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Abstract—Using a peer-to-peer approach for live multimedia
streaming applications offers the promise to obtain a highly
scalable, decentralized and robust distribution service. When
constructing streaming topologies, however, specific care has to
be taken in order to ensure that quality of service requirements in
terms of delay, jitter, packet-loss and stability against deliberate
denial of service attacks are met.

In this paper we concentrate on the latter requirement of
stability against denial-of-service attacks. We present an analyt-
ical model to assess the stability of overlay streaming topologies
and to describe attack strategies. Building on this, we describe
topologies, which are optimally stable towards perfect attacks
based on global knowledge, and give a mathematical proof
of their optimality. The formal construction and analysis of
these topologies using global knowledge lead us to strategies
for distributed procedures, which are able to construct resilient
topologies in scenarios, where global knowledge can not be
gathered. Experimental results show that the topologies created
in such a real world scenario are close to optimally stable towards
perfect denial of service attacks.

Index Terms—Reliability, Fault Resilience, Attack Resilience,
Media Streaming, Peer-to-Peer, Overlay

I. I NTRODUCTION

DUE to its scalability, cooperative streaming, sometimes
called application layer multicast (ALM)[1], has become

an increasingly interesting system architecture for live con-
tent distribution over the last years. These systems use the
resources of end hosts and integrate participants as service
proxies for other subscribers. While client-server solutions
introduce a bottleneck and single point of failure at the server,
cooperative streaming systems gain additional bandwidth and
backup resources as the number of participants increases. As
content is forwarded to the receivers by other participantsof
the system, each subscriber is dependent on all preceding
participants in the overlay path to the original source. In
consequence, participants with many successors, which are
topologically close to the source, have a higher relevance to the
overall system than participants near the leaves of the multicast
trees, that have fewer successors.

Systems designed for an application layer multicast are
commonly classified intopush-or pull-based approaches [2].

Push-based approaches create and maintain an explicit topol-
ogy for the content dissemination. In pull-based approaches,
each node explicitly requests the transfer of each part of
the stream at other participating nodes. Systems of the latter
category have to preload the requested parts well in advance
of the play-out and their applicability to live streaming in
consequence is limited, as this characteristic causes rather high
delays [3], [4]. Push-based approaches again are commonly
further classified into the categoriesmesh-firstor tree-first [5],
[6]. While mesh-first approaches create a management overlay
first and set up the content dissemination topology using
this mesh, tree-first approaches create the content dissemi-
nation topologies directly and use them for the distribution
of management traffic, as well. However, using an overlay
for streaming multimedia from a source to multiple receivers,
each packet of the content is distributed along a set of links
which connect all participating nodes. These links always form
spanning trees, which are rooted at the source of the stream
and concise of all participating nodes as either inner- or leaf-
nodes. This characteristic applies for both push- and pull-
based approaches, even though in pull-based approaches these
trees are neither created explicitly nor managed for multiple
transmissions and hence possibly very short lived.

In general, cooperative streaming systems, comprising of
self-organizing hosts, show some inherent stability against
node failures. This property stems from the domain of peer-to-
peer systems, which is characterized by a high churn of node
arrivals and node departures. In consequence, discovery and
selection of alternative serving nodes as a fall back strategy are
an integral part of these systems. However, each re-connection
of nodes due to dynamics in the system comes with the cost
of additional messaging and topology management, leading to
delays, jitter and possible packet loss in the data transmission.
Furthermore, while node failures and intentional departures
usually happen at random locations in the system, a malicious
attacker will try to gather information about the overlay and
deliberately attack nodes which are important for the overall
service. Therefore, in order to create systems which are also
resilient to attacks, appropriate overlay topologies haveto be
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constructed.
In this paper, we focus on improving the stability of

peer-to-peer based distribution of multimedia streams against
deliberate Denial of Service (DoS) attacks.

Intuitively, a couple of simple strategies to construct attack
resilient overlay streaming topologies come to mind: The
first idea is to keep the dependency of each node to other
nodes low. This dependency is twofold: on the one hand,
it is important for a node to minimize the amount of other
nodes it is dependent on, in order to minimize the chance of
a predecessor leaving and hence to avoid quality degradations
due to node departures. On the other hand, it needs to minimize
its dependency to any single other node, in order to keep the
impact of a leaving predecessor as low as possible. A second
guideline is to keep the relevance of nodes balanced in orderto
avoid single nodes to become very important and a good target
in consequence. A third important issue is to keep information
about the topology as secret as possible, in order to make it
hard for a malicious node to find good targets for attacking.
However, this last requirement, is difficult to meet in practice,
as with knowledge about participants and about the distributed
algorithm it is always possible to make good estimations about
the evolving topology.

In this paper, we make the following contributions: we
provide an analytical model, which can be used to describe
ALM systems. Using this model, we derive properties of
topologies, which are optimally stable against attacks and
give analytical proof of their optimality. These can serve
as an upper bound to the resilience of topologies, both to-
wards random node departures, caused by failure or churn,
and denial-of-service attacks on the system. The topologies
additionally are characterized by the fact, that they lead to a
minimum deterioration of the quality of the delivered service,
for any numberof failing nodes. With knowledge about these
properties, we are able to design a distributed procedure which
creates close to optimally stable topologies in real scenarios,
based on local knowledge only.

The remainder of the paper is organized as follows: In
section II, we present previous approaches to the construction
of stable streaming overlays. Subsequently, we define an
analytical model for overlay streaming systems that we use
to describe different damage functions as well as different
attacker models in section III. We additionally define metrics
for the attack- and failure-stability of ALM topologies which
we use to derive different types of attack strategies. Section IV
describes how optimal streaming topologies can be constructed
and proves their optimal stability against perfect attacksbased
on global knowledge. Following this formal approach, in
section V, we design a distributed procedure to construct stable
topologies in real environments, based on local knowledge of
the participating nodes only, followed by a simulative evalu-
ation of the stability of different ALM topologies in section
VI. This performance comparison comprises of three different
types of topologies: optimally stable topologies, topologies
that are created with the proposed distributed procedure, as
well as topologies from previous ALM systems. In section VII,
we conclude our paper and give some directions for further
work.

II. RELATED WORK

Different approaches have been proposed so far in the
literature to construct stable ALM topologies, which generally
follow one of three strategies.

The first strategy is to increase the redundancy in the trans-
mitted stream. It is frequently used on the application level
through different Forward Error Correcting schemes. PRM
[7], an extension of NICE [5], additionally tries to achieve
resilience on the overlay level through randomly forwarding
duplicates of content packets to randomly selected receiving
nodes. This leads to some stability towards probabilistic packet
loss and node failures, but does not protect against intentional
attacks which aim at relevant nodes and hence disrupt the
service close to the source.

A second strategy aims at reducing the amount of prede-
cessors, which a node depends on. This is usually achieved
through the construction of overlays which consist of low
trees, rather than creating long paths between the source and
the receivers. FatNemo [8], a derivative of NICE, constructs
a fat tree of nodes: Nodes with good connectivity on high
bandwidth access links are located close to the original source
and low bandwidth nodes are placed further down in the
multicast tree. FatNemo thus creates overlays of very broad
and shallow trees. It additionally introduces fall-back strategies
to cope with lost packets and to mitigate the failure of cluster
heads.

