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Abstract

Despite the tremendous progress in face verification per-
formance as a result of Deep Learning, the sensitivity to
human age variations remains an Achilles’ heel of the ma-
jority of the contemporary face verification software. A
promising solution to this problem consists in synthetic ag-
ing/rejuvenation of the input face images to some prede-
fined age categories prior to face verification. We recently
proposed [3] Age-cGAN aging/rejuvenation method based
on generative adversarial neural networks allowing to syn-
thesize more plausible and realistic faces than alternative
non-generative methods. However, in this work, we show
that Age-cGAN cannot be directly used for improving face
verification due to its slightly imperfect preservation of the
original identities in aged/rejuvenated faces. We there-
fore propose Local Manifold Adaptation (LMA) approach
which resolves the stated issue of Age-cGAN resulting in the
novel Age-cGAN+LMA aging/rejuvenation method. Based
on Age-cGAN+LMA, we design an age normalization al-
gorithm which boosts the accuracy of an off-the-shelf face
verification software in the cross-age evaluation scenario.

1. Introduction
Being the cornerstone of face recognition and face re-

trieval, face verification is a fundamental biometrics prob-

lem. Its objective is to compare a pair of human photos

and to tell whether they belong to the same person or not.

In recent years, face verification has been revolutionized

with the surge of deep learning (in particular, Convolutional

Neural Networks (CNN) [18]) setting the state-of-the-art

scores [30, 27] which surpass human performances on pop-

ular face verification benchmarks [17].

However, face verification remains a challenging and un-

solved problem in the cross-age evaluation scenario. In-

deed, a number of studies [20, 19, 6, 12, 33] have shown that

the performances of off-the-shelf face verification software

significantly degrades in the presence of age variation. This

is a serious issue for biometrics applications such as pass-
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Figure 1. (Better viewed in color). Our fully-synthetic age nor-

malization algorithm uses the proposed Age-cGAN+LMA ag-

ing/rejuvenation method to improve cross-age Face Verification

(FV). A pair of faces from the FG-NET dataset [1] belonging to

the same person at different ages are compared with the Open-

Face FV software [2]. Without age normalization, the software

incorrectly classifies the faces as a negative pair: the estimated FV

distance of 1.33 (in red rectangle) is well above the software re-

jection threshold of 0.99. After aging/rejuvenation both faces to 6
age categories (“0-18”, “19-29”, “30-39”, “40-49”, “50-59” and

“60+”), the mean estimated FV distance between 6 synthetic pairs

by the same software is of 0.74 (in green rectangle). This allows

to correctly classify the initial pair as positive.

port renewal, border control or research of wanted crimi-

nals, where automatic face verification systems are often

required to deal with big age gaps between the tested and

the reference photos [22, 8].

Therefore, the problem of cross-age face verification has

attracted a large body of research studies, which can be

roughly split into two categories: (1) the ones improving



face verification software in order to make it invariant to

age variations, and (2) the ones which synthetically modify

the input face images to normalize ages between them prior

to face verification. The approaches belonging to the first

category [14, 10, 34, 7, 33] aim to design face descriptors

which can effectively separate identity and age information

in face images. At the same time, the vast majority of ex-

isting face verification software remains highly sensitive to

age gaps between the tested faces making the approaches of

the second category particularly important.

The core of age normalization is the underlying method

for synthetic face aging/rejuvenation (also known as age

progression/regression [28]). Its goal is to aesthetically

age or rejuvenate an input face preserving the original

identity. Thus, in our previous work [3], we proposed

an aging/rejuvenation method called Age-cGAN which is

based on Generative Adversarial Networks (GANs) [11]

and produces plausible, naturally looking faces. However,

as shown in this work, the level of the identity preservation

of Age-cGAN is insufficient for cross-age face verification.

The present study builds upon Age-cGAN proposing a

novel approach to further enhance its identity preservation.

By doing so, we allow application of Age-cGAN for age

normalization prior to face verification (cf. Figure 1). More

precisely, our contributions are two-fold:

1. We extend our previous Age-cGAN ag-

ing/rejuvenation method [3] with a novel Local

Manifold Adaptation (LMA) approach which allows

to quasi-perfectly preserve the original person’s

identity.

