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Abstract—Operators have recently resorted to WiFi offloading
to deal with increasing data demand and induced congestion. Re-
searchers have further suggested the use of “delayed offloading”:
if no WiFi connection is available, (some) traffic can be delayed up
to a given deadline, or until WiFi becomes available. Nevertheless,
there is no clear consensus as to the benefits of delayed offloading,
with a couple of recent experimental studies largely diverging
in their conclusions. Nor is it clear how these benefits depend
on network characteristics (e.g. WiFi availability), user traffic
load, etc. In this paper, we propose a queueing analytic model
for delayed offloading, and derive the mean delay, offloading
efficiency, and other metrics of interest, as a function of the
user’s “patience”, and key network parameters. We validate the
accuracy of our results using a range of realistic scenarios, and
use these expressions to show how to optimally choose deadlines.

Keywords—Mobile data offloading, Deadlines, Queueing, 2D
Markov chain, Optimization.

I. INTRODUCTION

Lately, an enormous growth in the mobile data traffic has
been reported. This increase is due to a significant penetration
of smartphones and tablets in the market, as well as Web
2.0 and streaming applications which have high-bandwidth
requirements. Cisco [1] reports that by 2017 the mobile data
traffic will increase by 13 times, and will climb to 13.2
exabytes per month. Mobile video traffic will comprise 66%
of the total traffic, compared to 51% in 2012 [1].

This increase in traffic demand is overloading cellular
networks, forcing them to operate close to (and often beyond)
their capacity limits. Upgrading to LTE or LTE-advanced, as
well as the deployment of additional network infrastructure
could help alleviate this capacity crunch [2], but reports
already suggest that such solutions are bound to face the
same problems [3]. Furthermore, these solutions may not be
cost-effective from the operators’ perspective: they imply an
increased cost (for power, location rents, deployment and
maintenance), without a similar increase in revenues [4]).

A more cost-effective way to cope with the problem of
highly congested mobile networks is by offloading some of
the traffic through Femtocells (SIPTO, LIPA [5]), and the use
of WiFi. In 2012, 33% of the total mobile data traffic was
offloaded [1]. Projections say that this will increase to 46%
by 2017 [1]. Out of these, data offloading through WiFi has
become a popular solution. Some of the advantages often cited
compared to Femtocells are: lower cost, higher data rates,
lower ownership cost [2], etc. Also, wireless operators have

already deployed or bought a large number of WiFi access
points (AP) [2].

There exist two types of WiFi offloading. The usual way
of offloading is on-the-spot offloading: when there is WiFi
available, all traffic is sent over the WiFi network; otherwise,
all traffic is sent over the cellular interface. More recently,
“delayed” offloading has been proposed: if there is currently
no WiFi availability, (some) traffic can be delayed instead of
being sent/received immediately over the cellular interface. In
the simplest case, traffic is delayed until WiFi connectivity
becomes available. This is already the case with current
smartphones, where the user can select to send synchronization
or backup traffic (e.g. Dropbox, Google+) only over WiFi.
A more interesting case is when the user (or the device on
her behalf) can choose a deadline (e.g. per application, per
file, etc.). If up to that point no AP is detected, the data are
transmitted through the cellular network [6], [7].

We have already analyzed the case of on-the-spot offload-
ing in [8]. Delayed offloading offers additional flexibility and
promises potential performance gains to both the operator
and user. First, more traffic could be offloaded, further de-
congesting the cellular network. Second, if a user defers the
transmission of less delay-sensitive traffic, this could lead to
energy savings [9]. Finally, with more operators moving away
from flat rate plans towards usage-based plans [10], users have
incentives to delay “bulky” traffic to conserve their plan quotas
or to receive better prices [11].

Nevertheless, there is no real consensus yet as to the added
value of delayed offloading, if any. Recent experimental studies
largely diverge in their conclusions about the gains of delayed
offloading [6], [7]. Additionally, the exact amount of delay a
flow can tolerate is expected to depend heavily on (a) the user,
and (b) the application type. For example, a study performed
in [12] suggests that “more than 50% of the interviewed users
would wait up to 10 minutes to stream YouTube videos and 3-
5 hours for file downloads”. More importantly, the amount of
patience will also depend on the potential gains for the user.
As a result, two interesting questions arise in the context of
delayed offloading:

• If deadlines are externally defined (e.g. by the user or
application), what kind of performance gains for the
user/operator should one expect from delayed offloading
and what parameters do these depend on?

• If an algorithm can choose the deadline(s) to achieve
different performance-cost trade offs, how should these
deadlines be optimally chosen?
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The main contributions of this paper can be summarized as
follows: (i) We propose a queueing analytic model for the prob-
lem of delayed offloading, based on two-dimensional Markov
chains, and derive expressions for the average delay, and other
performance metrics as a function of the deadlines, and key
system parameters; we also give closed-form approximations
for different regimes of interest; (Section II) (ii) We validate
our results extensively, using also scenarios and parameters
observed in real measurement traces that depart from the
assumptions made in our model; (Section III) (iv) We formulate
and solve basic cost-performance optimization problems, and
derive the achievable tradeoff regions as a function of the
network parameters (WiFi availability, user load, etc.) in hand
(Section IV).

II. ANALYSIS OF DELAYED OFFLOADING

In this section, we formulate the delayed offloading prob-
lem, and derive analytical expressions for key metrics (e.g.
mean per flow delay). We consider a mobile user that enters
and leaves zones with WiFi coverage, with a rate that depends
on the user’s mobility (e.g. pedestrian, vehicular) and the
environment (e.g. rural, urban). Without loss of generality,
we assume that there is always cellular network coverage. We
also assume that the user generates flows over time (different
sizes, different applications, etc.) that need to be transmitted
(uploaded or downloaded) over the network1. Whenever there
is coverage by some WiFi AP, all traffic will be transmitted
through WiFi, assuming for simplicity a First Come First
Served (FCFS) queueing discipline. When the WiFi connec-
tivity is lost, we assume that flows waiting in the queue and
new flows arriving can be delayed until there is WiFi coverage
again. However, each flow has a maximum delay it can wait for
(a deadline), which might differ between flows and users [12].
If the deadline expires before the flow can be transmitted over
some WiFi AP, then it is sent over the cellular network2.

