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Mobile Gaming is an emerging concept, wherein gamers are using mobile devices, like smart phones and
tablets, to play best seller games. Compared to dedicated gaming boxes or PCs, these devices still fall short of
executing newly complex 3D-video games with a rich immersion. Three novel solutions, relying on cloud
computing infrastructure, namely Computation Offloading, Cloud Gaming, and Client-Server architecture
will represent the next generation of game engine architecture aiming at improving the gaming experience.
The basis of these above-mentioned solutions is the distribution of the game code over different devices
(including set-top-boxes, PCs, and servers). In order to know how the game code should be distributed,
advanced knowledge of game engines is required. By consequence, dissecting and analyzing game engine
performances will surely help to better understand how to move in these new directions (i.e., distribute game
code), which is so far missing in the literature. Aiming at filling this gap, we propose in this paper to analyze
and evaluate one of the famous engines in the market, i.e., “Unity 3D". We begin by detailing the architecture
and the game logic of game engines. Then, we propose a test-bed to evaluate the CPU and GPU consumption
per frame and per module for nine representative games on three platforms, namely a stand-alone computer,
embedded systems and web players. Based on the obtained results and observations, we build a valued graph
of each module, composing the Unity 3D architecture, which reflects the internal flow and CPU consumption.
Finally, we made a comparison in term of CPU consumption between these architectures.
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1 INTRODUCTION
Game engines, like Unity 3D [1], are well-established tools to generate interactive, fully-multimedia
environments that range from games to serious health applications. Game engines are complex
software, which consume a lot of resources (including Central Processing Unit (CPU), Graphics
Processing Unit (GPU), energy, and memory) to meet the demand of gamers. Indeed, the Quality of
Experience (QoE) depends on the interactivity (especially the delay between the command of an
action and the visible result of this action on the scene) and on the multimedia quality (resolution,
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frame rate, and also the level of details in the scene). Therefore, game developers design their
best-seller games so that the game engine exploits the dedicated hardware that is typically present
in “boxes" (e.g. Xbox, PS4), however resource-limited devices such as mobile devices (smartphone
and tablet) cannot run these games, or at a much lower quality. Game engine developers are looking
for solutions to address this issue and to embrace the mobile market, which represents billions of
dollars of revenues.
To get rid of the limitations of end-user devices, one of the envisioned solutions is to leverage

cloud computing infrastructure. Developers of games have three options:
• Computation offloading consists in offloading some modules of the game engine to a nearby server.
It requires interactions and data exchanges between distant modules.

• Cloud gaming consists in offloading all the modules to a remote server and streaming back an
encoded video to the client.

• Client-server architecture, wherein the game engine runs almost entirely on the client side and
the server updates positions of players in a multi-player context and/or updates the position of
the Non-Player Characters (NPCs).

Whilst the third approach (client/server) is widely implemented and mastered (research work mostly
addresses network management [16, 38, 47]), the two first approaches need more investigations
regarding the software aspect of the game engines. Computation offloading requires low latency
communication with the remote servers, which might be solved using Mobile Edge Computing
(MEC) [9, 21] and Fog Computing [5, 24]. However, deciding which module or function should be
offloaded remains an open issue. The latency issues of cloud gaming have also been frequently
studied [13, 20, 37, 39]. But, the management of virtualized resources (known as server consolidation)
to prevent performance degradation and resource congestion has been rarely addressed [17, 54].

To identify the best implementation option, developers should take into account the nature of the
game and the considered platform. However, the body of literature related to performance evaluation
for game engines is surprisingly small with regard to the significance of the gaming industries.
In this regard, we may mention two position papers that called for research on game engine
architecture [3, 48], and some other work that focused on applying game engines to specific areas
such as serious games [14], research [26], and Virtual Reality (VR) serious applications [14, 23, 30].
The literature is missing work on the architecture and the performance analysis of modern game
engines.
To fill this gap, we analyze the performance of a well-known engine, Unity 3D. In this paper,

