely depends on the type of firm-

ware. In some examples, executable code and resources

(such as graphics files or HTML code) can be linked into

a binary blob that is designed to be directly copied into

memory by a bootloader and then executed. Some other

firmware images are distributed in a compressed and ob-

fuscated file which contains a block-by-block copy of a

flash image. Such an image may consist of several parti-

tions containing a bootloader, a kernel and a file system.

Unpacking Frameworks

There are three main tools to unpack arbitrary firmware

images: binwalk [41], FRAK [26] and Binary Analysis

Toolkit (BAT) [66].

Binwalk is a well known firmware unpacking tool de-

veloped by Craig Heffner [41]. It uses pattern matching

to locate and carve files from a binary blob. Additionally,

it also extracts meta-data such as license strings.

FRAK is an unpacking toolkit first presented by Cui

et al. [27]. Even though the authors mention that the tool

would be made publicly available, we were not able to

obtain a copy. We therefore had to evaluate its unpack-

ing performance based on the device vendors and mod-

els that FRAK supports, according to [27]. We estimated

that FRAK would have unpacked less than 1% of the

files we analyzed, while our platform was able to unpack

more than 81% of them. This said, both would be com-

plementary as some of the file formats FRAK unpacks

are unsupported by our tool at present.

The Binary Analysis Toolkit (BAT), formerly known

as GPLtool, was originally designed by Tjaldur soft-

ware to detect GPL violations [45, 66]. To this end,

it recursively extracts files from a firmware blob and

matches strings with a database of known strings from

www.mmnt.ru
www.filemare.com
www.filewatcher.com
www.filesearching.com
www.ftpsearch.net
www.search-ftps.com

Table 1: Comparison of Binwalk, BAT, FRAK and our framework.

The last three columns show if the respective unpacker was able to ex-

tract the firmware. Note that this is a non statistically significant sample

which is given for illustrating unpacking performance (manual analysis

of each firmware is time consuming). As FRAK was not available for

testing, its unpacking performance was estimated based on information
from [26]. The additional performance of our framework stems from

the many customizations we have incrementally developed over BAT

(Figure 2).

Device Vendor OS Binwalk BAT FRAK
Our

framework

PC Intel BIOS 7 7 7 7

Camera STL Linux 7 3 7 3

Router Bintec - 7 7 7 7

ADSL

Gateway
Zyxel ZynOS 3 3 7 3

PLC Siemens - 3 3 7 3

DSLAM - - 3 3 7 3

PC Intel BIOS 3 3 7 3

ISDN

Server
Planet - 3 3 7 3

Voip Asotel Vxworks 3 3 7 3

Modem - - 7 7 7 3

Home

Automation
Belkin Linux 7 7 7 3

55% 64% 0% 82%

GPL projects. Additionally, BAT supports file carving

similar to binwalk.

Table 1 shows a simple comparison of the unpack-

ing performance of each framework on a few samples

of firmware images. We chose to use BAT because it is

the most complete tool available for our purposes. It also

has a significantly lower rate of false positive extractions

compared to binwalk. In addition, binwalk did not sup-

port recursive unpacking at the time when we decided on

an unpacking framework. Nevertheless, the interface be-

tween our framework and BAT has been designed to be

generic so that integrating other unpacking toolkits (such

as binwalk) is easy.

We developed a range of additional plugins for BAT.

These include plugins which extract interesting strings

(e.g., software versions or password hashes), add un-

packing methods, gather statistics and collect interesting

files such as private key files or authorized keys files.

In total we added 35 plugins to the existing framework.

Password Hash Cracking

Password hashes found during the analysis phase are

passed to a hash cracking node. These nodes are dedi-

cated physical hosts with a Nvidia Tesla GPU [56] that

run a CUDA-enabled [59] version of John The Rip-

per [60]. John The Ripper is capable of brute forcing

most encoded password hashes and detecting the type of

hash and salt used. In addition to this, a dictionary can be

provided to seed the password cracking. For each brute

force attempt, we provide a dictionary built from com-

Figure 2: Architecture of a single worker node.

mon password lists and strings extracted from firmwares,

manuals, readme files and other resources. This allows

to find both passwords that are directly present in those

files as well as passwords that are weak and based on

keywords related to the product.

Parallelizing the Unpacking and Analysis

To accelerate the unpacking process, we distributed this

task on several worker nodes. Our distributed environ-

ment is based on the distributed-python-for-scripting

framework [65]. Data is synchronized between the repos-

itory and the nodes using rsync (over ssh) [67].

Our loosely coupled architecture allows us to run

worker nodes virtually anywhere. For instance, we in-

stantiated worker virtual machines on a local VMware

server and several OpenStack servers, as well as on Ama-

zon EC2 instances. At the time of this publication we

were using 90 such virtual machines to analyze firmware

files.

3.4 Correlation Engine

The unpacked firmware images and analysis results are

stored into the analysis & reports database. This allows

us to perform queries, to generate reports and statistics,

and to easily integrate our results with other external

components. The correlation engine is designed to find

similarities between different firmware images. In partic-

ular, the comparison is made along four different dimen-

sions: shared credentials, shared self-signed certificates,

common keywords, and fuzzy hashes of the firmwares

and objects within the firmwares.

Shared Credentials and Self-Signed Certificates

Shared credentials (such as hard coded non-trivial pass-

words) and shared self-signed certificates are effective

in finding strong connections between different firmware

images of the same vendor, or even firmwares of differ-

ent vendors. For example, we were able to correlate two

brands of CCTV systems based on a common non-trivial

default password.

Therefore, finding a password of one vendor’s product

can directly impact the security of others. We also found

a similar type of correlation for two other CCTV vendors

that we linked through the same self-signed certificate, as

explained in Section 5.2.

