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Abstract

This work builds upon the Leurré.com infrastructure anel $triptgen tech-
nology. Leurré.com is a worldwide distributed setup of limteraction honeypots
whereas Scriptgen is a new class of honeypot: a medium ati@naone. In this
paper, we see how Scriptgen can be enriched thanks to thes Argb Nepenthes
open source software in order to build a distributed systela @ collect rich in-
formation about ongoing attacks and to collect malwaren évezero-day attacks,
without facing the same liability and complexity issuesanttered by classical
high interaction honeypots. The design is precisely expp@ewell as its im-
plementation. Experimental results are offered that fhihlthe validity of the
proposed solution.



1 Introduction

The US-CERT published in the early 2006 a security bulletinmmarizing the
vulnerabilities being identified between January 2005 aaddinber 2005. In the
whole year, 5198 vulnerabilities, hitting different optimg systems and applica-
tions, were reported. This is a frightening number. Howdvew many of them are
used in practice remains unknown. Most security tools recam in-depth knowl-
edge about each attack and the exploited vulnerabilitydermto provide protection
against it. It is, therefore, of prime importance to stais thiork by looking at the
most prevalent ones. The collection of trends informatioa e characterization
of the different attacks becomes thus extremely valuableowsiderable contribu-
tion in this direction consists in the Leurré.com projedt3, 17, 14, 15, 18, 16].
The project used the concept of honeypot, introduced by itzSgr in [28], to
build a worldwide observatory of attack threats and studyrttrends across the
whole IP space over long periods of time. SGNET is a disteéfddtoneypot frame-
work meant to supersede the current Leurré.com infrastrec\We will show how
SGNET allows to obtain very rich information about the obsdrattacks. SGNET
enables us to collect their associated malware, even inatbe af zero-day attack.

The most widely spread Internet attacks are the so-callede'énjection at-
tacks”. Their final objective consists in forcing the exématof an executable
code on a victim machine exploiting a vulnerable networkiser Crandall et al.
introduced in [9] the epsilon-gamma-pi model, to descrhm d¢ontent of a code-
injection attack as being made of three parts:

e Exploit (¢). A set of network bytes being mapped onto data which is used for
conditional control flow decisions. This consists in thedfatlient requests
that the attacker needs to perform to lead the vulnerablécseo the control
flow hijacking step.

e Bogus control data ). A set of network bytes being mapped onto control
data which hijacks the control flow trace and redirects ittimeplace else.

e Payload (7). A set of network bytes to which the attacker redirects the vul
nerable application control flow through the usage ehd~. The payload
is also commonly known as shellcode.

However, the final objective of an attack is not the code tmacitself: the
length of the payload is usually limited to some hundredsyté$, or even less.
It is difficult to code in this limited amount of space compleshaviors. Instead,
it is used to force the victim to download from a remote |lomata larger amount
of data: the malware. The espilon-gamma-pi model can benéateto include
this dimension. We call it thepsilon-gamma-pi-mmodel whereu stands for the
malware downloaded.

twww.leurrecom.org



In order to retrieve precise information about a code-iigecattack, all the
four components of the epsilon-gamma-pi-mu model must bervled. We present
in this paper SGNET, a novel honeypot framework able to etawdad observe
the whole attack trace according to this model. The SGNE&gadvantage of
the exploit emulation capabilities of the ScriptGen applof1, 22] and couples
them with the program flow hijack detection capabilities ofds [25] and with the
shellcode emulation and malware download capabilitiesegéthes [3]. We will
show in this paper how we have been able to dynamically comthiase entities
to obtain a honeypot system able to observe all the four dstoar of the epsilon-
gamma-pi-mu space. The contributions of this paper arefoldnil) we present an
easy to deploy honeypot setup for medium interaction, angevi®rm a usability
study through a testing deployment on the Internet; 2) waavgthe Nepenthes
honeypots providing a generic vulnerability module abléentrementally handle
new exploits such as zero-days, and able to detect new taéthe payloadr;
3) we provide an experimental validation of the ScriptGeprapch, showing that
the ScriptGen technique can learn new exploits in a conmplatesupervised way.

The paper is structured as follows: Section 2 recalls thecppies of the Script-
Gen technology. Section 3 provides a review of the relatedksvior the field. Sec-
tion 4 gives a detailed overview of the functional structafé¢he SGNET. Section
5 describes the SGNET implementation. Section 6 preseptsiexental return on
experience. Section 7 concludes the paper.

2 Introduction to ScriptGen

A honeypot is a network host whose value resides in being comiged by
attackers. Bailey et al. in [4] classify them according teittbreadth and depth.
The breadth of a honeypot system is defined as its ability tecti¢hreats across
geographical boundaries. The depth of a honeypot systerasenis the level of
interaction with the attacking client. Solutions such asdyal [26] allow to easily
increase the breadth, but offer a very shallow depth. Idstamning real OSs
inside virtualization environments such as VMware [32]vides a very profound
depth but at a high cost in terms of resources and maintenéimeg preventing
from achieving big breadths.

Scriptgen is an approach that aims at being a “high depthadtieut compro-
mising too much the breadth, i.e. one that can be easily geg@lm the Leurré.com
project to obtain large breadth and depth.

ScriptGen builds protocol emulators in a completely auti@shand protocol-
agnostic fashion. The basic idea underneath the Script@proach consists in
learning the protocol behavior starting from samples oftgmol interaction be-
tween an attacking client and a real host running the serviteese samples are
used to represent the protocol language under the form afiteFState Machine.
Each Finite State Machine modelizes the interaction betvaseeattacking tool and
a honeypot on a given protocol port. These FSMs can then lzktosemulate
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Figure 1: ScriptGen FSM

the server behavior mimicking its network interaction. ifi&@en FSMs are trees
composed of states and transitions, with an optional ladsd@ated to them. For
TCP, for instance, the scope of a FSM corresponds to a TCRBef®e root state

corresponds to the establishment of the connection. Eatltéeresponds to the
termination of the connection. Excerpts of several ong@MJTP connections are
represented in such an FSM in Figure 1 A. Emulating a TCP @essirresponds

to the traversal of the FSM from its root to one of the leavesngition labels are
matched with incoming client requests to choose the futtake s State labels are
used by the emulator as answers to be sent back to the agaidnt.

