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Abstract
Distributed hash tables (DHTs) have been actively studied in literature

and many different proposals have been made on how to organize peers in a
DHT. However, very few DHTs have been implemented in real systems and
deployed on a large scale. One exception is KAD, a DHT based on Kademlia,
which is part of eDonkey2000, a peer-to-peer file sharing system with several
million simultaneous users. We have been crawling KAD continuously for
about six months and obtained information about geographical distribution
of peers, session times, peer availability, and peer lifetime. We also evaluated
to what extent information about past peer uptime can be used to predict the
remaining uptime of the peer.

Peers are identified by the so called KAD ID, which was up to now as-
sumed to remain the same across sessions. However, we observed that this
is not the case: There is a large number of peers, in particular in China, that
change their KAD ID, sometimes as frequently as after each session. This
change of KAD IDs makes it difficult to characterize end-user availability
or membership turnover. By tracking end-users with static IP addresses, we
could measure the rate of change of KAD ID per end-user.

1 Introduction

Peer-to-peer systems have seen a tremendous growth in the last few years and peer-
to-peer traffic makes a major fraction of the total traffic seen in the Internet. The
dominating application for peer-to-peer is file sharing. Some of the most popular
peer-to-peer systems for file sharing have been Napster, FastTrack, BitTorrent, and
eDonkey, each one counting a million or more users at their peak time. Since these
systems are mainly used by home-users and since the content shared is typically
copyright-protected, the users of these systems often stay only connected as long
as it takes for them to download the content they are interested in. As a result, the
user population of these peer-to-peer systems is highly dynamic with peers joining
and leaving all the time.

In this paper, we focus on a single peer-to-peer system, namely KAD, which
is the publishing and search network of eDonkey. We want to characterize KAD

in terms of metrics such as arrival/departure process of peers, session and inter-
session lengths, availability, and lifetime.

To obtain the relevant raw data needed we decided to “crawl” KAD. Each crawl
gives a snapshot of the peers active at that instant. The three major challenges in
crawling are

• Time necessary to carry out a single crawl, which should be as small as
possible to get a consistent view of the system.

• Frequency of the crawls, i.e. the time elapsed between two consecutive crawls
should be small (no more than a few minutes) in order to achieve a high res-
olution for metrics such as session length.
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• Duration of the crawl, which should be in the order of many months, to be
able to correctly capture the longest session and inter-session lengths.

To meet all these goals, we built our own crawler that will be described in
section 4.

While peer-to-peer systems have been explored previously using a crawler, the
duration of these crawls was limited to a few days at best. We were able to crawl
KAD for almost six months at a frequency of one crawl every five minutes, which
allowed us to obtain a number of original results. We observed that:

• session lengths have a “long tail”, with sessions lasting as long as 78 days.

• the distribution of the session lengths is best characterized by a Weibull dis-
tribution,with shape parameter k < 1. One property of Weibull distributed
session lengths is that a peer that has so far been up for t units of time will –
in expectation – remain up for a duration that is in the order of O(t1−k). We
can exploit this fact to use the past uptime in order to predict the remaining
uptime.

• for many peers, the amount of time a peer is connected per day, called daily
availability, varies a lot from one day to the next. This makes it difficult to
predict daily availability

• the lifetime of a significant fraction of the peers observed can be as short
as a single session. We could explain in part this surprising behavior by the
fact that peers change their KAD ID, which is contrary to the assumption that
KAD IDs are persistent.

• when classifying peers according to their geographic origin, the peers from
China make about 25% of all peers seen at any point of time and Europe
is the continent where KAD is most popular. We also saw a big difference
between peers in China and Europe with respect to some of the key metrics
such as session length or daily availability.

These results provide valuable impact to improve the design and performance of
the KAD system.

The remainder of the paper is organized as follows. Section 2 presents related
work followed by a section describing KAD. Section 4 presents the measurement
methodology followed by two sections that contain the results. In the last Section
7 we present our conclusion and an outlook on future work.

2 Related Work

Overnet was the first widely deployed peer-to-peer application that used a DHT,
namely Kademlia. The implementation of Overnet is proprietary and its operation
was discontinued in September 2006 after legal actions from the media industry.
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Overnet has been the subject of several studies such as [2, 7, 13] and up to 265,000
concurrent users have been seen online. The study most relevant to our work is the
one by Bhagwan et al. [2]. A set of 2,400 peers was contacted every 20 minutes
during two weeks. This study pointed out the IP aliasing problem that is due
to the fact that many peers periodically change their IP address. So, in order to
properly compute session times and other peer-specific metrics one needs to use
the global identifier of the peer-to-peer system. This study also indicates, that for
systems where peers leave permanently, the mean peer availability decreases as the
observation period considered increases.

KAD is the first widely deployed open-source peer-to-peer system relying on a
DHT. Two studies on KAD have been published by Stutzbach. The first explains
the implementation of Kademlia in eMule [19] and the other [20] compares the
behavior of peers in three different peer-to-peer systems, one being KAD. The
results obtained for KAD are based on crawling a subset of the KAD ID space. We
call a continuous subset of the total KAD ID space that contains all KAD peers
whose KAD IDs agree in the high order k bits a k-bit zone. [20] crawled a 10-bit
zone in 3-4 minutes and a 12-bit zone in approximately 1 minute. A total of 4
different zones were crawled during 2 days each. The short duration of the crawls
implies the maximum values for some metrics such as session up-times or inter-
session times that can be observed are naturally limited to 2 days. The paper by
Stutzbach [20] is the most relevant with respect to our work and we refer to the
results reported by Stutzbach at several occasions. As we will see, some of our
conclusions do not agree with the ones made by Stutzbach, which is in part due to
the fact that a crawl duration of two days is too short to correctly sample KAD with
respect to some of the key metrics such as session durations.

