
A Categorization of Discovery Technologies for the
Internet of Things

Arne Bröring
Siemens AG

Munich, Germany
arne.broering@siemens.com

Soumya Kanti Datta
Communication Systems
Department, EURECOM
Sophia Antipolis, France

dattas@eurecom.fr

Christian Bonnet
Communication Systems
Department, EURECOM
Sophia Antipolis, France
bonnet@eurecom.fr

ABSTRACT
Discovery of things as well as their resources, metadata,
properties, and capabilities is a fundamental requirement in any
Internet of Things (IoT) ecosystem. This paper analyzes the state
of the art of communication technologies for the IoT with respect
to discovery functionalities. Therefore, a comprehensive study of
the technology landscape on IoT discovery mechanisms is
provided. As a key contribution, we introduce a novel
categorization of the available discovery technologies. Further,
we identify and analyze the generic interaction pattern of each
category. Finally, the technologies of each category are evaluated.
With this evaluation at hand, IoT system designers are given
decision making support. In the future, this analysis will serve as
a basis for a generic discovery framework for the IoT. This work
has been elaborated as part of the W3C Web of Things interest
group.

CCS Concepts
• Software and its engineering➝Software organization and
properties • Extra-functional properties➝Interoperability
• Software system structures➝Software Architectures

Keywords
Internet of Things; Discovery; Interaction patterns.

1. INTRODUCTION
The Internet of Things (IoT) is still in its infancy. A lot of data-
silos and fragmentations are observed in the IoT market.
Recently there is increasing consensus about utilizing the
philosophy and standards of the Web to bring harmony in the IoT

ecosystems giving rise to Web of Things (WoT). Resource
discovery is one of the most fundamental building blocks of a
WoT platform. Industry estimates show that 30-50 Billion things
will be connected to the Internet by 20201 . To provide value-
added services to the consumers through a WoT platform, these
things must interact with their environment, the cloud and among
themselves (paving way for thing-to-thing interactions). The
interactions allow things to exchange and process metadata,
deriving actionable intelligence, and reacting autonomously to
their environment. However, the heterogeneity of things, their
capabilities, supported actions, properties and different
communication technologies, and protocols add to the complexity
of effective realization of the platforms [1].

Therefore, to realize the vision of a truly connected and smart
WoT platform, there must be mechanisms available for automatic
discovery of resources, their properties and capabilities as well
as the means to access them. Depending on the use case, a
resource could be a thing, thing metadata or thing description.
Furthermore, the discovery mechanisms also depend on other
building blocks, such as configuration management, registration
and un-registration, or sleep/idle mode of the physical things.
The academia, industrial stakeholders, and standard development
organizations recognize the importance of discovery and have
addressed it from various point of views [2]. For example,
discovery can have different scopes based on the contexts of the
intended scenarios. When considering from the point of view of
physical location and/or network, the discovery scopes can
include both local and remote aspects. For example, searching
for things around "Me" corresponds to a local scope while a
remote scope can be searching for things providing offline maps
in a foreign location through a Web service. At the same time,
discovery scopes could also be in terms of one-time (thing
discovery in a smart home) or long standing (pub-sub style).
Similarly, discovery mechanisms also have several dimensions,
e.g., context, location, humans (from the access control
perspective) etc. An extensive survey of the existing mechanisms
and technologies has been carried out to (i) review the current
mechanisms used in discovery, (ii) understand different
discovery architectures (i.e., centralized directory, peer to peer,
or distributed over networks) and (iii) examine the available
discovery technologies. Thereby, for the analysis, we focus
technologies in this paper, which are from our perspective
current practice and most relevant for industry applications.

1https://www.cisco.com/web/about/ac79/docs/innov/IoT_IBSG_0411FINA
L.pdf

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
IoT'16, November 07 - 09, 2016, Stuttgart, Germany

Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 978-1-4503-4814-0/16/11…$15.00

DOI: http://dx.doi.org/10.1145/2991561.2991570

The main contributions of this paper are twofold. Firstly, a
categorization of current discovery technologies and their
interaction patterns is presented in Section 2. Secondly, Section 3
evaluates the identified discovery technologies based on crucial
criteria. In Section 4, we show how the categorization and
evaluated technologies can be applied in application
development. Finally, Section 5 concludes the paper and
highlights future works.