To facilitate the analysis of the above system, we make
the following assumptions. We model the WiFi network
availability as an ON-OFF alternating renewal process [13]
(

T
(i)
ON , T

(i)
OFF

)

, i ≥ 1, as shown in Fig. 1. The duration of

each ON period (WiFi connectivity), T
(i)
ON , is assumed to be

an exponentially distributed random variable with rate η, and
independent of the duration of other ON or OFF periods.
During such ON periods data can be transmitted over the WiFi
network with a rate equal to µ. Similarly, all OFF periods
(Cellular connectivity only) are assumed to be independent
and exponentially distributed with rate γ, and a data rate that
is lower than the WiFi rate3. We further assume that traffic
arrives as a Poisson process with rate λ, and file sizes are
exponentially distributed. Finally, to capture the fact that each
file or flow may have a different deadline assigned to it,
we assume that deadlines are also random variables that are
exponentially distributed with rate ξ.

1We will use the terms “flow”, “file”, and “packet” interchangeably through-
out the paper, as the most appropriate term often depends on the application
and the level at which offloading is implemented.

2In practice the switch in connectivity might sometimes occur while
some flow is running. Without loss of generality, we will assume that the
transmission is resumed from the point it was interrupted when WiFi was
lost. It might continue over the cellular network (vertical handover) or paused
until WiFi becomes available again or the deadline expires.

3Although this might not always be the case, everyday experience as well
as a number of measurements [6] suggest this to be the case, on average.

ON

OFF
CellullarWiFi

TON TOFF

Fig. 1: The WiFi network availability model.

The above model is flexible enough to describe a large
number of interesting settings: high vs. low WiFi availability
(by manipulating γ

γ+η
), low vs. high speed users (low γ, η vs.

high γ, η, respectively), low utilization vs. congested scenarios
(via λ and µ), etc. However, the assumptions of exponentiallity,
while necessary to proceed with any meaningful analysis (as it
will be soon made evident), might “hide” the effect of second
order statistics (e.g. variability of ON/OFF periods, flow sizes,
etc.). To address this, in Section III we relax most of these
assumptions, and validate our results in scenarios with generic
ON/OFF periods, generic flow size distributions, and non-
exponential deadlines.

Our goal is to analyze this system to answer the following
questions: (i) if the deadlines are given (e.g. defined “ex-
ternally” by the user or application), what is the expected
performance as a function of network parameters like WiFi
availability statistics, and user traffic load? (ii) if the deadlines
are “flexible”, i.e. the user would like to choose these deadlines
in order to optimize his overall performance (e.g. trading off
some delay, waiting for WiFi, to avoid the often higher energy
and monetary cost of cellular transmission), how should they
be chosen?

We will answer the first question in the remainder of this
section, and use the derived expressions to provide some an-
swers to the second question, in Section IV. Before proceeding,
we summarize in Table I some useful notation. Also, the total
time a file spends in the system (queueing+ service time) will
be referred to as the system time or transmission delay.

TABLE I: Variables and Shorthand Notation.

Variable Definition/Description

TON Duration of ON (WiFi) periods

TOFF Duration of periods (OFF) without WiFi connectivity

λ Average packet (file) arrival rate at the mobile user

πi,c Stationary probability of finding i files in cellular state

πi,w Stationary probability of finding i files in WiFi state

πc Probability of finding the system under cellular coverage only

πw Probability of finding the system under WiFi coverage

pr Probability of reneging

η The rate of leaving the WiFi state

γ The rate of leaving the cellular state

µ The service rate while in WiFi state

ξ The reneging rate

E[S] The average service time

E[T ] The average system (transmission) time

Td The deadline time

ρ = λE[S] Average user utilization ratio

A. Performance of WiFi queue

All files arriving to the system are by default sent to
the WiFi interface with a deadline assigned (drawn from an
exponential distribution). Files are queued (in FCFS order) if
there is another file already in service (i.e. being transmitted)
or if there is no WiFi connectivity at the moment, until their
deadline expires. If the deadline for a file expires (either while
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queued or while at the head of the queue, but waiting for WiFi),
the file abandons the WiFi queue and is transmitted through the
cellular network. These kind of systems are known as queueing
systems with impatient customers [14] or with reneging [15].
Throughout our analysis, we’ll assume that files will abandon
the queue only during periods without WiFi connectivity4.
Nevertheless, in Section III we consider also the deterministic
deadlines, i.e. a file will be sent over the cellular network. Our
focus here will be on the WiFi queue for two reasons: First,
this is the place where files accumulate most of the delay.
Second, this is the point where a decision can be made, which
will be relevant to the deadline optimization (Section IV). For
the moment, we can assume that a file sent back to the cellular
interface will incur a fixed delay (this might also include some
mean queueing delay) that is larger, in general, than the service
time over WiFi (i.e. file size

µ
).

Given the previously stated assumptions, the WiFi queue
can be modeled with a 2D Markov chain, as shown in Figure
2. States with WiFi connectivity are denoted with {i, w}, and
states with cellular connectivity only with {i, c}. i corresponds
to the number of customers in the system (service+queue).
During WiFi states, the system empties at rate µ (since files
are transmitted 1-by-1) and during cellular states the system
empties at rate i·ξ since any of the i queued packets can renege.
The following theorem uses probability generating functions
(PGF) to derive the mean system time for this queue. The use
of PGFs in 2D Markov chains is known for quite a long time
[16], [17], [18].