3 Background on KAD

KAD is a Kademlia-based [9] peer-to-peer DHT routing protocol implemented by
several peer-to-peer applications such as Overnet [14], eMule [5], and aMule [1].
The two open–source projects eMule and aMule do have the largest number of si-
multaneously connected users since these clients connect to the eDonkey network,
which is a very popular peer-to-peer system for file sharing. Recent versions of
these clients implement the KAD protocol.

Similar to other DHTs like Chord [18], Can [16], or Pastry [17], each KAD node
has a global identifier, referred to as KAD ID, which is 128 bit long and is randomly
generated using a cryptographic hash function. The KAD ID is generated when the
client application is started for the first time and is then permanently stored. The
KAD ID stays unchanged on subsequent join and leaves of the peer, until the user
deletes the application or its preferences file1. Therefore, using the KAD ID, a
particular peer can be tracked even after a change of its IP address.

1As we will see later, not all peers in KAD behave this way.
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3.1 Routing

Routing in KAD is based on prefix matching: Node a forwards a query, destined to
a node b, to the node in his routing table that has the smallest XOR-distance. The
XOR-distance d(a, b) between nodes a and b is d(a, b) = a ⊕ b. It is calculated
bitwise on the KAD IDs of the two nodes, e.g. the distance between a = 1011 and
b = 0111 is d(a, b) = 1011 ⊕ 0111 = 1100. The fact that this distance metric is
symmetric is an advantage compared to other systems, e.g. Chord, since in KAD if
a is close to b, then b is also close to a.

The entries in the routing tables are called contacts and are organized as an
unbalanced routing tree: A peer P stores only a few contacts to peers that are far
away in the overlay and increasingly more contacts to peers as we get closer P .
For details of the implementation see [19]. For a given distance P knows not only
one peer but a bucket of peers called contacts. Each bucket can contain up to ten
contacts, in order to cope with peer churn without the need to periodically check if
the contacts are still online.

For routing, a message is simply forwarded to one of the peers from the bucket
with the longest common prefix to the target. Routing to a specific KAD ID is
done in an iterative way, which means that each peer on the way to the destination
returns the next hop to the sending node. While iterative routing experiences a
slightly higher delay than recursive routing, it offers increased robustness against
message loss and it greatly simplifies crawling the KAD network.

3.2 Publishing

A key in a peer-to-peer system is an identifier used to retrieve information. KAD

distinguishes between two different keys:

• A source key that identifies the content of a file and is computed by hashing
the content of a file.

• A keyword key that classifies the content of a file and is computed by hash-
ing the tokens of the name of a file.

In KAD keys are not published just on a single peer that is numerically closest to
that key, but on 10 different peers whose KAD ID agrees at least in the first 8-bits
with the key. This zone around a key is called the tolerance zone.

Figure 1 shows an example of the publishing process. A peer wants to publish a
file with the name the matrix. This filename will result in two keywords, “the”
and “matrix”. All relevant references to the real file are generated, such as the
source key and the the keywords with the attached metadata. Next, the keywords
“the” and “matrix” are published, pointing to the source. Finally, the source is
published, pointing to the publishing peer.

Keys are periodically republished: source keys every 5 hours and, keyword
keys every 24 hours. Analogously, a peer on which a source key or keyword key
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Figure 1: Sketch of the 2-level publishing scheme

was published will delete the information after 5 and 24 hours, respectively. This
way re-publishing is done exactly the same way as publishing.

4 Measurement Methodology

We have developed Blizzard, our own crawler for KAD, with the aim to crawl KAD

frequently and over a duration of several months. Our crawler logs for each peer
P the time of the crawl, the IP address of P , and the KAD ID of P .

In a large peer-to-peer system such as KAD, peers are constantly joining and
leaving, which makes it difficult to get a consistent view of the system. Therefore,
the overall duration of a single crawl should be as short as possible. To speed up the
crawl, previous crawlers often were distributed and ran simultaneously on multiple
machines. We noticed that in a distributed crawl a lot of CPU time is used up for
the synchronization between the different machines. The main idea of Blizzard
is to use only one machine and keep all relevant information in main memory.
After the crawl is completed, the results are written to disk. The implementation
of Blizzard is straightforward: Blizzard runs on a local machine knowing several
hundred contacts to start with. It uses a simple breadth first search and iterative
queries: It first queries peers among its contacts in order to get to know more peers
and so on.

