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Abstract—Tabular Representation Learning and Large Lan-
guage Models have recently achieved promising results in solving
the Semantic Parsing (SP) task. Given a question posed in natural
language on a relational table, the goal is to return to the end-
users executable SQL declarations. However, models struggle
to produce the correct output when questions are ambiguously
defined w.r.t the table schema. Assessing the robustness to data-
ambiguity can be particularly time-consuming as entails seeking
ambiguous patterns on a large number of queries with varying
complexity. To automate this process, we propose Data-Ambiguity
Tester, a pipeline for data-ambiguity testing tailored to SP. It
first automatically generates non-ambiguous natural language
questions and SQL queries of varying complexity. Then, it injects
ambiguous patterns, extracted from a human-annotated set of
relational tables, in the natural language questions. Finally, it
quantifies the level of ambiguity using customized performance
metrics. Results show strengths and limitations of existing models
in coping with ambiguity between questions and tabular data.

Index Terms—Tabular Representation Learning, Semantic
Parsing, Text2SQL, Data-Ambiguity, NL2SQL, Large Language
Models.

I. INTRODUCTION

State-of-the-art models for table understanding are pretrained
on very large collections of tabular data to understand their
schema- and instance-level properties [1]. These models are
then fine-tuned to accomplish downstream tasks such as
Question Answering [2], [3], Table Retrieval [4], [5], Table
Comprehension [6], [7], and Table Content Prediction [8].

Given a relational table, Semantic Parsing (SP) aims to
translate natural language (NL) questions to SQL declarations.
SP supports end-users who are not proficient in SQL code
writing and speeds up user-database interactions [9]. State-of-
the-art SP approaches include Tabular Representation Learn-
ing (TRL) models fine-tuned for this task (e.g., [10], [11])
and general-purpose Large Language Models (LLMs) [12].
However, both TRL models and LLMs are challenged by the
inherent ambiguity between text (NL questions) and relational
data (table schema and instance).

Let us consider, as a toy example, Table I. A NL question
such as Show me the size of the Abalone fish with Id 1 is
ambiguous because the concept of size can be arbitrarily
mapped to either attributes Length, Diameter, Height. This
is a well recognized problem for SP, but there is not systematic
evaluation on how models handle these challenging cases [9],
[14]. In this work, we classify as ambiguous for SP a natural

TABLE I
TOY EXAMPLE EXTRACTED FROM THE ABALONE DATASET [13]

AbaloneId Sex Length Diameter Height

1 F 0.40 0.32 0.13
2 M 0.39 0.32 0.11
3 M 0.32 0.26 0.09

language question that contains free-text that ambiguously
refers to more than one attribute of the relation schema.
Hence, the Text2SQL process should generate many valid SQL
declarations, each one corresponding to a different attribute
combination. In this work, we focus on studying how existing
models handle ambiguous relationships between the text of the
NL question and the relational schema.

Figure 1 shows the main steps in DAMBER1 (Data-
AMBiguity testER), a new pipeline for ambiguous test genera-
tion and evaluation tailored to SP on tabular data. DAMBER
relies on QATCH [15], a recently proposed testing benchmark
for TRL models, to initially generate a large set of Text2SQL
tests over a given relational table. Each test consists of a triple
with an unambiguous NL question, the corresponding SQL
script, and the query output. Using a template-based approach,
QATCH produces test queries with varying level of complexity,
executes them on the SP models, and then computes a set
of performance metrics over the returned tuples. To inject
ambiguity in NL questions, DAMBER leverages a human-
curated set of tables annotated with schema-only ambiguous
labels, i.e., free-text labels that are deemed ambiguous with
respect to at least two attributes in the table schema [16]. For
instance, every attribute in {Height, Length, and Diameter}
in the schema of Table I is paired with the ambiguous labels
{size, dimension, and measurement} because such labels denote
concepts that are related to, but not specifically mapped to
a particular attribute. ⟨Label, attribute⟩ pairs such as ⟨size,
Height⟩, ⟨size, Length⟩, and ⟨dimension, Height⟩ are used to
modify the original QATCH queries to inject ambiguity. Notice
that for each query in the original set the injection can produce
several ambiguous versions. Prompting TRL models and LLMs
with these ambiguous questions allows DAMBER to generate