we report our experimentation, where we have run nine representative games with two game
quality encoding over several platforms: (i) Dell M4800 laptop running two Operating Systems (OSs)
(Windows 7 and Linux Ubuntu 14.04 LTS); (ii) Microsoft Surface Pro running Windows 10; (iii) two
web players using Mozilla Firefox and Opera hosted by the laptop Dell M4800 running Windows
7; and (iv) two smart phones HTC One (M8) and Samsung Galaxy S6 Edge running Android OSs.
We analyze the performances of these games considering both CPU and GPU, in term of needed
time to generate frames. We study the time consumption per modules, according to the type and
the function of these modules in the game engine. Then we extract different valued graph, which
represent the internal flow of the game engine. Finally, we propose a proof-of-concept of the cloud
gaming and computation offloading architectures, and we compare the performance results with
the client-server one. This study, which extends our previous work [31], is a primary reference for
researchers who explore computation offloading and server consolidation.

One of the main novel contributions of the present paper in regards of our previous work [31] is a
proposal to classify games with respect to their behaviours and to the different architectures: cloud
gaming, computation offloading, and client-server. We distinguish two parameters that characterize
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a given game and enable its classification into one of these three architectures: playability, which
represents the requirement in term of CPU and GPU time to generate one frame with respect to a
given genre-dependent threshold and resource variability, which gives the difference in CPU and
GPU time to generate two frames.
The paper is organized as follows: Section 2 gives some background about game engines and

rendering activities. Section 3 presents the experimental platform we used to measure the perfor-
mance of Unity 3D-based games. The performance analysis is given in Section 4. Section 5 studies
the feasibility of computation offloading. Section 6 details experiment results that validate both our
proposed game classification and our conclusion on offloading feasibility. Finally, we discuss the
results and open perspectives regarding this first step toward next-generation game engines in
Section 7.

2 BACKGROUND: GAME ENGINES
Game engine can be defined either as a framework for game creators or as a piece of code for
gamers. Accordingly, two definitions arise:

• The game engine is the set of tools (i.e., including low-level libraries, User-Interface (UI) editors,
and game multimedia management tools) that facilitate the work of a game developer in the
process of creating a new game. The community of game developers considers thus a game engine
as a framework or a platform. The framework provides an abstraction layer between the game
content (i.e., multimedia content and main scripts) and the underlying hardware.

• The game engine is the set of software and data that runs on a device to provide the game to
an end-user. The community of gamers considers a game engine as a piece of code. The border
between the game and its framework is often confused. Some frameworks offer a clear separation,
while others do not. All games created by Unity 3D share similarities, making them consistent
Unity 3D game engines. We focus in this paper on typical Unity 3D software, which we refer to
as a game engine.

The delay for the result of an action to appear in the screen is central in gaming since the QoE is
linked to interactivity [20]. We distinguish different genres of games with different requirement.
An action game can be a First Person Shooter (FPS) or a Third Person Shooter (TPS) depending
on whether the player is immersed in the scene or the avatar representing the player is visible.
Studies [12, 25, 36] have shown that the acceptable delay depends on the game genre and varies
from 100 to 200ms, and even up to 500ms for Role-Playing Game (RPG) and Massively Multiplayer
Online Games (MMOG). Given their specific constraints regarding short delays, the management
of FPS has received scientific efforts [4, 27]. In this paper, we tested several game genres and
considered these requirements.
Another key criteria for high QoE is the frame rate. Gamers get the feeling of immersion in

an animated world when the game engine generates a high number of frames per second (fps).
Less than 30 fps is widely seen as non-tolerable [11] and the recent trends in video and interactive
multimedia is to deliver frame rate up to 90 fps [33]. The rendering pipeline (see Section 2.3) is the
part of the game engine that generate one frame every x ms (x ranges from 33 to 10). A large part
of our measurement study is on the time needed to generate one frame.