There are various pitfalls when crawling a peer-to-peer system, such as incom-
plete data due to crawler crashes, loss of network connectivity, or random failures
due to temporary network instability. To address these problems, we run simulta-
neously two instances of Blizzard, one at the University of Mannheim, Germany,
connected to the German research network, and a second one at Institut Eurécom,
France, connected to the French academic network. Doing two parallel crawls
turned out to be very useful: at some point, due to network problems, one instance
of the crawler was seeing fewer peers than the other one. Also, occasionally one
of the two crawlers crashed. We take the raw data of the two parallel crawls and
merge them in such a way that, for a given round of the crawl, a peer is considered
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up when he has been seen by at least one crawler.
The speed of Blizzard allows us to crawl the entire KAD system (entire KAD ID

space), which was never done before. Such a full crawl of KAD takes about 8 min-
utes. The first million different peers are identified in about 10 seconds, the second
million in 50 seconds, thereafter the speed of discovery decreases drastically since
most of the encountered peers have already be seen before during the same crawl.
A full crawl of KAD produces about 3 GBytes of inbound and outbound traffic
each.

A full crawl was done three times a day from 2006/08/18 to 2006/08/26 and
from 2006/10/03 to 2006/10/12. Another full crawl has been started 2007/03/20
and is carried out up to now once a day.

A full crawl generates an extremely high amount of trace data and of network
traffic (with peak data rates close to 100 Mbit/sec). Carrying out just 3 crawls per
day is not really sufficient to capture the dynamics of KAD at short timescales. For
this reason, we decided to carry out a zone crawl on a 8-bit zone, where we try
to find all active peers whose KAD ID have the same 8 high-order bits. Such a
zone crawl, that explores one 256-th of the entire KAD ID space, takes less than
2.5 seconds. A zone crawl for the KAD IDs whose 8 high order bits are 0x5b was
done once every 5 minutes from 2006/09/23 to 2007/03/21, which is slightly less
than 6 months. We will see in Section 5 that it is possible to infer the results about
the entire KAD ID space from the results obtained with a zone crawl.

4.1 Data Cleaning

Crawling happens in “rounds” with a time difference of five minutes, with the
two crawlers being “synchronized”. A peer that replied to at least one of the two
crawlers during round i is considered to be up at round i .

However, even when crawling from two sites, we realized that it is still possible
that the requests sent to a peer or its replies can get lost and a peer that is up may
be declared being down. One reason can be that the path between the two crawlers
and the peer is disrupted somewhere close to that peer. In this case, the crawlers
will not receive a reply from that peer even when it is up and running. While it
is not possible to tell exactly why a peer is not answering, we implemented the
following data cleaning rule that we consider “reasonable”: when a peer P that has
been reported up at round i − 1 does not reply to either of the two crawlers during
the next round i, and then replies again during round i+1, then peer P will be also
considered up at round i.

Data cleaning will increase the session and inter-session times. Figure 2(a)
plots the cumulative distribution function (CDF) of session and inter-session times.
About one third of all inter-session times are just 5 minutes; these values will
disappear after data cleaning, when the smallest inter-session time becomes 10
minutes (see 2(a)). Also, after data cleaning some of the adjacent sessions will get
merged and the session times increase (see 2(b)).
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Figure 2: CDF of the inter-session and session times (1 hole: after data cleaning, 0
hole: before data cleaning).

5 Global View of KAD

In this section, we will present results about the full crawl of the system and the
zone crawl, moreover we will characterize the fact of IP address aliasing and KAD

ID aliasing.

5.1 Full Crawl

During a full crawl, we found between 3 and 4.3 million different peers. Between
1.5 to 2 million are not located behind NATs or firewalls and can be directly con-
tacted by our crawler. Peers behind NATs or firewalls use KAD to publish infor-
mation about the content they share, but do not participate in storing published
information, and make therefore no contribution to the operation of KAD.

In the rest of the paper we will only report statistics on the peers that our crawler
could contact directly. As we can see in Figure 3 the number of peers seen varies
according to a diurnal and a weekly patterns and reaches its peak during the week-
end, where the population is about 10% higher.

In Figure 4, we plot the distribution of the percentage of peers seen per country.
We used the Maxmind database [8] to resolve IP addresses to countries and ISPs.
The continent with the highest percentage of peers is Europe (Spain, France, Italy
and Germany), while the country with the largest number of peers is China. Less
than 15% of all peers are located in America (US, Canada, and South America).
We can also see that the geographic distribution of the peers obtained with the two
zone crawls of an 8-bit zone each is very close to the result obtained with the full
crawl, which is to be expected since the KAD IDs are chosen at random.

We can therefore estimate the total number of peers in KAD by simply counting
the number of peers in a zone. We do a zone crawl of one 256-th of the entire
KAD ID space and use Chernoff Bounds (see [12] Chapter 4) to estimate the total
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Figure 4: Histogram of geographic distribution of peers seen on 2006/08/30.

population size and to tightly bound the estimation error.
Let N(t)part be the number of peers counted during a zone crawl of an 8–bit

zone at time t and N̂(t) := 256 ∗ N(t)part the estimate for the total number of
peers in the KAD system. The true value N(t) for total number of peers at time t is
very close to the estimate N̂(t), with high probability. More precisely:
Prob[|N(t) − N̂(t)| < 45000] ≥ 0.99, which means that our estimate N̂(t) has
most likely an error of less than 3% for a total population of at least 1.5 million
peers.

Since the full crawl was quite expensive in terms of resources, we will ex-
tensively rely on the zone crawl to obtain much of the relevant information about
KAD.

5.2 Zone Crawl

All the results in the following subsection were obtained using the zone-crawl of
the 8-bit zone 0x5b that lasted for 179 days.