In order to allow for a graceful degradation in the events
of departing or failing nodes, the third strategy is to lowerthe
direct dependency between any two nodes, by transmitting the
stream on different node-disjoint paths. This strategy leads to
an increased vertex connectivity in the overlay. SplitStream
[9], with the goal of achieving a fair balancing of the overall
load, splits the stream into severalstripes(partial streams) and
creates topologies of a multitude of inner node disjoint trees.
These are created using SCRIBE [10], an overlay publish-
subscribe system based on Pastry [11], and each stripe is
transmitted through paths of nodes which share the same node-
ID prefix only, if bandwidth permits. These topologies show
good stability properties as well, as the algorithm generally
constructs topologies with high vertex connectivity. A draw-
back of SplitStream regarding the stability is the fact, that
single branches in the trees can grow to be quite long, thus
introducing unnecessary and possibly harmful dependencies.
Another set of systems aims at decreasing direct dependen-
cies through the creation of directed acyclic graphs (DAG).
DagStream [12] attempts to increase the stability against node
failures, by increasing the vertex connectivity of the streaming
overlay. This is sought by connecting each node to a multitude
of parent nodes, thus balancing the load of the service on them.
However, in recent work [13], [14] we considered constructing
stable topologies in a similar way, but had to realize, that this
strategy quite frequently leads to topologies with a low vertex
connectivity due to a distinct hour glass characteristic. Here,
some nodes act as very relevant hubs by directly or indirectly
serving many other nodes and become a very small minimum
cut set. In consequence, their failure has a serious impact
on succeeding nodes. Furthermore, as this class of systems
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arranges the nodes in a directed acyclic graph, all systems
comprise of an algorithm to keep the topology loop free, which
is based on the topological ordering. The information on the
topological ordering, however, might be used by malicious
nodes to gather information about the relevance of nodes
which greatly simplifies the detection of good targets for
attacks. Magellan [15] combines the efforts of FatNemo and
SplitStream to decrease the dependency between nodes and
creates a fat tree using FatNemo for each stripe, while trying
to keep the inner nodes of all trees disjoint.

An important problem of all proposed solutions is the
fact, that it is possible to retrieve information on the created
topologies. In order to identify good targets, an attacker thus
can gather information on the relevance of nodes or even
’walk‘ the topologies to locate nodes which are placed near
the source of the stream. Both for the creation of fat trees and
the construction of a cycle free DAG explicit knowledge and
decisive node characterisitcs are needed.

Summarizing this discussion, in order to create overlays,
which are both stable to node failure and attack, topologies
have to be constructed which are characterized by each node
being dependent on as few nodes as possible, with a minimum
dependency on a single predecessor and an even distribution
of successors for all forwarding nodes.

III. A NALYTICAL MODEL

To model the streaming overlays, it suffices to focus on
end-to-end links. The characteristics of the underlying network
infrastructure do not need to be considered, as backbone and
network routing decisions are not influenced by the systems
and all overlay nodes additionally are able to establish a
connection to any of the other overlay nodes. The abstraction
from the underlying network topology leads to the inabilityto
examine the behaviour in circumstances of failing or attacked
routers, however, the model suffices our needs, as we currently
focus on end hosts only.

Generally, one source nodes is the originator of the
streaming content. All other joining nodes locate participants
as potential sources, which have joined the service at an earlier
time, select some of them as parents and offer the service of
forwarding the content in turn. This system of potential and
selected neighbors can be modelled as an undirected graph
G = (V,E) with a finite set ofn verticesV = {v1, . . . , vn},
a data sources ∈ V and the set of edges:E ⊆ {(u, v)|u, v ∈
V, u 6= v}. The multimedia content can be modelled as a
packet stream:S = {p1, . . . , pp} of p packets. Allp packets
can be replicated at each vertex and originate at the data
source, the bitrate of the stream is denoted asR0. Alterna-
tively, the packet stream can be split into partial streams,with l
sequences ofk stripes:S = {{p1

1, . . . , p
1
k}, . . . , {p

l
1, . . . , p

l
k}}.

Each stripe in consequence has an average bitrate ofR0/k.
The sources has a bandwidth capacityc(s), which isC times
the bitrateR0 of the stream. Hence, it can deliver the whole
streamC times, orC · k stripes respectively, simultaneously.
To model the overlay topologies, let

1) d : E → R+ be a non-negative edge-length (e.g. the
latency of the connection)

2) c : V → R+ be the vertex-capacity (bandwidth of the
access-link)

The topology control constructsk rooted spanning trees:T1 =
(V,E1), . . . , Tk = (V,Ek) in G, preferably with a minimum
total cost

k
∑

i=1

d(Ti) =
k

∑

i=1

∑

e∈Ei

d(e),

constrained by the degree of each vertexv ∈ V in all Ti being
at mostc(v) :

k
∑

i=1

degTi(v) ≤ c(v) for all v ∈ V

with s being the root in all trees. The sequenceT =
(T1, . . . , Tk) of the spanning trees is the streaming topology.
Additionally, let C(n, k, C) be the class of all topologies with
n nodes,k stripes and a source capacity ofC. The depth
depth(v) of a vertexv in a rooted treeT is its distance from
the roots. The i-th levelLi(T ) of T is the set of all vertices
of depthi anddepth(T ) is the maximum depth of all of the
trees in the topologyT , i.e.

depth(T ) := max {depth(Ti) | 1 ≤ i ≤ k} .

For a nodev in T , depth(v) is the maximum depth ofv in
T , i.e.

depth(v) := max
{

depthTi(v) | 1 ≤ i ≤ k
}

.

A headin a topologyT is a direct successor of the source
s. More precisely ahead of or in stripei is a direct successor
of s in the i-th stripe. LetHi be the set of all heads in stripe
i andH the set of all heads. Due to the capacity constraint of
the source, we have|H| ≤ C · k.

To characterize the importance of a participant, we define
succi(v) as the set of successors ofv in the spanning treeTi

(including v itself). For a setX of nodes,succi(X) is the set
of all direct and indirect succesors of a vertex inX, ie.

succi(X) =
⋃

v∈X

succi(v).

A. Attacks and Failures

Obviously, it is always possible to interrupt a multimedia
stream by destroying the camera or the filmed scene. Strategies
to secure the source of the stream like backup servers are
conceivable. However, as we are concerned about constructing
stable overlay topologies, we consider the source nodes being
hidden and assume that it can not be the target of attacks.
Hence, we only consider the failure of peers.

Usually, the vertex connectivity is used as a stability metric
for topologies, as it gives the minimum set of nodes that have
to be removed in order to split the system into two separate
fragments, one being completely disconnected from the data
source. However, as the multimedia streaming service already
has to be rendered useless as soon as the amount lost packets
exceeds a certain threshold, a different metric is needed.

In general, an attacker chooses a setX of nodes and forces
them to stop forwarding packets. How this is achieved is not
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considered in the following. Hence, we may simply assume,
that the nodes fail completely. In terms of our previously
introduced model, the attacker enforces the removal of the
nodes inX from each of the treesTi of the current topology
T . Of course, this causes a loss of thei-th stripe at each
successors of a node inX.

In full generality, anattackerobserves a topologyT and,
due to limited resources, wants to attack at mosti nodes
to achieve damage. In mathematical terms anattackeror an
attack strategycan be viewed as a mapA, assigning a set
A(T , i) with at most i elements to every topologyT and
every natural numberi with 0 ≤ i ≤ n.

This model is quite general and covers many situations.
First of all, the model includes external attackers, which
cause damage by selecting target nodes and then perform
DoS or similar attacks to remove them from the system. But,
the model even covers internal attackers. These introduce a
specific number ofagents into the system, which basically
act as peers. Using incorrect information and system inherent
mechanisms, these agents are brought into specific positions
and simply stop relaying content at a certain time. However,
on an abstract level this approach is equivalent to an external
attacker, which chooses certain nodes (those at the positions, at
which his agents should be), and attacks them directly. Hence,
internal and external attackers can be modeled.

Furthermore, it is possible to usenon-deterministic attack-
ers, by adding a probabilistic component toA. In this case, the
attacked set is chosen randomly using a distribution depending
on the topology and the number of maximal attacked nodes.
This type of attackers covers random failure and even churn
(but neglecting the arrival of new nodes). In the first case,
a set of at mosti nodes is chosen randomly. In the second
case, each node fails with a specific probability, representing
its reliability.

B. Damage

In general, the attacker evaluates the success of its attackus-
ing a measure of caused damage. For this mean, we introduce
two functions.

For each treeTi we define a functionaT
i : P(V)→ N, from

the setP(V) of all subsets ofV to the natural numbers, with

aT
i (X) := |succi(X)|,

i.e. aT
i (X) is the number of all successors of elements inX.

To obtain the total number of missing packets, we have to
sum over all trees, i.e.aT : P(V )→ N is given byaT (X) :=
∑k

i=1 aT
i (X).