2. CATEGORIES OF IOT DISCOVERY
TECHNOLOGIES
In the following, we present a novel categorization for IoT
discovery technologies. Based on a survey conducted as part of
the W3C WoT IG2, we have identified a set of four technology
categories that are related to the discovery of Internet- or Web-
enabled things. This set of discovery categories determines a
technological landscape for IoT discovery mechanisms. For each
of these categories, we name and describe example technologies.
As we cannot deliver an exhaustive list of all available
technologies, we focus on technologies that are most relevant in
today’s IoT setups. Also, the descriptions are intentionally kept
brief, as they only serve the purpose of explaining why a selected
technology is part of this category. More details on these
technologies can be gathered by following the provided
references.

The foundation of each category is a generic discovery interaction
pattern, which we identify and analyze. In each of the discovery
interaction patterns we have two central roles: the client and the
thing. While the thing represents generally an Internet- or Web-
enabled device, the client can e.g. be another thing or a user
operated application. The interaction patterns are the basis for a
theoretical framework and future abstractions of technology
dependencies that are currently hindering interoperable IoT
discovery.

2.1 Searching Around Me
This first category includes technologies that enable the
discovery of things, which are in close spatial proximity of the
client. A common denominator of all comprised technologies is
that a spatial “nearness” of the client to the things is required in
order to discover the thing. Common to all technologies is the
interaction pattern drawn in Fig. 1.

2 http://www.w3.org/WoT

Client Thing

opt

sends advertise message()

sends discovery message()

l istens for messages()

Fig. 1. Interaction pattern: ‘Searching around Me’

In the following, we name and briefly describe example
discovery technologies which are part of this category.
Near field communication (NFC) [3] technology builds up on
RFID by allowing two-way communication between endpoints. It
is based on electromagnetic induction. The induction is created
between two NFC antennae of the two interacting devices, i.e.,
client and thing. The range of NFC is very limited (around 10cm)
compared to Bluetooth or Wi-Fi. Hence, the Searching around
Me is also restricted to a very limited spatial proximity. In
practice, it is more often utilized for accessing metadata (see
Section 2.4). NFC is often used to exchange information for
bootstrapping more powerful communication connections (such
as Bluetooth) between two devices. NFC follows the pattern
shown in Fig. 1. In case of ‘passive’ NFC, the client used the
indicated option and sends a discovery message, which is a
carrier field in case of NFC. The thing receives this and may
draw power from this carrier field to send the advertise message
as a field modulation. In case of ‘active’ NFC, the initial option
is not used and the thing can directly send an advertise message
through field modulation, since it is powered.
Another example of this category is Bluetooth Low Energy (BLE)
[4]. Such BLE-enabled devices periodically transmit advertising
packets. Depending on the vendor of those devices, the
advertising packet comprises different payloads. Examples are
Google’s Eddystone beacon3, which transmits a Uniform
Resource Identifier (URI), or Apple’s iBeacon4, whose
advertising packets comprise of a Universally Unique Identifier
(UUID). While the iBeacon requires a smartphone app that is
enabled to read whitelisted objects and a server to resolve the
UUID, the Eddystone beacons can rely on standard Web
mechanisms, i.e., a Domain Name System (DNS) server, to
resolve the transmitted URI. The interaction style is in case of
BLE beacons the push principle, i.e., a beacon broadcasts
advertise message, while the client is listening for incoming
message. Thus, it follows the pattern shown in Fig. 1.

Another form of searching things around me is markerless
recognition. It is an augmented reality (AR) technique using
sensors such as accelerometer, camera, compass, and GPS to
determine the client's location and field of view. Based on the

3 https://developers.google.com/beacons/
4 https://developer.apple.com/ibeacon/

derived position, surrounding things can be discovered. Although
useful and a valid method, we do not consider markerless
recognition as a discovery technology here, but an application
that utilizes the Searching in Directories pattern (Section 2.3) for
its implementation, as the key discovery mechanism is
implemented on the directory part. Specific queries (e.g., client
location and field of view) are sent to the directory as part of the
query. It is e.g. implemented by AR browsers such as Layar5 or
Aurasma6.

2.2 Searching on My Network
This category includes technologies that allow discovery of
endpoints of things on the network. The according pattern is
described in Fig. 2.