In Figure 5, we plot the number of peers seen that originate from China and
some European countries. For the peers of each country, we can clearly identify
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a diurnal pattern, with a peak around 9 PM local time. The eight hour time shift
between Europe and China is clearly visible.
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Figure 5: Peers online according to country of origin.

Table 1 summarizes the basic findings on the zone crawl. The peers seen came
from 168 different countries and 2384 providers. For the KAD IDs seen the 1st
day of our zone crawl, we observe that about 1

3
of the peers come from Europe and

about 1

4
from China. If we compare the lifetime of the peers, which is defined as

the difference between the time a given KAD ID was seen the last time and the time
this KAD ID was seen the first time, we notice that the lifetime of peers in China
is much smaller than the one for peers in the other countries. More than half of the
peers in China were seen for the duration of only one session. We will come back
to this point in subsection 5.3.

Total China Europe Rest
Different KAD IDs 400,278 231,924 59,520 108,834

Different IP addresses 3,228,890 875,241 1,060,848 1,292,801
KAD IDs seen for a single session 174,318 131,469 11,644 31,205

KAD IDs with LT ≤ 1 day 242,487 183,838 15,514 43,135
KAD IDs seen for the first time on

- 1st crawl 5,670 455 2,879 2,336
- 1st day 18,549 4,535 6,686 7,328

- 60th day 1,893 1,083 259 551
KAD IDs seen for the first time on 1st day

- with LT ≤ 1 day 2,407 1,568 286 553
- 1 day < LT ≤ 1 week 1,368 497 393 478

- 1 week < LT ≤ 1 month 2,735 791 944 1,000
- LT > 1 month 12,039 1,679 5,063 5,297
- LT > 3 months 8,423 936 3,679 3,808

Table 1: Key facts about the zone crawl spanning 179 days (LT=Lifetime).
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Arrivals and Departures

Since we crawl KAD once every 5 minutes, we can determine the number of peers
that join and leave between two consecutive crawls. Knowing the arrival rate of
peers is useful since it allows to model the load in KAD due to newly joining peers.
Each time a peer joins, it first contacts other peers for information to populate its
routing table, before it publishes the keywords and source keys for all the files it
will share.

In figure 6(a) we depict the CDF (cumulative distribution function) of the num-
ber of peers that arrive and that depart between two consecutive crawls. We see that
the distributions for arrivals and departures are the same. This is to be expected,
since we observe the system in “steady state”: in this case, the system should be-
have like G/G/∞, for which, according to Little’s Law, the arrival rate is equal to
the departure rate [11].

The arrival process is very well described by a Negative Binomial distribution
(see figure 6(b))
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Figure 6: Peer arrivals between two crawls during the first week.

5.3 Aliasing

IP Address Aliasing

It has been known for quite some time [2, 7] that peers may get frequently assigned
new IP addresses, which is referred to as IP address aliasing. We observed a total
of 400,278 distinct KAD IDs and 3,228,890 different IP addresses (see table 1).
As we see in figure 7, the number of different IP addresses per peer is strongly
correlated with the peer lifetime.
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KAD ID Aliasing

Figure 8 reports the number of new KAD IDs per day. i.e. KAD IDs seen for the first
time, according to country of origin. More than 50% of the new KAD IDs are from
peers in China, which is more than one order of magnitude more than the number
of new KAD IDs seen for any other country such as Spain, France, or Germany.

We see in our zone crawl approx. 2,000 new KAD IDs a day, which means that
for the entire KAD system the number of new KAD IDs per day is around 500,000.
If we extrapolate, this makes about 180 Million KAD IDs a year. It is hard to
believe that there exist such a large number of different end-users of KAD.
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Figure 8: New KAD IDs according to country of origin.

We were curious to find out whether the end-users really stop using KAD after
one session, or whether the same users come back with a different KAD ID. We re-
fer to the phenomenon of non-persistent KAD IDs as KAD ID aliasing, in contrast
to IP address aliasing.

To investigate KAD ID aliasing, we need to look for peers with static IP ad-
dresses, wich we can track for non-persistent KAD IDs. We know that, for instance
in France, one of the ADSL providers (Proxad) assigns static IP addresses to cus-
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tomers located in areas where the service offer is completely “un-bundled”, while
France Telecom-Orange changes the IP addresses of ADSL customers on a daily
basis.

To find peers with static IP addresses, we started in March 20th, 2007 to carry
out one full crawl a day. We take the logs of the two full crawls of March 20th
and March 30th and extract the 160,641 peers that have the same IP address and
the same KAD ID in both logs. We call this set of IP addresses pivot set. Our
hypothesis is that a peer that keeps the same IP address for 10 days is assigned a
static IP address. We then take the logs of the full crawls starting April 1st, 2007 to
look for peers whose IP addresses are in the pivot set that have changed their KAD

ID.
In figure 9, we plot the rate of change of KAD IDs for the peers in the pivot

set. Up to now, all the publications on KAD assumed persistent KAD IDs. Our
observations clearly disagree with this affirmation, since we see that a significant
fraction of end-users in different countries change their KAD ID over time. The
rate of change among the Chinese peers is highest with about 35% after one month,
second is Spain with close to 20%, while the average is about 10%.