In case of a node failure or deliberate node leave, the packets
this node is not receiving are not expected by the concerned
node. Hence, their loss does not reduce the quality of the
service, and as it could not be prevented in any case, they are
not counted as damage. Consequently, only packets depending
on the failing nodes have to be counted, and not thek · |X|
packets lost due to the failure of the nodes inX. Therefore,
the damage caused by node failure is

fT : P(V )→ N

with
fT (X) := aT (X)− k · |X|.

The additional function:

incX(v) = The number of trees in which neitherv nor
any of its predecessors has failed

allows us to characterize the perceived quality of the service
under the circumstance of failing nodes.

In case of the removal of nodes, a target has to be selected
first. Both deliberate node leave or failure, as well as naive
attacks lead to the removal of random nodes from the topology.
A realistic attacker, however, will try to gather knowledge
about the relevance and select specific nodes for removal.
Different possibilities to gain information about the amount of
successors of nodes are analyzing the distributed algorithm,
observing parent and child nodes, or probing a large set of
participants in order to gain knowledge about their neighboring
relations. The perfect attack is based on global knowledge
about the complete topologyT and represents a worst-case
stability metric for topologies, both with respect to attacks
and node failures.

To evaluate potential goals of an attacker, we define two
types of damage functions first:

The global damageexpresses the overall packet loss rate
in the whole system, inflicted by the removal of the node set
X. It leads to quality degradation for all users and can be
calculated byaT (X).

The resulting attacker model forglobal attackis defined as:
Given a streaming topologyT and the packet loss threshold

rd ∈ (0, 1) find the smallest setX of removed nodes, such
that

aT (X) > rd · k · n.

In order to measure the worst-case stability of the topology,
a perfect attacker with global knowledge is considered. Two
conceivable strategies for such a perfect attacker are either
selecting the minimum set of nodes to achieve a given global
damage or selecting a set of nodes of a given size with
maximum global damage. For the rest of this paper, we focus
on measuring the stability of topologies through an attacker
that maximizes the damage for increasing sets of attacked
nodes.

C. Attack and Failure Stabilities

Each (deterministic) attackerA causes a specific damage
on a topologyT , which is given by

aT
A[i] := aT (A(T , 〉)).

If A is a randomized attacker, it is sensible to consider the
expected damage. Similar,fT

A [i] can be defined as the failure
caused by the attackerA. Using these numbers, we can define
a partial order on the topologies. A topologyT is said to be
more stable with respect to attackerA thanS, if

aT
A[i] ≤ aS

A[i] for i ≥ 1.

We denoted this relation byT ≤A S. A topology T is said
to beoptimallyA-stable, if T ≤A S for every topologyS.
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It is neither clear, wether optimallyA-stable topologies
exist for an arbitrary attackerA, nor how they look like, if
they exist. Furthermore, ifT is optimallyA-stable, then there
might exist another attackerA′, such that the damage caused
by it is significantly higher than that caused byA. Hence,
stability against attacks depends heavily on the attacker and
the topologies.

One way to circumvent this problem - up to a certain degree
- is the usage of a reference attacker, which we choose as the
optimal attackerO, ie.O always chooses the set withi nodes
causing the maximal possible damage. Hence, we obtain the
follwoing reference damage:

aT [i] := aT
O[i] = max

{

aT (X) | X ⊆ V and |X| = i
}

.

Similar we definefT [i] as the maximum damage caused by
the failure ofi nodes:

fT [i] := fT
O [i] = max

{

fT (X) | X ⊆ V and |X| = i
}

.

This reference damage is an upper bound for the damage
caused by an arbitrary attack against the topologyT . Hence,
a topology is expected to be more stable against arbitrary
attacks, ifaT [i] is as low as possible, or more formal, if it
is optimallyO-stable oroptimally stable.

Since the number of heads in an arbitrary toplogyT ∈
C(n, k, C), is bounded byC · k, we haveaT [i] = n · k for
i ≥ C · k.

At this point one may ask, whether optimally stable topolo-
gies exist. In fact, we are going to describe a specific class
of optimally stable topologies. This class allows us to deduce
some properties of topologies and guidelines for their online
construction, leading to a high stability.

By the following result, it is absolutely sufficient to restrict
to the attack-stabilities.

Lemma 1: For every topologyT ∈ C(n, k, C) and 1 ≤
i ≤ n we havefT [i] = aT [i]− k · i.

Proof: We have

fT [i] = max
{

aT (X)− k · |X| | X ⊆ V and |X| = i
}

= max
{

aT (X) | X ⊆ V and |X| = i
}

− k · i.

= aT [i]− k · i

D. Sequential Attacks

In general, an attack strategy is nothing but a sequence
(X1,X2, . . . ,Xl) of vertex setsXi ⊆ V with |Xi| ≤ i. If
the attacker wants to achieve a specific damager, he has to
choose anXi of his strategy withaT (Xi) ≥ r. We call such
a strategyoptimal, if aT (Xi) = aT [i] for 1 ≤ i ≤ n.

In the following we will concentrate on a specific type of
attack strategies, thesequential attack strategies, in which the
attacker takes down nodes one by one in a specific order
(v1, . . . , vl) ∈ V l. For an attack strategy(v1, . . . , vl), we
can define a general attack strategy(V1, V2, . . . , Vl) by setting
Vi = {v1, . . . , vi}.

In the following all considered attack strategies are sequen-
tial. Furthermore, the nodes in sequential attack strategies will
be denoted by lower case letters, e.g.(u1, . . . , ul), and the sets

of the corresponding general attack strategies will be denoted
by the corresponding upper case letters, e.g.(U1, . . . , Ul).

Several types of attack strategies for a given topologyT are
possible:

• A random strategyis an arbitrary sequence of nodes,
chosen randomly while the attack is conducted.

• A greedy strategy(v1, . . . , vn) is constructed by choosing
the node with maximal additional damage at each step,
i.e. v1 is a node with

aT (v1) = max{aT (v) | v ∈ V }

and after the selection ofv1, . . . , vi, the next nodevi+1

is chosen, such that

aT (Vi ∪ {vi+1}) = max
{

aT (Vk ∪ {v}) | v ∈ V \ Vi

}

.

• An optimal strategyis an attack strategy(v1, . . . , vl),
such that

aT [i] = aT (Vi)

for 0 ≤ i ≤ l, i.e. the setVi achieves maximum damage
among all sets of at mosti nodes.

While random and greedy strategies always exist, it is not
clear, that every topologyT has an optimal strategy. But it is
easy to see, that - if it exists - every optimal strategy is greedy.

As Lemma 1 already indicates, stability against attacks
and against failure are equivalent. The next result shows this
equivalence regarding optimal attack strategies.

Lemma 2: An attack strategy (v1, . . . , vl) on T ∈
C(n, k, C) is optimally stable, if and only iffT [i] = fT (Vi)
for 1 ≤ i ≤ l.

Proof: Let (v1, . . . , vl) be optimal. Then we havefT [i] =
aT [i] − ik = aT (Vi) − ik = fT (Vi). If on the other hand
fT [i] = fT (Vi), thenaT [i] = fT [i] + ik = fT (Vi) + ik =
aT (Vi).

IV. OPTIMALLY STABLE STREAMING TOPOLOGIES

In the following, we will describe topologiesT , which are
optimally stable, i.e. every other topologyS allows to achieve
the same amount of damage by removal of at most the same
number of nodes, asT .

As we will see, the optimally stable topologies described
in the following, correspond to the intuition, that the heads
have to be the most important nodes and that they have to be
close to equally important. In fact in general topologies, it is
possible that an attack on non-heads, which are hubs in many
stripes, might be more efficient, contradicting this intuition.
The problem of finding an optimal attack is NP-complete and
can only be approximated in polynomial time up to a factor
of log(n), as we prove in another article [16]. Furthermore,
the Greedy-Attacker is not optimal on general topologies.

A. The Optimal Topologies

In this section, we will describe a class of topologies in
T(n, k, C) with n ≥ C · k, whose members are optimally
stable. Before we give a set of mathematical properties, which
these topologies have to satisfy, we describe a way to construct
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a family satisfying our definition. A rough scheme of this
construction is shown in Figure 1.

1) Choose a setH of C · k nodes, which will become the
heads of the topologyT .