Client ThingNetwork Entrypoint
(e.g., default

multicast address)

sends discovery message()
«multicast»

sends advertise message()

l istens for messages()

multicasts discovery message()

listens for messages()

Fig. 2. Interaction pattern: ‘Searching on My Network’

Multicast DNS (mDNS) [5] is based on the Internet Protocol (IP)
and the User Datagram Protocol (UDP). In a given network,
mDNS can be utilized for resolving host names to IP addresses.
The interaction model of mDNS conforms to the pattern shown
in Fig. 2: In case an mDNS client wants to discover a thing’s
endpoint by resolving its host name to an IP address, it has to
send an IP multicast query message over the network. The
message calls the host with that name to reply and identify. Once
the host receives the message, it replies via multicast message
that contains its IP address. All nodes in the network receiving
that multicast message update their mDNS caches accordingly.
The mDNS protocol is often used in conjunction with DNS-
Based Service Discovery (DNS-SD) [6]. Through this
technology, a client can do simple service discovery based on
standard DNS queries. mDNS is for example part of the
'zeroconf' technology suite and implemented by Apple’s
Bonjour7.

Multicast CoAP is based on IP and UDP. CoAP [7] supports
requests to an IP multicast group. Clients can use multicast
CoAP and the "all-CoAP-nodes" multicast address to discover

5 https://www.layar.com/
6 https://www.aurasma.com/
7 https://www.apple.com/support/bonjour

things, as CoAP servers. CoAP servers listen on the "all-CoAP-
nodes" address and advertise themselves by replying to the client
request. In addition, this approach can be combined with the
CoRE Link Format [8]. In this case, a CoAP GET request to the
appropriate multicast address is made for the '/.well-known/core'
resource to receive a list of all available resources. This
interaction model is very similar to the one of mDNS and
multicast CoAP also conforms to the Searching on my Network
pattern as described in Fig. 2.

The Simple Service Discovery Protocol (SSDP) [9] is based on
IP, UDP, and SOAP and used by Universal Plug and Play (UPnP)
[10] for discovery. In order to discover SSDP services, SSDP
client multicasts a discovery request to the SSDP multicast
channel and port. SSDP services listen on that channel. If an
SSDP service receives a discovery request that matches the
service it offers, it responds using a unicast response. This
interaction style conforms to the pattern shown in Fig. 2.
However, while the here described interaction is initiated by the
client, some UPnP devices also push info periodically.
Web Service (WS) Discovery [11] is used by OASIS' Device
Profile for Web Services (DPWS) and is based on IP, TCP/UDP,
and SOAP. The standard specifies multicast discovery via web
service-based communication, i.e., via SOAP messages. It
specifically aims at avoiding the need for centralized registries in
smaller networks. The standard is e.g. implemented by
Microsoft’s Web Services on Devices API. The SOAP-based
message exchange confirms with the identified pattern (Fig. 2) in
the so-called “ad hoc mode”, however, the discovery happens in
two steps: (1.) finding a service and (2.) resolving a target
service’s address. In the “managed mode”, a discovery proxy is
introduced in the interaction and unicast messages are exchanged
with it as a directory on network-level (see Section 2.3).

2.3 Searching in Directories
In contrast to the above technologies, a central directory can be
used for discovery of things and their resources. Queries can be
submitted to the directory to search for things and/or resources.

Client ThingDirectory

sends search query()

sends result()

sends registration message()

Fig. 3. Interaction pattern: ‘Searching in Directories’

The CoRE Resource Directory [12] is described as a draft as part
of the CoRE standards family and is based on the CoAP protocol.
The Resource Directory (RD) hosts descriptions of CoAP
resources held on other CoAP servers, allowing lookups to be
performed for those resources. The interaction model of the RD
complies with the interaction pattern shown in Fig. 3. The thing
registers autonomously (or through third party) its resource

descriptions in the CoRE Link Format [8]. Once registered, a
thing and its resources can be discovered through a lookup
interface that supports simple search queries. For example, a
query to search for resources with an associated resource type
(“rt”) attribute (e.g., ‘temperature’) can be specified as follows:
GET /rd-lookup/res?rt=temperature.
XMPP Internet of Things Discovery [13] is a standards-track
document with status ‘experimental’ that describes the behavior
and interface of a Thing Registry based on XMPP messages. By
sending according XMPP messages, things can be registered at
the Thing Registry and it can be searched for things and their
metadata (various tags, e.g., location or serial number). A search
is performed by providing one or more comparison operators in a
search request to the registry. The XMPP Service Discovery [14]
standard is utilized as a basis to support XMPP discovery. It
allows discovering the identity and capabilities of an entity and
associated items. The Thing Registry conforms to the interaction
pattern of the Directory shown in Fig. 3.