When the sample protocol streams are seen as streams afainstd bytes,
the resulting FSM is too specific to correctly handle futuaenples of proto-
col interaction. For instance, if we were using the FSM repnéed in Figure 1
A, we would not be able to find the correct future state for al reamnt by user
dave@eurecom.fsince we have never seen him before. A semantic abstraction
is required. The Region Analysis Algorithm [22] takes adaege of the statisti-
cal variability of the samples to identify regions in the fodl stream carrying
a strong semantic meaning. It takes advantage of bioinfilcsmalignment algo-
rithms [23] to identify portions of the protocol streams whwalue is never chang-
ing across the samples. The algorithm assumes that thesengqffixed regions)
carry a strong semantic meaning, and thus are used to pepftern matching on
the incoming client requests. This allows to build, from tafespecific samples, a
generic representation, with a partially rebuilt notiorsefnantics, as can be seen
in Figure 1 B. We showed in [21] that the ScriptGen approatdwal to emulate



the exploit phase for protocols as complex as NetBIOS.
The strengths of the ScriptGen approach are manifold:

e lIts protocol agnostic nature allows to build inamsuperviseavay FSMs for
virtually every protocol, as long as their payload is notrgpted.

¢ lIts ability to detect deviations from the current knowledge explained in
[21], enables it to detect zero-days.

e Its proxying algorithm enables it to react to new activiti&¥hen facing a
new activity such as a zero-day, ScriptGen will not find a pgatide the
FSM associated to the protocol. Thus, ScriptGen will notlide o provide
an answer to the new client request received by the attad¥ershowed in
[21] how it is possible to take advantage of a real machinsaygng against
it all the traffic received from the attacker and then act amaypbetween the
attacker and the host. This allows the ScriptGen honeygdwrnadle correctly
the conversation with the attacking machine, and more itapdy it allows
it to collect a new sample conversation to be used to refinmeinentally the
current protocol knowledge represented within the FSM.

With respect to the epsilon-gamma-pi-mu model introduce8ection 1, we
can say that the ScriptGen approach aims at getting pfaet, leading the attacker
into sending the followingy and w. Since ScriptGen focuses only on the first
phase, it is unable to observe the last stage of the attaskn#iwareu. An attack
can be characterized as a tuptey, 7, ). Years ago Internet malicious activity
was dominated by the spread of worms. In that case, it washp@ds identify a
correlation between the observed exploit, the correspgnufijected payload and
the uploaded malware (the self-replicating worm itselfhafks to the correla-
tion between the 4 paramaters, retrieving information bosubset of them was
enough to characterize and uniquely identify the attackis $tuation is chang-
ing. Taking advantage of the many freely available toolshsas Metasploit [29],
even unexperienced users can easily generate shellcottepessonalized behav-
ior. This allows them to generate new combinations alonghalfour dimensions,
weakening the correlation between them.

3 State of the art

The idea of performing automated exploit emulation by mezrnalignment
algorithms has been considered in parallel by two diffeteatns. This led to
ScriptGen, on the one hand, and RolePlayer [10] on the oftertwo approaches
aim at rebuilding protocol semantics, with some importafiedences. Scriptgen
claims to be protocol agnostic and takes advantage of thkeedgily of a large num-
ber of samples to build its FSMs. RolePlayer uses only twopdesnof protocol
interaction. Since this does not allow to exploit the stiati diversity, additional
information needs to be provided in order to avoid errordantifying the fixed
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and mutating portions of the protocol streams. This has aadatnalso on the abil-
ity to refine the protocol knowledge in a completely unsujses way, since this
additional information must be provided.

An interesting application of the RolePlayer approach aaffolind in a tech-
nical report available on the web [11]. In order to betterradd the comparison
with the SGNET, we postpone its analysis to Section 5.4.

ScriptGen proved to be an extremely interesting method tadathe exploit
phase during the interaction with an attacker, being ablmd¢mementally learn
zero-day attacks. However, it lacks the capabilities todlathe injected code
itself. A first attempt to solve this problem was made in [21fhvthe concept of
inter-protocol dependencies

We saw that the scope of the ScriptGen state model normallggmonds to a
single TCP session. Inter-protocol dependencies definendigmcy relations be-
tween different TCP sessions. For instance, looking atlattamples, ScriptGen
is able to identify those cases in which a TCP session islesdtiall by the attacker
on a “normally closed” port after a successful client requesanother TCP ses-
sion. ScriptGen is thus able to learn this dependency, girddace this behavior
through emulation. Although these heuristics represemnststiep towards the code
injection emulation, they present a number of shortcomings

First of all, in order to modelize the dependencies it is nexglto obtain sam-
ples of the whole attack trace. Thus, to modelize the agtivit need to allow an
attacker to run a complete attack against a vulnerable ibg.can raise a number
of security concerns and raises the maintenance cost.

A second problem is more at a conceptual level. The wholelattace can
be considered as a complex function that, taking as inputvaonke behavior and
a host configuration, produces as output another networdMiah(opening a bind
shell, downloading a malware from a URL, ...). Inter-praiodependencies are a
set of heuristics that allow, given a certain input, to mem®the corresponding
output. Instead of learning the output of the function fansaiven inputs, a better
approach would consist in approximating the function forges of values. This
is what the SGNET aims at, detecting code injections (detgef) and emulating
an approximation of their behavior (emulatinyjto download malware (retrieving
1)-

Many approaches exist to identify code injections. We cainiypadentify
two families: approaches that aim at identifying an exdaet@ayloadr inside a
network stream taking advantage of its characteristia$ agproaches that monitor
a vulnerable host to detect hijacks of the control flow.