1We exploit the wordplay "damber" vs. "dumber" to stress the importance
of detecting LLMs/TRL models’ weaknesses.
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Fig. 1. Data-AMBiguity testER: Pipeline for ambiguous test generation and evaluation. Given a relational table, a set of unambiguous tests is generated. Then,
data-ambiguity is injected in the NL questions using ground truth ambiguity information about the input table. Models are then prompted with ambiguous
questions to generate SQL scripts. Finally, tuple results are compared against the results for the original SQL scripts to compute quality metrics.

SQL declarations and the corresponding output in relational
form. Model outputs are then compared with the expected
output of the (unambiguous) SQL query. We use the query
results with new quantitative performance metrics designed to
measure the robustness w.r.t. ambiguity.

The result show a clear superiority of LLMs over TRL
models in handling ambiguous queries. LLMs show promising
proficiency in associating ambiguous labels with the correct
database attributes. This is contrasted by the struggles of TRL
models, which often resulted in SQL errors while coping with
ambiguous queries. However, even the best LLM model for
this task (ChatGPT 3.5) cannot achieve consistent performance
across all tests and tables, with results ranging between 0.98
on the easiest table and 0.60 on the hardest one in our quality
metrics.

The remainder of this paper is organized as follows. Sec-
tion II introduces preliminary concepts. Section III describes
DAMBER. Section IV shows preliminary results, whereas
Section V discusses future extensions of the present work.

II. PRELIMINARIES

Semantic Parsing from tabular data Given a relational table
R and a natural language (NL) question Q, Semantic Parsing
(SP) aims to generate the corresponding SQL declarations SQ.

Data-ambiguity types Data-ambiguity refers to the case in
which we have multiple interpretations of the relationship
between text and data [16]. Ambiguity is due to the fact that
NL used to pose a free-text question, describe metadata in the
relational schema, or fill table content is inherently ambiguous.
We can enumerate three main types of data-ambiguity [9]:
(1) Schema-only ambiguity, where the NL question has an
ambiguous mapping between the question and the table schema;
(2) Content ambiguity, where there is an ambiguous mapping
between the question and the table instance values; (3) Question
ambiguity, where the ambiguity lies in the NL question only
and there is a lack of contextual information to determine the
query intent. In this work, we address the ambiguity between
NL question and the relational schema, i.e., case (1).

Semantic Parsing with data-ambiguity Let M be a TRL
model or a LLM capable to accomplishing the SP task.
We prompt M with an ambiguous question A-Q to get the
Text2SQL reformulation SM

A-Q as well as its corresponding

output OM
a−Q in relational form. Let S1

A-Q, . . ., Sn
A-Q be the

alternative SQL declarations of A-Q over R and let O1
a−Q, . . .,

On
a−Q be the corresponding outputs. Our purpose is to quantify

the ability of M to handle data-ambiguity by comparing the
output OM

AQ with the expected results (O1
a−Q, . . ., On

a−Q).

III. DATA-AMBIGUITY TESTER

SP test creator As depicted in Figure 1, DAMBER leverages
QATCH [15] to generate a initial set of unambiguous SP
tests to assess models on tabular data. Given a relational
table R, QATCH generates test queries consisting of triples
⟨Q, SQ, OQ⟩ through a template-based query generator. This
generator employs templates to define SQL declarations (e.g.,
SELECT attribute FROM TABLE), and the variables within
these templates (e.g., attribute) are automatically populated by
the tool based on the values in the schema and active domain of
the given T . The resulting SQL test suite encompasses various
levels of complexity. Examples of SQL query categories are
outlined in Table II.

An example of intermediate output generated by the SP test
creator of DAMBER is denoted by Prior to ambiguity
injection in Table III.

TABLE II
EXAMPLE OF TEMPLATES FOR QUERIES IN SQL AND NATURAL LANGUAGE.

T IS THE TARGET RELATIONAL TABLE. ci ∈ SR (1 ≤ i ≤ n) IS AN
ATTRIBUTE OF THE R’S SCHEMA. ord IS THE ORDER OF VISUALIZATION OF

THE TUPLES IN THE OUTPUT. NL=NATURAL LANGUAGE QUESTION.