The HyperCat specification [15] defines a lightweight catalogue
that exposes resources encoded in JSON via HTTP on the Web.
It lists a number of resource items identified via URI and each
described with a number of triple statements, according to the
model of the Resource Description Framework (RDF) [16]. The
“simple search” extension of the HyperCat catalogue follows the
design of a Directory, as described in Fig. 3. A central entry
point allows to insert new descriptions of thing resources and to
submit search queries to perform discovery.
The Sensor Instance Registry (SIR) [17] is a discussion paper at
the Open Geospatial Consortium (OGC) and part of the Sensor
Web Enablement [18] family of standards. It conforms to the
pattern of a Directory shown in Fig. 3, by defining a web service
interface for registering and searching of metadata and status
information of sensing devices (i.e., things). It is capable of
automatically harvesting such metadata from defined sources,
and transforming the collected metadata sets into a homogeneous
data model.
SPARQL is a powerful query language standardized as a W3C
recommendation [19]. It can be used to query and manipulate
RDF [16] graph content that is stored in an RDF triple store. A
SPARQL endpoint of an RDF triple store accepts advanced
queries that generally consist of SELECT/WHERE statements for
RDF data. In response to a query, the endpoint can return the
result in JSON, CSV or XML format. In its basic form, a
SPARQL endpoint complies with a Directory (see Fig. 3).
However, it goes beyond this simple interaction model by
supporting for example federated queries

2.4 Accessing Thing Metadata
Once a thing has been discovered with the approaches above, its
metadata (e.g., a description and/or measurement metadata)
needs to be accessed. That is performed through this category of
technologies. Accessing thing metadata can further allow clients
to implement a ranking and/or filtering system for the discovered
things.

Cl ient Thing

requests description()

sends description()

Fig. 4. Interaction pattern: ‘Accessing Thing Metadata’

The CoRE Link Format [8] is an IETF standard that has already
been widely explored in research (see e.g., [20], [21]) and has
more and more relevance in practice. It is used to access and
communicate thing descriptions. Therefore, it provides a
mechanism to list URI links to resources such as the thing
metadata hosted by a server (e.g., a Web-enabled thing).
Attributes can be attached to those resource links to further
describe the linked resource. The communication to enable the
metadata access through this technology is based on UDP and
CoAP: The CoRE Link Format standard defines a default URI
("/.well-known/core") that is offered by the CoAP server (i.e., the
thing) and where the list of resource links can be requested. This
interaction model complies with the pattern in Fig. 4. The Link
Format can also be used to list the items of a central repository as
it is done by the CoRE Resource Directory (see Section 2.3).

The Open Geospatial Consortium’s Sensor Observation Service
(OGC SOS) [22] is a web service interface that allows to query
metadata of sensing devices (i.e. things) as well as their
measured data. The OGC SOS standard is part of the Sensor
Web Enablement framework [18]. In order to allow accessing the
correct metadata description of a thing, OGC SOS also supports
advanced temporal filtering. So, this standard complies with the
pattern (Fig. 4) and goes beyond with this temporal filtering
functionality.
Another way of accessing metadata or a description of a thing is
an optical marker tagged onto such a thing. These include visual
markers such as barcodes or QR codes, which can be scanned
from a client application and then decoded to receive the
necessary information. In that sense, the interaction pattern
complies with the one in Fig. 4. However, the client needs to be
able to scan the optical marker tag on the thing. Since a spatial
proximity is required, the interaction is also similar to the
Searching things around Me pattern presented in Fig. 1.
However, optical markers are in general different from
technologies such as NFC or BLE, as they only allow to receive
more information about a tagged thing, but not to discover a
thing. In case of technologies such as NFC and BLE, the device
to be discovered may not be directly visible or in reach of the
client. Instead, the client “searches” its surroundings for the
devices. In case of a QR code, a direct access is possible.