Several approaches aim at reliably detecting code injesty the observation
of the network interaction between an attacker and a victBume of them aim
at recognizing peculiar characteristics of the payload:iristance, detecting the
presence o$ledgesefore the executable payload [30, 2]. Some aim at detecting
the presence of executable code by checking the correabhésscontrol or data
flow. This approach can be used either to detect samples pinpophic worms
[20] (the malwareu) or to detect executable payloaglsand thus buffer overflow
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attempts [7, 33]. Others aim at detecting decryption rastiior polymorphic shell-
codes emulating their execution [24]. All these methodsigoan the detection of
the code injection regardless on the host configurationpéiyoad is detected in-
dependently from the real success or failure of the attackemarget host. This is
an advantage in certain contexts, but since our objectiugists in characterizing
an attack we do want to know whether the attack succeeds onrtbe target host.
These methods could be applied in a successive phase t@arihlyy amount of
failed attacks against a given host, but this is outside th@es of this paper and
thus will not be taken into consideration here.

It becomes then interesting to detect the effect of codetioje by monitoring
the behavior of the target host. Among the various appr@ableéonging to this
family, we recall Argos [25], Minos [9] and Vigilante [8]. Athese approaches
share a similar basic concept that is memory tainting. Kegpack of the memory
locations whose content derives from packets coming frasmigtwork, they are
able to detect the moment in which this data is used iflegal way. All these
approaches require though to execute a whole operatingmsytsigether with the
vulnerable applications in order to detect injections. sThas two shortcomings:
first of all, they are expensive in terms of resources, and thay can achieve
rather limited breadths. Secondly, in terms of epsilon-gaapi-mu model these
solutions are limited to the first three dimensions of thackt Even if able to
detect the flow control hijack, the execution of the payloadmust be prevented
to avoid severe security concerns. This paper will show hawhave been able
to take advantage of the code injection capabilities of Arggnd address these
shortcomings at the same time.

An interesting approach aiming at capturing and emulativeg ¢hellcode is
Nepenthes [3]. Nepenthes is a honeypot with a specific olgecto download
malware from attacking sources. Nepenthes is thus ablertdidhand observe
all the four phases of the epsilon-gamma-pi-mu model. Niygsnhas proved to
be of significant importance in botnet tracking studies sasln [27]. Nepenthes
although suffers from two restrictions: the limited vision the exploits and the
limited vision on the payloads. Its architecture is nicely structured into three
layers:

e Vulnerability modules: Nepenthes allows the developmdnlagins that
emulate the network conversation for specific exploits. sehglugins con-
tain information about the protocol semantics in order tdeee the injected
payload (when present) from the protocol stream.

e Shellcode detection: a signature-based engine recoguez&Esns in the pay-
load and eventually unpacks its content. An intermediateoal step con-
sists in binding to a given port a shell emulator that recea@mmands from
the attacker. The final output of this stage is the URL of th&aioas file to
be downloaded.

e Download modules: a set of plugins corresponding to diffeRIJSH- and
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PULL-based download protocols allow to collect the malwamd submit it
to different kinds of locations (filesystems, databases, ..

The approach is mainly knowledge-based. It relies on sontefth knowl-
edge of each specific exploit and takes advantage of a sefraftares to recognize
the shellcode. Itis thus “blind” to any attack whose behafafls out of the current
knowledge. We will show in Section 6.3 how SGNET, going beydime limita-
tions of the Nepenthes approach, enables it to capture mabhvat it would have
missed otherwise.

4 SGNET and the epsilon-gamma-pi-mu model

When facing an attacker, the SGNET activity can be sepaiatedifferent
parts, corresponding to the basic phases of a network atB88KET must emulate
the network conversation with the attacker during the akjploase (theepsilon.
Then, it needs to detect whether the network conversatibijaisking the applica-
tion control flow (thegamma. In case of code injection, it needs to identify the
injected payload (thei). Finally, it must emulate the payload behavior in order
to retrieve the malware (thmu). This Section will show how SGNET distributes
these phases to three different functional entitsefisor sample factornandshell-
code handler

4.1 Epsilon: Emulating the exploit

In order to emulate the exploit phase, the SGNET needs toatenoktwork
protocols and allow thus interaction with the attackingiots. As already shown
in [22], if the emulated server does not provide a correcivango the attacking
client request, the client may abandon the conversatioarbefending the real
code injection attack. It is thus important to provide a sigfit quality in emu-
lation of the exploit to drive the attacker into sending tlele injection. Also,
coherently with what we observed in our experience with tharté.com project,
the malicious activity is not uniformly spread over the IR&p. In order to achieve
the ability to observe these diversities, the SGNET must tieiable to spread its
service emulation capabilities along the IP space.

The protocol emulation is delegated to the SGNET sensor.n8ads a host
bound to a set of one or more IPs in the network. Each IP can badt a
different profile, which determines the emulated configaraand thus the service
ports open to the attackers. The service emulation is dielédga the ScriptGen
approach. This allows the sensors to provide a sufficienlityuaf emulation,
enough to capture attacks, without requiring considerabb®unts of resources,
and gaining all the advantages already introduced in Se2tio

While handling a newly encountered attack activity, thessemeeds at first to
rely on an entity, such as a real host, able to act agarleand provide the correct
answers to the attacker’s requests. In order to build deliphths for the ScriptGen



FSM, the samples must achieve enough statistical divetsipllow the Region
Analysis to correctly infer the protocol semantics. Fotanse, if all the samples
are generated by a single IP and the corresponding protocoldes information
about the target IP in the application payload, Region Asialwill wrongly treat
that information as a fixed region. It is important thus toldgpnultiple sensors
and allow a distributed collaboration between them in otdeachieve the neces-
sary statistical variability.