Theorem 1. The mean system time for the WiFi queue when
delayed mobile data offloading is performed is

E[T ] =
1

λ

[(

1 +
γ

η

)

λ− µ(πw − π0,w)

ξ
+

(λ− µ)πw + µπ0,w

η

]

.

(1)

Proof: Let πi,c and πi,w denote the stationary probability
of finding i files when there is only cellular network coverage,
or WiFi coverage, respectively.

Writing the balance equations for the cellular and WiFi
state gives

(λ+ γ)π0,c = ηπ0,w + ξπ1,c (2)

(λ+ γ + iξ)πi,c = ηπi,w + (i+ 1)ξπi+1,c + λπi−1,c (3)

(λ + η)π0,w = γπ0,c + µπ1,w (4)

(λ+ η + µ)πi,w = γπi,c + µπi+1,w + λπi−1,w (5)

The long term probabilities of finding the system in cellular
or WiFi state are πc =

η
η+γ

and πw = γ
η+γ

, respectively.

We define the probability generating functions for both
the cellular and WiFi states as Gc(z) =

∑∞

i=0 πi,cz
i, and

Gw(z) =
∑∞

i=0 πi,wz
i, |z| ≤ 1. After multiplying Eq.(3) with

zi and adding to Eq.(2) we obtain

(λ+ γ)Gc(z) + ξ(1 −
1

z
)

∞
∑

i=1

iπi,cz
i = ηGw(z) + λzGc(z). (6)

The summation in the above equation gives
∑

∞

i=1 iπi,cz
i =

zG
′

c(z). Hence, after some rearrangements in Eq.(6) we obtain

4In this manner, abandonments are plausibly associated with the accumu-
lated “opportunity cost”, i.e. the time spent waiting for WiFi connectivity (the
“non-standard” option for transmission). Instead, if WiFi is available, but there
are some files in front, it might make no sense to abandon, as queueing delays
might also occur in the cellular interface.

ξ(1− z)G
′

c(z) = (λ(1 − z) + γ)Gc(z)− ηGw(z). (7)

Repeating the same procedure for Eq.(4)-(5) we get

(λ + η)Gw(z) = γGc(z) + λzGw(z) + µ(
1

z
− 1)(Gw(z) − π0,w),

which after some rearrangements yields to

((λz − µ)(1 − z) + ηz)Gw(z) = γzGc(z)− µ(1 − z)π0,w.

Next, we make two replacements α(z) = λ(1−z)+γ, and β(z) =

(λz − µ)(1 − z) + ηz. Now, we have the system of equations

Gw(z) =
γzGc(z) − µ(1 − z)π0,w

β(z)
, (8)

G
′

c(z)−
α(z)β(z) − ηγz

ξ(1− z)β(z)
Gc(z) =

ηµπ0,w

ξβ(z)
. (9)

The roots of β(z) are

z1,2 =
λ+ µ+ η ∓

√

(λ + µ+ η)2 − 4λµ

2λ
. (10)

It can easily be shown that these roots satisfy the relation 0 <

z1 < 1 < z2. We introduce the function f(z) = −
α(z)β(z)−ηγz

ξ(1−z)β(z)
, as

the multiplying factor of Gc(z) in the differential equation of
Eq.(9). Performing some simple calculus operations, the above
function transforms into

f(z) = −
λ

ξ
+

γ

ξ(1− z)

(

ηz

β(z)
− 1

)

. (11)

After some algebra and applying the partial fraction ex-
pansion the function f(z) becomes

f(z) = −
λ

ξ
+

γ

ξ

(

M

z − z1
+

N

z2 − z

)

. (12)

We determine the coefficients M and N in the standard way

as M =
µ
λ
−z

z2−z
|z=z1=

µ
λ
−z1

z2−z1
= z1z2−z1

z2−z1
> 0, and N =

µ
λ
−z

z−z1
|z=z2=

µ
λ
−z2

z2−z1
< 0.

In order to solve the differential equation in system Eq.(9)
we can multiply it by e

∫
f(z)dz. Hence, we get

G
′

c(z)e
∫
f(z)dz + f(z)Gc(z)e

∫
f(z)dz =

ηµπ0,w

ξβ(z)
e
∫
f(z)dz. (13)

We thus need to integrate the function in Eq.(13):

∫

f(z)dz = −
λ

ξ
z +

γM

ξ
ln |z − z1| −

γN

ξ
ln(z2 − z). (14)

The constant normally needed on the right-hand side of Eq.(14)
can be ignored in our case. We next raise Eq.(14) to the power
of e to get

e
∫
f(z)dz = e

−
λ
ξ
z
|z − z1|

γM
ξ (z2 − z)

−
γN
ξ . (15)

Now, Eq.(13) is equivalent to

d

dz

(

e
−

λ
ξ
z
|z − z1|

γM
ξ (z2 − z)

−
γN
ξ Gc(z)

)

=
ηµπ0,w

ξβ(z)
e
∫
f(z)dz

(16)

We define k1(z) and k2(z) as

k1(z) = e
−

λ
ξ
z
(z1 − z)

γM
ξ (z2 − z)

−
γN
ξ , z ≤ z1, (17)

k2(z) = e
−

λ
ξ
z
(z − z1)

γM
ξ (z2 − z)

−
γN
ξ , z ≥ z1. (18)

Eq.(16) now becomes
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0,c 1,c 2,c

0,w 1,w 2,w

i-1,c

i-1,w

i,c i+1,c

i,w i+1,w

ξ 2ξ iξ (i+1)ξ

µ µ µ µ

λ λ λ λ

γ γ γ γ γ

λ λ λ λ

η η η η η ηγ

Fig. 2: The 2D Markov chain for the WiFi queue in delayed offloading.