2.5 Research on IoT Discovery Mechanisms
Beyond the above identified discovery technologies, which are
already established in industry, there have been various
approaches researched in recent years. In the following, we
present selected works on advanced IoT discovery solutions.

However, since we focus in this paper on applicable technology,
we do not include these in our analysis and evaluation.
One key research direction has been thing discovery through
peer-to-peer (P2P) techniques.
In such P2P discovery solutions, the searchable directory is
essentially distributed across the peers, which can be e.g.
network gateways or the things directly. Typically, this is based
on distributed hash tables (DHT). A DHT maps the search space
to a numeric range and then allocates servers to parts of that
range. The technique works well for scale free networks. It
requires peers in the P2P overlay to host parts of the searchable
directory, to have full connectivity and computing power to be
able to forward overlay messages, and to keep a consistent DHT.
P2P overlays tolerate certain amounts of churn; however, it is
typically impractical for constrained devices to participate as full
peers on the DHT [2].

A recent IETF standard proposes such a mechanism: the IETF
RFC 7650 [23] describes CoAP usage for REsource LOcation
And Discovery (RELOAD), which is a distributed hash table
based P2P protocol. This allows CoAP nodes to store resources
in a RELOAD P2P overlay, provides a lookup service. This also
enables the use of the RELOAD overlay as a cache for the thing
metadata. In contrast to the IETF RFC 7650, the IETF draft on
the Distributed Resource Directory (DRD) [24] proposes to
utilize raw DHT with no RELAOD dependencies. The
distribution is achieved by using a structured P2P overlay.
Cirani et al. [25] describe a scalable and self-configurable
architecture for service discovery in IoT. M2M gateways form
the backbone of the architecture and allow registration and un-
registration of things. The list of registered things is maintained
in a CoAP server. In the distributed architecture several gateways
are interlinked through two P2P overlays namely distributed
local service (DLS) and distributed geographic table (DGT) to
facilitate global thing discovery.
Another key research direction on IoT discovery relates to the
combination with Semantic Web methodologies.
For example, Zhou and Ma [26] present an ontology for vehicular
sensors. Their algorithm calculates semantic similarity as well as
relativity and combines them to work out the maximum value of
the required concepts of a Web service. Then a matching degree
is worked out to discover the relevant Web service.

In [27], the authors introduce a framework based on Semantic
Web technology that utilizes the concept of a smart object (i.e. a
thing) and their service advertisement that is composed of service
metadata including name, id, endpoint, location and semantic
annotation link. The authors argue that the advertisement based
mechanism facilitates object registration and simplifies
discovery.

Another Semantic Web based service discovery methodology is
introduced in [28]. The authors propose a middleware which
performs discovery using ontologies and deriving contextual
information that is inferred from sensor data using reasoning
technology.
Malewski et al. [29] propose a Semantic Web approach based on
ontology matchmaking to discover required things for plug and
play purposes. Going beyond discovery, the approach includes a
mediation of advertised things to required things, by using
SWRL rules. Accompanying discovery by such mediation ensures

that more potentially relevant matches are discovered and can be
used.

3. EVALUATION OF IOT DISCOVERY
TECHNOLOGIES
In this section, the above mentioned discovery technologies are
evaluated against crucial criteria. Those criteria are detailed in
the following. Table I below presents the results of the
evaluation of the technologies.

· Bootstrapping – This criterion defines whether and
how a technology provides the means to start
interacting with things and their resources after
discovery.

· Range – This criterion is used for the spatial extent
within which a discovery technology is functioning.
Generally, this can be either a “local” or a “remote”
discovery. A local discovery is e.g. done in case of NFC
with a range under 10 cm. A remote discovery is e.g.
done in case of SPARQL endpoints where the limiting
range is the scope of the directory.

· Basic Search – This criterion defines if a technology
allows submitting search queries based on terms of the
underlying information model. This includes searches
such as e.g.: 'search all things with name 123 AND
with property temperature'.