After this step, if the path was correctly built the sensolt e able to take
advantage of the FSM information to autonomously handlelaimttacks. It is
important to notice that while the learning phase is expenisi terms of resources,
the handling of attacks based on the FSM knowledge is cheap.oDthe objec-
tives of the SGNET will thus consist in trying to reduce tharténg phase, taking
advantage of the collaboration of multiple distributedssea and thus increasing
the sample variability and the sample collection rate. Wansd in [21] that a
limited number of samples (around 50) is enough to generatdiable protocol
path for a given exploit. We will validate this result withatdnternet attacks in
Section 6.1.

4.2 Gamma: detecting the control flow hijack

The knowledge generated by the oracle and synthesized FSNkallows the
sensor to emulate the exploit autonomously. Normally, titput of the oracle is a
network conversation, that thus provides information alee exploit emulation.
If the oracle was able to provide information also about dogketion parameters,
it would then be possible to provide this information to tlemsor and allow the
sensor to extend its knowledge in terms of epsilon-gammatpmodel.

We propose here a solution to implement an oracle for SGNESse focus-
ing on two aspects: 1) the security measures to control #te sf the oracle even
after a successful code injection; 2) the ability of the dc provide, in addition
to the network behavior information, also information abbijack points in the
application control flow.

The SGNET entity having the purpose of acting as an oracle sepect to
SGNET sensor is the SGNET sample factory. In order to addrets security
concerns and to extract information about the code-imgactive rely onArgos
presented by Portokalidis et al. in [25]. Argos takes acag@tofgemy a fast x86
emulator [5] to implement memory tainting. The sample factakes advantage
of the Argos honeypot system to achieve a different goal vesipect to its original
one. In SGNET, in fact, the Argos honeypots are not suppasedéctly interact
with attackers: they are always mediated by sensors. Theyndeed factories
of samples for the SGNET sensors, providing expleitafd code-injection(,r)
information.

When relaying on a sample factory, a sensor replays aghmstrgos emulated
host the attack trace sent so far by the attacker. This mag ime security
concerns: the attacker is in fact able to compromise the st thus may take
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advantage of the compromised machine as a stepping stomed®wther hosts.
To prevent these undesired effects, we provide two levelsratiection. First of
all, all the packets generated by the guest host having astealion address an
IP different from the attacking source being handled by #reser will be dropped.
Secondly, the Argos technology takes advantage of the mefainting technique
illustrated in [25] to detect flow control hijacks. In the easf a detected code
injection the sample factory will stop the execution of theegt operating system.
The generated network conversation does not include pemys@formation
about possible successful code injections. We have beert@bktract this infor-
mation from Argos, extending the memory tainting technitpu@clude informa-
tion about the packets containing the code injection. Whsarnsor is forwarding
the sample factory and the packdts, ..., P,, if P, triggers a code injection the
sensor will be immediately notified. The sample factory issthble to provide ex-
act information to the sensor about a successful controlffiaek (gamma dimen-
sion). Also, it is possible to identify the network packetsitaining the shellcode.
The interaction with the sample factory allows the Script@Gearning phase
to incorporate code injection information inside the FSMisTallows the SGNET
sensors to know when a FSM traversal corresponds to a coeldionj, and pro-
vides useful hints about the position of the payload. Néeess, for the security
concerns mentioned before, the Argos host will be stofijeddrethe payload ex-
ecution. The handling of the payload information is deleddb a different entity.

4.3 Pi: Handling the payload

In order to handle the payload dimension, it is necessanyetatify its position
inside the protocol stream. We saw in the previous Sectianthie sample factory
allows us to retrieve the position of the first network bytéingeexecuted by the
guest host. We make here a very simple assumption: the edjguyload will
correspond to the network bytéslowing the first executed byte. Whenever a code
injected is detected by a sensor, either through the irtterawith a sample factory
or through the information embedded in the FSMs, it will defas injected payload
all the bytes of reassembled protocol stream following bya. The (in)validity
of this assumption will be discussed in Section 6.3.

The SGNET sensors are then entities able to correctly haimellexploit phase,
and provide information about the presence of code injestand about the candi-
date payloadr. This specification is compatible with that of tNepenthe§3] vul-
nerability modules. We thus take advantage of the sensalisgictly feed payloads
into the Nepenthes shellcode manager bypassing all itesalility modules, i.e.
circumventing its knowledge base. If a new attack tool i®agding whose charac-
teristics fall out of the Nepenthes knowledge, SGNET will be able to provide
correct information about the exploit and the successfidrud the code injection.
This is a major contribution with respect to the previous kiorNepenthes [3] as
we are getting rid of its main limitation, namely the needéwelop a large number
of highly specific vulnerability modules.
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4.4 Mu: downloading the malware

The final phase. of the attack functionally corresponds to the Nepenthes
download modules. The SGNET shellcode handler is not atllatwealirectly ac-
cess the network. The only SGNET component having the ragtlirectly access
the network is the sensor: it is the sensor that handles tiodewietwork conversa-
tion with the attacking client, emulating all the steps af #psilon-gamma-pi-mu
model.

We saw in Section 4.1 that the sensor relays on an oracle tatnthe exploit
phase when the attack is unknown, and we saw that the Scrig@moach allows
to learn the exploit activity taking advantage of the getestasamples. The
phase corresponds to a network behavior that is always wiktmthe sensor: we
motivated in Section 3 the reasons for which the ScriptGenagrh does not adapt
to its learning. The SGNET shellcode handler is thus an enaith respect to the
malware download phase: the sensor will rely on it to geeelfa correct packets
to download malware every time that a shellcode has beeeatbrrecognized.
Differently from the exploit emulation phase, the sensdt wot try to learn the
behavior of the shellcode and it will always rely on it. ThidLgion does not impact
scalability, since differently from the sample generattwes shellcode handlers do
not have significant resource requirements.

5 The SGNET

We have implemented a SGNET prototype and deployed it inrttegriet. In
this Section we show how we have implemented it.