Keywords

Keywords correlation is based on specific strings ex-

tracted by our static analysis plugins. In some cases, for

example in Section 5.1, the keyword “backdoor” re-

vealed several other keywords. By using the extended

set of keywords we clustered several vendors prone

to the same backdoor functionality, possibly affecting

500,000 devices. In other cases, files inside firmware

images contain compilation and SDK paths. This turns

out to be sufficient to cluster firmware images of differ-

ent devices.

Fuzzy hashes

Fuzzy hash triage (comparison, correlation and cluster-

ing) is the most generic correlation technique used by

our framework. The engine computes both the ssdeep

and the sdhash of every single object extracted from the

firmware image during the unpacking phase. This is a

powerful technique that allows us to find files that are

“similar” but for which a traditional hash (such as MD5

or SHA1) would not match. Unfortunately, as we already

mentioned in Section 2, a complete one-to-one compar-

ison of fuzzy hashes is currently infeasible on a large

scale. Therefore, we compute the fuzzy hashes of each

file that was successfully extracted from a firmware im-

age and store this result. When a file is found to be inter-

esting we perform the fuzzy hash comparison between

this file’s hash and all stored hashes.

For example, a file (or all files unpacked from a firm-

ware) may be flagged as interesting because it is affected

by a known vulnerability, or because we found it to be

vulnerable by static analysis. If another firmware con-

tains a file that is similar to a file from a vulnerable firm-

ware, then there might be a chance that the first firmware

is also vulnerable. We present such an example in Sec-

tion 5.3, where this approach was successful and allowed

us to propagate known vulnerabilities of one device to

other similar devices of different vendors.

Future work

In the literature, there are several approaches proposed

to perform comparison, clustering, and triage on a large

scale. Jang et al. propose large-scale triage techniques

of PC malware in BitShred [52]. The authors concluded

that at the rate of 8,000 unique malware samples per day,

which required 31M comparisons, it is unfeasible on a

single CPU to perform one-to-one comparisons to find

malware families using hierarchical clustering. French

and Casey [13] propose, before fuzzy hash comparison,

to perform a “bins” partitioning approach based on the

block and file sizes. This approach, for their particular

dataset and bins partitioning strategy, allowed on aver-

age to reduce the search space for a given fuzzy hash

down to 16.9%. Chakradeo et al. [20] propose MAST,

an effective and well performing triage architecture for

mobile market applications. It solves the manual and

resource-intensive automated analysis at market-scale

using Multiple Correspondence Analysis (MCA) statis-

tical method.

As a future work, there are several possible improve-

ments to our approach. For instance, instead of perform-

ing all comparisons on a single machine, we could adopt

a distributed comparison and clustering infrastructure,

such as the Hadoop implementation of MapReduce [32]

used by BitShred. Second, on each comparison and clus-

tering node we could use the “bins” partitioning ap-

proach from French and Casey [13].

3.5 Data Enrichment

The data enrichment phase is responsible for extending

the knowledge base about firmware images, for exam-

ple by performing automated queries and passive scans

over the Internet. In the current prototype, the data en-

richment relies on two simple techniques. First, it uses

the <title> tag of web pages and authentication

realms of web servers when these are detected inside a

firmware. This information is then used to build targeted

search queries (such as “intitle:Router ABC-123 Admin

Page”) for both Shodan [5] and GCSE.

Second, we correlate SSL certificates extracted from

firmware images to those collected by the ZMap project.

ZMap was used in [37] to scan the whole IPv4 address

space on the 443 port, collecting SSL certificates in a

large database.

Correlating these two large-scale databases (i.e.,

ZMap’s HTTPS survey and our firmware database) pro-

vides new insights. For example, we are able to quickly

evaluate the severity of a particular vulnerability by iden-

tifying publicly reachable devices that are running a

given firmware image. This gives a good estimate for the

number of publicly accessible vulnerable devices.

For instance, our framework found 41 certificates hav-

ing unprotected private keys. Those keys were extracted

from firmware images in the unpacking and analysis

phase. The data enrichment engine subsequently found

the same self-signed certificate in over 35K devices

reachable on the Internet. We detail this case study in

Section 5.2.

3.6 Setup Development Effort

Our framework relies on many existing tools. In addition

to this, we have put a considerable effort (over 20k lines

of code according to sloccount [68]) to extend BAT,

develop new unpackers, create the results analysis plat-

form and run results interpretation.

4 Dataset and Results

In this section we describe our dataset and we present the

results of the global analysis, including the discussion of

the new vulnerabilities and the common bad practices we

discovered in our experiments. In Section 5, we will then

present a few concrete case studies, illustrating how such

a large dataset can provide new insights into the security

of embedded systems.

4.1 General Dataset Statistics

While we currently collect firmware images from multi-

ple sources, most of the images in our dataset have been

downloaded by crawling the Internet. As a consequence,

our dataset is biased towards devices for which firmware

updates can be found online, and towards known vendors

that maintain well organized websites.

We also decided to exclude firmware images of smart-

phones from our study. In fact, popular smartphone firm-

ware images are complete operating system distributions,

most of them iOS, Android or Windows based – making

them closer to general purpose systems than to embed-

ded devices.

Our crawler collected 759,273 files, for a total of

1.8TB of data. After filtering out the files that were

clearly unrelated (e.g., manuals, user guides, web pages,

empty files) we obtained a dataset of 172,751 files. Our

architecture is constantly running to fetch more samples

and analyze them in a distributed fashion. At the time of

this publication the system was able to process (unpack

and analyze) 32,356 firmware images.

Firmware Identification The problem of properly

identifying a firmware image (Challenge 2) still requires

a considerable amount of manual effort. Doing so accu-

rately and automatically at a large scale is a daunting

task. Nevertheless, we are interested in having an esti-

mate of the number of actual firmware images in our

dataset.