d

dz
(k1(z)Gc(z)) =

ηµπ0,w

ξβ(z)
k1(z), z ≤ z1, (19)

d

dz
(k2(z)Gc(z)) =

ηµπ0,w

ξβ(z)
k2(z), z ≥ z1, (20)

and after integrating we obtain

k1(z)Gc(z) =
ηµπ0,w

ξ

∫ z

0

k1(x)

β(x)
dx+ C1, z ≤ z1 (21)

k2(z)Gc(z) =
ηµπ0,w

ξ

∫ z

z1

k2(x)

β(x)
dx+ C2, z ≥ z1. (22)

The bounds of the integrals in Eq.(21) and Eq.(22) come from
the defining region of z in Eq.(19)-(20). We need to determine
the coefficients C1 and C2 in Eq.(21) and Eq.(22). We take

z = 0 in Eq.(21). We have k1(0) = z
γM
ξ

1 z
−

γN
ξ

2 , and knowing

that Gc(0) = π0,c, we get for C1 = π0,cz
γM
ξ

1 z
−

γN
ξ

2 . In a similar
fashion we get for C2 = 0.

Finally, for the PGF in the cellular state we have

Gc(z) =
ηµπ0,w

∫ z

0
k1(x)
β(x)

dx+ ξπ0,cz
γM
ξ

1 z
−

γN
ξ

2

ξk1(z)
, z ≤ z1, (23)

Gc(z) =
ηµπ0,w

∫ z
z1

k2(x)
β(x)

dx

ξk2(z)
, z ≥ z1. (24)

In the last equation, the ’zero probabilities’ π0,c and π0,w are
unknown. We can find them in the following way: We know

that πc = η
η+γ

= Gc(1) =
ηµπ0,w

∫ 1
z1

k2(x)
β(x)

dx

ξk2(1)
. From this we have

ξk2(1)

η + γ
= µπ0,w

∫ 1

z1

k2(x)

β(x)
dx. (25)

Similarly, from the boundary conditions in Eq.(23) for z ≤ z1,
we get

ηµπ0,w

∫ z1

0

k1(x)

β(x)
dx+ ξπ0,cz

γM
ξ

1 z
−

γN
ξ

2 = 0. (26)

After solving the system of equations Eq.(25) and Eq.(26), for
the ’zero probabilities’ we obtain

π0,w =
ξk2(1)

(η + γ)µ

1
∫ 1
z1

k2(x)
β(x)

dx
, and (27)

π0,c = −
ηk2(1)

∫ z1
0

k1(x)
β(x)

dx

(η + γ)z
γM
ξ

1 z
−

γN
ξ

2

∫ 1
z1

k2(x)
β(x)

dx

. (28)

The value of the integral
∫

k1(x)
β(x) dx is always negative, hence

π0,c is always positive.

By using a vertical cut between any two-pairs of neigh-
boring states in Fig. 2 and writing balance equations we have

λπi,c + λπi,w = µπi+1,w + (i+ 1)ξπi+1,c. (29)

Summing over all i yields to

λ(πc + πw) = µ(πw − π0,w) + ξ
∞
∑

i=0

(i+ 1)πi+1,c. (30)

The last equation, obviously reduces to

λ = µ(πw − π0,w) + ξE[Nc], (31)

where E[Nc] = G
′

c(1), and E[Nw] = G
′

w(1). Eq.(31) yields

E[Nc] =
λ− µ(πw − π0,w)

ξ
. (32)

So far, we have derived E[Nc] as the first derivative at
z = 1 of Gc(z). In order to find the average number of
files in the system, we need E[Nw] as well. We can get it
by differentiating Eq.(8)

G
′

w(z) =
β(z)

(

γGc(z) + γzG
′

c(z) + µπ0,w

)

β2(z)

−
β

′

(z) (γzGc(z) − µ(1 − z)π0,w)

β2(z)
, (33)

and setting z = 1. After some calculus we obtain

E[Nw] =
(γE[Nc] + µπ0,c) η − γπc(µ − λ)

η2
. (34)

Replacing Eq.(32) into Eq.(34) we get

E[Nw] =
γ

η

λ− µ (πw − π0,w)

ξ
+

µπ0,w

η
−

γπc(µ − λ)

η2
. (35)

The average number of files in the system is

E[N ] = E[Nc] + E[Nw]. (36)

Finally, using the Little’s law E[N ] = λE[T ] [13], we obtain the
average packet delay in delayed data offloading as in Eq.(1).

The above result gives the total expected delay that incom-
ing flows experience in the WiFi queue. For flows that do get
transmitted over WiFi (i.e. whose deadline does not expire)
this amounts to their total delay. Flows that end up reneging
(deadline expires before transmission) must be transmitted
through the cellular system and thus incure an additional delay
∆ (related to their transmission time over the cellular link, i.e.
packet size
cellular rate

, and possibly some queueing delay as well). The
following Corollary gives the probability of reneging for each.
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0,c 1,c

0,w 1,w

ξ

µ

λ

γ γ

λ

η η

Fig. 3: The reduced Markov chain for ρ → 0.

Corollary 2. The probability that an arbitrary flow arriving to
the WiFi queue will renege, i.e. its deadline will expire before
it can be transmitted over a WiFi AP is

pr =
λ− µ(πw − π0,w)

λ
. (37)

In other words, the rate of flows sent back to the cellular
network is given by λ·pr. This must be equal to ξ·E[Nc], which
is the average abandonment rate in Fig. 2, i.e. λpr = ξE[Nc].
Replacing E[Nc] from Eq.(32) gives us the above result.
This also gives us another important metric, the offloading
efficiency of our system, namely the percentage of flows that
get offloaded over some WiFi network, as Eoff = 1− pr.