2.1 Game Architectures
We focus now on the game architectures. Figure 1 depicts the characteristics of the discussed
architectures by indicating the location of the various modules of the game engine and the used
mechanisms to communicate and exchange data or commands.
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Fig. 1. Comparison of gaming architectures

Traditional client-server. The game engine runs almost entirely on the client side and the
server assists the game engine, either as a secured session manager or as a multi-player gaming
enabler. When the server is a session manager, it manages authentication, updates game assets
(for example new levels and new graphical environments) and matchs fighting players [49]. As
a multi-player gaming enabler, the server takes a stronger role: (i) it gets all the gamer input
commands and forwards them to the other players, (ii) it implements anti-cheaters policy and acts
as referee [52], and (iii) it manages NPC. Several architectures exist to deal with scalability. (1)
client-server architecture with a single server [46], (2) mirrored client-server [35, 50, 51], and (3)
peer-to-peer architecture [7, 53].
Cloud gaming. The entire game engine runs in a remote server. The client includes only UI
command and a video decoder. This architecture is similar as an interactive video delivery system.
The player sends the commands to the server. The engine first converts the client commands into
appropriate in-game actions, then computes the game logic, and renders the game scene. This scene
is then compressed by a video encoder and forwarded to a video streaming module, which finally
streams it to the client. The client decodes the video and displays the frames [10, 18, 29].
Cloud gaming solution relies on the concept of resource consolidation, which consists of using

the virtualization technology: each game engine is encapsulated within a virtual machine (or
a container) and dynamically mapped onto a pool of physical resources including CPU, GPU,
memory, and Inputs/Outputs (I/O). Hence, these game engines concurrently share the server
resources through the hypervisor. Studies have shown that virtualization techniques barely degrade
the performance compared to a configuration where the game engine is the only program running
in a bare-metal [44].
Two main challenges arise with the cloud gaming architecture: the delay and the resource use.

In comparison to the delay issue in the traditional client-server architecture, cloud gaming adds
extra-delay due to video encoding and decoding. Despite various proposals [28, 43], both processes
take around 30ms [45]. With respect to the network communication delays (around 50ms in
average [8]), the overall delay is close to the threshold at which QoE is reported to degrade [13, 20].
Regarding resource use, the Cloud Gaming Providers (CGPs) have to find a trade-off. The smaller is
the number of games concurrently running on a server, the higher can be the quality setting, but the
higher are also the cost. Moreover, the CGPs have to reserve some free spare resources in servers,
otherwise some games may interrupt due to concurrent workload peaks. One of our motivations is
to get a better understanding of the load variability and the internal modular structure of the game
engine so as to make server consolidation more efficient and less risky.
Computation offloading. A subset of the game enginemodules run on nearby server(s) [2, 22, 41].
Depending on specific criteria, including network bandwidth, latency, and processing time, the
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engine is spread into client and server partitions. The server hosts the modules that improve
the responsiveness of the game, and the client hosts the remaining modules, typically those
interacting with the device components or with the gamer (like UI). The two sides exchange
data during the execution. Whenever needed, the server can call a module, or download it using
mechanisms such as Remote Procedure Calls (RPC), Remote Methods Invocation (RMI), Service
Oriented Architecture (SOA), and Mobile Agents (MA). The partitioning requires profiling the
whole game.

The computation offloading solution presents two constraints. First, as in Cloud gaming, computa-
tion offloading requires low latency. Second, the game engines should tolerate module partitioning.
One of the advantages is that module partitioning allows a better exploitation of resources, espe-
cially by distinguishing the cutting-edge modules that require specific GPU hardware from the
standard ones that can accommodate any CPU configuration. Remote graphic rendering is not
a new topic [19], but none of the existing solutions match the expectations for fast rendering
high-definition, complex, 3D images. Moreover, to the best of our knowledge, no previous work
has addressed the case of offloading non-graphic components of a game engine, like physics mod-
ule, audio, and object behaviour scripts. One of our motivations is to explore offloading different
non-graphic components of a game engine.

2.2 Game Engine Main Modules
A game engine consists of various modules depending on the game genre. An engine designed
for a two-person fighting game is different from an FPS engine, an MMOG engine, a Real-Time
Strategy (RTS) engine, or racing engine. Nevertheless, we identify some families of module that are
common to most of the game engines. Figure 2 shows the architecture of a generic game engine
with the main module families.