· Richness of Queries - This criterion specifies to what
extent contextual query parameters can be passed in a
search query. E.g., this can include spatial parameters
('search all things in NYC') or temporal parameters
('search all things active yesterday'). This goes beyond
basic search queries that allow searching based on
terms of the underlying information model. Since there
is a large spectrum of search query designs, we
distinguish between 4 options in this criterion: “no”,
“limited”, “medium”, and “high”. Thereby, “limited”
means that the search query has a tagging mechanism.
The “medium” option characterizes search query
designs that offer search operators (e.g., spatial,
temporal, or aggregate functions). Search interfaces can
be characterized with “high” in richness if they allow a
very flexible assembly of queries (such as logical
concatenation or advanced functions).

· Ranking of Results - This criterion specifies how/if
the discovery mechanism is capable of ranking search
results.

4. APPLYING THE IOT DISCOVERY
CATEGORIZATION
This section outlines how the categorization and evaluation of
IoT discovery technologies presented above can be utilized in IoT
application development.
To illustrate this, an example application scenario is assumed: A
company plans to organize a marathon and needs a system that
enables discovery of the runners and their virtual counterparts (as
things) as well as their wearables devices. The runners should be
discovered locally at checkpoints. Through the wearable devices,
vital body parameters (e.g., heart rate, blood pressure, hydration
level) can be collected and monitored. The monitoring system

must be able to rank the results of discovery based on if a runner
needs medical attention. To accomplish that, once the runner is
identified locally, the discovery system should be able to answer
rich discovery queries (e.g., about her/his performance over time,
or vital parameters).

To approach this application, the identified categories have been
placed in a multi-entry decision tree (see Fig. 5). First,
appropriate local discovery mechanisms are identified. Thereby,
the particular local range of the technology is the key
determinator. Hence, the entry point of the decision tree is
“Range”. Since 10 cm is too little range, and vicinity to the
runner (e.g., via optical marker on jersey) cannot be guaranteed,
the decision falls on “Local within 100m”. This means, runners
can be equipped with wearable devices using, e.g., BLE chips.
Second, a directory is needed to store the registration information
of runners and their wearable devices. As mentioned earlier, the
system also needs to support richness in queries. For example, an
administrator overseeing the marathon might be able to search
for runners with “very high blood pressure”. Also ranking of
results is important to identify who needs medical attention right
away and what is his/her current location.
Therefore in this application scenario, the runners need wearable
devices equipped with BLE; however, that alone is not sufficient.
The discovery mechanism also needs to support remote discovery
through a directory, a “high” richness of queries, and needs to
allow ranking of results. Looking at the decision tree in Fig. 5
(based on input from Table 1) the discovery technology to be
selected for the directory is a SPARQL endpoint, since it is the
only technology that supports “high” richness of queries and
ranking of results.

Fig. 5. Multi-entry decision tree for IoT discovery technology selection
(Note: for better brevity only a small subset of technologies has been

incorporated in the tree).

5. CONCLUSIONS AND OUTLOOK
This paper analyzes discovery technologies as a key part of IoT
ecosystems. Looking at current practices and relevance for
industry, we have identified available IoT discovery technologies.
Further, we grouped those technologies into four key categories.
Each category has been well explained and example technologies
belonging to each category have been named. As a key

contribution of this paper, we have identified a generic
interaction pattern for each of the four categories. Building up on
this categorization, we have evaluated the discovery technologies
with respect to five crucial capabilities for discovery:
bootstrapping, range of discovery, search and richness of queries,
as well as ranking of results. This evaluation has shown great
differences in the analyzed technologies. This shows their
individual applicability in different applications.
We have shown how this categorization can already be used by
application developers in decision making which discovery
technology to be used for given requirements. In the future, the
application of this analysis can go beyond the development time
as shown in the application here. This categorization may serve
as a basis for generic discovery frameworks for the IoT, which
support a broad range of IoT discovery technologies. Using such
a framework, the concrete discovery technology could be selected
by an application at runtime. A generic IoT discovery framework
can abstract from the concrete underlying discovery technologies
and would make it opaque to the developer which technology to
be used. This would facilitate IoT application development and
would decrease standard dependency.
While the above described prospects show great value, one needs
to consider security aspects. Standardized discovery frameworks
will facilitate application development. Nonetheless, there is also
higher a risk of security threads, once mechanisms are
established and widely used. Hence, future research needs to also
tackle those challenges and find solutions towards improving
security in the various discovery technologies.