The above expressions can be used to predict the per-
formance of a delayed offloading system, as a function of
most parameters of interest, such as WiFi availability and
performance, user traffic load, etc. As we shall see later, it does
so with remarkable accuracy even in scenarios where many of
the assumptions don’t hold. However, Eq.(1) cannot easily be
used to solve optimizations problems related to the deadline
(ξ), analytically, as the parameters π0,c and π0,w involve ξ in
a non-trivial way. To this end, we propose next some closed-
form approximations for the low and high utilization regimes.
Due to space limitations, we present these without proof, and
refer the interested reader to [19].

B. Low utilization approximation

One interesting scenario is when resources are underloaded
(e.g. nighttime, rural areas, or mostly low traffic users, etc)
and/or traffic is relatively sparse (some examples are, back-
ground traffic from social and mailing applications, messaging,
Machine-to-Machine communication, etc.). For very low uti-
lization, the total system time essentially consists of the service
time, as there is almost no queueing, so we can use a fraction
of the Markov chain from Fig. 2 with only 4 states, as shown
in Fig. 3 to derive E[T ] and pr.

Low utilization approximation: The expected system time
in the WiFi queue and the probability of reneging for sparse
input traffic can be approximated by

E[T ] =
(η + γ)2 + γξ + ηµ

(ξµ+ ξη + µγ)(γ + η)
, (38)

pr =
θ1ξ

θ2ξ + θ3
, (39)

where θ1 =
η(λ+η+γ+µ)

η+γ
, θ2 = µ+λ+η, and θ3 = µγ+λ2+λ(η+γ+µ).

C. High utilization approximation

Another interesting regime is that of high utilization. As
explained earlier, wireless resources are often heavily loaded,
especially in urban centers, due to the increasing use of smart

phones, tablets, and media-rich applications. Hence, it is of
special interest to understand the average user performance
in such scenarios. Here, we provide an approximation that
corresponds to the region of high utilization (ρ → 1).

High utilization approximation: The expected system time
in the WiFi queue and the probability of reneging for a user
with heavy traffic can be approximated by

E[T ] =
1

λ

[(

1 +
γ

η

)

λ− µπw

η
+

(λ− µ)πw

η

]

, (40)

pr =
λ− µπw

λ
+

µ

λ
π0,w, (41)

where π0,w is the first order Taylor series approximation of
Eq.(27). The exact expression for π0,w as well as the derivation
for high utilization approximation can be found in [19].

III. PERFORMANCE EVALUATION

In this section we will validate our theory against simula-
tions for a wide range of traffic intensities, different values of
file sizes, WiFi availability periods with different distributions,
and different deadline times. We define the WiFi availability ra-

tio as AR = E[TON ]
E[TON ]+E[TOFF ] =

γ
η+γ

. Unless otherwise stated

the durations of WiFi availability and unavailability periods
will be drawn from independent exponential distributions with
rates η and γ, respectively. The deadlines are exponentially
distributed with rate ξ, although we will simulate scenarios
with deterministic deadlines as well. We mainly focus on
two scenarios, related to the user’s mobility. The first one
considers mostly pedestrian users with data taken from [6].
Measurements in [6] report that the average duration of WiFi
availability period is 122 min, while the average duration with
only cellular network coverage is 41 min (we use these values
to tune η and γ). The availability ratio is thus 75 %. The
second scenario corresponds to vehicular users, related to the
measurement study of [7]. An availability ratio of 11 % has
been reported in [7], although not all the details are mentioned
there. For more details about the measurements we refer the
interested reader to [6] and [7]. Finally, unless otherwise stated,
file/flow sizes are exponentially distributed, and file arrival at
the mobile user is a Poisson process with rate λ. Due to space
limitations, we only depict here a representative sample of
results. Additional results can be found in [19].

A. Validation of main delay result

We first validate here our model and main delay result
(Eq.(1)) against simulations for the two mobility scenarios
mentioned (pedestrian and vehicular). The data rate for WiFi
is assumed to be 1 Mbps. The mean packet size is assumed
to be 7.5 MB for the pedestrian scenario and 125 kB for the
vehicular scenario

TABLE II: Probability of reneging for pedestrian and vehicular scenarios.

Scenario Deadline λ = 0.1 λ = 0.5 λ = 1 λ = 1.5

Pedestrian(Theory) 1 hour 0.103 0.109 0.252 0.501

Pedestrian(Simulation) 1 hour 0.1 0.117 0.239 0.508

Vehicular(Theory) 60 s 0.32 0.778 0.889 0.926

Vehicular(Simulation) 60 s 0.32 0.776 0.891 0.925

Fig. 4 shows the average file transmission delay (i.e. queue-
ing + transmission) for the pedestrian scenario, for two differ-
ent average deadline times of Td1 = 1 hour (ξ1 = 1/3600s−1)
and Td2 = 2 hours (ξ2 = 1/7200s−1), respectively. The range
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Fig. 5: The average delay for vehicular
users’ scenarios.

of arrival rates shown corresponds to a server utilization of
0-0.9. We can observe from Fig. 4 that there is a good match
between theory and simulations. Furthermore, the average file
transmission delay is increased by increasing the arrival rate,
as expected, due to queueing effects. On the other hand,
the average delay increases for higher deadlines, since flows
with lower deadlines leave the WiFi queue earlier, leading to
smaller queueing delays. Fig. 5 further illustrates the average
file transmission delay for the vehicular scenario with average
deadline times Td1 = 30s (ξ1 = 1/30s−1) and Td2 = 60s
(ξ2 = 1/60s−1). Despite the differences of the vehicular
scenario, similar conclusions can be drawn. Finally, Table II
depicts the respective probabilities of reneging for the two sce-
narios. The percentage of flows that abandon the WiFi queue
is higher in the vehicular scenario, since the availability ratio
of the WiFi network is very small (11%), and deadlines are
rather small. These observations agree with [7]. Nevertheless,
our theory matches simulation values in all scenarios.