For this purpose we manually analyzed a number of

random samples from our dataset of 172,751 poten-

tial firmware images and computed a confidence inter-

val [19] to estimate the global representativeness in the

dataset. In particular, after manually analyzing 130 ran-

dom files from the total of 172,751, we were able to

linux

vxworks

nucleus

windows ce

ecos

ambarella

rtems

fm11−os

2 and more

1 10 100 1000 10000

Detections (log)

O
S

Figure 3: OS distribution among firmware images.

mark only 44 as firmware images. This translates to a

proportion of 34% (± 8%) firmware images on our data-

set – with a 95% confidence. The manual analysis pro-

cess took approximately one person-week because the

inspection of the extracted files for firmware code is quite

tedious.

We can therefore expect our dataset to contain be-

tween 44,431 and 72,520 firmware images (by applying

34%−8%, and 34%+8% respectively, to the entire can-

didates set of 172,751). While the range is still relatively

large, this estimation gives a 95% reliable measure of the

useful data in our sample. We also developed a heuristic

to automatically detect if a file is successfully unpacked

or not. This heuristic takes multiple parameters, such as

the number, type and size of files carved out from a firm-

ware, into account. Such an empirical heuristic is not per-

fect, but it can guide our framework to mark a file as un-

packed or not, and then take actions accordingly.

Files Analysis As described in Section 3.3, unpack-

ing unknown files is an error-prone and time-consuming

task. In fact, when the file format is not recognized, un-

packing relies on a slow and imprecise carving approach.

File carving is essentially an attempt to unpack at every

offset of the file, iterating over several known signatures

(e.g., archive magic headers).

As a result, out of the 32,356 files we processed so

far, 26,275 were successfully unpacked. The process is

nevertheless continuous and more firmware images are

being unpacked over time.

4.2 Results Overview

In the rest of the section we present the results of the ana-

lysis performed by our plugins right after each firmware

image was unpacked.

Files Formats The majority of initial files being un-

packed were identified as compressed files or raw data.

Once unpacked, most of those firmware images were

identified as targeting ARM (63%) devices, followed by

MIPS (7%). As reported in Figure 3, Linux is the most

frequently encountered embedded operating system in

our dataset – being present in more than three quarters

(86%) of all analyzed firmware images. The remaining

images contain proprietary operating systems like Vx-

Works, Nucleus RTOS and Windows CE, which alto-

gether represent around 7%. Among Linux based firm-

ware images, we identified 112 distinct Linux kernel

versions.

Password Hashes Statistics Files like /etc/passwd

and /etc/shadow store hashed versions of account cre-

dentials. These are usual targets for attackers since they

can be used to retrieve passwords which often allow to

login remotely to a device at a later time. Hence, an ana-

lysis of these files can help understanding how well an

embedded device is protected.

Our plugin responsible for collecting entries from

/etc/passwd and /etc/shadow files retrieved 100 dis-

tinct password hashes, covering 681 distinct firmware

images and belonging to 27 vendors. We were also able

to recover the plaintext passwords for 58 of those hashes,

which occur in 538 distinct firmware images. The most

popular passwords were <empty>, pass, logout, and

helpme. While these may look trivial, it is important to

stress that they are actually used in a large number of

embedded devices.

Certificates and Private RSA Keys Statistics Many

vendors include self-signed certificates inside their firm-

ware images [43, 42]. Due to bad practices in both re-

lease management and software design, some vendors

also include the private keys (e.g., PEM, GPG), as con-

firmed by recent advisories [49, 51].

We developed two simple plugins for our system

which collect SSL certificates and private keys. These

plugins also collect their fingerprints and check for

empty or trivial passphrases. So far, we have been able to

extract 109 private RSA keys from 428 firmware images

and 56 self-signed SSL certificates out of 344 firmware

images. In total, we obtained 41 self-signed SSL cer-

tificates together with their corresponding private RSA

keys. By looking up those certificates in the public ZMap

datasets [36], we were able to automatically locate about

35,000 active online devices.

For all these devices, if the certificate and private key

are not regenerated on the first boot after a firmware up-

date, HTTPS encryption can be easily decrypted by an

attacker by simply downloading a copy of the firmware

image. In addition, if both a regenerated and a firmware-

shipped self-signed certificate are used interchangeably,

the user of the device may still be vulnerable to man-in-

the-middle (MITM) attacks.

Packaging Outdated and Vulnerable Software An-

other interesting finding relates to bad release manage-

ment by embedded firmware vendors. Firmware images

often rely on many third-party software and libraries.

Those keep updating and have security fixes every now

and then. OWASP Top Ten [61] lists “Using Components

with Known Vulnerabilities” at position nine and under-

lines that “upgrading to these new versions is critical”.

In one particular case, we identified a relatively re-

cently released firmware image that contained a kernel

(version 2.4.20) that was built and packaged ten years af-

ter its initial release. In another case, we discovered that

some recently released firmware images contained nine

years old BusyBox versions.

Building Images as root While prototyping, putting

together a build environment as fast as possible is very

important. Unfortunately, sometimes the easiest solution

is just to setup and run the entire toolchains as superuser.

Our analysis plugins extracted several compilation

banners such as Linux version 2.6.31.8-mv78100

(root@ubuntu) (gcc version 4.2.0 20070413

(prerelease)) Mon Nov 7 16:51:58 JST 2011

or BusyBox v1.7.0 (2007-10-15 19:49:46 IST).

24% of the 450 unique banners we collected contain-

ing the user@host combinations were associated to the

root user. In addition to this, among the 267 unique

hostnames extracted from those banners, ten resolved to

public IP addresses and one of these even accepted in-

coming SSH connections.

All these findings reveal a number of unsafe practices

ranging from build management (e.g., build process done

as root) to infrastructure management (e.g., build hosts

reachable over public networks), to release management

(e.g., usernames and hostnames not removed from pro-

duction release builds).