2) Split H into C disjoint groupsH1, . . . ,HC , each con-
taining exactlyk members. AssumeHh = {v1

h, . . . , vk
h}.

The nodesvl
1, . . . , v

l
C will become theC heads of stripe

l.
3) To each nodev ∈ V \ H assign an arbitrary number

stripe(v) ∈ {1, . . . , k}, and setstripe(vl
h) := l for vl

h ∈
H.

4) For each stripel = 1, . . . , k, do the following:

a) Split V into C disjoint groupsV1, . . . , VC , such
that:

• for i, j we have||Vi| − |Vj || ≤ 1, i.e. all groups
have approximately the same size,

• Hj ⊆ Vj .

b) For each groupVh, h = 1, . . . , C, arrange the
nodes inVh in a rooted tree, such that:

• vl
h is the root and has at leastk− 1 successors,

• v ∈ V is a leaf if stripe(v) 6= l.

This step of the construction is quite vague and
contains several degrees of freedom, which will be
discussed later.

c) For each groupVh, h = 1, . . . , C, connectvl
h to

the servers.

This constructive procedure has several non-obvious effects:

• Every node is a leaf in at leastk − 1 stripes, i.e. every
node replicates packets of at most one stripe.

• Heads do not mix, i.e. if a headv is a successor of
another headv′ in an arbitrary stripe, then in every other
stripe eitherv′ is a successor ofv or both,v andv′ are
successors of the same head.

• We have|succl(v
l
h)| = |succl′(v

l′

h )| for l, l′ = 1, . . . , k
andh = 1, . . . , C.
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Fig. 1. Scheme of an optimal topology.

Definition 3: An topologyT ∈ T(n, k, C) with n ≥ C · k
is calledoptimal, if it satisfies the following conditions:

1) Every nodev is a leaf in at leastk − 1 stripes.

2) The l-th stripe, l = 1, . . . , k, has exactlyC heads
vl
1, . . . , v

l
C .

3) For vl
h, we have

⌊ n

C

⌋

≤ |succl(v
l
h)| ≤

⌈ n

C

⌉

.

4) |succl(v
l
h)| = |succl′(v

l′

h )| for l, l′ = 1, . . . , k and h =
1, . . . , C.

5) For l, l′ = 1, . . . , k andh, h′ = 1, . . . , C we havevl′

h′ ∈
succ(vl

h) if and only if h′ = h.
6) Every head has at leastk − 1 direct successors.

In this context, the notionoptimal topologyis a bit mis-
leading. As we will see these topologies are in fact optimally
stable. But other measures are completely ignored, and the
quality of ouroptimal topologiesregarding these is absolutely
unclear. In fact,optimal topologyis simply a name for a class
of topologies, which turn out to be optimally stable.

At this point, we do not consider, whether optimal topolo-
gies can be constructed in networks with nodes of limited
capacity. If every node has a sufficiently high capacity, it
is quite obvious, that optimal topologies can be constructed
by choosing trees of depth 1 as templates for step 4b) in
the construction. In this case, in every stripe the heads are
chosen and then every other node is connected directly to its
corresponding head. Another way would be to chose a family
of trees withI interior nodes and at least(k−1) ·I leaves and
use them as templates for step 4b of the construction (like the
one in Fig. 2).

�
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�

���

��

�

�

���

��

��	
��
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���	
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Fig. 2. A simple optimal topology forC = 1, k = 3 andn = 6.

B. The Optimal Sequence

Now that we know our candidates for optimal topologies,
we want to find an optimal attack strategy for them. As we
will see the sequence

(

aT [i]
)

1≤i≤n
for an optimal topology

T is closely related to the sequence(δi)1≤i≤C·k with

δi :=

{

⌈

n
C

⌉

+ (k − 2l − 1) if h ≤ n mod C
⌊

n
C

⌋

+ (k − 2l − 1) if h > n mod C.

wherei = C · l + h with 0 ≤ l < k and1 ≤ h ≤ C. Observe,
that l andh are uniquely determined by

l =

⌊

i− 1

C

⌋

and h = i− C · l.
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As we will see, the valuesδi satisfyδi = aT [i]− aT [i− 1]
and there exists an optimal attack strategy(v1, . . . , vC·k) with
aT (Vi) = aT [i].

The representationi = C · l + h of an indexi is caused
by the way the optimal strategy is constructed. Basically, the
attacker runs through the stripes and removes all heads of a
stripe, before skipping to the next stripe. As a consequence,
the i-th node of the optimal attack strategy withi = C · l + h
is theh-th head in the(l + 1)-st stripe.

Lemma 4: There exists an attack strategy(v1, . . . , vC·k) of
an optimal topologyT ∈ T(n, k, C) with n ≥ C ·k, such that

aT (Vi) =

i
∑

j=1

δj for 1 ≤ i ≤ C · k.

Proof: Let v1
1 , . . . , v1

C , v2
1 , . . . , v2

C , . . . , vk
1 , . . . vk

C be the
heads ofT , such thatvl

h is the h-th head in thel-th stripe.
Furthermore, assume that inside thel-th stripe the heads are
ordered non-increasingly, i.e.|succl(v

l
1)| ≥ · · · ≥ |succl(v

l
C)|.

Let Sl
h = succl(v

l
h) be the set of successors ofvl

h in stripe l.
For i = 1, we havei = C · 0 + 1 and hence

δ1 =

{

⌈

n
C

⌉

+ (k − 1) if 1 ≤ n mod C
⌊

n
C

⌋

+ (k − 1) if 1 > n mod C.

Due to the properties of optimal topologies, we have

aT (v1
1) =

k
∑

i=1

aT
i (v1

1) =
⌈ n

C

⌉

+ (k − 1),

proving the proposed equality fori = 1.
Now assumei > 1. We havei = C · l + h with 0 ≤ l < k

and 1 ≤ h ≤ C. Since the heads of the firstl stripes are in
Vi, we havesuccl(Vi) = V and henceaT

j (Vi) = n for j ≤ l.
In the (l + 1)-st stripe, the firsth heads and the heads of

preceeding stripes are removed. Since the heads are leaves in
all but one stripe, this leads to

succl+1(Vi) = Sl+1
1 ∪ · · · ∪ Sl+1

h ∪H1 ∪ · · · ∪ Hl.

Due to the properties of optimal topologies, every head of the
(l + 1)-st stripe has exactlyl heads of preceeding stripes as
successor. This implies

aT
l+1(Vi) = h ·

⌊ n

C

⌋

+ min(h, n mod C) + l · (C − h).

In stripej > l+1, only leaves (heads of preceeding stripes)
are removed, leading to

succj(Vi) = H1 ∪ . . .Hl ∪ (Hl+1 ∩ Sl+1
h ),

and since theHj are pairwise disjoint, this leads to

aT
j (Vi) = l · C + jh for j > l + 1.

Now it is easy to see, that

aT (Vi) =

k
∑

j=1

aT
j (Vi) =

i
∑

j=1

δj .

At this point we know, that the sequenceδi for 1 ≤ i ≤ C ·k
is given by a specific strategy of an optimal topology. Our next

aim is to prove that this strategy is in fact optimal forT . This
is done in two steps. First, we prove that for every set of
nodes, there exists a set of heads with equal or less members,
causing a higher failure. In a second step, we prove that the
attack strategy introduced in the preceeding lemma is optimal
among all strategies only involving heads.

Lemma 5: LetT ∈ T(n, k, C) be an optimal topology with
n ≥ C ·k. For every setY of nodes not only containing heads,
there exists a setX, such that|X| ≤ |Y |, and fT (X) ≥
fT (Y ) and X contains less ‘non-heads’ thanY .

Proof: For an arbitrary headv, let Yv be the set of all
nodes inY , which are successors ofv, but no leaves.