Policy Man-
agement AI Engine Event Dispatcher User Profiles Files

Database Game En-
gine Core Graphics Engine User Interfaces Input

Networking Scripting Sound Engine Graphics

Physics Engine Collision
Detection Animations Temp-Files Audio-Sources

Fig. 2. Game Engine Architecture

Some of the module families of the engine are written by the game creator including:

Artificial Intelligence (AI) – these modules emulate an artificial and intelligent behaviour of
NPCs, for example, learn and interact socially, exhibit emotions, and even the ability to
hunt and the instinct to survive. Different features are used to implement the AI such as: (i)
decision-making, to affect the NPC; (ii) basic perception; the AI needs some way of perceiving
its environment using human-like sensors (including sight, hear, smell, and touch), and
navigating using basic mechanisms like Crash and Turn, and pathfinding; (iii) prediction; the
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ability to effectively anticipate the player behaviour through historical decisions, random
guess or backtracking. ALive1, GAIGE2, and kismet3 are three advanced AI modules.

Scripting – these modules contain the gameplay itself. From the captured inputs obtained from
the Human Interface Devices (HIDs), the game developer details the series of game content
and events in a scripting language, which is specific to every framework. The scripts can be
used to create graphical effects, control the physical behaviour of objects or implement an AI
system for NPCs.

Animation – any character in a game (whether it is a human, an animal, or a robot) needs
animations (e.g. move, jump, stand up, and set down). Five basic animations exist; (i) rigid
body hierarchy animation, (ii) skeletal animation, (iii) sprite/texture animation, (iv) vertex
animation, and (v) morph targets. In particular, skeletal animation generates a pose for every
bone in the skeleton and passes them to the rendering engine as a set of matrices that are
transformed into a final blended vertex position. This process is called skinning. It also
interacts with the physics engine to simulate rag dolls, which are dead animation characters,
whose bodily motion is simulated by the physics.

Some module families are common between most games created within a given framework.
These modules represent the abstraction layer and prevent game creators from spending time on
low-level issues. In particular:
Physics Engine – it includes collision detection and rigid body dynamics. This module aims to

make the game world as realistic as possible using the physics laws. Without this module,
objects would interpenetrate, leading to block interactions with the virtual world. This module
is integrated as a third-party Software Development kit (SDK). Existing physics engines in
the market include Havok4, PhysX 5, Open Dynamics Engine (ODE)6, and I-Collide7.

Input – a player interacts with the game using HIDs, e.g., joystick, keyboard, mouse, steering
wheels, dance pads, and VR sensors. The input module provides a mechanism to customize
the mapping between the physical control and logical game functions. It may include a system
for detecting chords, sequences, and gestures. These commands are encapsulated as objects
and forwarded to the system.

Networking – this set of routines and protocols enables interactions with a server to set up
multiple players and share a sense of space, time, and presence through avatars. In MMOGs,
the players join the game dynamically through game sessions and interact by exchanging
commands [32]. The architecture of most of the MMOGs is based on client/server.

Multimedia Rendering – these modules generate the graphical and audio elements of the game.
Graphics are complex aspects of a game. 3D games are built over 3D assets created by a design
application like Maya, XNA, Blender, andWPF. These assets are mixed with other objects like
materials, shadows, lights, and animations to create a realistic scene. This engine is designed
as a layered architecture, including: (i) Low-Level Renderer, where the focus is on rendering
as quickly and richly as possible a set of geometric primitives; (ii) Visual Effects, like particle
systems, light mapping, dynamic shadows, and colour correction; (iii) Front End where 2D
graphics overlaid on 3D scene such as in-game menu, a console, and in-game Graphical

1http://alive.sourceforge.net/
2http://game-ai.gatech.edu/
3http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/
4http://www.havok.com/physics/
5https://developer.nvidia.com/gameworks-physx-overview
6httph//www.ode.org
7http://www.cs.unc.edu/~geom/I_COLLIDE/index.html
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User Interface (GUI). Regarding sounds, the audio engines vary in sophistication. The audio
clips are exported in different formats like mono, stereo, wave files (.wav) or ADPCM files
(.vag). Existing commercial audio engines include Quake audio engine, XACT, SoundR!OT,
and Scream.

2.3 Rendering Pipelines
We describe now the rendering pipeline under Unity 3D. We first describe the pipeline that achieves
a 3D rendering, and then, we show how Unity 3D implements it.