We have no good explanation for why end-users change their KAD IDs. In the
case of China, we suspect that there exists a “Chinese implementation” of the KAD

protocol that uses a new KAD ID for every session.
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Figure 9: The fraction of peers in pivot set that changed their KAD ID at least once.

Implications of KAD ID Aliasing

The fact that the KAD ID assigned may be non-persistent obliges us to distinguish
between a peer and an end-user:

• A peer is an instance of KAD identified by a fixed KAD ID.

• An end-user is a physical person that launches a peer to participate in KAD.
The same end-user can, at different times, participate in KAD via different
peers.

When KAD ID aliasing occurs, it is not really possible to characterize the life-
time of end-users, as compared to the lifetime of peers. All we can extract from
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our crawl data is the lifetime of peers, which provides us with a lower bound on
the lifetime of end-users.

6 Peer View

In this section, we will present metrics that describe the behavior of individual
peers, such as lifetime, session and inter-session time, residual uptime, and daily
availability using the observations made with our 179 day zone crawl.

We will mainly focus on the peers that were first seen on the 1st day of our
crawl, since we could observe them for the longest period of time. For reference,
we will occasionally compare the results with those obtained for the peers seen the
first time on day 60. We have chosen day 60, since the largest inter-session times
observed very rarely exceed 60 days, which allows us to assume that the peers we
see for the first time on day 60 have newly joined the system.

6.1 Lifetime of Peers

We recall that, among the peers seen on the first day, about 2/3 of the peers have
a lifetime larger than one month and close to 45% have a lifetime even larger than
three months (Table 1).

For a given KAD ID k, let tj
1
(k) be the time this KAD ID is seen joining KAD

for the first time, and let tlm(k) be the time this KAD ID seen for the last time.
The lifetime of KAD ID k is defined as tl

m(k) − tj
1
(k). Since our crawl is of finite

duration, we can never be sure if a peer with KAD ID k will not come back after we
stopped crawling. To make such a event very unlikely, we have decided to compute
the lifetime only for peers with KAD IDs that have seen that last time 60 days or
more before the end of our crawl (remember that the inter-session times seen are
very rarely larger than 60 days!). Since at time tl

m(k) we do not know whether
peer k will re-join KAD later, it is clear that our definition of lifetime gives a lower
bound on the actual lifetime of a peer. Figure 10 depicts the the CCDF of lifetime
for KAD IDs seen for the first time during the first crawl, on the first day, and for
the first time on the 60th day. It is striking to notice that the KAD IDs first seen on
day 60 have a much lower lifetime than the KAD IDs seen the first day. In fact, only
40% of the KAD IDs that were first seen on day 60 will be seen for more than one
days (Figure 10(b)). As we know from table 1, more than half of the KAD IDs first
seen on day 60 are from peers in China; it is for these peers that we could clearly
establish that participants change their KAD IDs.

Figure 11 depicts the complementary cumulative distribution (CCDF) of the
peers seen the the first day. There is a big difference in the lifetime of peers from
China as compared to Europe: more than a third of the Chinese peers disappear
after only one day and only 10% have a lifetime of more than 150 days, while
close to 40% of the peers in Europe have a lifetime of more than 150 days.
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Figure 10: CCDF of the lifetime of peers seen during the 1st crawl, first day up
from the second crawl, and on day 60.
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Figure 11: CCDF of the lifetime of the peers seen on the first day according to
country of origin.

6.2 Session Statistics

Most of the peers will not be online, i.e. connected to KAD, all the time. By crawl-
ing KAD, we can determine for each peer k the instances tj

1
(k), ..., tjn(k) when k

joined and the instances tl1(k), ..., tlm(k), with m = n − 1 or m = n, when k has
left KAD. We define the session length as the time a peer was present in the system
without any interruption, i.e. tl

i(k) − tji (k) for i ∈ {1, ...,m}.
In figure 12 we plot the number of sessions per peer. Among the peers seen on

the first day, 20% have more than 100 sessions.
In figure 13, we plot the distribution of the session length. The session length

of the peers seen in the first crawl is about twice as high as the one of the peers seen
for the first time during later crawls of day one. When we crawl KAD for the first
time, we have a much higher chance to see peers that are connected “most of the
time” than peers that are connected from time to time and only for short periods.

15



10
0

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

Number of sessions

C
C

D
F

 

 

1st crawl
Up from 2nd crawl
60th day

Figure 12: CCDF of the number of sessions per KAD ID.

This means that a single crawl of the system cannot give a representative picture of
the characteristics of the peers: Instead, we need to sample the system many times.

For the peers seen in the first crawl, we observe session times (in minutes)
with a mean = 670, standard deviation = 1741 and median = 155. For the peers
seen during crawls 2-288 of the first day these values are only about half as large
with mean = 266, standard deviation = 671 and median = 75. In both cases, the
coefficient of variation, which is defined as the ratio between standard deviation
and mean, and which is used to characterize the “variability” of a distribution, is
between 2 and 3. In fact, the session lengths exhibit a considerable tail of large
values (Figure 13(b)) with at least 0.1% of the sessions being longer than 1 week
and the longest session observed being 78 days long.
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Figure 13: CCDF of the session lengths per KAD ID for different peer sets.