5.1 The architecture

The SGNET aims at being a distributed system. The SGNET sensast be
deployable in different locations of the IP-space in ordemtrease the variabil-
ity of the samples. The various SGNET sensors must exchasipeted samples
to learn the new exploits and offload the sample factories. a4 w allow dis-
tributed communications between the various componemtedsessary. This goal
is achieved through a simple TCP-based HTTP-like protoesighed specifically
for this purpose: thé&eirosprotocol. Through this protocol, the sensors are able
to send requests to the other entities, exchanging theugaparameters needed
for their initialization. With respect to Peiros, the SGNIEMtities are service
providers, to which clients (the SGNET sensors) can sutscri

In order to coordinate the sample distribution, we chosectdralized ap-
proach as shown in Figure 2. This greatly simplifies the cexipf of the task and
the synchronization between different sensors. A cenbtion, calledSGNET
gateway acts as a default home for all the SGNET sensors. The gataeiayas
an application proxy for the sample factories and the sbeédichandlers, deployed
in a private network and not directly accessible from thesees It receives all the

12



Private
Network

Sensors Sample factories
SF1 SF2 SF3
y y A v

SH1 SH2

. >y L. >y

Shellcode handlers

Figure 2: SGNET architecture

service requests from the clients, and dispatches thene tagibropriate entity able
to handle them. Multiple sample factories and shellcodalleas can be deployed
on different hosts, and the gateway acts as a simple loaddslasing round robin
scheduling.

All the interactions between the sensors and the other SGaifies are me-
diated by the gateway. The gateway is able to observe theorletvaffic between
any sensor and the oracle generated by the sample factatyt @snthus able to
collect samples of new attacks observedibyhe sensors deployed in the SGNET.
The gateway position as a centralized sample collectowalkbe centralized re-
finement of the FSMs taking advantage of the ScriptGen aphroehe generated
FSMs are thempushedto all the sensors at each update: all the sensors active at a
given moment will thus have the same protocol knowledgd) saime approxima-
tion due to network latency and retransmissions.

5.2 RAW Proxying

We propose in this paper an important contribution to theernirstate of the
art of the ScriptGen technology. We showed in Section 4 tf@&NBT sensors
need to rely on oracles to handle network conversations evknswledge is not
represented in the ScriptGen FSMs. This behavior was esféo agproxyingin
[21], since the sensor behaves as a proxy between the attauke real host (the
oracle).

The initial proxying algorithm, as introduced in [21], wapptication level
proxying. Thatis, the ScriptGen honeypot was handlingseabled TCP streams,
or UDP data payloads. The information about packet boueslavas thus ignored.
We considered this approach good since most of the explaitertly observable
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on the Internet target application-level vulnerabiliteésd not the TCP/IP stack.
The practical experience in replaying Internet attacké sisBlaster [6] underlined
the importance of preserving packet boundaries in ordeotiectly reproduce the
attack trace. Also, preserving the TCP/IP headers woudsvaib correctly repro-

duce attacks based on misuse of the TCP/IP header fields. uA/ntinoduce here
a RAW proxying algorithm able to replay exactly the sameckttaace observed
by the sensor.

Given an IPT and an attacking source (IP addreSs) sensor defines an at-
tack as the whole ordered sequence of packBis P, ...P,,) sent byS towards
T. An attack can then spread over several TCP sessions, UDEstsgand ICMP
packets. Using a finer proxying granularity such as the sii@P session or UDP
packet sequence would be wrong: the attack trace may bedhk o several state
modifications obtained through multiple TCP sessions or pB€&ket sequences.
A sensor maintains thus a different proxying state for eaciple (.S, ') of attack-
ing source and target address. Each cogglg") can be bound to three different
states, which evolve according to the FSM represented ur€ig:

e FSM driven. The sensor handles the exploit with the attacker takingradva
tage of its own FSMs. In this case, the sensor takes advaafalye normal
kernel TCP/IP stack, that handles retransmissions andodiglpackets and
provides to the sensor the application data stream. Takimgraage of the
Netffilter ipqueue libraries [34], the sensor caches all tA&VRP packets
P;...P, sent fromAto S.

e Warm up. When the sensor faces a request for which there is no knoe/ledg
in the FSMs, it needs to initialize an oradie and act as a proxy to handle
and learn the newly encountered attack activity. During fiiase the sensor
replays to the oracle the raw IP packéts.. P, received in the previous state
in order to reproduce the attack trace.

e RAW proxy. After the initialization, the sensor will prevent its TCP/tack
to receive any packet coming from the attacketargeting IPT", dropping
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them using the ipqueue libraries. The attack packets, ... P, will be in-
stead pushed directly tH.

Proxying potentially arises an important issue. We cantiflein a network
protocol two different kinds of cookie fields: server-drivand client-driven. A
server driven field is a protocol field whose value is decidedhe server when
answering to a request. It can be used by the client to daterother field values
for the following requests. Client-driven cookie fields argtead set by the client in
the client requests, and then used by the server to genbeafelowing answers.
In [21] we claimed the importance of handling the clientvdri cookie fields to
raise the emulation quality: if a client sets a cookie fieltk ScriptGen-based
emulators need to take into consideration its value wheeming their answers.
Server-driven cookie fields instead do not generate anyeronwith respect to
the ScriptGen emulation: the logic to handle the transfdioneof the field in the
following packets is embedded in the client. Neverthelbssinitialization of the
RAW proxying in the middle of a protocol interaction may ldacn inconsistency:
the value chosen by the sensor and by the oracle host for therskiven field
could be different. The transition between FSM driven ofi@naand RAW proxy
will not be transparent to the attacker. In order to solvegtablem, the sensor
needs to compare the answers generated by the oracle in thewpgphase with
the answer generated by the sensor when driven by the FSMéadgey learn the
modifications and reverse them in the RAW proxy phase.