A rendering pipeline is a combination of successive stages to generate a 2D image for a geometric
description of a 3D scene and a virtual camera. Unity 3D is cross-platform: a given game can run
on various operating systems and hardware. For each configuration, the engine uses the default
rendering pipeline developed for these targets.
• Direct 3D is a Microsoft’s 3D graphics low-level Application Programming Interface (API). It is
used to draw lines, triangles, and points or to launch parallel processing on the GPU. It is the
primary competitor of OpenGL. It is used on Microsoft platforms (Xbox 360, Xbox One, and the
Windows operating system platforms).

• OpenGL is a Khronos-developed graphic library. It is the most used API in industry. It is developed
to launch a large number of applications on different computer platforms, such as gaming,
manufacturing, medical, VR, content creation, and Dynamic Audio-Visual Communication (DAC).

• OpenGL ES is a fork of OpenGL. It has been developed for embedded systems, including smart
phones, consoles, appliances, and vehicles.

• WebGL is a free low-level 3D graphics API based on OpenGL ES 2.0. It is integrated to HTML5 as
Document Object Model interfaces. Major browsers (such as Safari, Chrome, Firefox, and Opera)
implement this pipeline as a 3D plugin.
Figure 14 in the appendix, describes the graphic pipelines used by Unity 3D (i.e., OpenGL,

OpenGL-ES 2.0, WebGL, and DirectX). Each graphic pipelines is represented by different stages
along with their interactions. Each pipeline differs by the number of stages and internal flow, but
the general idea of rendering remains the same.

Firstly, a series of geometric operations are done to render a collection of geometric primitives as
fast as possible. The data (vertices and indices) of 3D objects are approximated by triangle meshes,
forming the basic building blocks. The more triangles are used to approximate an object, the better
is the approximation but the more processing power is needed. Each object is then centered at
the origin of a local coordinate system with local orientation and size. Thereafter, all objects are
brought together in a global coordinate system by applying geometric transformations. At the end,
the virtual camera in the scene is translated to the origin of the world space.

Secondly, a set of aesthetic effects (lights, materials, shaders, and textures) is applied to the scene.
The lighting is a key step to produce a realistic scene. The light sources are simple objects defined
in the world space with a combination of colour, intensity, direction, focus, and position. This
step also includes a repetition of absorbing and reflecting light processes depending on various
parameters (e.g., smoothness and material of the surface and incidence angle).
Thirdly, a set of culling operations (scene graph/culling optimization) is done. Each object has

two sides with respect to camera position: a front and a back side. The front (respect. back) sides
are polygons with vertexes ordered in a clockwise (respect. counter clockwise). All the back-face
polygons are culled. The culling step is triggered to also decide which object should be discarded
from the scene, according to the computation of the view frustum. An object inside (respect. outside)
the frustum is kept in (respect. completely culled from) the scene, while the object that is between
the inside and outside of the frustum is partially clipped.
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Finally, a perspective projection is done to render the 3D vertices into a 2D projection window
inside the frustum. The vertex coordinates are transformed to place the 2D scene into a rectangular
window on the screen, called the viewport. The outputs of this stage are pixels. The rasterization
transforms these pixels into screen coordinates forming a list of triangles that should be checked
and coloured.

Unity 3D uses four additional rendering activities, which occur in conjunction with the main
pipeline. We summarize these activities in the appendix Section A.1.

3 METHODOLOGY AND TESTBED
We describe now the configuration of the devices that we used in our experiment, the process of
running games on these devices, a description of the used games, and our measurement.

3.1 Platforms
To evaluate the performance of the game engines generated by the framework Unity 3D, we installed
Unity 3D v5.03 on top of three devices: a Dell Precision M4800 laptop, a Microsoft Surface Pro
tablet, and a Dell PC tower. The latter is used as a server in our second experiment (implementation
of cloud gaming and computation offloading architectures). We used different configurations as
shown in Table 1. We then used the installed frameworks to compile the games and generate the
adequate files for a range of OSs: an “.exe" file in Windows 7/8/10, an “.deb" in Linux, an HTML
page with javascript files for web players, and an “.apk" for Android devices. Accordingly, we were
able to run the games generated by Unity 3D on a wider range of configurations: not only the said
Dell M4800 and Surface Pro, but also a smartphone HTC One (M8) and a Samsung galaxy S6 Edge.
Moreover, we were able to implement cloud gaming and computation offloading architectures.