2. Based on Age-cGAN+LMA, we design a fully-

synthetic age normalization algorithm. As a result, we

improve the accuracy of a popular deep learning face

verification software in cross-age evaluation scenario.

The rest of the paper is organized as following: in Sec-

tion 2, we discuss the most notable existing works on syn-

thetic aging/rejuvenation; in Section 3, we briefly present

GANs in general and Age-cGAN, in particular; in Sec-

tion 4 we detail our LMA approach, the resulting Age-

cGAN+LMA aging/rejuvenation method and our fully-

synthetic algorithm of age normalization; in Section 5, we

find optimal hyperparameters for LMA, qualitatively com-

pare our method with alternatives and quantitatively show

the improvements of the proposed age normalization on

cross-age face verification; and finally, Section 6 concludes

the study and gives directions for the future work.

2. Related Work
Existing works on synthetic face aging/rejuvenation

mainly fall into one of the following 2 groups: modelling-

based and prototype-based.

Modelling-based methods employ parametric models to

simulate the physical aging mechanism of muscles, skin

and skull of an individual. Different modelling-based meth-

ods were proposed including Active Appearance Models

(AAMs) [15], craniofacial growth model [25], and-or graph

model [29] and statistical model [23]. The common limi-

tation of modelling-based methods is their requirement for

long-term aging sequences of the same person in order to

model the subtle face aging mechanism. Obviously, it is

very costly to collect big enough training datasets with such

sequences. Modelling-based methods are also known to be

computationally expensive.

Prototype-based methods [5, 31, 13] define average faces

calculated on training images of certain age categories as

prototypes for these categories. Differences between the

prototype faces constitute the aging patterns which are fur-

ther used to transform an input face image into the target

age category. The prototype approaches are often fast, but

due to the fact that they discard personalized information,

these methods are prone to lose the identity while aging.

Therefore, contemporary prototype-based methods use ex-

plicit mechanisms to preserve the original identity.

Thus, the two most recent studies [28, 32] which applied

face aging/rejuvenation to improve cross-age face verifica-

tion are prototype-based. Shu et al. [28] proposed Coupled

Dictionary Learning (CDL). The authors learn a dictionary

per each age category, and the aging pattern is encoded by

the dictionary bases. Pairs of neighbouring dictionaries are

learned jointly, and the identity information is regarded as

the reconstruction error which is added into the aged face

directly. Despite convincing aging results, CDL suffers

from the ghosting artefacts. The other Recurrent Face Ag-

ing (RFA) aging/rejuvenation method proposed by Wang et

al. [32] uses Recurrent Neural Networks (RNNs) for age

pattern transition between the coefficients of eigenfaces cal-

culated in different age categories. Contrary to CDL, RFA

smooths the ghosting artefacts but poorly preserves the orig-

inal person’s identity.

Despite aging and rejuvenation being equally impor-

tant, once trained, the vast majority of previous models can

change ages only in one direction (i.e. either to age or to

rejuvenate, but not both). This is a serious limitation which

has been addressed by the most recent generative neural

models, namely: Adversarial AutoEncoder (AAE) [36] and

our Age-cGAN [3]. Both AAE and Age-cGAN learn a

synthetic manifold which models human faces of all ages.

When an input face is projected on the designed manifold,

its age can be effortlessly changed to any required cate-

gory. The two generative aging/rejuvenation methods have

the opposite advantages and downsides: the synthetic faces

produced by Age-cGAN have fewer visible artefacts than

the ones produced by AAE. At the same time, AAE better

preserves the original person identity than Age-cGAN.



3. GANs for Face Aging/Rejuvenation
3.1. Generative Adversarial Networks

General Idea Introduced in [11], Generative Adversarial

Network (GAN) is a pair of neural networks: the generator

G and the discriminator D. G generates synthetic images

x from random latent vectors z which are sampled from a

standard normal distribution pz ∼ N(0, I). In other words,

G defines a mapping from the latent space Nz to the image

space Nx. In this work, Nx is the space of human face im-

ages. The goal of the generator is to imitate the distribution

pdata of natural faces. At the same time, the discrimina-

tor tries to distinguish natural face images coming from the

image distribution pdata and the synthetic images produced

by the generator. Given an input face x (either synthetic or

natural), D outputs the probability that x is a natural human

face rather than a synthetic one. Thus, the two networks

have opposite objectives, and they are iteratively optimized

against each other in a minimax game (hence the name “ad-

versarial”). More formally, GAN training can be expressed

as an optimization of the function v(θG, θD), where θG and

θD are parameters of G and D, respectively:

min
θG

max
θD

v(θG, θD) = Ex∼pdata
[logD(x)]