Web Servers Configuration We developed plugins to

analyze the configuration files of web servers embed-

ded in the firmware images such as lighttpd.conf or

boa.conf. We then parsed the extracted files to retrieve

specific configuration settings such as the running user,

the documents root directory, and the file containing au-

thentication secrets. We collected in total 847 distinct

web server configuration files and the findings were dis-

couraging. We found that in more than 81% of the cases

the web servers were configured to run as a privileged

user (i.e., having a setting such as user=root). This re-

veals unsafe practices of insecure design and configu-

ration. Running the web server of an embedded device

with unnecessarily high privileges can be extremely risky

since the security of the entire device can be compro-

mised by finding a vulnerability in one of the web com-

ponents.

5 Case Studies

5.1 Backdoors in Plain Sight

Many backdoors in embedded systems have been re-

ported recently, ranging from very simple cases [44] to

others that were more difficult to discover [50, 64]. In one

famous case [44], the backdoor was found to be activated

by the string “xmlset roodkcableoj28840ybtide”

(i.e., edit by 04882 joel backdoor in reverse).

This fully functional backdoor was affecting three ven-

dors. Interestingly enough, this backdoor may have been

detected earlier by a simple keyword matching on the

open source release from the vendor[2].

Inspired by this case, we performed a string search in

our dataset with various backdoor related keywords. Sur-

prisingly, we found 1198 matches, in 326 firmware can-

didates.

Among those search results, several matched the firm-

ware of a home automation device from a major vendor.

According to download statistics from Google Play and

Apple App Store, more than half a million users have

downloaded an app for this device [9, 8].

We manually analyzed the firmware of this Linux-

based embedded system and found that a daemon pro-

cess listens on a network multicast address. This service

allows execution of remote commands with root privi-

leges without any authentication to anybody in the local

network. An attacker can easily gain full control if he can

send multicast packets to the device.

We then used this example as a seed for our corre-

lation engine. With this approach we found exactly the

same backdoor in two other classes of devices from two

different vendors. One of them was affecting 109 firm-

ware images of 44 camera models of a major CCTV

solutions vendor, Vendor C. The other case is affecting

three firmware images for home routers of a major net-

working equipment vendor, Vendor D.

We investigated the issue and found that the affected

devices were relying on the same provider of a System on

a Chip (SoC) for networking devices. It seems that this

backdoor is intended for system debugging, and is part of

a development kit. Unfortunately we were not able to lo-

cate the source of this binary. We plan to acquire some of

those devices to verify the exploitability of the backdoor.

5.2 Private SSL Keys

In addition to the backdoors left in firmware images from

Vendor C, we also found many firmware images contain-

ing public and private RSA key pairs. Those unprotected

keys are used to provide SSL access to the CCTV cam-

era’s web interface. Surprisingly, this private key is the

same across many firmware images of the same brand.

Figure 4: Correlation engine and shared self-signed certificates clus-

tering.

Our platform automatically extracts the fingerprint

of the public keys, private keys and SSL certificates.

Those keys are then searched in ZMap’s HTTPS sur-

vey database [36, 37]. Vendor C’s SSL certificate was

found to be used by around 30K online IP addresses,

most likely each corresponding to a single online de-

vice. We then fetched the web pages available at those

addresses (without trying to authenticate). Surprisingly,

we found CCTV cameras branded by another vendor –

Vendor B – which appears to be an integrator. Upon in-

spection, cameras of Vendor B served exactly the same

SSL certificate as cameras from Vendor C (including the

SSL Common Name, and SSL Organizational Unit as

well as many other fields of the SSL certificate). The only

difference is that CCTV cameras of Vendor B returned

branded authentication realms, error messages and logos.

The correlation engine findings are summarized in Fig-

ure 4.

Unfortunately, the firmware images from Vendor B do

not seem to be publicly available. We are planning to

obtain a device to extract its firmware and to confirm

our findings. We have reported these issues to the ven-

dor. Nevertheless, it is very likely that devices from Ven-

dor B are also vulnerable to the multicast packet back-

door given the clear relationship with Vendor C that that

our platform discovered.

5.3 XSS in WiFi Enabled SD Cards?

SD cards are often more complex than one would imag-

ine. Most SD cards actually contain a processor which

runs firmware. This processor often manages functions

such as the flash memory translation layer and wear lev-

eling. Security issues have been previously shown on

such SD cards [69].

Some SD cards have an embedded WiFi interface with

a full fledged web server. This interface allows direct ac-

cess to the files on the SD card without ejecting it from

the device in which it is inserted. It also allows admin-

istration of the SD card configuration (e.g., WiFi access

points).

We manually found a Cross Site Scripting (XSS) vul-

nerability in one of these web interfaces, which consists

of a perl based web application. As this web application

does not have platform specific binary bindings, we were

able to load the files inside a similar Boa web server on

a PC and confirm the vulnerability.

Once we found the exact perl files responsible for

the XSS, we used our correlation engine based on fuzzy

hashes. With this we automatically found another SD

card firmware that is vulnerable to the same XSS. Even

though the perl files were slightly different, they were

clearly identified as similar by the fuzzy hash. This corre-

lation would not have been detected by a normal check-

sum or by a regular hash function.

The process is visualized in Figure 5. The file (*) was

found vulnerable. Subsequently, we identified correlated

files based on fuzzy hashing. Some of them were related

to the same firmware or a previous version of the firm-

ware of the same vendor (in red). Also, fuzzy hash cor-

relation identified a similar file in a firmware from a dif-

ferent vendor (in orange) that is vulnerable to the same

weakness. It further identified some non-vulnerable or

non-related files from other vendors (in green).

Those findings are reported as CVE-2013-5637 and

CVE-2013-5638. We were also able to confirm this vul-

nerability and extend the list of affected versions for one

of these vendors.

Such manual vulnerability confirmation does not

scale. Hence, in the future we plan to integrate static ana-

lysis tools for web applications [30, 11, 53, 38, 1] in our

process.