If v ∈ Y for every headv with non-empty setYv, then
we can setX = {v ∈ Y ∩ H | Yv 6= ∅} ⊆ Y and obtain
succl(Y ) \ Y ⊆ succl(X) \ Y ⊆ succl(X) \ X, implying
fT

l (X) ≥ fT
l (Y ) for l = 1, . . . , k, and hencefT (X) ≥

fT (Y ).
Now assume, that there exists a headv of stripe l with

Yv 6= ∅ and v 6∈ Y . Set X = (Y ∪ {v}) \ Yv, i.e. replace
Yv by v. Obviously, we havesuccl(Yv) \ Y ⊆ succl(v) \ {v}.
Furthermore, the direct successors ofv in stripe l cannot be
members ofsuccl(Yv) \ Yv, since otherwisev ∈ Yv. But they
are members ofsuccl(v) and hence|succl(Yv)\Y |+(k−1) ≤
|succl(v)\{v}|. Since the successors of all elements inY ∩X
do not change, we obtainfT

l (Y ) + (k − 1) ≤ fT
l (X). In all

other stripesj 6= l, the removal ofYv from Y may cause
an increase offT

j (Y ), while the addition ofv may decrease
fT

j (Y ) by one. As a consequence, we havefT
j (Y ) − 1 ≤

fT
j (X) for j 6= l. In total this leads tofT (Y ) ≤ fT (X).
SinceX is obtained fromY by removing at least one non-

head and adding a head, the number of non-heads is reduced.

By iterating the preceeding lemma, until the number of non-
heads is decreased to zero, we obtain the following result.

Corollary 6: Let T ∈ T(n, k, C) be an optimal topology
with n ≥ C · k. Then for every setY of nodes there exists a
setX of heads, such that|X| ≤ |Y | and fT (X) ≥ fT (Y ).

Now we prove, that the strategy of Lemma 4 is optimal
among all strategies only involving heads.

Lemma 7: LetT ∈ T(n, k, C) be an optimal topology with
n ≥ C · k and (v1, . . . , vC·k) an arbitrary strategy consisting
of heads only. ThenaT (Vi) ≤

∑i

j=1 δj for 1 ≤ i ≤ C · k.

Proof: Let Hh := {v1
h, . . . , vk

h} be a group of heads.
Then the removal ofm of its members causes a total damage
of m · g + m · (k − m), where g = |succl(v

l
h)|. The first

summand is caused by the fact, that the removal ofm heads
in the group affects all their successors, while the second term
is caused by the fact, that in the unaffected(k −m) stripes
exactlym leaves fail.

Since only heads inside the same group are successors of
each other, failures of heads in different groups do not affect
each other. Hence, letmh be the number failing heads inHh

with m =
∑C

h=1 mh and gh = |succ(vl
h)| for somel. Then
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the total loss is given by

C
∑

h=1

(mh · gh + (k −mh) ·mh) = mk +

C
∑

h=1

mhgh −
C

∑

h=1

m2
h.

Now assume thatmh ≥ mh′ + 2 for h 6= h′. Without loss of
generality we may assumeh = 1 andh′ = 2. Then

(m1 − 1)g1 + (m2 + 1)g2 − (m1 − 1)2 − (m2 + 1)2

= m1g1 + m2g2 −m2
1 −m2

2 + (g2 − g1) + 2(m1 −m2)−2

≥ m1g1 + m2g2 −m2
1 −m2

2 − 1 + 4− 2

> m1g1 + m2g2 −m2
1 −m2

2

since|g1−g2| ≤ 1, due to the properties of optimal topologies.
As a consequence, the total damage is maximal, if the number
of failures inside two groupsHh andHh′ differ by at most 1.

Now assume, that there exist two groupsHh andHh′ with
mh = mh′ + 1 but gh = gh′ − 1. Without loss of generality,
we may again assumeh = 1 andh′ = 2. Then

(m1 − 1)g1 + (m2 + 1)g2 − (m1 − 1)2 − (m2 + 1)2

= m1(g1 + 1) + m2(g2 − 1)−m2
1 −m2

2

= m1g1 + m2g2 −m2
1 −m2

2 + m1 −m2

> m1g1 + m2g2 −m2
1 −m2

2

and hence, the damage would be increased, ifmh andmh′ are
exchanged. Hence, for the optimal strategy, it is necessarythat
mh > mh′ implies gh ≥ gh′ . The canonical strategy satisfies
this condition.

Since the total loss only depends on themh and thegh,
this implies the proposed optimality of the canonical strategies
among all attack strategies only involving heads.

A consequence of Corollary 6 and Lemma 7 is the optimal-
ity of the attack strategy of Lemma 4 in optimal topologies.

Theorem 8: Let T ∈ T(n, k, C) be an optimal topology
with n ≥ C · k. ThenaT [i] =

∑i

j=1 δj .

Proof: Let Y be an arbitrary set of nodes with|Y | ≤ k ·C
. Due to Lemma 5 there exists a setX of heads with|X| ≤ |Y |
andfT (X) ≥ fT (Y ). Now assume thatY ′ is a set of heads
with |Y | = |Y ′|. Then we have

|Y |
∑

j=1

δj ≥ aT (Y ′) = fT (Y ′) + k · |Y |

≥ fT (X) + k · |Y | ≥ fT (Y ) + k · |Y | = aT (Y ).

By Lemma 4, we haveaT [i] =
∑i

j=1 δj .

C. The Optimality of Optimally Stable Topologies

At this point we know an optimal strategy for optimal
topologies and we know the maximum damages. What remains
to be proven is that the optimal topologies are in fact among
the most stable topologies inT(n, k, C). But before we
proceed with the proof of this fact, we observe

C·l
∑

j=1

δj = l · n + lC(k − l),

and for i = C · l + h with 0 ≤ l < k and 1 ≤ h ≤ C and
n ≥ C · k we have

δi ≥ (k − l) +
(⌊ n

C

⌋

− l − 1
)

≥ (k − l) + (k − (k − 1)− 1) = (k − l).

In the following, let T be an arbitrary topology, such
that the stripes are ordered non-decreasingly in the number
of their heads, i.e.|H1| ≤ |H2| ≤ · · · ≤ |Hk|. Define
Hl =

∑l

j=1 |H
j |. Let (v1, . . . , vhk

) be a redundantstrat-
egy, i.e. a member may occur multiple times, such that
Hl = {vHl−1+1, . . . , vHl

}, i.e. the members ofHl form a
subsequence. Furthermore, let these subsequences be ordered
greedily, i.e. such that inside themaT (Vi+1)−aT (Vi) is non-
increasing.

SinceVHl
contains the heads of the firstl stripes, we have

aT (VHl
) ≥ l · n + Hl(k − l). Here the first summand is a

lower bound for the caused damage in the firstl stripes, and
the second summand is a lower bound for the damage in the
remaining(k − l) stripes.

Now seti andj, such thatHl = C ·i+j and0 ≤ i < k and
1 ≤ j ≤ C. Since the stripes are ordered non-decreasingly by
the number of their heads, and since the number of heads is
limited by C · k, we haveHl ≤ C · l for 1 ≤ l ≤ k. This
implies i < l and due tok − l ≤ δC·l+x for 1 ≤ x ≤ C, we
obtain

aT (VHl
) ≥ l · n + Hl(k − l) ≥

C·l
∑

j=1

δj − (C · l −Hl)(k − l)

≥
C·l
∑

j=1

δj −
C·l
∑

j=Hl+1

δj =

Hl
∑

j=1

δj ≥

|VHl
|

∑

j=1

δj .

Now consider the setsYi for 1 ≤ i ≤ C · k, containing the
first i distinct nodes of the strategy, orYi = H if i ≥ |H|.
For the same reasons as above, we have

aT (YC·l) ≥ l · n + C · l(k − l) =
C·l
∑

j=1

δj .

In total, there exists a sequence of indices1 = I1 < I2 <
· · · < Il−1 < Il = C · k, such that eitherIj = C · l and/or
Ij = Hl for somel, and

aT (YIi
) ≥

Ii
∑

j=1

δj .