+Ez∼pz(z)[log (1−D(G(z)))]
(1)

Conditional GAN Conditional GAN (cGAN) [21, 9] ex-

tends the GAN model allowing the generation of images

with certain attributes (“conditions”). In practice, condi-

tions y ∈ Ny can be any information related to the target

face image: level of illumination, facial pose or facial at-

tribute. The optimization objective for a cGAN is very sim-

ilar to the one for a standard GAN presented in Equation 1,

but in the case of cGAN, additional conditional information

is provided both to G and D:

min
θG

max
θD

v(θG, θD) = Ex,y∼pdata
[logD(x, y)]

+Ez∼pz(z),ỹ∼py
[log (1−D(G(z, ỹ), ỹ))]

(2)

Synthetic Face Manifold Once cGAN training is fin-

ished, G can generate plausible synthetic faces following

a distribution similar to the one of natural faces. Varying

the latent vectors z and the conditions y at the input of G
results in different synthetic faces x̄ at its output. Impor-

tantly, the mapping learned by the generator is continuous,

meaning that small variations in latent vectors z and condi-

tions y result in small variations in the generated faces x̄.

Thus, an ensemble of all possible synthetic faces produced

by G with various z ∈ Nz and y ∈ Ny taken together form

a synthetic manifold N̄x (the term was coined in [37]).

Face Editing with cGAN In order to edit an input face

image x with a cGAN, it is firstly necessary to reconstruct

(i.e. to approximate) it with a synthetic image x̄ belonging

to the manifold N̄x. In other words, one need to find a latent

vector z and a condition y which, when given at the input of

G, would produce a plausible reconstruction x̄ = G(z, y)
of the input x. Here and below, we refer to such reconstruc-

tion as projection of an input face x onto the synthetic man-
ifold N̄x. Contrary to autoencoders, GANs do not have an

explicit mechanism for manifold projection. However, this

problem is often [37, 24] circumvented by training a sepa-

rate neural network, called encoder E, which approximates

an inverse mapping for the generator: E ≈ G−1. Having

trained the encoder, the reconstruction can be simply done

as x̄ = G(E(x)).

Once a sufficiently good reconstruction x̄ of an input

face x is obtained, the face editing is trivial with cGANs. In-

deed, the generator G of a cGAN disentangles the informa-

tion encoded by latent vectors z and by conditions y mak-

ing the two independent [24, 16]. It means that if we keep z
fixed and change the condition y, then only the conditional

information encoded by y will change in the generated syn-

thetic face.

For example, if the conditions y encode age information

(as in this work), the latent vectors would encode everything

except for the age (i.e. person’s identity, facial pose, pres-

ence of glasses etc.) Therefore, if we manage to approxi-

mate an input natural face x0 at age y0 with a synthetic face

x̄0 = G(z∗, y0) (where z∗ is an optimal latent vector), then

the aged/rejuvenated version of the initial face x1 at age y1

can be simply obtained by swapping the age condition at the

input of the generator x̄1 = G(z∗, y1).

3.2. Age-cGAN Aging/Rejuvenation Method

In our previous work [3], we proposed an Age-

conditioned cGAN (Age-cGAN) which is able to generate

realistic synthetic faces at 6 age categories: “0-18”, “19-

29”, “30-39”, “40-49”, “50-59” and “60+”. Moreover, in

order to use Age-cGAN for aging/rejuvenation, we also de-

signed [3] an algorithm to find an optimal latent vector z∗

for manifold projection preserving the original identity of

the person in an input image x of age y (the age of the per-

son is assumed given). z∗ is selected as the solution of the

optimization problem which minimizes the Euclidean dis-

tance between the face recognition embeddings of the orig-

inal x and the reconstructed faces x̄:

z∗ =argmin
z

||FR(x)− FR(x̄)||L2

=argmin
z

||FR(x)− FR(G(z, y))||L2

(3)

where FR(·) are face recognition embeddings of face im-

ages calculated with a separately trained CNN FR.