Platform Target CPU GPU RAM Pipeline
Windows 7 Pro
Ubuntu 14.04

Mozilla Firefox 44.0.2
Opera 35.0.2066.37

Dell Precision M4800 Intel Core i7, 2.8GHz Nvidia Quadro k2100M, 2GB 16GB

D3D11
OpenGL
WebGL
WebGL

Windows 10 Microsoft Surface Pro Intel Core i5 - 3317U, 1.7GHz Intel HD 4000 4GB D3D11

Android 4.4.2 HTC one (M8) Quad-Core 801 Snapdragon, 2.3GHz Adreno 330 2GB OpenGL ES 2.0

Android 5.1.1 Lollipop Samsung Galaxy S6 edge Octa-Core Exynos 7420 - 2.1 GHz ARM Mali T760 3GB OpenGL ES 2.0

Windows 8.1 Pro Dell PC tower Intel Core i7, 3.4 GHz 3x NVIDIA GeForce GTX 780 Ti, 3GB 16GB D3D11

Table 1. Main characteristics of the used platforms

3.2 Games
We selected nine games from the “Asset Store" of Unity 3D for our evaluation. These games have
different characteristics, which cover the most representative games in the market. A description of
the different games is presented in the appendix. Figure 3 represents a screen-shot of the different
games. We summarize the main characteristics of each game in Table 2. For more details about
these games, the reader may refer to the Unity 3D asset store.
8https://www.youtube.com/watch?v=iV-224nMwN8
9https://www.youtube.com/watch?v=iTwtoOO7wXc
10https://www.youtube.com/watch?v=LBbPwMmpqQI
11https://www.youtube.com/watch?v=uRsspkum8LI
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(a) Viking Village (b) Survival Shooter (c) Stealth (d) Tower Bridge (e) Tanks

(f) Space Shooter (g) Car (h) Unity Lab (i) Multiplayer FPS

Fig. 3. Screen-shot of the different games

Games # of players Dimension Type Rendering Physics Scripts

Viking Village8 1 player 3D FPS ++++ + +++

Tower Bridge9 1 player 2D TPS + +++ +

Stealth10 1 player 3D TPS +++ +++ +++

Survival Shooter11 1 player 3D TPS ++ ++ ++

Tanks12 2 players 2D MMOG + ++ ++

Space Shooter13 1 player 2D TPS ++ + ++

Car14 1 player 3D Racing ++ ++ +++

Unity Lab15 1 player 3D TPS ++++ +++ +++

Multiplayer Shooter16 multiplayer 3D MMOG-FPS +++ +++ +++

Table 2. Main characteristics of the tested games

3.3 Game qualities
For each game, we generated more than 10,000 frames for two quality types: good quality with a
reasonable framerate, i.e., around 30 fps, and fast quality, where the game pace is maximum. The
engine achieves these two qualities depending on many parameters, which are outlined in Table 3.

12https://www.youtube.com/watch?v=paLLfWd2k5A
13https://www.youtube.com/watch?v=kX0hnOS1QQQ&list=PLX2vGYjWbI0RibPF7vixmr4x8ONJX-mNd
14https://www.youtube.com/watch?v=-Lkbo9ZyYbo
15https://www.youtube.com/watch?v=XjiBDKrCsVI
16https://www.youtube.com/watch?v=UK57qdq_lak
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Quality Settings Good Quality Fast Quality

Rendering

Resolution
Pixel Light Count
Texture Quality

Anisotropic Textures
Anti Aliasing
Soft Particles

Realtime Reflection
Billboards Face Camera Position Probes

Full-screen
4

Full Res
Per Texture

4x Multi Sampling
Activated
Activated
Activated

Full-screen
0

Eighth Res
Disabled
Disabled
Disabled
Disabled
Disabled

Shadows

Shadows
Shadow Resolution
Shadow Projection
Shadow Distance

Shadow Near Plane Offset
Shadow Cascades
Cascade Splits

Hard Shadows Only
Medium Resolution

Stable Fit
50
2

Two Cascades
(33,3%, 66.7% )