Weibull fit of the session time distribution

We did a distribution fitting for the session times and found that the Weibull distri-
bution provides a very good fit, as we can see in Figure 14. Visually, the Weibull

16



distribution adequately tracks the dominant shape of the measured distribution: Us-
ing only the session length samples larger than 15 minutes, the fit passes the Kol-
mogorov-Smirnov (goodness of fit) test. However, for the small session lengths
of 5, 10, or 15 minutes, the fit is not good due to the too large granularity of time
between two crawls (5 minutes).
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Figure 14: Weibull fit of the session time distribution of the peers seen first day.

The Weibull distribution has two parameters k > 0 (shape) and λ > 0 (scale).
For k < 1 the Weibull distribution is part of the class of the so called subexpo-
nential distributions, for which the tail decreases more slowly than any exponential
tail [6]. This implies that knowing the past (uptime) of a peer allows to predict the
future (residual uptime). More formally, if S denotes the session length then the
expected residual uptime E[S − t|S > t] ∼ O(t1−k), i.e. it grows sub-linearly as
compared to the Pareto distribution, where the growth is linear, i.e. O(t).

Stutzbach [20] observed that the Weibull distribution provides a good fit for
the session lengths of the BitTorrent traces. However, due to significant under
counting of long sessions in the KAD traces, Stutzbach was not able to determine
which distribution best describes the session length of the KAD trace.

Figure 15 shows the expected residual uptime for the scale and shape values
that describe the session length of peers seen in the first crawl. There is a nice fit
between the empirical values and the interpolation using a function whose growth
is O(t1−k). We see that for small observed uptime values the remaining expected
uptime values are considerable: A peer that has been up for 500 minutes will have
a remaining expected uptime of 1,000 minutes.

One occasion where it would be interesting to exploit the knowledge that ses-
sion lengths are Weibull distributed is in dynamically adjusting the expiration times
of the source keys published: We saw that in section 3.2 that a source key that points
to the peer will expire 5 hours after it has been published. On the other hand, we
observed that the median session length of peers is 155 minutes or less. Also, fig-
ure 13(a) indicates that less than 40% of the peers have a session length of 5 hours
or more. This means that in more than 60% of the cases the peer that publishes a
source key will leave KAD before the pointer to the file it owns will expire. As a
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result, many of the pointers to sources in KAD will be stale. A more appropriate
policy might be to first publish a source key with an expiration time much smaller
than 5 hours and progressively increase the expiration time as the uptime of the
peer that owns the file increases.
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Figure 15: Expected residual uptime for k = 0.54, λ = 357.

Next Session Time

One may ask the question whether consecutive sessions are correlated in length. If
there is a strong positive correlation, one could use information about past session
lengths as predictor for the length of future sessions. Such a prediction could, for
instance, be used by a publishing peer to choose the optimal value for the time
during which information it publishes in KAD should be valid.

If we take all session length samples and compute the coefficient of correlation
over consecutive session length we get a value of 0.15, which indicates that there
is almost no correlation. For a visual depiction see figure 16(a). However, if one
only considers session lengths up to 1 day, there is considerable positive correla-
tion (correlation = 0.85) as can be also seen from figure 16(b). Stutzbach ([20]
figure 10(b)), who could only observe session lengths up to one day found a strong
correlation. This example nicely illustrates how incomplete data due to too short
crawling duration can have a major impact on the conclusion one is able to draw
from the observations.

6.3 Inter-Session Time

The inter-session time is defined as the time a peer k is continuously absent from
the system, i.e. tji+1

(k) − tli(k) for i ∈ {1, ..., n}. Figure 17 depicts the CCDF
of the inter-session times. As it was already the case for the session times, the
distribution of the inter-session times of the peers seen during the first crawl is
smaller than the one of the peers seen during later crawls. The same is true for
the mean inter-session time (1110.2 min. vs. 1349.8 min.). The peers first seen on
day 60, which mainly come from China, have even larger inter-session times and a
mean inter-session time of 1704.3.
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Figure 16: Correlation between consecutive session lengths of the peers seen.

For the inter-session times we could not find a distribution that matches well
our observed data. In particular, the Weibull distribution did not fit.
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Figure 17: CCDF of the Inter-Session times of the peers.

6.4 Remaining Uptime

The eMule and aMule implementation do only publish on peers that have been up
for at least 2 hours. Source keys will expire after 5 hours and keyword keys after
24 hours. We wonder if selecting a peer that has been up for at least 2 hours will
increase the chances that this peer will be up for another 5 or 24 hours.

In figure 18, we plot the remaining uptime of peers given that they have already
been up 5 minutes, 1h, 2h, or 8h. We see that on a short time scale of several hours,
a higher uptime translates into a higher remaining uptime. However, on a longer
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timescale of one day or more, the past uptime will not make much of a difference.
This behavior was predicted by the expected residual uptime (Figure 15).

This means that minimum age-based peer selection as implemented in eMule
and aMule is quite effective when publishing source keys that will expire after 5
hours, but not for keyword keys that will expire after one day. Also, only about
20% of the peers with an uptime of 2 hours will remain up for at least another 24
hours. Therefore, the only way to ensure that keywords remain available for 24
hours is to publish information about a keyword on more than one peer, as it is
done by eMule and aMule.
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Figure 18: CCDF of the remaining uptime of peers, given the uptime so far, for
peers seen in first crawl.