In this paper, we propose an extension which allows to

improve the presented algorithm.

In particular, as reported in [3], Age-cGAN obtains a de-

cent level of about 80% of identity preservation when mea-

sured with an open-source face verification software Open-

Face [2]. However, the fact that in almost 20% of cases,

Age-cGAN loses the original person’s identity even before

aging/rejuvenation makes impossible its practical applica-

tion for improving cross-age face verification. Indeed, the

negative effect of the poor identity reconstruction is so big

that it cannot be compensated by age normalization. This

is experimentally illustrated in Figure 5 which is discussed

in Subsection 5.4. Therefore, in order to apply Age-cGAN

for age normalization in the cross-age face verification sce-

nario, the original method from [3] must be improved to

even better preserve the identities of input faces in the syn-

thetic reconstructions.

Finally, the ultimate objective of this study is boosting

cross-age face verification, so unlike the original paper [3],

in this work, we have trained Age-cGAN uniquely on face

crops discarding all unnecessary background information

(cf. Figures 1, 2, 3, 4).

4. Proposed Approach

4.1. Local Manifold Adaptation

GANs are arguably the most powerful generative models

today. Nevertheless, their variability and expressiveness are

obviously limited. In other words, the generator G which

is trained on (no matter how big but) finite number of faces

cannot exactly reproduce the details of all real-life face im-

ages with their infinite possibilities of minor facial details,

accessories etc. Therefore, even the optimal projection x̄∗
of a natural input face x on the manifold N̄x is still quite dif-

ferent from the original (cf. Figure 2-(a)) in terms of subtle

facial details (i.e. unique form of the mouth, of the eyes,

of the nose, skin texture, etc.). Taken together, these subtle

facial details result in rather significant identity differences

between the original and the reconstructed faces.

A natural way to remedy this problem is to modify the

designed synthetic face manifold N̄x given an input face x
in order to bring closer x and its projection x̄∗. In particular,

we propose changing only the local area around the projec-

tion x̄∗ in the manifold N̄x. Hence, we refer to our approach

as Local Manifold Adaptation (LMA) (cf. Figure 2-(b)).

Since the synthetic manifold N̄x is completely defined

by the generator, LMA is performed by a slight automatic

modification of the generator G with respect to an input im-

age x. More precisely, the key idea of LMA is the follow-

ing: instead of performing aging/rejuvenating with a gen-

eral generator G (issued from the Age-cGAN training), we

firstly customize the general generator G to better fit an in-

put image x0 of (a known) age y0 obtaining a new generator

Gx0
. After LMA, Gx0

can produce a quasi-perfect recon-

struction x̂0 = Gx0
(z∗, y0) of the input face x0. Our intu-

ition suggests that if the LMA reconstruction x̂0 is closer to

the original face x0 than the Age-cGAN reconstruction x̄∗
0,

then the aged/rejuvenated face x̂1 = Gx0(z
∗, y1) will also

better preserve the original identity than the one obtained

via the general generator G. This intuition is confirmed by

the experiments in Subsection 5.4.

The same optimization objective as in Equation 3 (i.e.

the distance between natural and reconstructed face recog-

nition embeddings: ||FR(x) − FR(G(z∗, y))||L2 ) is used

to customize G for an input face x. However, in case of

LMA, we “freeze” the previously found z∗ and optimize G
instead. Given the fact that inputs of the generator are fixed

(z∗ and y), we employ a classical backpropagation algo-

rithm to optimize G. In order to make the changes of N̄x lo-

cal and to preserve the continuity of the synthetic manifold

which is learned during the adversarial training, the number

of backpropagation iterations N and the used learning rate

μ should be limited. In Subsection 5.2, we experimentally

find the optimal N and μ for LMA and demonstrate both

quantitatively and qualitatively the positive effect of our ap-

proach on preserving the original identities in the input face

reconstructions.

In order to avoid confusion, in this work, we refer to

face aging/rejuvenation with Age-cGAN empowered by the

proposed LMA approach as “Age-cGAN+LMA”, while the

basic algorithm from [3] is referred as “Age-cGAN”.