6 Ethical Discussion

Large-scale scans to test for the presence of vulnerabil-

ities often raise serious ethical concerns. Even simple

Internet-wide network scans may trigger alerts from in-

trusion detection systems (IDS) and may be perceived as

an attack by the scanned networks.

Figure 5: Fuzzy hash clustering and vulnerability propagation. A vul-

nerability was propagated from a seed file (*) to other two files from

the same firmware and three files from the same vendor (in red) as well

as one file from another vendor (in orange). Also four non-vulnerable
files (in green) have a strong correlation with vulnerable files. Edge

thickness displays the strength of correlation between files.

In our study we were particularly careful to work

within legal and ethical boundaries. First, we obtain firm-

ware images either through user submission or through

legitimate distribution mechanisms. In this case, our web

crawler was designed to obey the robots.txt direc-

tives. Second, when we found new vulnerabilities we

worked together with vendors and CERTs to confirm the

devices vulnerabilities and to perform responsible dis-

closure. Finally, the license of some firmware images

may not allow redistribution. Therefore, the public web

submission interface limits the ability to access firm-

ware contents only to the users who uploaded the cor-

responding firmware image. Other users can only access

anonymized reports. We are currently investigating ways

to make the full dataset available for research purposes

to well identified research institutions.

7 Related Work

Several studies have been proposed to asses the secu-

rity of embedded devices by scanning the Internet. For

instance, Cui et al. [28, 29] present a wide-scale In-

ternet scan to first recognize devices that are known

to be shipped with default password, and then to con-

firm that these devices are indeed still vulnerable by at-

tempting to login into them. Heninger et al. [46] per-

formed the largest ever network survey of TLS and SSH

servers, showing that vulnerable keys are surprisingly

widespread and that the vast majority appear to belong to

headless or embedded devices. ZMap [37] is an efficient

and fast network scanner, that allows to scan the com-

plete Internet IPv4 address space in less than one hour.

While the scans are not especially targeted to embed-

ded devices, in our work we reuse the SSL certificates

scans performed by ZMap [36]. Similar scans were tar-

geting specific vulnerabilities often present in embedded

devices [40, 4]. Such wide-scale scans are mainly tar-

geted at discovering online devices affected by already

known vulnerabilities, but in some cases they can help to

discover new flaws. However, many categories of flaws

cannot be discovered by such scans. Some online ser-

vices like Shodan [5] provide a global updated view on

publicly available devices and web services. This easy-

to-use research tool allows security researchers to iden-

tify systems worldwide that are potentially exposed or

exploitable.

Unpacking firmware images is a known problem, and

several tools for this purpose exist. Binwalk [41] is a

firmware analysis toolbox that provides various methods

and tools for extraction, inspection and reverse engineer-

ing of firmware images or other binary blobs. FRAK [26]

is a framework to unpack, analyze, and repack firmware

images of embedded devices. FRAK was never publicly

released and reportedly supports only a few firmware for-

mats (e.g., Cisco IP phones and IOS, HP laser printers).

The Binary Analysis Toolkit (BAT) [45, 66] was origi-

nally designed to detect GPL license violations, mainly

by comparing strings in a firmware image to strings

present in open source software distributions. For this

purpose BAT has to unpack firmware images. Unfortu-

nately, as we show in Section 3, none of these tools are

accurate and complete enough to be used as is in our

framework.

There are many examples of security analysis of em-

bedded systems [71]. Several network card firmware im-

ages have been analyzed and modified to insert a back-

door [33, 34] or to extend their functionality [16]. David-

son et al. [31] propose FIE, built on top of the KLEE sym-

bolic execution engine, to incorporate new symbolic exe-

cution techniques. It can be used to verify security prop-

erties of some simple firmware images often found in

practice. Zaddach et al. [70] describe Avatar, a dynamic

analysis platform for firmware security testing. In Avatar,

the instructions are executed in an emulator, while the IO

accesses to the embedded system’s peripherals are for-

warded to the real device. This allows a security engi-

neer to apply a wide range of advanced dynamic analysis

techniques like tracing, tainting and symbolic execution.

A large set of firmware images of Xerox devices were

reverse-engineered by Costin [24] leading to the discov-

ery of hidden PostScript commands. Such commands al-

low an attacker to e.g., dump a device’s memory, recover

passwords, passively scan the network and more generi-

cally interact with devices’ OS layers. Such attacks could

be delivered to printers via web pages, applets, MS Word

and other standard printed documents [23].

Bojinov et al. [18] conducted an assessment of the se-

curity of current embedded management interfaces. The

study, conducted on real physical devices, found vulner-

abilities in 21 devices from 16 different brands, includ-

ing network switches, cameras, photo frames, and lights-

out management modules. Along with these, a new class

of vulnerabilities was discovered, namely cross-channel

scripting (XCS) [17]. While XCS vulnerabilities are not

particular to embedded devices, embedded devices are

probably the most affected population. In a similar study,

the authors manually analyzed ten Small Office/Home

Office (SOHO) routers [48] and discovered at least two

vulnerabilities per device.

Looking at insecure (remote) firmware updates, re-

searchers reported the possibility to arbitrarily in-

ject malware into the firmware of a printer [24, 27].

Chen [22] and Miller [58] presented techniques and im-

plications of exploiting Apple firmware updates. In a

similar direction, Basnight et al. [12] examined the vul-

nerability of PLCs to intentional firmware modifications.

A general firmware analysis methodology is presented,

and an experiment demonstrates how legitimate firmware

can be updated on an Allen-Bradley ControlLogix L61

PLC. Zaddach et al. [72] explore the consequences of a

backdoor injection into the firmware of a hard disk drive

and uses it to exfiltrate data.