Even if theoretically possible, we never observed this kifidnconsistency
at application level; although, we encountered it at thedpart layer form when
dealing with TCP sequence numbers. When opening a TCP cioometith the
attacker, the TCP/IP stack of the sensor chooses an iretgiesice numbeiS V.
This initial sequence number is analogue to a server-drogakie field: in the
warm up phase, when establishing the connection the ordttlehwose a differ-
ent initial sequence numbédiSN,. The replay engine needs thus to observe the
answers generated by the oracle in the warm up phase in orteEarn /.S N,. In
the RAW proxy state, the sensor will need to reverse this fiwadion changing all
the sequence numbers related to the oracle by the qudsstivy — 7.5V

It is clear from this description that RAW proxying is comahle to a TCP
session hijacking attack. In fact, the RAW proxy phase dgtesrthe host TCP/IP
stack and redirects the packets towards another TCP/IR wstaich carries on the
conversation. When, after a period of inactivity, the sensor assumes the source
S as “expired”, it reverts its state to FSM driven allowingat &ccess again the
hijacked TCP/IP stack. If, is not long enough, the TCP/IP stack will be de-
synchronized and will thus potentially generate TCP ACKrsm It is thus impor-
tant to correctly tund;, to a period of several minutes and to check the ACK ratio
of each source to timely block these situations.
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5.3 Attacks and IP addresses

When facing a newly encountered activity, a sensor needsytan an oracle
provided by the sample factory. The sensor thus sends asarguest through
the Peiros protocol to a free sample factory. If enough nessuare available,
the sample factory initializes an Argos instance using thesgoperating system
associated to that sensor (e.g. a Windows 2000 configujatids possible to take
advantage of the virtualization capabilities of Argos taddhe memory snapshot
of an already running system in less than one second, alipthins an extremely
fast initialization.

It would be possible in theory to always associate the sanatfess to the
guest host, and then perform NAT while replaying the packets the sensor
to the host. However, many exploits such as the LSASS exfpiput in the
application payload the IP address of the target machine presence of NAT
during the replay of the attack trace leads the attack tpdeite the IP address in
the application payload will not match any more the IP adslessociated with the
host network interface. Thus, the IP address of the hostlédty the oraclenust
match the IP address of the sensor.

Matching the IP address of the host with the IP address oféhecs proved
to be a difficult task. We implemented a “smart” DHCP serveida the sample
factory. When initializing a host, the sample factory tadsantage of the DHCP
protocol [19] to assign it the same IP address than the orteeakguesting sensor.
We found out that this solution is unfeasible when dealinthwertain Microsoft
operating systems. During our testing with a Windows 200@atched system,
we observed an extremely peculiar behavior. When assigneddP address, the
host starts to broadcast its presence for a period of appatgly 30 seconds. Dur-
ing this period, any communication attempt with the runniegvices fails. This
introduces an important delay in the sensor warm up phaaéinig the attacking
source to timeout. We consequently decided to store a diffememory dump
for each sensor being placed in the network. This allows toedhiately initialize
a guest host having the desired IP address in a negligibke dinthe expense, of
course, of disk space.

5.4 Comparison with GQ

An interesting work sharing some similarities with SGNETd&scribed in a
technical report that can be found on the Internet, anda¢&l® [11]. GQ is a
high interaction internet telescope, taking advantagéefipplication-level filter-
ing capabilities of RolePlayer [10]. The main idea of GQ ¢sitssin increasing the
breadth of a set of virtualized hosts performing a smartifilteon the observed ac-
tivities. The well-known attack activities are handled byléPlayer scripts, while
new and interesting attack activities are left to the viiagal hosts.

GQ shares thus a similar idea to SGNET, but profoundly diffarthe archi-
tecture.
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First of all, SGNET is designed to be a distributed systemavdeaware thanks
to our efforts with the Leurré.com project that the attackvéty is not uniformly
spread along the whole IP space. SGNET aims at observindtuk activities in
different locations of the IP space, deploying differemis®@s synchronized by a
central entity. On the other hand GQ is a highly interactivernet telescope, and
thus aims at observing global trends and background radiati large blocks of
addresses rather than at observing threats in diverseoanvants.

Secondly, SGNET precisely separates the various phades epsilon-gamma-
pi-mu model and handles each phase with a different entitg. b@lieve that the
FSM model generated by ScriptGen, or by RolePlayer, fits tunilge emulation of
the exploit phase but is insufficient to model the complernattions inherent to
the code-injections. A small modification in the injected/lpad can completely
modify the network behavior of the attack, and represerdihtihe possible behav-
iors in the FSMs would lead to an explosion of the number dfi@aSGNET thus
takes advantage of different entities that better fit to latite different phases of
the attack trace, dynamically switching between them. Foanunderstanding of
GQ, this does not seem to be the case.

Thirdly, SGNET is designed to operate in a completely unsuged way. We
will show in Section 6 how we are able to incrementally refime protocol knowl-
edge collecting new samples of protocol interaction. Wevatbin Section 3 that,
differently from ScriptGen, RolePlayer does not suit wellautomated learning.
Indeed, no automated learning capabilities are mentioméldei current literature
about GQ.

Finally, SGNET is able to model the whole attack trace witrexecuting the
code injection itself. Allowing the execution of the wholtegk trace on real hosts
taking advantage of virtualization, as proposed by GQess®curity concerns that
we prefer to avoid.

6 SGNET experimental results

A prototype of the SGNET infrastructure was deployed on ttterhet and has
been running for more than one mofttThe various partners of the Leurré.com
project are being invited to join the experimentation of tiesv infrastructure. At
this time of writing, two SGNET sensors are operational: ,drmnd to a single
IP, is running in France; another, bound to 3 sequentiali$Rsnning in Australia.
All the sensors are associated to an unpatched MicrosoftidMia 2000 machine,
running the 1IS services. Several open TCP and UDP portssaecited to its
corresponding FSM, such as TCP ports 135, 139 and 445, URDBR3band others.
More sensors will be deployed in the following months. lagting results have
already been obtained with this initial setup. They are uss@after to validate
the whole approach.