4.2. Age Normalization

The objective of age normalization is to remove age re-

lated differences from pairs of face images and in so doing

improve the performance of general-purpose face verifica-

tion software. Usually, the software outputs the relative dis-

tance between a pair of input faces (the lower is the distance,

the more similar are the identities in the faces according to

the software). After age normalization this distance should

be invariant to age differences in input faces.

Obviously, age normalization can be done differently.

For example, in recent works [28, 32], the authors syntheti-

cally aged the younger face of a pair to the age category of

the other older one. Aging was preferred over rejuvenation

because the respective aging methods could perform the

age change only in one direction (make faces older). Un-

like these methods, our Age-cGAN+LMA is able to equally

easy generate synthetic faces in 6 age categories while the

optimization procedure is done only once per input image.

Thus, the first age normalization algorithm tested in this

work is the combination of both aging and rejuvenation. In

particular, given a pair of faces x1 of age y1 and x2 of age

y2, we generate 2 pairs for face verification: (x̂1
(y2), x2)

and (x1, x̂2
(y1)). Both pairs are evaluated by a face verifi-

cation software which outputs 2 respective face distances,



(a): before LMA (b): after LMA

Figure 2. (Better viewed in color). Local Manifold Adaptation (LMA) approach to improve the identity preservation in the synthetically

reconstructed face. (a) Input face x is reconstructed by projecting it on the synthetic manifold N̄x (as proposed in [3]). (b) LMA locally

modifies the synthetic manifold N̄x transforming it to the new manifold ̂Nx. As a result, the initial face x and its projection x̂ on the new

manifold are brought closer than they were before LMA.

and the mean of these distances is taken as the final result

of face verification. We refer to this algorithm of age nor-

malization as Half-Synthetic (HS) because each tested pair

of faces is composed of a natural face and a synthetic one.

However, another algorithm of age normalization has

been found more effective with our Age-cGAN+LMA ag-

ing/rejuvenation method (cf. Subsection 5.4 for the quanti-

tative comparison). The idea is the following: for each pair

of face images x1 and x2, we generate 6 face verification

pairs x̂1
(i)

and x̂2
(i)

, i ∈ {1, 2, 3, 4, 5, 6} belonging to each

age category. The mean of the 6 corresponding face dis-

tances is taken as the final normalized result. We refer to

this algorithm as Fully-Synthetic (FS) as all tested pairs are

composed only of synthetic faces. FS age normalization is

illustrated in the introductory Figure 1, and unless said oth-

erwise, this algorithm is used for age normalization below.

5. Experiments

5.1. Datasets and Face Verification Solution

Datasets We have used IMDB-Wiki dataset [26] com-

posed of photos of celebrities for training Age-cGAN. 2
other face datasets have been employed for evaluation in

this work: LFW and FG-NET.

The Labelled Faces in the Wild (LFW) dataset [17] con-

taining about 13K photos is the standard benchmark for face

verification systems. In this work, we employ it as a vali-

dation dataset to find the optimal hyper-parameters for our

LMA approach and to evaluate its impact on the identity

preservation in the reconstructed face images. The standard

LFW face verification pairs are composed of face images of

(almost) same ages, so we do not use this dataset for cross-

age face verification evaluation.

Finally, all cross-age face verification experiments have

been performed on the FG-NET [1] dataset containing 975
face images of 82 persons with age annotations. FG-
NET and CACD [6] are the two most used benchmarks for

cross-age face verification. However, CACD is composed

of celebrities and have a lot of intersections with IMDB-
Wiki which is utilized for training of Age-cGAN. Moreover,

OpenFace [2] face verification software was trained using

the images of the same celebrities as in CACD. Therefore,

in order to avoid biased results, we have not used the CACD
dataset for cross-age face verification in this work.

Faces in all used datasets have been detected and

aligned with a commercial solution which is based on [35,

4]. Contrary to many previous works on face ag-

ing/rejuvenation [28, 32], we do not employ any sort of

face warping to normalize face expressions or poses. The

designed generative Age-cGAN+LMA aging/rejuvenation

method absorbs these variations implicitly.