6.5 Availability

Characterizing availability is important for building efficient distributed applica-
tions such as overlay multicast or distributed file systems. For instance, availability-
guided file placement can help reduce the cost of object maintenance [10], which
can be potentially prohibitive, as it was pointed out by Blake [3]. The availability
during the interval [T, T + ∆] of a KAD ID that was first seen at time T is defined
as the sum of the times the KAD ID was seen during the interval [T, T + ∆] di-
vided by the length of the interval ∆. This definition implies that a KAD ID k that
has not been seen beyond time tlm(k) will see its availability strictly decreasing
for increasing values of ∆ that satisfy tl

m(k) < T + ∆. For this reason,it we will
later introduce a second notion of availability that considers only the period during
which the KAD ID was observed.

Figure 19 depicts the CDF of the mean peer availability computed for different
intervals ∆. As it has already been seen by Bhagwan [2], in a peer-to-peer system
with churn, the mean availability decreases as the period over which availability is
computed increases, which is due to the fact that some peers may have permanently
left KAD. For large values of ∆, the availability keeps decreasing. However, for
short values for ∆ such as 1, 2, or 5 days, there is a significant fraction of peers
(30%, 15%, 5%) that have an availability of one.
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Figure 19: CCDF The availability of peers seen on the first day.

Given that the availability of a peer over the last N days is known, we want to
study how accurate the future availability of a peer can be predicted knowing its
past behavior.

To do so we take the peers with an average availability larger than 0.8 during
the first N days and ask how well the availability values from the past predict the
future availability. In figure 25(a) we see that a high availability of 0.8 in the past
30 days will result in more the 60% of the cases in an at least as high availability
for the next 30 days. As we increase the prediction horizon to N = 140 days
the distribution of the future availability becomes almost uniform, which means
that in a real system (with permanent departure), the long term availability at day
N = 140 can not be predicted knowing the availability of the past 30 days. The set
of peers considered in figure 25(a) contains peers that leave the system definitively
before N days, i.e. their lifetime < N days. However, as we have seen before, there
is considerable KAD ID aliasing (see section 5.3), which implies that the actual
end-user lifetime will in many cases be larger than measured the KAD ID lifetime.
To get an “upper bound” on how well we could predict end-user availability in the
best case, when there are no permanent departures, we consider in figure 25(b)
only the peers whose lifetime is at least 100 days. In this case, a high availability
of 0.8 in the past 30 days will result in more than 75% of the cases in an at least as
high availability for the next 30 days and in 60% of the case even for the next 50
days (N = 80).

6.6 Daily Availability

Daily availability measures the fraction of time a peer is connected per day. Daily
availability expresses the “intensity” of participation of users in the exchange of
files. For a given peer P , we define daily availability of P as the percentage of
time P was seen on that day. For a peer that was first seen on day i and last seen
on day j, we will get a time series of daily availability values that has j − i + 1
elements.

Peers in China spend much less time per day connected than peers in Europe
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(a) All peers seen first day.
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Figure 20: Conditional distribution of the availability over N days, given the avail-
ability over the first 30 days larger than 0.8.

(Figure 21). The “online times” for peers in Europe are quite impressive, with 40%
of the peers being connected more than 5 hours per day and 20% even more than
10 hours per day.
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Figure 21: CDF of the mean daily availability of peers seen the first day.

Next day availability

Daily availability measures how many hours a peer is connected per day. Observ-
ing this metric over several days or weeks can give an indication about the stability
of peer participation in KAD over time. Stutzbach ([20], figure (11b)) compared the
daily availability of peers between the 2 days of his crawl. For all peers with a given
availability value on day one, he computed the median availability of these peers
on day 2 of the crawl. A plot of the availability on the first days vs. median avail-
ability on the second day indicated that both values as positively correlated. We did
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a similar plot (Figure 22(a)) and obtained a coefficient of correlation of 0.81. How-
ever, we are not sure if taking the median availability of the peers with the same
availability on the first day is the right way to check for correlation. Figure 22(b)
shows a scatter plot of the availalibility values of each peer for two consecutive
days. We see that for a given availability on the first day the availability of these
peers on the second day can vary widely, which also results in a lower coefficient
of correlation of 0.52.
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Figure 22: Scatter plot of the availability on the first day vs the availability of the
second day for peers seen in the first crawl.

Figure 23 plots the daily availability timeseries for a random set of peers over
a duration of 100 days. While there are a few peers for which the daily availability
changes little over time, most of the peers exhibit daily availability values that vary
a lot.
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Figure 23: Daily availability in hours (see Section 6.6) of 50 random chosen peers
of the first crawl.

To formally quantify the daily availability patterns of peers, we use a metric
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called approximate entropy (ApEn), which is a “regularity statistic” that quan-
tifies the unpredictability of fluctuations in a time series. For details on the approx-
imate entropy see [15]. This metric was recently used by Mickens [10] to analyze
several traces of machine availabilities such as the Microsoft trace and the Overnet
trace. We calculate ApEn of the daily availability of KAD peers seen on the first
day. The smaller the value for ApEn, the more regular the daily availability pattern
over time. However, if the time series is highly irregular, the occurrence of similar
availability patterns will be very unlikely for the following days, and ApEn will
be relatively large.