So far, we have assumed exponential distributions for ON
and OFF periods, according to our model. While the actual
distributions are subject to the user mobility pattern, a topic
of intense research recently, initial measurement studies ([6],
[7]) suggest these distributions to be ”heavy-tailed”. To this
end, we consider a scenario with ”heavy-tailed” ON/OFF
distributions (Bounded Pareto). Due to space limitations, we
focus on the vehicular scenario only. The shape parameters
for the Bounded Pareto ON and OFF periods are α = 0.59
and α = 0.64, respectively. The average deadline is 100s.
Fig. 6 compares the average file delay against our theoretical
prediction. Interestingly, our theory still offers a reasonable
prediction accuracy, despite the considerably higher variability
of ON/OFF periods in this scenario. While we cannot claim
this to be a generic conclusion for any distribution and values,
the results underline the utility of our model in practice.

B. Validation of approximations

We next validate the approximations we have proposed in
Section II. We start with the low utilization approximation
of Section II-B and consider the availability ratio to be 0.75
(similar accuracy levels have been obtained with other values)
and with a deadline of 2min. Fig. 7 shows the packet delay for
low arrival rates in the range 0.01 − 0.11, which correspond
to a maximum utilization of up to 0.2. As λ increases, the
difference between the approximated result and the actual
value increases, since we have considered only the service time
for this approximation.

Next, we consider the high utilization regime and respective
approximation (Eq.(40)). We consider utilization values around

0.8. Fig. 8 shows the delay for high values of λ, and an avail-
ability ratio of 0.5. We can see there that our approximation
is very close to the actual delay and should become exact as
ρ gets larger.

C. Variable WiFi rates and non-exponential parameters

While in our model we consider a fixed transmission rate
for all WiFi hotspots, this is not realistic in practice. For this
reason, we have also simulated scenarios where the WiFi rate
varies uniformly in the range 0.4-1.6 Mbps. Fig. 9 shows the
delay for for the vehicular scenario with a deadline of 10
minutes. Even in this case, our theory can give solid predictions
for the incurred delay.

In all of the above scenarios, we have assumed variable
deadlines for each file (drawn from an exponential distribu-
tion). In some cases, the user might choose the same deadline
for many (or most) flows that can be delayed, which would be
a measure of her patience. To this end, we simulate a scenario
where the deadline is fixed for an arrival rate of 0.1. The
other parameters are the same as for the vehicular scenario. In
Fig. 10 we compare simulation results for this scenario against
our theory (which assumes exponentially distributed deadlines
with the same average). It is evident that even in this case,
there is a reasonable match with our theory.

To conclude our validation, we finally drop the exponential
packet assumption as well, and test our theoretical result vs.
generic file size results. Fig. 11 does it for Bounded Pareto
distributed files sizes (shape parameter α = 1.2 and cv = 3).
In both scenarios, the deadline is Td = 20s. Mean file size is
in both cases 125KB, the availability ratio is 0.5, and the rest
of the parameters correspond to the vehicular scenario. Our
theoretical prediction remains reasonably close, despite higher
size variability.

D. Delayed offloading gains

In this last part, we will investigate the actual gains
from data offloading, in terms of offloading efficiency. Higher
offloading efficiency means better performance for both client
and operator. We compare the offloading efficiencies for on-
the-spot offloading [8] vs. delayed offloading for different
deadline times (Td1 = 2min, Td2 = 1min). Fig.12 illustrates
the offloading efficiency vs. availability ratio for a moderate
arrival rate of λ = 0.2. For comparison purposes we also
depict the line x = y (offloading efficiency = availability
ratio). First, as expected, we can observe that offloading
efficiency increases with AR. However, this increase is not
linear. More interestingly, the actual offloading efficiencies
are always higher than the respective availability ratio. As
expected, the delayed offloading provides higher offloading
efficiencies compared to on-the-spot offloading, with higher
deadlines leading to higher offloading efficiencies.

IV. OPTIMIZING DELAYED OFFLOADING

The results considered so far allow us to predict the ex-
pected system delay when the deadlines are defined externally
(e.g. by the user or the application). However, the user (or
the device on her behalf) could choose the deadline in order
to solve an optimization problem among additional (often
conflicting) goals, such as the monetary cost for accessing
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tion for AR = 0.5.
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Fig. 13: The delay function for the opti-
mization problem.

the Internet and the energy consumption of the device. For
example, the user might want to minimize the delay subject
to a maximum (energy or monetary) cost, or to minimize the
cost subject to a maximum delay the user can tolerate.

To formulate and solve such optimization problems, we
need analytical formulas for the average delay and the incurred
cost. We already have such formulas for the delay of files
sent over WiFi, where we will use the two approximations
of Section II-B and II-C. Furthermore, we can assume that
files transmitted over the cellular network incur a fixed delay
∆, capturing both the service and queueing delays over the
cellular interface5. To proceed, we need to also assume simple
models for energy and cost, in order to get some initial
intuition about the tradeoffs involved. We are aware that reality
is more complex (for both energy and cost) and may differ
based on technology (3G, LTE), provider, etc. We plan to
extend our models in future work.