OpenFace Face Verification Software We employ the

recently developed deep learning-based solution Open-

Face [2] for face verification experiments in this work.

OpenFace has been chosen because (1) it is one of the most

popular and easy-to-use open-source projects for face ver-

ification which ensures the reproducibility of our results,

and (2) it has not been explicitly trained to be robust to age

variations. The software has been used as a black box: a

pair of natural or synthetically normalized images is given

to its input, and OpenFace outputs a single value which is

the relative distance between the provided pair of faces. The

software requires a specific alignment of input faces, so be-

fore being processed by it, both natural and synthetic faces

are aligned accordingly.
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Figure 3. (Better viewed in color). Face reconstruction with and

without Local Manifold Adaptation (LMA). For LMA-enhanced

reconstructions, the impact of the learning rate μ is illustrated.

5.2. Face Reconstruction with LMA

Optimal Hyperparameters for LMA As explained in

Subsection 4.1, LMA requires 2 hyper-parameters to be se-

lected: the number of backpropagation iterations N per face

image and the respective learning rate μ. In order to find

optimal values for these hyperparamters, we perform a grid

search varying N from 10 to 50 with a step of 10 and try-

ing 7 different values for μ between 0.0001 and 0.01 (the

extreme values for the tested parameters have been selected

empirically). Thus, 35 pairs of N and μ have been tested in

total. For each pair of hyperparameters N and μ, we mea-

sure how well LMA manages to preserve the identity of the

original faces x by the synthetic ones x̂.

More precisely, both faces xi, i ∈ {1, 2} of a face veri-

fication pair are firstly projected on the synthetic manifold

N x̄, and then the resulting synthetic reconstructions x̄∗
i are

improved by LMA with the tested hyperparameters N and μ
to obtain x̂i. Finally, the obtained pair of synthetic images:

x̂1 and x̂2 is fed to OpenFace and the software estimates the

distance between the corresponding identities.

The face verification accuracies have been calculated fol-

lowing the standard LFW evaluation protocol1. Depending

on the tested hyperparameters, the face verification scores

have varied between 73.0% and 88.7%. The best face veri-

fication score of 88.7% has been obtained with N = 50 and

μ = 0.00075. In general, we have identified that our LMA

approach is much more sensitive to the learning rate μ than

to the number of backpropagation iterations N . Thus, in

Figure 3, we provide an example of the reconstructed faces

with the too small, the too big and the optimal learning rates

of 0.0001, 0.01 and 0.00075, respectively. When the learn-

ing rate is too small, the reconstructed face identity is far

from the original one (in this case, LMA does not bring

anything with respect to the initial reconstruction), while the

excessively big learning rate destroys the synthetic manifold

and the resulting reconstruction is completely degenerated.

Improving the Identity Preservation In Figure 3, it is

qualitatively visible that LMA significantly improves the

1The LFW evaluation protocol for face verification is explained here:

http://vis-www.cs.umass.edu/lfw/.

Tested Pairs FV score on LFW
Original 89.4%

Reconstructed (Age-cGAN) [3] 82.0%

Reconstructed (Age-cGAN+LMA) 88.7%
Table 1. “OpenFace” Face Verification (FV) scores calculated on

the LFW dataset.

identity preservation in the reconstructed face with respect

to the basic Age-cGAN. In order to quantitatively measure

the impact of LMA, we also evaluate the OpenFace software

on the original LFW images x and on the reconstructions

x̄∗ obtained by the basic Age-cGAN. The face verification

scores compared in Table 1 demonstrate the high effective-

ness of LMA. Indeed, the difference between the scores on

the original image pairs and on the ones reconstructed with-

out LMA is more than 7 points, while our approach reduces

this gap to only 0.7 points.

Finally, it is important to highlight that the proposed

LMA approach does not extend a lot the execution time

of the aging/rejuvenation process with respect to the basic

Age-cGAN. Thus, 50 backpropagation iterations of LMA

take about 0.4 second on Tesla K40c GPU for a single im-

age, while the process of finding an optimal z∗ with L-

BFGS-B takes about 1.5 seconds.