2Note to the reviewers: if accepted, we will be glad to enrhik Section with updated figures.
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Figure 4: Learning phase

When evaluating the SGNET, several points must be consldéne reaction
time, the stability of the FSMs, the correctness of the caflection information
and the ability to download malware. Theaction timecorresponds to the time
that it takes to generate a new path in the ScriptGen FSMs dorem new attack
activity. Once the path is generated,stability is important: the semantic abstrac-
tion provided by the ScriptGen approach must be good enaughow the sensors
to handle autonomously future similar attacks without oamusly creating new
variations of that same path. The code injection infornmelarnt from the sample
factory must allow a sensor to provide the shellcode harndbbrcorrect payloads.
Finally, the provided payloads must allow Nepenthes tocéffely download mal-
ware. These various aspects will be addressed in the foltpgéctions.

6.1 Reactiontime

In the following, we report on our observations of the bebawf the ScriptGen
sensors on a specific port, the Microsoft DCOM Service Cotanager (TCP
135). This port has been chosen for two reasons. On the onk haorresponds
to a relatively complex binary protocol, thus constitutegon-trivial example of
automated learning. On the other hand, itis hit by a sigmficamber of attackers,
accounting for 32.5% of the total number of observed attackiting open ports.

On day 0, the experiment was started with a completely urgchconfigura-
tion. Initially, all the FSMs provided to the SGNET sensorsrevempty. We then
tracked the behavior of the SGNET in handling the attacklensgathe days. Fig-
ure 4 focuses only on the first 10 days of observed behavioa &iable SGNET
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setup. Figure 4 groups the attackers according to how they been handled by
the SGNET. The attacks can be known, that is the sensor wag@bindle the
conversation taking advantage only of the knowledge repttes in the FSMs; or
they can be unknown, requiring thus the interaction withseple factory. With
respect to code injections, a code injection may or may natdbected, and may
or may not be recognized by the shellcode handler.

In almost every day, we can notice a rather constant amowatitaikers whose
behavior is known to the sensor but who do not inject codes@&lseurces are ac-
tually connecting to the port and then disconnecting immuedly without sending
any payload. This likely corresponds to scanning actiitie

The first 6 days are dominated by unknown activities, thatireghe sensor to
rely on the sample factory. On the 7th day, after having ctélé 73 attack samples
for that single port, a new protocol path is generated by B&BT and pushed
to the sensors. Even if the breadth of the SGNET is at the mblinged, it has
been able to incorporate in its FSMs a new activity in a reddyi short amount of
time.

These results clearly underline the ability of the Script@gproach to learn
Internet attacks in a completely unsupervised way withiasonable learning
time. This result is an important point in validating the Wh8GNET architecture.
What has just been said for port 135 was also observed fohancbmmonly
exploited port, that is port 139 (NetBIOS Session Servi€#her less commonly
attacked ports have not developed yet stable protocol patieir FSMs mainly
because of the lack of samples. As soon as more sensors vdégleyed on the
Internet, the reaction time of the systems will decreaseesinore samples will be
made available more rapidly. At this point, it is worth ngfithat, unfortunately,
these two sensors are located within IP blocks of addrebs¢site among those
that get the fewest number of attacks per hours, as indidatesur Leurré.com
statistics.

6.2 Stability

When creating a protocol path, it is important to understahéther the se-
mantic abstraction performed by ScriptGen is sufficientaextly handle newer
instances of the same attack. By design, a FSM path is ndireede once created
it will never be maodified. If the generalization is not suffint, new attack samples
will not traverse the path and will trigger again the proxyigorithm to rely on
the sample factory. This means that if the generalizatiamtssufficient and the
path is not stable the sensor will never be able to handlenaotously an attack.
Also, this will lead to an explosion of the complexity of th&Ms, with many
protocol paths never traversed by any sample.

According to what we have just said, the verification of trabiity of the paths
consists in observing a decrease of the unknown activifies a refinement of a
FSM. Referring to Figure 4, the sudden increase on day 7 ofRraztivities with
recognized code injections is a clear validation of the iktalof the generated

19



A ° >
Ba Bi n
B ; > —

Figure 5: Finding the payload

path.

6.3 Recognizing the shellcode

Figure 4 shows that after day 7 SGNET sensors are able tossiatig emu-
late exploits against port 135 and submit recognizablegaald to the Nepenthes
framework. The same has happened for the protocol pathsageddor port 139.
Itis also interesting to notice in Figure 4 a small fractidractivities that generated
a code injection not recognized by Nepenthes. It is interggb focus on these
cases since they underline a possible failure of the knayaelédised model used by
Nepenthes.

In the beginning of the testing we ran into a considerable bemof cases in
which the shellcode was not recognized correctly. The médron provided by the
Argos honeypots contains hints on the first bjgeof payloadpi being executed
by the host. When embedding this information in the new maltpaths of the
ScriptGen FSM, we considered as payload all the following$;, B;.1,...Bn
up to the end of the reassembled application-level streagui 5 A). This ap-
proach was often generating extremely short payloads,istorgs only of a few
bytes. The real behavior of these payloads is shown in FigueThe identified
payload consists of a jump instruction to another memorgtioo containing most
of the payload, that was locatégfore B; in the reassembled application stream.

We revised our initial assumptions as follows. Given a readded application
level streamB; ... B,, identified by Argos as containing a payloadat byteB;, the
sensor tries to submit a payload = (By,...B,) with k& < i to the shellcode
handler. The index is gradually decreased starting framuntil the payload is
recognized successfully. This allows to backtrack fromithal hint given by
Argos, that in this particular situations proves to be naidlag. Since the payload
recognition takes a very small time on the shellcode hanthierheuristic adds a
minimum overload.

This heuristic allowed to increase the recognition ratidahaf shellcodes, un-
veiling a much more interesting phenomenon. In the last veaé&ecember 20086,
SGNET logged a high number of shellcodes injected through 1380 and not
being recognized by the shellcode handler. 147 out of a @it@00 submitted
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Figure 6: Antivirus detection rate for downloaded malwamples

shellcodes were not detected, catching thus our attenfifiar submission of the
collected payload samples to the Nepenthes developmant tha signature for
one class of shellcodebifdfiletransfer.ambergwas modified. ScriptGen was in
fact collecting samples differing by 3 bytes from the orajisignature. This dif-
ference is probably due to the fact that the shellcode had tremlified by using
different opcodes for the same operations. This episoda&tismaely important
since it underlines two facts: 1) the knowledge-based ambraised by Nepenthes
to detect and emulate shellcodes can be evaded; 2) the SGIMRE 0 observe
these cases and take the appropriate measures.