Assume a user has to download or upload a total amount of
data equal to L. On average pr ·L data units will be transmitted
through the cellular interface. Assume further that Dc and Dw

denote the costs per transmitted data unit for a cellular and
WiFi network, where Dw < Dc (often Dw = 0). Finally, let
cc and cw denote the transmission rates, and Ec and Ew energy
spent per time unit during transmission over the cellular and
WiFi network, respectively. It is normally the case that cc < cw
as well as Ec ≈ Ew [20]. It follows then that the total monetary
and energy costs, D, and E, could be approximated by

D = (Dc−Dw)pr +Dw and E =

(

Ec

cc
−

Ew

cw

)

pr +
Ew

cw
. (42)

A. Optimization problems

Eq.(42) suggests that both the average power consumption
and cost depend linearly on the probability of reneging, pr,

5We could also try to model the cellular queue as an M/M/1 or G/M/1
system, but we are more interested in the dynamics of the WiFi queue, since
this is where the reneging decisions take place. To keep things simple, we
defer this to future work.

which we have also derived in Section II, and which is a
function of the system deadline 1

ξ
. The system delay is also

a function of ξ. We can thus formulate optimization problems
of the following form, for both the high and low utilization
regimes, where ξ is the optimization parameter

min
ξ

E[T ] + pr∆

s. t. pr ≤ P
max
r ,

(43)

where E[T ] is given by Eq.(38), and pr by Eq.(39), for
low utilization, and Eq.(40) and Eq.(41), for high utilization,
respectively. Due to the linearity of Eq.(42), we can express
the constraint directly for pr, where Pmax

r depends on whether
we consider monetary cost, energy or a weighted sum of both,
and the respective parameters. Finally, we can also exchange
the optimization function with the constrain, to minimize the
cost, subject to a maximum delay. This provides us with a
large range of interesting optimization problems we can solve.

Due to space limitations, we will show here the methodol-
ogy to solve the above problem in the low utilization regime.
The solutions to other problems can be found in [19].

If we express the inequality constraint in Eq.(43) through

ξ, we have the equivalent constraint ξ ≤
θ3P

max
r

θ1−θ2Pmax
r

. The prob-

ability of reneging from Eq.(39) is an increasing function of ξ,

since p
′

r(ξ) > 0. This implies that maximum pr corresponds
to maximum ξ. We denote by f(ξ) the total average delay of
Eq.(43) (delay function from now on). Hence we have

f(ξ) =
A1ξ + A2

B1ξ + B2
+

θ1ξ

θ2ξ + θ3
∆, (44)

where A1 = γ,A2 = (η + γ)2 + ηµ,B1 = (µ + η)(γ + η), B2 =

µγ(γ + η). In order to solve the optimization problem given by
Eq.(43), we need to know the behavior of the delay function.
For that purpose, we analyze the monotonicity and convexity
of Eq.(44). To do that we need the first and second derivatives,
which are

f
′

(ξ) =
A1B2 −A2B1

(B1ξ + B2)2
+

θ1θ3∆

(θ2ξ + θ3)2
, and
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f
′′

(ξ) =
2(A2B1 −A1B2)

(B1ξ +B2)3
−

θ1θ2θ3∆

(θ2ξ + θ3)3
.

It is worth noting that A1B2 < A2B1. This prevents delay func-
tion being always concave. The delay function is decreasing
in the interval for which f

′

(ξ) ≤ 0. This happens when

ξ ≤ ξ0 =
θ3

√

A2B1−A1B2
θ1θ3∆

− B2

B1 − θ2

√

A2B1−A1B2
θ1θ3∆

.

Hence, the delay function is decreasing in the interval (0, ξ0),
and increasing in the rest, with ξ0 being a minimum. Further,
the solution of f

′′

(ξ) > 0 gives the interval where the function
is convex. This happens when

ξ ≤ ξ1 =
θ3 3

√

2A2B1−A1B2
θ1θ2θ3∆

−B2

B1 − θ2 3
√

2A2B1−A1B2
θ1θ2θ3∆

. (45)

It can be easily proven that ξ0 < ξ1.

Such constrained-optimization problems are often solved
with the Lagrangian method and KKT conditions. However,
the optimal solution for our problem can be found more easily.
The delay function looks like in Fig. 13. The optimal deadline
depends on the maximum cost, that is proportional to the
probability of reneging. So, we can determine the optimal
deadline based on the value of Pmax

r . If this value of Pmax
r

is quite high, the corresponding reneging rate ξq1 (dashed
line in Fig. 13) will be higher than the global minimum
ξ0. Consequently, the global minimum of Eq.(45) is also the
optimal reneging rate. On the other hand, if the maximum
cost is quite low (low Pmax

r ), the maximum reneging rate ξq,2
(dotted line in Fig. 13) is lower than the global minimum.
This implies that the minimum delay will be achieved for the

maximum reneging rate of ξq,2 =
θ3P

max
r

θ1−θ2Pmax
r

. In other words,

the average deadline time that minimizes the delay for a given
maximum cost is

Td,opt =
1

ξopt
=

1

min
(

ξ0,
θ3P

max
r

θ1−θ2P
max
r

) . (46)

Similar steps can be followed to solve the same optimiza-
tion problem for high utilization, as well as other problems.
These sometimes involve a quadratic constraint function [19].

B. Optimization evaluation

We will now validate the solutions of the previous opti-
mization problem for two different cases. In both of them
the arrival rate is 0.1, and the maximum cost per data unit
one can afford is 2.8 monetary units. The transmission of a
data unit through WiFi costs 1, and through cellular 5 units.
The choice of these values is simply for better visualizing
the results; different values yield similar conclusions. Fig. 14
shows the delay vs. cost curve for cellular rate being 2× lower
than WiFi rate. First thing that we can observe is that the
minimum delay is achieved for the highest possible cost (2.8).
The optimal average deadline is Td = 1s. This is in agreement
with the optimal value predicted from Eq.(46), and shown with
an asterisk in Fig. 14. We replace Eq.(39) into Eq.(42) to
get the relationship between the cost and the renege rate. We
have shown in Eq.(42) that the cost is directly proportional
to pr, and the later one is an increasing function of ξ. This
implies that the maximum cost is in fact the maximum ξ
(minimum deadline). This practically means that in Eq.(43),
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Fig. 14: The delay vs. cost curve for
high cellular rate.
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Fig. 15: The delay vs. cost curve for low
cellular rate.