French and Casey [13] present fuzzy hashing tech-

niques in applied malware analysis. Authors used

ssdeep on CERT Artifact Catalog database containing

10.7M files. The study underlines the two fundamental

challenges to operational usage of fuzzy hashing at scale:

timeliness of results, and usefulness of results. To reduce

the quadratic complexity of the comparisons, they pro-

pose assigning files into “bins” based on the block and

file sizes. This approach, for their particular dataset and

bins partitioning strategy, allowed for a given fuzzy hash

to reduce the search space on average by 83.1%.

Finally, Bailey et al. [10] and Bayer et al. [14] propose

efficient clustering approaches to identify and group mal-

ware samples at large scale. Authors perform dynamic

analysis to obtain the execution traces of malware pro-

grams or obtain a description of malware behavior in

terms of system state changes. These are then general-

ized into behavioral profiles which serve as input to an

efficient clustering algorithm that allows authors to han-

dle sample sets that are an order of magnitude larger than

previous approaches. Unfortunately, this approach can-

not be applied in our framework since dynamic analysis

is unfeasible due to the heterogeneity of architectures

used in firmware images.

8 Conclusion

In this paper we conducted a large-scale static analysis

of embedded firmwares. We showed that a broader view

on firmware is not only beneficial, but actually necessary

for discovering and analyzing vulnerabilities of embed-

ded devices. Our study helps researchers and security an-

alysts to put the security of particular devices in context,

and allows them to see how known vulnerabilities that

occur in one firmware reappear in the firmware of other

manufacturers.

We plan to continue collecting new data and extend

our analysis to all the firmware images we downloaded

so far. Moreover, we want to extend our system with

more sophisticated static analysis techniques that allow

a more in-depth study of each firmware image. This ap-

proach shows a lot of potential and besides the few pre-

viously mentioned case studies it can lead to new inter-

esting results such as the ones recently found by Costin

et al. [25].

The summarized datasets are available at

http://firmware.re/usenixsec14.

Acknowledgments

We thank the anonymous reviewers for their many sug-

gestions for improving this paper. In particular we thank

our shepherd, Cynthia Sturton, for her valuable time and

inputs guiding this paper for publication. We also thank

Pietro Michiardi and Daniele Venzano for providing ac-

cess and support to their cloud infrastructure, and John

Matherly of Shodan search engine for providing direct

access to Shodan’s data and resources.

The research leading to these results was partially

funded by the European Union Seventh Framework Pro-

gramme (contract Nr 257007 and project FP7-SEC-

285477-CRISALIS).

References

[1] Audit PHP Configuration Security Toolkit.

[2] Define of backdoor string in DLink

DI-524 UP GPL source code.

https://gist.github.com/ccpz/6960941.

[3] Google Custom Search Engine API.

[4] Internet Census 2012 – Port scanning

/0 using insecure embedded devices.

http://internetcensus2012.bitbucket.org.

[5] SHODAN – Computer Search Engine.

http://www.shodanhq.com.

[6] IEEE Standard Glossary of Software Engineering

Terminology. IEEE Std 610.12-1990, pages 1–84,

1990.

[7] Slashdot: Backdoor found in TP-Link routers,

March 2013.

[8] Download statistics for the wemo an-

droid application, February 2014.

http://xyo.net/android-app/wemo-JJUZgf8/.

[9] Download statistics for the wemo

iOS application, February 2014.

http://xyo.net/iphone-app/wemo-J1QNimE/.

[10] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao,

F. Jahanian, and J. Nazario. Automated Classifi-

cation and Analysis of Internet Malware. In Pro-

ceedings of the 10th International Conference on

Recent Advances in Intrusion Detection, RAID’07,

pages 178–197, Berlin, Heidelberg, 2007. Springer-

Verlag.

[11] D. Balzarotti, M. Cova, V. Felmetsger, N. Jo-

vanovic, E. Kirda, C. Kruegel, and G. Vigna. Saner:

Composing Static and Dynamic Analysis to Vali-

date Sanitization in Web Applications. In Proceed-

ings of the 2008 IEEE Symposium on Security and

Privacy, SP ’08, pages 387–401, Washington, DC,

USA, 2008. IEEE Computer Society.

[12] Z. Basnight, J. Butts, J. L. Jr., and T. Dube. Firm-

ware modification attacks on programmable logic

controllers. International Journal of Critical In-

frastructure Protection, 6(2):76 – 84, 2013.

[13] L. Bass, N. Brown, G. M. Cahill, W. Casey,

S. Chaki, C. Cohen, D. de Niz, D. French,

A. Gurfinkel, R. Kazman, et al. Results of CMU

SEI Line-Funded Exploratory New Starts Projects.

2012.

[14] U. Bayer, P. M. Comparetti, C. Hlauschek,

C. Kruegel, and E. Kirda. Scalable, Behavior-

Based Malware Clustering. In Proceedings of

the 16th Symposium on Network and Distributed

System Security, NDSS ’09. The Internet Society,

2009.

[15] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and

C. Kruegel. A View on Current Malware Be-

haviors. In Proceedings of the 2nd USENIX

Conference on Large-scale Exploits and Emer-

gent Threats: Botnets, Spyware, Worms, and More,

LEET’09, pages 8–8, Berkeley, CA, USA, 2009.

USENIX Association.

[16] A. Blanco and M. Eissler. One firmware to moni-

tor’em all. Ekoparty, 2012.

[17] H. Bojinov, E. Bursztein, and D. Boneh. Xcs: Cross

channel scripting and its impact on web applica-

tions. In Proceedings of the 16th ACM Conference

on Computer and Communications Security, CCS

’09, pages 420–431, New York, NY, USA, 2009.

ACM.

[18] H. Bojinov, E. Bursztein, E. Lovett, and D. Boneh.

Embedded management interfaces: Emerging mas-

sive insecurity. BlackHat USA, 2009.

[19] J.-Y. L. Boudec. Performance Evaluation of Com-

puter and Communication Systems. EFPL Press,

2011.

[20] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck.