6.4 Downloading the malware

Finally, some considerations must be made on the malwaraldaa phase.
The amount of malware effectively collected by the SGNEThwespect to the
number of detected and successfully emulated code injectsorather low.

Looking at the SGNET logs for the period going from the 10thh®e 26th of
January 2007, we can deduce some interesting statistics.ofQ27 submitted
shellcodes detected and recognized by the shellcode maondlg 60 led to suc-
cessful download of malware samples. Of the remaining 163@,vtere actually
corresponding to non-routable addresses mainly belonginige 192.168.0.0/16
network. This result is extremely surprising, but can béfjesl by the fast utiliza-
tion in the nowadays Internet of private addressing and NAT.

We can in fact recognize two different classes of downlo#usse in which the
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Name Result (19/1) Result (26/1)

AntiVir found nothing found [Worm/Allaple.B.151]
Authentium found nothing found [W32/NetWorm.BL]
Avast found nothing found nothing

AVG found [Worm/Allaple.B] found [Worm/Allaple.B]
BitDefender found nothing found nothing

CAT-QuickHeal found nothing found nothing

ClamAvV found nothing found nothing

DrWeb found nothing found nothing

eSafe found [Suspicious Trojan/Worm] | found [Win32.Allaple.b]
eTrust-InoculatelT| found nothing found nothing

eTrust-Vet found nothing found nothing

Ewido found nothing found [Worm.Allaple.b]

F-Prot found nothing found nothing

F-Prot4 found nothing found nothing

Fortinet found [suspicious] found [W32/Allaple.B!worm.im]
Ikarus found nothing found [Net-Worm.Win32.Allaple.b]
Kaspersky found [Net-Worm.Win32.Allaple.b] found [Net-Worm.Win32.Allaple.b]
McAfee found nothing found nothing

Microsoft found nothing found nothing

NOD32v2 found nothing found nothing

Norman found nothing found nothing

Panda found nothing found nothing

Prevxl found nothing found nothing

Sophos found [Mal/Packer] found [Mal/Packer]

Sunbelt found nothing found nothing

TheHacker found nothing found nothing

UNA found nothing found nothing

VBA32 found nothing found nothing

VirusBuster found [Worm.Allaple.Gen] found [Worm.Allaple.Gen]

Table 1: Example of submission

attacker forces the victim to download malware from a cédition, such as an
FTP or HTTP server, and those in which the attacker forcesittien to download
the malware from its own host, usually taking advantage ofallsTFTP daemon.
The latter case can be greatly impacted by the presence of tR&Rattacker will
use as address for the TFTP server the IP assigned to its aworkecard. In
many cases, such as the WiFi/ADSL routers normally distedbuby many ISPs,
that address is not routable and belongs to a private netwwagked to the outside
world by NAT. In these cases the worm has no chance or propagaven if it
continuously scans the network for vulnerable machines.

Nevertheless, we have been able to successfully downlohdamgasamples.
We submitted these samples to VirusTotal [31], a free seraltowing to scan
suspicious files using several well known antivirus engitesh commercial and
open. At the moment of writing, VirusTotal is offering 28 fdifent antivirus
engines, most of them constantly updated with the latestasiiges. Figure 6
shows the detection rate distribution for the submitted@asdownloaded by the
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SGNET. We define the detection rate of a malware sample aatioeof antivirus
softwares having identified the sample as containing sanmgethalicious. Itis in-
teresting to see how the detection rate is almost alwaysb&l8o, thus meaning
that in average at least 8 antivirus softwares fail to recamgtine submitted malware
as being malicious. In parallel to well-known worms such &str, we have been
able to observe relatively recent malware samples such laplélA, discovered
according to the F-Secure database on the 7th of Decembér 200

An important issue not addressed in the scope of this papkeiproblem of
broken malware downloads. Some of the upload methods usedtdigkers are
based on unreliable protocols, and thus the emulated dedmdbase may end up
in a corrupted file. An example of this behavior is shown inlédb We submitted
the sample to CWSandbox [12], a new sandbox implementalitenta analyze the
host-based behavior of a malware sample. According to thel®e analysis, the
file cannot be executed and is thus broken. All the succedstglction cases can
thus be considered dalse positives The presence of this kind of false positives
mainly depends on the antivirus policy and in the aggressisg of its detection
engine. The even more surprising result is that when suimigpithe same malware
a second time one week later, we observed that the deteetiemad “improved”.
A more in depth analysis of the downloaded samples would bessary to better
understand this phenomena. It is indeed important to uingehow, to collect
meaningful detection statistics, it is important to redagnthe broken samples
taking advantage of technologies such as CWSandbox. Thid isf the scope of
this work and it is left for future investigation.

7 Conclusions

We presented in this paper a novel infrastructure to obskerteenet attacks.
We showed how, focusing on code injection attacks, we haga bble to address
the epsilon-gamma-pi-mu model and emulate the steps esfjtar successfully
download malware samples. We took advantage of three @iffesipproaches,
namely ScriptGen, Argos and Nepenthes, and we have beencagkploit their
strengths in addressing specific phases of the attack [rodd& showed how
the ScriptGen approach can act as a generic vulnerabiliguredor Nepenthes,
providing behavior-based information and allowing to itfgnthe limitations of
the Nepenthes knowledge-based approach. Also, we haveabéeto concretely
validate the ScriptGen approach by handling successfedlyinternet attacks. The
ongoing deployment of SGNET sensors in different locatiofihe IP space will
allow us to gather a more detailed picture of the local tlsreddservable in the
Internet.
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