For each subsequent pair of those indices, the subsequence
(vIi

, . . . , vIi+1−1) of the strategy lies inH l for some l and
betweenCl′ + 1 and C · l′ + C for some otherl′. As
a consequence, theδj inside this sequence form a non-
increasing sequence with|δIj+1−1− δIj

| ≤ 1. In addition, the
αj := aT (Yj+1) − aT (Yj) form a non-increasing sequence.
Due to Lemma 11 in the Appendix, this implies

aT (Yi) ≥
i

∑

j=1

δj

for 1 ≤ i ≤ Ck, and hence we obtain the following theorem.
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Theorem 9: Assumen ≥ C · k and letT be an arbitrary
topology in T(n, k, C) with n ≥ C · k. Then there exists a
strategy(v1, . . . , vC·k) on T , such that for1 ≤ i ≤ C · k

aT (Xi) ≥
i

∑

j=1

δj .

The most important consequence of this theorem is the
global optimal stability of optimal topologies.

Theorem 10: An optimal topologyT ∈ T(n, k, C) with
n ≥ C · k is optimally stable.

Proof: Let S be an arbitrary topology inT(n, k, C) and
T an optimal topology. Then due to Theorem 9 and Theorem
8 we haveaS [i] ≥

∑i

j=1 δj = aT [i] for 1 ≤ i ≤ C · k.

V. SYSTEM DESIGN

Creating optimally stable topologies in real networks cannot
easily be done. The highly dynamic behavior of joining and
departing nodes in live multimedia streaming scenarios leads
to the fact, that a centralized approach cannot scale to large
groups of participating nodes.

A distributed approach to constructing optimally stable
topologies using a deterministic procedure has to fail for a
number of reasons.

Global knowledge, which is needed to create optimal
topologies, is impossible to gather in a distributed situation
and under the circumstances of possible message loss and
node failures. Even presuming reliable communication the
system would suffer from a high message overhead and the
system would not be scalable to large groups. An additional
drawback of distributing the needed information for an explicit
construction of an optimally stable topology is the fact, that
it leads to knowledge about the placement of nodes, which a
malicious party could use for an attack.

The heterogeneity of real nodes regarding bandwidth and
processing resources, and constant variation of the availability
of these resources, are further obstacles for the creation of
optimally stable topologies. In the described topologies every
node only needs to be able to forward the bitrate of the
received stream once. However, while some nodes may have
significantly more available uplink capacity, it might happen,
that one or a number of nodes are located behind a bottleneck
link with less capacity and thus are unable to fulfill these
requirements.

In order to still be able to create topologies, which are close
to optimally stable, an implicit, distributed approach is needed.

Following section IV-A it becomes apparent, that optimally
stable topologies have a distinct set of three properties:

1) every node forwards data in only one spanning tree
2) the number of distinctive direct child nodes of the source

and of all heads are maximized
3) the difference of the number of successors of all heads

is at most 1.

To achieve these properties, we design a distributed proce-
dure. It creates overlay live streaming topologies in a tree-first
approach based on local knowledge only. The main aims of

the procedure are to keep the overall topology balanced and
as low as possible, with each node forwarding in only one of
the spanning trees.

Following the general idea of SplitStream, the stream is split
into k distinctive stripes,k spanning trees are created for the
transmission of the stream and every node aims at forwarding
only data in the spanning tree of one of the stripes. Due to the
fact, that in certain situations a node might have to forward
data in another stripe as well, this selection is not done rule-
based. Instead, we choose a cost-based approach and define
four different cost metricsK1 . . . K4 of all outgoing links of
a node, which are combined in a total cost functionK. K
is calculated by every forwarding node in order to evaluate
and optimize its local situation with regards to the stability
of the local section, including the node itself and all of its
successors, of the overall topology. Nodes may bootstrap to
the system by joining at any node which is already part of
the topology and they may leave and possibly even rejoin at
any time. To maintain the topology and its properties, every
node v calculates the total cost of the edgese = (v, w) to
its child nodes in the spanning tree of stripei: K(v, w, i) =
∑4

j=1 sj ·Kj(e, i). Through modification of the local topology
the cost of its situation is then minimized. The defined cost
metrics follow four simple objectives:

A node needs to choose the stripe which it prefers to
forward. As bandwidth constraints may lead to a demand for
additional nodes which can forward in one of the stripes, this
selection should not be static. Hence, every node selects the
stripe which it forwards to the most child nodes as its preferred
stripe and assigns higher cost to all edges in the spanning trees
of different stripes:

K1(v, i) := 1−
fanoutTi

(v)

c+(v)

with fanoutTi
(v) being the number of outgoing edges of node

v in the spanning treeTi and c+(v) being the bandwidth ca-
pacity available for outgoing stripes, hence:c+(v) = c(v)−1.

While all participants need to receive the data of all stripes,
only a selection of the nodes chooses to forward the data in
the spanning tree of a certain stripe. To avoid that nodes have
to forward in more than one spanning tree, it is important for
each spanning tree to keep bandwidth capacity available. The
selection of nodes that is able to forward has to be kept in a
low layer in the regarding spanning tree in order to keep the
spanning trees low and thus to permit an easy location of the
available bandwidth while optimizing and short optimization
paths. Thus, edges to nodes, which have chosen to forward
data in a considered stripe, are assigned low cost, whereas
edges to nodes, which choose to forward data in a different
stripe, are assigned a higher cost:

K2(v, w, i) :=

{

0 neighbor can forward in stripe i,

1 else.

The topologies are balanced using a third cost function,
which is used by a node to level the number of successors
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of its child nodes:

K3(v, w, i) :=

(

succTi
(v)

fanoutTi
(v) − 1

)

− succTi
(w)

(

succTi
(v)

fanoutTi
(v) − 1

)

In the distributed environment, the amount of successors
succTi

of a node is lazily gathered as a reverse multicast.
In case a node has to forward data in more than one of the

spanning trees, it is important that the direct dependency to
each child node is kept to a minimum. The last cost metric
hence evaluates the number of direct connections between a
nodev and each nodeu of its child nodes and aims at keeping
them to a minimum:

K4(v, w) :=
fanoutT (v, u)

k
,

where fanoutT (v, u) is the number of stripes in whichv
directly forwards the stripe tou.

In previous work [17] we have analyzed topologies which
were created using only one or a subset of the defined cost
metrics. However, the results showed that all four cost metrics
have to be used in order to achieve a good stability of the
topologies.

To create stable topologies in real networks, we imple-
mented a distributed algorithm, which cooperatively optimizes
the topology by local modifications of the neighborhood of
nodes using the defined total cost function. The algorithm is
run on each node to optimize their local situation through
rearranging direct links. In order to be able to achieve locally
optimal topologies, each node would have to be able to
optimize its complete neighborhood. However, child nodes
are not aware of the situation at their parent nodes. Hence,
through redirecting a succeeding child node to its own parent,
oscillations could be caused, since a situation might occurin
which a parent without available bandwidth keeps redirecting
a node to one of it’s successors, which in turn due to its local
optimization keeps redirecting it back to its parent. Sincethese
oscillations have to be avoided, nodes optimize the cost of the
links to their child nodes only, while the links to the parents
are not optimized.

Local rearrangements of the topology are performed in the
two phases (cmp. Algorithm 1). In a first phase the cost for
all outgoing links are minimized following three steps (lines
6 . . . 13). Using the total cost functionK, the link with the
highest cost is determined. As the cost metrics make use of
knowledge on the local situation, and a parent does not nec-
essarily possess this information for the situation of the child
nodes, the total cost can not be minimized straightforward.
The parent node instead calculates the gain of dropping the
selected link to one of the other child nodes considering only
K2 andK3, thus balancing the trees as well as possible while
dropping links to nodes which volunteer to forward in the
associated stripe only. The gain for dropping the linke to
the alternative parentu with link e′ = (v, u) is calculated
as G(v, u, i) = K3(v, u, i) −K2(v, u, i). It is important that
the height of the topologies stays at a minimum level and
hence the modifications are only done if the gain through the
cost minimization exceeds the thresholdΘpass. This threshold

cannot be selected as a constant value, but it needs to be a
function of the available bandwidth of the node. A node, which
has just entered the system and does not serve any other nodes,
needs to be utilized as a forwarding peer in the system in order
to keep the height of the trees as low as possible. However,
a node which already serves other nodes and gets close to its
bandwidth limitations, needs to be able to pass child nodes to
other nodes for service. Thus, the threshold is calculated as a
function of the available bandwidth of a node.