SQL Category Type Content

Project
SQL SELECT {c1, . . . , cn} FROM {T}
NL Show {c1, . . . , cn} in table {R}

Distinct
SQL SELECT DISTINCT {c1, . . . , cn} FROM {T}
NL Show the different {c1, . . . , cn} in table {R}

Select
SQL SELECT * FROM {T} WHERE {ci} {op} {val}
NL Show data of table {t} where {ci}{op}{val}

Order by
SQL SELECT * FROM {T} ORDER BY {ci} {ord}
NL Show data for table {T} in {ord} order by {ci}

SIMPLE AGG
COUNT DISTINCT

SQL SELECT COUNT(DISTINCT {ci} ) FROM {R}
NL How many different {ci} are in table {R}?

SIMPLE AGG
MIN/MAX/AVG

SQL SELECT MIN/MAX/AVG {ni} FROM {T}
NL Find the min/max/avg of {ni} in table {R}

Data-ambiguity injection To inject schema-only data-
ambiguity in the generated SP tests, DAMBER relies on a
human-curated collection of tables with ground truth ambiguity



information [16]. This corpus consists of a set of relational
tables R1

gt, . . ., Rk
gt whose schema attributes are annotated

with one or more ambiguous labels. For instance, the attributes
Length, Diameter, and Height in Table I are annotated with
the ambiguous labels Size and Measurement. These labels are
then used as source of ambiguity in the NL questions.

Examples of data-ambiguity injection are given in Table III.
Considering each ambiguous label (e.g., distance associated
with schema attributes Length, Diameter, and Height), the
schema attribute in the Ambiguous Question has been replaced
with the respective ambiguous label.

The next key step is the generation of the target queries, i.e.,
the expected output for an ambiguous question. The problem
can be framed as follows: What is the correct SP output for an
ambiguous NL question?. In this study, we define a semantics
that we found useful in practice. A valid solution is any query
that replaces the label with one of its corresponding schema
attributes (e.g., Target Queries in Table III).

We adopt this approach due to its versatility, enabling the
effective handling of all SQL granularity supported by QATCH.
Indeed, one could argue that a solution to an ambiguous NL
question is to include all associated attributes i.e., ⟨SELECT
"Length", "Diameter", "Height" FROM TABLE⟩. However,
this strategy proves impractical when confronting aggregation
scenarios, such as ⟨SELECT MAX("Length") FROM TABLE⟩.

The above procedure enables DAMBER to automatically
conduct an in-depth investigation of all the nuances of data-
ambiguity in SP models. Notice that the injection of data
ambiguity can be modified or personalized by the user.

TABLE III
AMBIGUOUS TEST GENERATION. AMBIGUOUS LABEL "DISTANCE" IS

ASSOCIATED WITH ATTRIBUTES "LENGTH", "DIAMETER", "HEIGHT". THE
LABEL REPLACES THE ORIGINAL ATTRIBUTE IN THE NEW AMBIGUOUS

QUESTION. TARGET QUERIES COVER ALL ASSOCIATED ATTRIBUTES.

Prior to ambiguity injection

Table name Abalone
SQL category Project
Query SELECT "Length" FROM "abalone"
Question Show all "Length" in the table abalone

After ambiguity injection

Table name Abalone
SQL category Project

Target Queries
SELECT "Length" FROM "abalone"
SELECT "Diameter" FROM "abalone"
SELECT "Height" FROM "abalone"

Ambiguous Question Show all "distance" in the table abalone

Ambiguity test evaluation We defined the expected output
for an ambiguous question input. For evaluating the target
queries, we leverage five established performance metrics [15]
to compare model output and ground truth.

• Cell Precision. The proportion of table cells in the model
output that match the ground truth.

• Cell Recall. The fraction of table cells that are present in
the ground truth and in the prediction.

TABLE IV
AMBIGUOUS TEST EVALUATION. GIVEN AS INPUT THE AMBIGUOUS

QUESTION IN TABLE III, WE REPORT THREE MODEL PREDICTIONS AND THE
RESPECTIVE EVALUATION RESULTS.