∆ is small and that the delay in the WiFi queue represents the
largest component of the delay. As a consequence of that, it
is better to redirect the files through the cellular interface as
soon as possible. Hence, in these cases (when cellular rate is
comparable to the WiFi), the optimum is to assign the shortest
possible deadline constrained by the monetary cost.

Fig. 15 corresponds to a scenario with the same parameters
as in Fig. 14, except that now the cellular rate is much
lower (10×). In that case, ∆ is high, and pr∆ is the largest
component of the delay function. As can be seen from Fig. 15,
it is not the best option to leave as soon as possible from the
WiFi queue, i.e. choose the smallest possible deadline. The
optimum delay is achieved for Td = 5s. This corresponds to
an average cost of D = 2.1 which is also very close to the
theoretical solution of the problem. This is reasonable since
for a large difference between the WiFi and cellular rates it is
better to wait and then (possibly) be served with higher rate,
than to move to a much slower interface (cellular).

Further, we use the solutions of the four optimization
problems (the one solved here and the other three in [19]) for
exponentially distributed deadline times to see how accurately
our theory can predict the optimal deadline times, but for
deterministic deadlines. The optimal policy essentially finds
the optimal value for the average deadline (assuming these
exponential). In practice, the chosen deadline will be assigned
to all files, and will be deterministic. We consider four scenar-
ios, one for each optimization problem. The costs are the same
as before. The arrival rate for low utilization scenarios is 0.1,
while for the high ones, 1.5. In Table III, we show the optimal
deadlines by using our model (e.g. Eq.(46)), and the optimal
deterministic deadlines by using simulations (delay vs. cost
plots) with the same parameters as in theory. As can be seen
from Table III, the error in determining the optimal deadline
decreases for higher arrival rates. The error is in the range
10%-20%. This is reasonable, since the simulated scenarios
are with deterministic deadlines and in our theory we use
exponential deadlines. Another reason is that in optimization
problems, we are only using the low and high utilization
approximations and not the exact result (Eq.(1)).

TABLE III: Optimal deterministic deadline times vs theory.

Sc. Constraint Td (theory) Td (deterministic) Relative error

1 D ≤ 2.8 2.71 2.2 18%

2 Tmax = 6.6 1.56 1.22 22%

3 D ≤ 3.8 1.73 1.55 11%

4 Tmax = 15 7.97 6.82 15%

V. RELATED WORK

Some recent influential work in offloading relates to mea-
surements of WiFi availability [6], [7]. Authors in [6] have
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tracked the behavior of 100 users (most of which were pedes-
trians) and their measurements reveal that during 75% of the
time there is WiFi connectivity. In [7], measurements were
conducted on users riding metropolitan area buses. In contrast
to the previous study, the WiFi availability reported there is
only around 10%. The mean duration of WiFi availability and
non-availability periods is also different in the two studies, due
to the difference in speeds between vehicular and pedestrian
users. The most important difference between the two studies
relates to the reported offloading efficiency, with [7] reporting
values in the range from 20%-33% for different deadlines, and
[6] reporting that offloading does not exceed 3%. We believe
this is due to the different deadlines assumed together with the
different availabilities.

The authors in [21] define a utility function related to
delayed offloading to quantitatively describe the trade-offs
between the user satisfaction in terms of the price that she
has to pay and the experienced delay by waiting for WiFi
connectivity. However, their analysis does not consider queue-
ing effects. Such queueing effects may affect the performance
significantly, especially in loaded systems (which are of most
interest) or with long periods without WiFi. The work in [22]
considers the traffic flow characteristics when deciding when
to offload some data to the WiFi. However, there is no delay-
related performance analysis. Modeling the cost factors is
the focus of [23], which also shows where the offloading
APs should be installed. A WiFi offloading system that takes
into account a user’s throughput-delay tradeoffs and cellular
budget constraints is proposed in [24]. However, only heuristic
algorithms are proposed, and queueing effects are ignored.
Finally, in [25], an integrated architecture has been proposed
based on opportunistic networking to switch the data traffic
from the cellular to WiFi networks. Summarizing, in contrast
to our work, these papers either perform no analysis or use
simple models that ignore key system effects such as queueing.

To our best knowledge, the closest work in spirit to ours
is [26]. The results in [26] are the extension of the results
in [6] containing the analysis for delayed offloading. Authors
there also use 2D Markov chains to model the state of the
system. However, they use matrix-analytic methods to obtain
a numerical solution for the offloading efficiency. Such nu-
merical solutions unfortunately do not provide insights on the
dependencies between different key parameters, and cannot be
used to formulate and analytically solve optimization problems
that include multiple metrics.

As a final note, in [8], we have proposed a queueing
analytic model for on-the-spot mobile data offloading, and a
closed form solution was derived for the average delay. While
the model we propose here shares some similarities (ON/OFF
availabilities, 2D Markov chain approach) with the basic model
in [8], it is in fact considerably more difficult to solve.

VI. CONCLUSION

In this paper, we have proposed a queueing analytic model
for the performance of delayed mobile data offloading, and
have validated it against realistic WiFi network availability
statistics. We have also considered a number of scenarios
where one or more of our model’s assumptions do not hold,
and have observed acceptable accuracy, in terms of predicting
the system delay as a function of the user’s patience. Finally,

we have also shown how to manipulate the maximum dead-
lines, in order to solve various optimization problems involving
the system delay, monetary costs, and energy costs. In future
work, we intend to consider more complex models for both
the WiFi and cellular queues, as well as per-flow scheduling
and dispatch policies.
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