5.3. Qualitative Comparison with Alternative Face
Aging/Rejuvenation Methods

In this Subsection, we compare the proposed Age-

cGAN+LMA aging/rejuvenation method with the most re-

cent alternatives [28, 32, 36, 3] mentioned in Section 2. De-

spite the authors of [28, 32] reported improving cross-age

face verification accuracy with their respective methods, it

is unfortunately impossible to quantitatively compare their

improvements with our results from Table 2 (presented in

the next Subsection 5.4), because of the differences in ex-

perimental protocols. In particular, unlike this work, the

authors of [28, 32] employed private face verification soft-

ware, and did not provide explicit details on how the face

verification pairs were composed from the FG-NET images.

Therefore, we propose to qualitatively compare the faces

aged by our method and by the listed alternatives on some

examples from FG-NET in Figure 4 (for [28, 32, 36], we use

illustrations from the respective articles which have been

automatically aligned to correspond to the used face crop).

The images produced by AAE [36] visually better pre-

serve the original person’s identity than the ones generated

by CDL [28] and RFA [32], but the images of AAE suf-

fer from a number of artefacts (most visible in lines 1 and

3) which make them unrealistic. At the same time, the

faces aged by the basic Age-cGAN are plausible, but do

not preserve the original identity as well as the other meth-

ods. Finally, thanks to our LMA approach, the proposed
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Figure 4. (Better viewed in color). Comparison of face aging by our Age-cGAN+LMA and by alternative methods from previous works.

Each line corresponds to aging of a face image from the FG-NET dataset: the initial and the target ages are provided at the beginning of

the line. 5 methods are compared: Coupled Dictionary Learning (CDL) [28], Recurrent Face Aging (RFA) [32], Adversarial AutoEncoder

(AAE) [36], Age-cGAN [3], and Age-cGAN+LMA proposed in this work (highlighted by a green rectangle).

Age-cGAN+LMA aging/rejuvenation method remedies the

problem of Age-cGAN producing aged faces preserving the

original identity and of high visual fidelity. In addition, con-

trary to alternative non-generative methods (like CDL [28]

and RFA [32]), our Age-cGAN+LMA can be easily adapted

to also model other face attributes (like the presence of

glasses or the presence of beard) just by adding the cor-

responding conditions to the trained cGAN. It can further

improve the robustness of face verification to the variation

of the respective attributes.

5.4. Boosting Cross-Age Face Verification with Age
Normalization

In order to evaluate the impact of age normalization by

Age-cGAN+LMA on cross-age face verification, we have

selected all pairs from FG-NET where both face images of

a pair (1) belong to the same person, (2) belong to different

age categories (according to the age categories defined in

Subsection 3.2), and (3) are of at least 10 years old (there are

almost no children younger than 10 years old in the training

IMDB-Wiki dataset, so we do not evaluate our algorithm on

images of children). In the FG-NET dataset, there are 1519
face pairs fulfilling the three conditions, and we select all

of them as positive pairs for face verification. We also ran-

domly select the same number of negative pairs (composed

of photos of different persons) following the same condi-

tions (2) and (3) as for positive pairs. Among the selected

pairs (both positive and negative), 61.4% have an age gap of

10-20 years, 24.0% of 20-30 years, 11.1% of 30-40 years,

and 3.5% of 40+ years.

In Figure 5, we compare the “False Acceptance Rate

(FAR) vs. False Rejection rate (FRR)” curves calculated on

the original pairs and on the ones after age normalization.

In order to highlight the necessity of the proposed LMA

approach, we also plot the curve for the age-normalized

pairs for which the corresponding aging/rejuvenation is

performed without LMA (i.e. following the basic Age-

cGAN [3]). Age normalization by Age-cGAN+LMA (the

red curve) significantly increases the accuracy of face veri-

fication with respect to the original pairs (the green dashed

curve). Obviously, the biggest improvements are due to

falsely rejected original positive pairs (the upper left cor-

ner of Figure 5), i.e. pairs of images of the same person at

different ages which are initially rejected by OpenFace, but

which are accepted after removing the age difference. At

the same time, the blue curve of Figure 5 perfectly demon-

strates that LMA is indispensable for age normalization

with Age-cGAN, because without it, the positive effect of



Figure 5. “FAR vs. FRR” curves of cross-age face verification on

the FG-NET dataset. The curves have been calculated calculated

(1) on age-normalized pairs generated by Age-cGAN+LMA, (2)

on original pairs, and (3) on age-normalized pairs generated by

basic Age-cGAN [3].