MAST: Triage for Market-scale Mobile Malware

http://firmware.re/usenixsec14
https://gist.github.com/ccpz/6960941
http://internetcensus2012.bitbucket.org
http://www.shodanhq.com
http://xyo.net/android-app/wemo-JJUZgf8/
http://xyo.net/iphone-app/wemo-J1QNimE/

Analysis. In Proceedings of the Sixth ACM Confer-

ence on Security and Privacy in Wireless and Mo-

bile Networks, WiSec ’13, pages 13–24, New York,

NY, USA, 2013. ACM.

[21] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,

H. Shacham, S. Savage, K. Koscher, A. Czeskis,

F. Roesner, and T. Kohno. Comprehensive exper-

imental analyses of automotive attack surfaces. In

Proceedings of the 20th USENIX Conference on

Security, SEC’11, pages 6–6, Berkeley, CA, USA,

2011. USENIX Association.

[22] K. Chen. Reversing and exploiting an Apple firm-

ware update. BlackHat USA, 2009.

[23] A. Costin. Hacking Printers for Fun and Profit.

[24] A. Costin. PostScript(um): You’ve Been Hacked.

[25] A. Costin and A. Francillon. Short Paper: A Dan-

gerous ’Pyrotechnic Composition’: Fireworks, Em-

bedded Wireless and Insecurity-by-Design. In Pro-

ceedings of the ACM Conference on Security and

Privacy in Wireless and Mobile Networks (WiSec),

WiSec ’14. ACM, 2014.

[26] A. Cui. Embedded Device Firmware Vulnerability

Hunting with FRAK. DefCon 20, 2012.

[27] A. Cui, M. Costello, and S. J. Stolfo. When Firm-

ware Modifications Attack: A Case Study of Em-

bedded Exploitation. In Proceedings of the 20th

Symposium on Network and Distributed System Se-

curity, NDSS ’13. The Internet Society, 2013.

[28] A. Cui, Y. Song, P. V. Prabhu, and S. J. Stolfo.

Brave New World: Pervasive Insecurity of Em-

bedded Network Devices. In Proceedings of the

12th International Symposium on Recent Advances

in Intrusion Detection, RAID ’09, pages 378–380,

Berlin, Heidelberg, 2009. Springer-Verlag.

[29] A. Cui and S. J. Stolfo. A Quantitative Analysis

of the Insecurity of Embedded Network Devices:

Results of a Wide-area Scan. In Proceedings of

the 26th Annual Computer Security Applications

Conference, ACSAC ’10, pages 97–106, New York,

NY, USA, 2010. ACM.

[30] J. Dahse and T. Holz. Simulation of Built-in PHP

Features for Precise Static Code Analysis. In Pro-

ceedings of the 21st Symposium on Network and

Distributed System Security, NDSS ’14. The Inter-

net Society, 2014.

[31] D. Davidson, B. Moench, S. Jha, and T. Risten-

part. FIE on Firmware: Finding Vulnerabilities in

Embedded Systems Using Symbolic Execution. In

Proceedings of the 22nd USENIX Conference on

Security, SEC’13, pages 463–478, Berkeley, CA,

USA, 2013. USENIX Association.

[32] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. In Proceedings

of the 6th Conference on Symposium on Opeart-

ing Systems Design & Implementation - Volume 6,

OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.

USENIX Association.

[33] G. Delugré. Closer to metal: reverse-engineering

the Broadcom NetExtreme’s firmware. Hack.lu,

2010.

[34] L. Duflot, Y.-A. Perez, and B. Morin. What if

You Can’T Trust Your Network Card? In Pro-

ceedings of the 14th International Conference on

Recent Advances in Intrusion Detection, RAID’11,

pages 378–397, Berlin, Heidelberg, 2011. Springer-

Verlag.

[35] K. Dunham. A fuzzy future in malware research.

The ISSA Journal, 11(8):17–18, 2013.

[36] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Hal-

derman. Analysis of the HTTPS Certificate Ecosys-

tem. In Proceedings of the 2013 Conference on

Internet Measurement Conference, IMC ’13, pages

291–304, New York, NY, USA, 2013. ACM.

[37] Z. Durumeric, E. Wustrow, and J. A. Halderman.

ZMap: Fast Internet-wide Scanning and Its Security

Applications. In Proceedings of the 22nd USENIX

Conference on Security, SEC’13, pages 605–620,

Berkeley, CA, USA, 2013. USENIX Association.

[38] B. Eshete, A. Villafiorita, and K. Weldemariam.

Early Detection of Security Misconfiguration Vul-

nerabilities in Web Applications. In Proceed-

ings of the 2011 Sixth International Conference

on Availability, Reliability and Security, ARES

’11, pages 169–174, Washington, DC, USA, 2011.

IEEE Computer Society.

[39] B. Gourdin, C. Soman, H. Bojinov, and

E. Bursztein. Toward Secure Embedded Web

Interfaces. In Proceedings of the 20th USENIX

Conference on Security, SEC’11, pages 2–2,

Berkeley, CA, USA, 2011. USENIX Association.

[40] HDMoore. Security Flaws in Universal Plug and

Play: Unplug, Don’t Play, 2013.

[41] C. Heffner. binwalk – firmware analysis tool de-

signed to assist in the analysis, extraction, and re-

verse engineering of firmware images.

[42] C. Heffner. littleblackbox – Database of private SS-

L/SSH keys for embedded devices.

[43] C. Heffner. Breaking SSL on Embedded Devices,

December 2010.

[44] C. Heffner. Reverse Engineering a D-Link Back-

door, October 2013.

[45] A. Hemel, K. T. Kalleberg, R. Vermaas, and E. Dol-

stra. Finding Software License Violations Through

Binary Code Clone Detection. In Proceedings of

the 8th Working Conference on Mining Software

Repositories, MSR ’11, pages 63–72, New York,

NY, USA, 2011. ACM.