Model Predictions

Model 1 SELECT "distance" FROM abalone
Model 2 SELECT * FROM abalone
Model 3 SELECT "Length" FROM abalone

Model Evaluation

Cell Cell Tuple Tuple Tuple
precision recall cardinality constraint order

Model 1 evaluation 0.0 0.0 0.0 0.0 -
Model 2 evaluation 1/5 1.0 1.0 0.0 -
Model 3 evaluation 1.0 1.0 1.0 1.0 -

• Tuple constraint. The percentage of true tuples in the
query results. It equals one when the the generated output
instance shares identical schema, cardinality, and cell
values with the target; otherwise, it is zero.

• Tuple cardinality. The ratio of output and ground truth
cardinality; it ignores cell values.

• Tuple order. The Spearman rank correlation coefficient
normalized between zero and one (zero opposite order,
one otherwise). It is evaluated only for queries with the
ORDER BY clause.

While these metrics are effective for general SP evaluation,
they do not account for multiple ambiguity target queries.
To address this issue, we compute the metrics between
the predicted query and every target query (e.g., the three
target queries under After ambiguity injection in
Table III). We then “match” the predicted query with the
target query with the highest mean across the metrics. In
the experiments, we report this matched target query and its
resulting metrics scores.

Table IV illustrates an example of the evaluation with three
predicted query from different models. In the case of Model 1,
the ambiguous label is mistakenly interpreted to be part of the
table schema, resulting in an execution error, i.e. all metrics
are scored as zero. Conversely, Models 2 and 3 do not trigger
an execution error, allowing for a comparison of predictions
with each target query and generating three sets of metrics (one
for each target query). Model 2 has the same average value
across metrics for all target queries, we therefore consider all
matches equivalent. For Model 3, the highest average for the
metrics is obtained with the exact match between the predicted
query and one of the target queries.

The proposed heuristics rewards the target queries that either
exactly match the predicted one or approximately match with
highest metric scores.

IV. EXPERIMENTS

SP models. We test 5 models: three TRL models (RESDSQL
[17], GAP [18], and UNIFIEDSKG [19]) and two LLMs
(CHATGPT 3.5 TURBO-TURBO-0613 [20] and LLAMA-CODE
[21]). RESDSQL is composed of a skeleton-aware decoding



framework and a seq2seq architecture with a ranking-enhanced
encoding based on T5. UNIFIEDSKG implements an encoder-
decoder (text-to-text) model based on T5. We configure both
models with the T5 large setting. GAP employs a generative
model to get pre-training data, facilitating the concurrent
learning of NL utterances and table schemas.

To improve the LLMs’ performance in the SP task, we lever-
age the few-shot learning technique; the model takes as input
a prompt with examples of text-to-SQL conversions, called
"shots". The prompt involves generating the corresponding SQL
query based on the provided table name, table schema, and NL
question. For the "shots", we use unambiguous text-to-SQL
examples, exclusively employed to enhance the performance of
LLMs in the SP task. These examples are intended to improve
the model’s ability to deal with SP, rather than its ability to
deal with ambiguity. Details on the few-shot are available at
https://github.com/spapicchio/QATCH.

Datasets. We rely on an existing annotated corpus, which
includes 13 tables from the UCI repository and the WebTables
collection [16]. Ten annotators were asked to identify ambigu-
ous attributes and a possible label for every such pair. For
example, once identified “weight” and “height” as ambiguous
attributes in a table, one suggested label is “measure”. Labels
are added to the ground truth based on majority voting and an
additional participant to solve uncertainty cases. The corpus
comprises 1321 attribute pairs, with 252 ambiguous pairs and
an average of 1.8 labels per pair.