Tested Cross-Age Pairs AUC FRR@10 EER

All

Normalized

(FS)
89.5% 29.3% 18.9%

Normalized

(HS)
89.2% 31.2% 19.3%

Original 87.6% 37.1% 20.5%

≥ 40
Normalized

(FS)
84.5% 37.7% 23.6%

Original 80.4% 49.1% 26.4%
Table 2. Impact of age normalization with Age-cGAN+LMA on

cross-age Face Verification (FV) on the FG-NET dataset, and

comparison of 2 age normalization methods presented in Subsec-

tion 4.2: (1) Fully-Synthetic (FS) and (2) Half-Synthetic (HS).

Evaluation on all cross-age positive/negative pairs and also on the

pairs with a particularly huge age gap (at least 40 years of differ-

ence). Results are provided for 3 metrics: Area Under ROC Curve

(AUC), False Rejection Rate (FRR) when False Acceptance Rate

(FAR) is of 10% (FRR@10), and Equal Error Rate (EER).

age normalization is not enough to compensate the degrada-

tion of performances due to imperfect face reconstructions.

Table 2 summarizes the comparison of face verifica-

tion on original and age-normalized image pairs accord-

ing to 3 popular metrics, namely: Area Under ROC Curve

(AUC), False Rejection Rate (FRR) when False Accep-

tance Rate (FAR) is of 10% (FRR@10) and Equal Error

Rate (EER). Age normalization significantly boosts face

verification with respect to all 3 metrics, and in particu-

lar, for FRR@10, it reaches almost 8 points of improve-

ment. Moreover, the bigger is the initial age gap between

the tested faces, the more important is the impact of age

normalization. This is illustrated in the lower part of Ta-

ble 2, where we present the scores for face verification on

the test subset containing pairs with at least 40 years of age

gap. In this case, FRR@10 is boosted by almost 12 points.

Finally, Table 2 (in its upper part) also compares 2 age

normalization algorithms which are presented in Subsec-

tion 4.2. Despite, the fact that HS age normalization also

improves the face verification accuracy with respect to orig-

inal pairs, FS normalization demonstrates slightly better

performances according to all 3 metrics. Moreover, the

execution time difference is negligible between HS and

FS algorithms because face synthesis and face verification

takes less than 0.1 seconds for a pair of faces (i.e. only

about 3% of the time required for reconstruction of the two

original faces: cf. Subsection 5.2). Therefore, the fully-

synthetic algorithm is selected for age normalization with

Age-cGAN+LMA.

6. Conclusion and Future Work

In this work, we have proposed a novel generative Age-

cGAN+LMA aging/rejuvenation method as well as associ-

ated fully-synthetic age normalization algorithm allowing

to boost the accuracy of an off-the-shelf face verification

software which is sensitive to age variations. More pre-

cisely, the following results have been obtained:

1. The proposed LMA approach significantly improves

the input face’s identity preservation of the basic Age-

cGAN aging/rejuvenation method [3] by 7 points in

terms of face verification accuracy and extending its

running time by only 0.4 second per image.

2. Our fully-synthetic age normalization which is based

on Age-cGAN+LMA boosts FRR@10 of OpenFace

face verification software by about 8 points in average

and by about 12 points in case of the biggest age gaps.

There is an important difference between Age-

cGAN+LMA and alternative non-generative methods of

synthetic aging/rejuvenation. Indeed, our method mod-

els not only face aging process but also human faces in

general via the designed synthetic face manifold. There-

fore, Age-cGAN+LMA can be adapted to also compensate

other recurrent variations in human faces which can con-

found face verification software (e.g. facial pose, presence

of beard/moustache/eyeglasses, facial expression, irregular

illumination etc.) This can be done by adding the corre-

sponding conditions to the trained cGAN (and it obviously

requires a training dataset with the respective annotations).

We are planning to explore this path in our future work.
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[37] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros.

Generative visual manipulation on the natural image mani-

fold. In ECCV, Amsterdam, Netherlands, 2016.