ACKNOWLEDGMENTS
This work is an outcome of the W3C Web of Things Interest
Group8. We are very thankful for many fruitful discussions with
the IG’s members. The work has been partly funded by the
ITEA3 project “Building as a Service” (BaaS)9 funded by the
German Federal Ministry of Education and Research (BMBF)
under reference number 01IS13019A, and the French research
project DataTweet (ANR-13-INFR-0008)10.

6. REFERENCES
[1] A. J. Jara, P. Lopez, D. Fernandez, J. F. Castillo, M. A.

Zamora, and A. F. Skarmeta, “Mobile digcovery: A global
service discovery for the Internet of Things,” in Advanced
Information Networking and Applications Workshops
(WAINA), 2013 27th International Conference on, 2013, pp.
1325–1330.

[2] S. K. Datta, R. P. F. Da Costa, and C. Bonnet, “Resource
Discovery in Internet of Things: Current Trends and Future
Standardization Aspects,” in IEEE 2nd World Forum on
Internet of Things (WF-IoT), 2015, Milan, Italy, 2015, pp.
542–547.

[3] R. Want, “Near field communication,” IEEE Pervasive
Comput., no. 3, pp. 4–7, 2011.

[4] C. Gomez, J. Oller, and J. Paradells, “Overview and
evaluation of bluetooth low energy: An emerging low-power
wireless technology,” Sensors, vol. 12, no. 9, pp. 11734–
11753, 2012.

8 http://www.w3.org/WoT
9 http://baas-itea2.eu
10 http://www.agence-nationale-recherche.fr/?Projet=ANR-13-INFR-0008

[5] S. Cheshire and M. Krochmal, IETF RFC 6762: Multicast
DNS. IETF, 2013.

[6] S. Cheshire and M. Krochmal, IETF RFC 6763: DNS-based
Service Discovery. IETF, 2013.

[7] C. Bormann, A. P. Castellani, and Z. Shelby, “CoAP: An
Application Protocol for Billions of Tiny Internet Nodes,”
Internet Comput., vol. 16, no. 2, pp. 62–67, 2012.

[8] Z. Shelby, IETF RFC 6690: Constrained RESTful
Environments (CoRE) Link Format. IETF, 2012.

[9] Y. Goland, T. Cai, P. Leach, and Y. Gu, IETF Internet
Draft: Simple Service Discovery Protocol/1.0 Operating
without an Arbiter. IETF, 1999.

[10] M. Jeronimo and J. Weast, UPnP design by example: a
software developer’s guide to universal plug and play. Intel
Press, 2003.

[11] T. Nixon, A. Regnier, V. Modi, and D. Kemp, OASIS Web
Services Dynamic Discovery (WS-Discovery) Version 1.1.
OASIS, 2009.

[12] Z. Shelby, M. Koster, C. Bormann, and P. van der Stok,
IETF Internet Draft: CoRE Resource Directory. IETF,
2016.

[13] P. Waher and R. Klauck, XEP-0347: Internet of Things -
Discovery. XMPP Standards Foundation, 2015.

[14] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre,
XEP-0030: Service Discovery. XMPP Standards
Foundation, 2008.

[15] T. Jaffey, J. Davies, and P. Beart, Hypercat 3.00
Specification. Hypercat Limited, 2016.

[16] R. Cyganiak, D. Wood, and M. Lanthaler, RDF 1.1
Concepts and Abstract Syntax. W3C, 2014.

[17] S. Jirka and D. Nüst, OGC Discussion Paper 10-171:
Sensor Instance Registry. Wayland, MA, USA: Open
Geospatial Consortium, 2010.

[18] A. Bröring, J. Echterhoff, S. Jirka, I. Simonis, T. Everding,
C. Stasch, S. Liang, and Rob Lemmens, “New Generation
Sensor Web Enablement,” Sensors, vol. 11, no. 3, pp.
2652–2699, 2011.

[19] S. Harris, A. Seaborne, and E. Prud’hommeaux, SPARQL
1.1 Query Language. W3C, 2013.

[20] S. K. Datta and C. Bonnet, “Smart M2M gateway based
architecture for M2M device and Endpoint management,”
in Internet of Things (iThings), 2014 IEEE International

Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social
Computing (CPSCom), IEEE, 2014, pp. 61–68.

[21] S. K. Datta and C. Bonnet, “A lightweight framework for
efficient M2M device management in oneM2M
architecture,” in Recent Advances in Internet of Things
(RIoT), 2015 International Conference on, 2015, pp. 1–6.