[46] N. Heninger, Z. Durumeric, E. Wustrow, and J. A.

Halderman. Mining Your Ps and Qs: Detection

of Widespread Weak Keys in Network Devices.

In Proceedings of the 21st USENIX Conference

on Security Symposium, Security’12, pages 35–35,

Berkeley, CA, USA, 2012. USENIX Association.

[47] J. Hirsch and K. Bensinger. Toyota settles acceler-

ation lawsuit after $3-million verdict. Los Angeles

Times, October 25, 2013.

[48] Independent Security Evaluators. SOHO Network

Equipment (Technical Report), 2013.

[49] IOActive. Critical DASDEC Digital Alert Systems

(DAS) Vulnerabilities, June 2013.

[50] IOActive. stringfighter – Identify Backdoors in

Firmware By Using Automatic String Analysis,

May 2013.

[51] IOActive. Critical Belkin WeMo Home Automa-

tion Vulnerabilities, February 2014.

[52] J. Jang, D. Brumley, and S. Venkataraman. Bit-

Shred: Feature Hashing Malware for Scalable

Triage and Semantic Analysis. In Proceedings of

the 18th ACM Conference on Computer and Com-

munications Security, CCS ’11, pages 309–320,

New York, NY, USA, 2011. ACM.

[53] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A

Static Analysis Tool for Detecting Web Application

Vulnerabilities (Short Paper). In Proceedings of the

2006 IEEE Symposium on Security and Privacy, SP

’06, pages 258–263, Washington, DC, USA, 2006.

IEEE Computer Society.

[54] J. Kornblum. Identifying Almost Identical Files

Using Context Triggered Piecewise Hashing. Digit.

Investig., 3:91–97, 2006.

[55] K. Koscher, A. Czeskis, F. Roesner, S. Patel,

T. Kohno, S. Checkoway, D. McCoy, B. Kantor,

D. Anderson, H. Shacham, and S. Savage. Experi-

mental Security Analysis of a Modern Automobile.

In Proceedings of the 2010 IEEE Symposium on Se-

curity and Privacy, SP ’10, pages 447–462, Wash-

ington, DC, USA, 2010. IEEE Computer Society.

[56] E. Lindholm, J. Nickolls, S. Oberman, and J. Mon-

trym. NVIDIA Tesla: A Unified Graphics and

Computing Architecture. IEEE Micro, 2008.

[57] P. C. Messina, R. D. Williams, and G. C. Fox. Par-

allel computing works ! Parallel processing scien-

tific computing. Morgan Kaufmann, San Francisco,

CA, 1994.

[58] C. Miller. Battery firmware hacking. BlackHat

USA, 2011.

[59] Nvidia. CUDA – Compute Unified Device Archi-

tecture Programming Guide. 2007.

[60] OpenwallProject. John the Ripper password

cracker. http://www.openwall.com/john/.

[61] OWASP. Top 10 Vulnerabilities, 2013.

[62] V. Roussev. Data Fingerprinting with Similarity Di-
gests. In IFIP Int. Conf. Digital Forensics, pages

207–226, 2010.

[63] F. Schuster and T. Holz. Towards reducing the at-

tack surface of software backdoors. In Proceed-

ings of the 20th ACM Conference on Computer and

Communications Security, CCS ’13, pages 851–

862, New York, NY, USA, 2013. ACM.

[64] S. Skorobogatov and C. Woods. Breakthrough sili-

con scanning discovers backdoor in military chip.

In Proceedings of the 14th International Confer-

ence on Cryptographic Hardware and Embedded

Systems, CHES’12, pages 23–40, Berlin, Heidel-

berg, 2012. Springer-Verlag.

[65] J. V. Stough. distributed-python-for-scripting –

DistributedPython for Easy Parallel Scripting.

[66] Tjaldur Software Governance Solutions. Binary

Analysis Tool (BAT).

[67] A. Tridgell. rsync – utility that provides fast incre-

mental file transfer.

[68] D. A. Wheeler. SLOCCount – a set of tools for

counting physical Source Lines of Code (SLOC).

http://www.dwheeler.com/sloccount/.

[69] xobs and bunnie. The Exploration and Exploitation

of an SD Memory Card. CCC – 30C3, 2013.

[70] J. Zaddach, L. Bruno, A. Francillon, and

D. Balzarotti. Avatar: A Framework to Sup-

port Dynamic Security Analysis of Embedded

Systems’ Firmwares. In Proceedings of the 21st

Symposium on Network and Distributed System

Security, NDSS ’14. The Internet Society, 2014.

[71] J. Zaddach and A. Costin. Embedded Devices Se-

curity and Firmware Reverse Engineering. Black-

Hat USA, 2013.

[72] J. Zaddach, A. Kurmus, D. Balzarotti, E.-O. Blass,

A. Francillon, T. Goodspeed, M. Gupta, and I. Kolt-

sidas. Implementation and Implications of a Stealth

Hard-drive Backdoor. In Proceedings of the 29th

Annual Computer Security Applications Confer-

ence, ACSAC ’13, pages 279–288, New York, NY,

USA, 2013. ACM.

http://www.openwall.com/john/
http://www.dwheeler.com/sloccount/

	1 Introduction
	1.1 Methodology
	1.2 Results Overview
	1.3 Contributions

	2 Challenges
	3 Setup
	3.1 Architecture
	3.2 Firmware Acquisition and Storage
	3.3 Unpacking and Analysis
	3.4 Correlation Engine
	3.5 Data Enrichment
	3.6 Setup Development Effort

	4 Dataset and Results
	4.1 General Dataset Statistics
	4.2 Results Overview

	5 Case Studies
	5.1 Backdoors in Plain Sight
	5.2 Private SSL Keys
	5.3 XSS in WiFi Enabled SD Cards?

	6 Ethical Discussion
	7 Related Work
	8 Conclusion