How to interpret the results. The evaluation metrics are
dependent on the data rather than the query itself. This ensures
high results when comparing two SQL syntactically distant
but with similar semantic. Consider the Table I and the query
⟨SELECT "Sex" FROM "abalone" ORDER BY ASC⟩ and the
model prediction ⟨SELECT DISTINCT "AbaloneID", "Sex"
FROM "abalone" ORDER BY DESC⟩, the metrics scores are
as follows: (i) Cell precision: 0.5 as half of predicted attributes
are correct; (ii) Cell recall: 1.0 as all target attributes are in the
prediction; (iii) Tuple cardinality: 0.5 as the predicted query
returns fewer tuples; (iv) Tuple constraint: 0.0 as returned
schemas differs; (v) Tuple order: 0.0 order is the opposite.

Results. Table V presents the results for all models evaluated
on ambiguous questions averaged over all tests and tables.

TABLE V
RESULTS FOR ALL MODELS WITH AMBIGUOUS QUESTIONS; AVERAGE OF

ALL TESTS ON 13 TABLES.

Model Cell Cell Tuple Tuple Tuple
precision recall cardinality constraint order

CHATGPT 3.5 (LLM) 0.76 0.78 0.80 0.63 0.83
LLAMA-CODE (LLM) 0.52 0.54 0.58 0.39 0.86

RESDSQL (TRL) 0.37 0.38 0.42 0.31 0.46
UNIFIEDSKG (TRL) 0.36 0.37 0.39 0.31 0.65

GAP (TRL) 0.24 0.24 0.26 0.21 0.27

LLMs consistently outperform TRL models, suggesting that
their superior reasoning capabilities make a difference for this
task. LLMs associate the ambiguous label with at least one

of the ambiguous attribute in most predictions. Conversely,
the predictions from TRL models lead to SQL errors due to
the presence of the ambiguous label in the query. Generally,
both Cell precision and Cell recall exceed Tuple Constraint,
indicating the models’ proficiency in discerning the relevant
attributes for projection. However, the preservation of the tuple
structure for the returned values (Tuple Constraint) emerges as
the most challenging aspect. Results for tuple order are higher
compared to the other metrics as ambiguity does not affect the
inclusion of "ASC" or "DESC" in the SQL query. As ChatGPT
outperforms the other models significantly, we focus next on a
more detailed examination of its results.

ChatGPT 3.5’s results for different datasets show that it
struggles to achieve consistent performance across tables,
with average results ranging from 0.98 in WDC_631 to 0.60
in Abalone. An examination of the results reveals that the
WDC_631 table, containing ambiguous labels closely related
to schema attributes such as "price" and "pricing" with "Part
#" and "List Price", aids the model. However, the model fails
short in more complex scenarios, such as the ABALONE table,
which involves attributes like "length", "diameter", and "height"
with the ambiguous label "distance".

TABLE VI
RESULTS FOR CHATGPT-SP 3.5-TURBO-0613 FOR AMBIGUOUS

QUESTIONS: AVERAGE OF ALL TESTS ON MULTIPLE TABLES.

SQL Category Cell Cell Tuple Tuple Tuple
precision recall cardinality constraint order

Project 0.76 0.89 0.95 0.61 -
Order By 0.80 0.82 0.93 0.75 0.83
Distinct 0.85 0.87 0.93 0.82 -
SIMPLE-AGG
AVG-MAX-MIN

0.74 0.76 0.96 0.72 -

SIMPLE-AGG
COUNT-DISTINCT

0.88 0.88 1.00 0.88 -

Table VI reports how ChatGPT performs with various
types of queries containing ambiguity. ChatGPT inserts all
attributes associated with an ambiguous label when faced with
uncertainty, e.g., the predicted query for the ambiguous question
in Table III is ⟨SELECT "Length", "Diameter", "Height" FROM
"abalone" ⟩. This is confirmed by the high value of Cell recall.
However, despite the model reliably incorporates at least one
attribute associated with the ambiguous label into its predictions,
prediction fails short when dealing with aggregation, as shown
by lower values for SIMPLE-AGG-AVG-MAX-MIN.

V. FUTURE RESEARCH DIRECTIONS

As future work we plan to the generalize the concept of
data-ambiguity beyond the text-schema relation. Specifically,
we will also consider table content and question ambiguity (see
Section II). Furthermore, we will explore the effect of data-
ambiguity on other downstream tasks such as Tabular Question
Answering and Tabular Computational Fact-Checking.

https://github.com/spapicchio/QATCH
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