Input : v, i,
ChildsTi

(v) {child nodes of nodev in Ti}
d← ∅ {link to drop};1

a← ∅ {alternative parent};2

b← deg(v);3

gain← true;4

i ← preferred stripe;5

while gain do6

gain← false;7

d← argmax{K(v, w, i) | w ∈ ChildsTi
(v)} ;8

a← argmax{G(v, w, i) | w ∈ ChildsTi
(v)\{d}};9

if G(e’,i)≥ Θpass(v) then10

drop(d, a);11

gain← true;12

end13

end14

while b < c(v) do15

a ← w = rand{ChildsTi
};16

childRequest(a,Θpass(v), (
succTi

(v)

fanoutTi
(v) − 1));17

b ← b + 1;18

end19

Algorithm 1 : Topology Control

After analyzing the local situation and repeating the three
steps of phase one until no more child nodes are dropped
to alternative parents, the nodes check their bandwidth con-
sumption. If they have bandwidth capacities available, they
request successors from their child nodes in the second phase,
in order to decrease the amount of levels of the topology again
(lines 14 . . . 18). In order to avoid the topologies to oscillate,
the parent node sends information about its situation to the
selected child, which then is able to predetermine that it does
not pass a successor, which will be dropped back immediately.

The time complexity of this algorithm for each optimization
at each nodev is linear in the number of its child nodes.
Every node exchanges a number of messages inO

(

c(v) · k
)

.
With the node’s capacityc(v) being limited by a constant
upper bound andk being the constant amount of stripes
in the system, the message complexity of the implemented
protocol is inO(n). Each node arrival and departure may
have an effect on the overall optimum and consequently may
require reorganizations of the overall topologies. To still avoid
oscillations and a to guarantee a fast convergence of the system
as a whole, even under the most adverse conditions expected,
several functional and non-functional means are implemented.
The first encompass the optimization of outgoing links, the
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introduction of the thresholdΘpass and the fact that node
requests are only served by child nodes if their parent’s state
after is estimated to be stable. The latter mainly consist ofthe
fact that the topologies are optimized to form broad and well
balanced trees, resulting in a low height and thus avoiding
long optimization paths.

VI. PERFORMANCECOMPARISON

In order to evaluate the stability of the optimally stable
topologies and to compare them with topologies of both
the proposed procedure and existing ALM approaches, we
compared their stability under attacks. For this purpose, we
analyzed instances of the different topologies with algorithms
implementing an optimal attack, based on global knowledge.

The experiments were conducted in two steps. At first, we
created topologies resembling the optimal topologies using a
generator. The generator constructs topologies followingthe
approach of creating balanced spanning trees for all stripes
with minimum height and disjoint sets as forwarding nodes.
For comparison, we then constructed topologies with simula-
tion models of the cost based approach, described in sectionV,
and with strategies from our own previous work, constructing
DAG-Topologies with BCBS [13]. The simulation models
were implemented using OMNeT++/INET, a discrete event
simulation framework. In each simulation, one source with
the bandwidth capacity ofC = 5 published a stream, which
was partitioned intok = 4 distinctive stripes. The stream was
subscribed by a group of nodes with a maximum bandwidth
capacity ofc(v) = 3. Each node in consequence was able to
receive the four stripes of the stream once and additionally
forward at most 8 stripes to other nodes. The user behaviour,
which defines the node arrivals and departures, was modelled
in accordance to work of Veloso et al. [18]. Their study
examines traces of existing streaming services on the Internet
and the resulting models are characterized by a very high, but
subsequently decreasing churn in the beginning of a streaming
service (interarrival times and online times are modelled as
Pareto- and lognormal distributions repectively). Using these
simulation models and the user model we simulated nodes,
which in one simulation set ran the cost-based algorithm and
which in another set used the BCBS approach, each, until
a steady state was reached. At that point snapshots of the
evolved topologies, consisting of 250 nodes each, where taken
for further analysis.

In a second step, we analyzed the stability of the constructed
topologies towards optimal global attacks, both using a greedy
global attack and a branch-and-bound solver.

It is to expect, that intact topologies receive an amount
of n · k packets, as all nodes are elements in the spanning
tree Ti of all stripes. After attacking the setX of nodes,

∑

v∈V \X

incX(v) forwarding links in the spanning trees remain

intact. Normalizing, we get

P

v∈V \X

incX(v)

n·k of remaining re-
ceived packets after successfully attacking the setX.

For optimal topologies and in case ofn = C ·k, the number
of intact forwarding links after attack can be calculated as: (n·

k)−aT (X), or normalized by:1− aT (X)
n·k we obtain1− aT (X)

C·k·k .

With C = 1, aT (X) can be calculated as
∑|X|

i=1 2k−1−2(i−1)
as in the optimally stable topologies, the first removed node
accounts fork stripes which are not received andk−1 stripes
not forwarded. The second removed node then accounts for
k − 1 stripes which are not received andk − 2 stripes which
are not forwarded, and so on. Increasing the source capacity
leads toC different groups of size k. Here, at each attack,
nodes are accounting for2k − 1 − 2(i − 1) failing stripes in
their group and the resulting damage to the overall system is
being reduced byn

C
. After successfully attacking theC · k

heads (all nodes, in case ofn = C ·k), all nodes are separated
from the source in all spanning trees and no packet is received
any longer.

In case ofn > C · k, successfully attacking theC · k heads
still leads to the complete disruption of the service. In thesetup
of the evaluation in consequence, the total disruption of the
service is reached after attackingC ·k = 20, which represents
a subset of8% of all nodes (cmp. Fig. 3,”optimal“ ), in the
best case.

As the number of successors of all heads are equally⌊n−C
C
⌋

(differing by at most one additional node for some heads) in
optimal topologies, each successful attack on a head leads to
a loss of n−C

C
incoming stripes plus all incoming stripes of

the attacked node. Hence, withC and k being fixed values
and with an increasing numbern of nodes, the number of
stripes which are not received with each attacked node can be
approximated again as accounting for a linear loss ofn

C
. This,

too, is well visible as a linear drop in the number of received
packets in Fig. 3 (”optimal“ ).

We expected the DAG topologies that were created using
BCBS to experience a higher loss of received stripes with
each successfully attacked node. Thus, they are expected to
being less stable than the topologies that were created using
the cost-based approach, as they are neither optimized to
being well balanced nor to being low. In consequence, the
stable topologies, which were constructed using the cost based
approach, are expected to be more stable than the DAG
topologies. However, as the cost bases system is implemented
in a distributed procedure that optimizes the neighborhood
of the nodes based on local knowledge only, it is assumed,
that successful attacks on nodes will still lead to a higher
number of stripes not being received than in the optimally
stable topologies, created using the generator with global
knowledge. The stability towards an optimal attack of the
topologies generated using global knowledge, finally, should
meet the theoretical values.

For the last case, the optimally stable topologies, we realized
that our assumptions hold true and that the calculated quality
drop equals the theoretical values. As Figure 3 shows, the
optimally stable topologies additionally are much more robust
to attacks based on global knowledge than the DAG topologies
described in [13]. However, the topologies generated usingthe
cost based approach were much more stable than the DAG
topologies as well and even almost matched the stability of
the optimally stable topologies.

Hence, worst case node failures and perfect attacks in opti-
mally stable topologies lead to an only slightly lower packet
loss for receivers than in topologies which are optimized
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towards stability properties using the distributed, cost-based
procedure. These, however, in turn are much less susceptible
to perfect attacks than DAG topologies.
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Fig. 3. Optimal Attack on DAG-, stable- and optimally stable topologies
(with 98% confidence)

In order to compare the topologies to other systems, sample
topologies were obtained through the authors, where possible,
and analyzed as well. It turned out, that the topologies con-
structed using DagStream showed an almost identical stability
as the topologies which were generated using BCBS, with the
latter ones being slightly more stable towards attacks. This fact
is not surprising, as the approaches are very similar, BCBS
only allows for a more fine grained splitting of the stream, as
it creates topologies of spanning trees at packet-level rather
than at a stripe level. However, a more fine-grained partition
of the stream with DagStream should lead to topologies which
are as stable as the topologies created using BCBS. Both
for Magellan and SplitStream not enough topologies could
be acquired which would be needed to conduct experiments
leading to significant results. However, both systems create
unbalanced and rather high topologies. These properties lead
to the fact, that while they are stable to random node failures,
they can not be stable towards optimal attacks.