We could confirm the results of Mickens for the Microsoft trace (see figure
24(a)), where 80% of the values of ApEn(2) are close to zero, which indicates that
daily availability varies little over time. On the other hand, the ApEn(2) values for
the KAD trace a much higher (see figure 24(b)). About 50% of the peers the peers
have ApEn(2) values above 0.5, which indicates that the daily availability values
are quite irregular. Mickens made a similar observation for the Overnet trace.
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Figure 24: CDF of the approximate entropy.

We also checked if the daily availability behavior of the peers exhibits any di-
urnal pattern. Douceur[4] analyzed different traces of machine availability2 from
Microsoft, Internet, Gnutella, and Napster. Using Fourier transformation he found
cyclic behavior in the daily availability of the Microsoft machines, but did not find
any diurnal patterns for the other traces. We did a Fourrier and Wavelet transfor-
mation on the daily availability timeseries of our KAD peers and could not find any
cyclic behavior or diurnal patterns.

2The trace is available at
http://www.cs.berkeley.edu/˜pbg/availability/
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6.7 Availability Prediction

Given that the availably of a peer over the last N days is known, we want to study
how accurate the future availability of a peer can be predicted knowing it’s past
behavior. In all the experiments we consider the peers that were seen the first day
of the crawl or a subset of these peers.

We start with a very simple experiment, where we only take the peers with an
average availability larger than 0.8 during the first N days and ask how well the
availability values from the past predict the future availability.

In figure 25(a) we see that a high availability of 0.8 in the past 30 days will
result in more the 60 % of the cases in an at least as high availability for the next
30 days. As we increase the prediction horizon to N = 140 days the distribution of
the future availability becomes almost uniform, which means that in a real system
(with permanent departure), the long term availability at day N = 140 can’t be
predicted knowing the availability of the past 30 days. The set of peers considered
in figure 25(a) contains peers that leave the system definitively before N days,
i.e. their lifetime < N days. However, as we have seen before, there is considerable
KAD ID aliasing, which implies that the actual end-user lifetime will in many cases
be larger than measured the KAD ID lifetime. To get an “upper bound” on how well
we could predict end-user availability in the best case, when there are no permanent
departures, we consider in figure 25(b) only the peers whose lifetime is at least 100
days. In this case, a high availability of 0.8 in the past 30 days will result in more
the 75% of the cases in an at least as high availability for the next 30 days and in
60% of the case even for the next 50 days (N = 80).
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Figure 25: Conditional distribution of the availability over N days, given the avail-
ability over the first 30 days larger than 0.8.

We next want to see if it is possible to linearly predict the availability of peers.
Knowing the past availability of a peer for N days, who well can we predict its
availability at day 100. To assess the quality of the linear prediction we have two
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measures:

• The correlation coefficient indicates the strength and direction of a linear
relationship between two random variables. The correlation is 1 in the case
of an increasing linear relationship, -1 in the case of a decreasing linear rela-
tionship, and some value in between in all other cases, indicating the degree
of linear dependence between the variables. The closer the coefficient is to
either -1 or 1, the stronger the correlation between the variables. However,
correlation alone is be sufficient to evaluate this relationship between two
variables.

• The coefficient of determination, R2, measures the goodness of the global
fit of the model. Specifically, R2 takes a value in [0,1] that represents the
proportion of variability in Yi that may be attributed to some linear combina-
tion of the regressors (explanatory variables) in X. To consider the prediction
to be good if R2 ≥ 0.9 Thus, R2 = 1 indicates that the fitted model explains
all variability in y, while R2 = 0 indicates no linear relationship between
the response variable and regressors.

As before we use all the peers seen the first day to get a “lower bound” on
how well linear prediction works (see figure 26(a)) and all the peers seen the first
day whose lifetime is greater than 100 days to get an “upper bound” (see figure
26(b)). To have a good prediction of the availability, we need to know at least the
availability over the first 70 days, if we take all peers, and over the first 50 days, if
we take only the peers that stay for at least 100 days.
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Figure 26: Linear predictability of the availability over 100 days given the avail-
ability over the first N days.
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7 Conclusion and Future Work

We have presented results on the peer behavior in KAD, the largest currently de-
ployed DHT. The duration of our crawl was 179 days, which makes it to our knowl-
edge, the longest crawl of a peer-to-peer system ever carried out.

The speed of our crawler allowed us to crawl the entire KAD systems and the
results we obtained could be used to validate our approach to crawl in the following
mostly a single zone whose results will be representative for the entire system.

The most important findings are that session lengths are Weibull distributed,
and that session length and daily availability varies a lot for a given peer. Also, KAD

IDs are not necessarily persistent as was assumed so far. Nevertheless, the most
important metrics such as session times, inter-session times or daily availability are
not affected by the non-persistent KAD IDs.

It remains an open problem to explain why KAD IDs are non-persistent and
under what circumstances peers change their KAD ID. To be able to model the
lifetime of peers we need to find a method that allows to characterize the process
of permanent departure for end-users as opposed to peers.

This paper contributes to a better quantitative understanding of the peer dy-
namics in KAD. However, the current implementation of KAD in eMule and eMule
does not yet exploit this knowledge. Instead, some important parameters such as
the expiration time of keys or the number of copies are static. While we have
already commented on some of the parameter choices in the paper. We feel that
our work opens numereous interesting perspectives for improving the design and
implementation of KAD.
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