[22] A. Bröring, C. Stasch, and J. Echterhoff, OGC
Implementation Standard 12-006: OGC Sensor Observation
Service Interface Standard, Version 2.0. Wayland, MA,
USA: Open Geospatial Consortium, 2012.

[23] J. Jimenez, J. Lopez-Vega, J. Maenpaa, and G. Camarillo,
IETF RFC 7650: A Constrained Application Protocol
(CoAP) Usage for REsource LOcation And Discovery
(RELOAD). IETF, 2015.

[24] J. Jimenez, M. Liu, and E. Harjula, IETF Internet Draft: A
Distributed Resource Directory (DRD). IETF, 2013.

[25] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani,
M. Picone, and L. Veltri, “A scalable and self-configuring
architecture for service discovery in the internet of things,”
Internet Things J. IEEE, vol. 1, no. 5, pp. 508–521, 2014.

[26] M. Zhou and Y. Ma, “A web service discovery
computational method for IOT system,” in Cloud
Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd
International Conference on, 2012, vol. 3, pp. 1009–1012.

[27] S. Alam and J. Noll, “A semantic enhanced service proxy
framework for internet of things,” in Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on & Int’l Conference on Cyber, Physical and
Social Computing (CPSCom), 2010, pp. 488–495.

[28] C. H. Yun, Y. W. Lee, and H. S. Jung, “An evaluation of
semantic service discovery of a U-city middleware,” in
Advanced Communication Technology (ICACT), 2010 The
12th International Conference on, 2010, vol. 1, pp. 600–
603.

[29] C. Malewski, A. Bröring, P. Maué, and K. Janowicz,
“Semantic matchmaking & mediation for sensors on the
sensor web,” Sel. Top. Appl. Earth Obs. Remote Sens. IEEE
J. Of, vol. 7, no. 3, pp. 929–934, 2014.

Table I: Evaluation of IoT Discovery Technologies

Category Technology
Name Bootstrapping Range Basic Search Richness of Queries Ranking of

Results

Searching
things

around me

NFC
Yes, pointing to thing
endpoint.

Local
within 10
cm

No. No. No.

BLE
Yes, pointing to thing
endpoint.

Local
within
100 m

No. No. No.

Searching
things on

my network

mDNS
Yes, client receives
thing’s IP address.

Remote
within
network

No. No. No.

Multicast CoAP
Yes, client receives
thing’s resource
description.

Remote
within
network

No. No. No.

SSDP
Yes, client receives
endpoint of UPnP
device.

Remote
within
network

Yes, but only basic
filtering for devices of
specific type.

No. No.

WS Discovery

Yes, two steps: (1.)
finding services and
(2.) resolving their
address.

Remote
within
network

Yes, basic querying
(e.g., on service type)
is possible.

Limited, querying
using “scopes” is
possible.

No.

Searching
in

directories

CoRE Resoure
Directory

Yes, client receives
thing’s resource
description.

Remote
within
directory

Yes, key-value-pair
search based on
tagged resources.

Limited, simple tag
concatenation. No.

XMPP IoT
Discovery

Yes, provides various
metadata for
discovered thing.

Remote
within
directory

Yes, as part of search
query message.

Medium, several
search operators are
defined.

No.

HyperCat
Yes, provides
reference to thing.

Remote
within
directory

Yes, search based on
given tags.

Limited, key-value-
pairs can be defined
as query.

No.

Sensor Instance
Registry

Yes, provides rich
metadata description
(SensorML).

Remote
within
directory

Yes, bound to
SensorML as
metadata model.

Medium, allows
spatial and temporal
queries.

No.

SPARQL
Endpoint

Yes, can potentially
provide rich
description of
discovered thing.

Remote
within
directory

Yes, flexible search
interface.

High, very flexible
design of queries. Yes.

Accessing
thing

metadata

CoRE Link
Format

Yes, client receives
links to thing’s
resources.

Remote
within
directory

No. No. No.

OGC SOS
Yes, it returns
SensorML when
metadata is queried.

Remote
within
directory

No.
Limited, allows
temporal queries to
access metadata.

No.

Optical Markers
Yes, pointing to thing
endpoint.

Local
within
vicinity of
client.

No. No. No.