In order to further evaluate the topologies of the cost-
based approach, we analyzed to what extend they complied
to the three properties required in Section V: (1) each node
forwarding in only one stripe, (2) the number of distinctive
successors of the heads being maximized and (3) the number
of successors of all heads differing by1 at maximum.

Regarding the number of stripes in which each node is
forwarding it became apparent, that an average of6% of the
nodes in all simulations where actually internal nodes in two,
and thus in more than one stripes, with an overall minimum
of 4% and an overall maximum of10% of the nodes in any
simulation. In total we found 235 nodes in the 16 topologies,
that forwarded in more than one stripe, with a minimum of 9
and a maximum of 24. The average total number of successors

aT (v) =
k
∑

i=1

|succi(c)| of these nodes was 12. The precise

numbers can be found in Fig. 4. Even though these nodes
forward more than one stripe, the experiments indicate that

Successors 12 14 16 18 20 22 28
Number of Nodes 143 72 16 1 1 1 1

Fig. 4. The distribution of the number of packets depending onnodes
forwarding in more than one stripe.

the low number of packets depending on them does not cause
the topologies to be less stable. In fact, we conjecture thatthe
condition for optimally stable topologies that a node forwards
only in one stripe can be relaxed.

All heads had the maximum number of direct successors in
all topologies of all simulations. The number of successorsof
each head, finally, should be balanced to⌊n−C

C
⌋ = ⌊ n

C
−1⌋, or

49 in the conducted simulations. In all simulations a fraction
of 5.6% of all heads had a deviating number of successors.
However, in these cases they had either 50 or 48 and thus
only one successor more or less than the average. While this
small deviation could be observed in some cases, the numbers
of successors of heads were exactly balanced in18% of the
simulations. The main requirement, that the successors of the
heads are well balanced and no successing node has a higher
number of successors than any of the heads could thus be
confirmed.

To make the results easier comparable to previous work we
additionally measured the vertex connectivity, i.e. the number
of disjoint paths between a node and the source of the stream.
In the total of all simulations the measured fraction of nodes
with less than the maximum ofk node disjoint paths to the
source was0.4%. Each of these nodes received two stripes
through one common node and thus had a number ofk − 1
node disjoint paths to the source. While in the worst case
(one simulation run) the fraction of these nodes with a vertex
connectivity of k − 1 rose to1.2% of the simulated group,
this decrease of the vertex connectivity didn’t happen at all in
37% of the simulations.

Height 3 4 5 6 7
Number of Heads 233 44 32 9 2

Fig. 5. The number of heads of a specific height.

Finally, we examined the height of the resulting trees to
obtain a simple measure for latency. To obtain a detailed
picture, we examined the height of the heads instead of the
height of the root. The number of heads of a specific height
is given in Fig. 5. As we see, about 73% of the heads had a
depth of 3, while 14% had a height of 4 and 10% a height
of 5. This shows the tendency to quite flat topologies in the
generated stable topologies, as well as our class of optimally
stable topologies, as the condition that each node forwards
only one stripe requires the stripes to have a high number of
leaves (those nodes forwarding other stripes) compared to the
interior nodes, and hence a low height.

With respect to the convergence of the cost based approach
we could verify that it does not suffer from extensive re-
arrangements of the topologies, due to oszillations or long
optimization paths. Nodes were forwarded to other parent
nodes two times on average for each spanning tree, with a
total maximum of3 ·k movements over all subscribed stripes.
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While these numbers may sound surprisingly low, they are
actually expected, as the created topologies are quite shallow
(cmp. Fig. 5) and optimization paths in consequence short. The
maximum number of nodes that were indirectly affected by
the arrival or departure of other nodes totalled to the number
of stripes. This result is not surprising and shows that our
measures against oscillating topologies, in order to stabilize
the system quickly, are effective. Additionally, it supports our
expectations that the distributed algorithm converges quickly
and the overall topology is only slightly affected by the churn
of nodes. Hence, reorganizations to a larger extent are only
expected in the case that major changes occur. However, as
the convergence of the algorithm was not in the focus of our
research, the measurements taken are not concise, a task that
we are planning for future studies.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we introduced a graph theoretic model for ap-
plication layer multicast overlays. We subesequently described
different types of strategies to attack topologies, including
the definition of an optimal attack strategy. Based on the
knowledge of optimal strategies we were able to describe
overlay streaming topologies, which are optimally stable to-
wards perfect attacks and gave proof of their optimality.
Furthermore, using this class of optimally stable topologies,
we were then able to present a distributed procedure which
creates stable topologies through cost-based optimizations of
the neighborhood of each node based on local knowledge
only. The different topologies were evaluated in a simulation
study which revealed that the topologies created through the
distributed procedure were much more stable than topologies
from previous approaches, and that they were actually closeto
optimally stable against worst case node failures and perfect
attacks.

As real world scenarios are commonly assumed to be
characterized by a high churn of arriving and departing nodes
and a high rate of random node failures, we plan to extend
our research towards analyzing, how stable our new topologies
are in such an environment. We expect them to also be more
stable in this case. However, they might not be more stable to
a very high extent than topologies created using SplitStream
or DagStream/BCBS, when subject to a random removal of
nodes. If the topologies created with competing approaches
developed scale free characteristics with respect to a power
law distributed amount of successors, they could even be more
stable to random node failure. This would be consequence of
the fact that in such topologies the chances of an important
node with many successors to fail are very low, compared
to the chances of one of the many nodes with only very
few successors to fail. However, first results with a random
attack strategy show, that the gap between the stability of our
topologies and the topologies of previous approaches shrinks,
with our new topologies still being more stable under all
circumstances. This result most probably stems from the fact,
that the topologies of existing approaches do not display very
strong scale free characteristics. Further studies are planned to
analyse the convergence behaviour of the cost based approach

in adverse environments with high churn. The preliminary
results are very promising, as they show that the measures
taken in our approach are effective. Additionally, since the
simulation study we conducted takes a user model into account
that introduces a very high but decreasing churn at the startof
the simulation, and which has been developed following real
world measurements of multimedia services on the Internet,
we are confident that it will perform well in these studies.

By applying some basic rules in our procedure in step 4b)
of the construction (cmp. section IV-A), it should be possible
to create the topologies such that the number of successors
is distributed - at least approximately - by a Power Law. In
this way, the constructed topologies will be close to optimally
stable and may show a high resilience against random failures.

APPENDIX

The following Lemma is used in the proof of Theorem 9.

Lemma 11: Let (xi)1≤i≤k and (yi)1≤i≤l be two non-
increasing sequences of natural numbers, andx0, y0 two
natural numbers, such that

• x0 ≥ y0,

•
∑k

i=0 xi ≥
∑l

i=0 yl = Y and

• yi ∈ {⌊(Y − y0)/k⌋ , ⌈(Y − y0)/k⌉}.

Then, for0 ≤ h ≤ min(k, l), we have

k−h
∑

i=0

xi ≥
l−h
∑

i=0

yi.

Proof: If k ≤ l, we have0 ≤ h ≤ min(k, l) = k. For
h = k the proposed inequality follows fromx0 ≥ y0. For
h < k we obtain by induction

k−h−1
∑

i=0

xi ≥
l−h−1
∑

i=0

yi.

Now assume
k−h
∑

i=0

xi <

l−h
∑

i=0

yi.

This implies xk−h < yl−h and hence, due to the third
condition,xk−h ≤ ⌊(Y − y0)/k⌋, implying

k
∑

i=0

xi ≤
k−h
∑

i=0

xi + h

⌊

Y − y0

k

⌋

<

l−h
∑

i=0

yi +

l
∑

i=l−h+1

yi = Y,

contradicting the second condition.
If k > l, then definex̂0 := x0 + · · · + xk−l−1 and x̂i :=

xi+(k−l) for 1 ≤ i ≤ l. Then the proposed inequality follows
from the casek ≤ l.
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