Disable Shadows
Low Resolution

Stable Fit
15
2

No Cascades
0

Others

Blend Weights
V Sync Count

Lod Bias
Maximum LOD Level
Particle Raycast Budget

2 Bones
Every V Blank

1
0
256

1 Bone
Don’t Sync

0.3
0
4

Table 3. GoodQuality vs. FastQuality

3.4 Measurement
We describe now how we obtain the internal flow and the execution time per frame and per
module for the different games over the different platforms and targets, including cloud gaming
and computation offloading architectures.
Execution Time. The CPU/GPU execution time per frame, for the aforementioned modules, is
obtained for 10,000 frames for each quality encoding. We used the Unity Profiler and script to
obtain these values.
Internal Flow. We used two tools with a script to identify the Unity 3D internal flow. We dumped
the memory using the script that identifies all the classes/objects and methods that are called per
frame. We used Visual Studio 2015 profiler and Dependency Walker to check the validity of the
obtained results.

4 PERFORMANCE ANALYSIS AND GAME CLASSIFICATION
Now, we present the results of our measurement campaign regarding the time needed to generate
one game frame. We then propose a classification of the games with respect to the best approach
to adopt for efficient implementation (i.e., whether the game engine should run on the device, in a
cloud gaming system, or with computation offloading). In Section 5, we will study more precisely
the case of computation offloading by a thorough analysis at the modular scale.

4.1 Time Needed to Generate One frame
Figure 4 shows the time (inms) spent by the CPU to generate one frame for five games on five
platforms. The results in Figure 4a (respectively Figure 4b) correspond to the good (respectively
fast) quality. Figure 5 represents also the time spent by the CPU to generate one frame for Stealth,
Space Shooter, Car, Unity Lab, and Multiplayer FPS games on the Dell and mobile devices for the
good (Figure 5a) and fast (Figure 5b) qualities. These results have been split into two figures for
readability because the time needed to generate one frame for the Stealth and the Multiplayer FPS
games, on the mobile devices, is one order of magnitude larger than for the other games. Moreover,
Car, Unity Lab, and Multiplayer FPS have not been tested on all devices and platforms. The same
remark applies for Figure 6, which represents the time spent by the CPU to generate one frame

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2016.



Performance Analysis of Game Engines on Mobile and Fixed Devices 39:11

for the two web players on the Dell laptop. These figures reveal a wide range of performance
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Fig. 4. Time required by the according processing unit to generate one frame. The box plot includes the 10th,
25th, median, 75th, and 90th percentiles of these times.
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Fig. 5. CPU-Time re-
quired to generate one
frame on the standalone
and wearable devices.

regarding the time needed to generate one frame. The obtained results confirm that predicting the
frame generation time of a game depends on three main factors: the quality settings, the platform
that runs the game engine, and the type of the game.
Impact of the quality settings. It is epitomized by the Stealth game, for which the time needed to
generate a good quality frame is excessive on both Dell M4800 and Surface Pro (up to 100 and 200ms
respectively), while it stays in more acceptable ranges for fast quality (up to 32 and 90ms resp.).
We observe the same impact on the other games: e.g., the time consumption per frame is reduced
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Fig. 6. Time required to
generate one frame for
the Web Players on the
Dell M4800.
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by a factor ranging from two to three for the Survival Shooter game. To understand the reasons
behind this impact, readers are referred to Section 2.3 and Annex part A.1. A pixel resolution of
640× 480 has typically shorter processing time than a 1920× 1200 resolution, in particular because
the additional pixels in the viewport requires more processing at the rasterization step. Another
impacting parameter in high quality settings is the pixel light count, where the process of drawing
geometry with lighting is repeated during the light pass step for all the pixel lights. Both texture
quality and shadow also increase the processing time.
Impact of the used platform. The hardware configuration and the used OS matter. Regarding
the hardware, it is obvious that: (i) using a GPU enables faster frame rendering; (ii) large memory
prevents page fault exception and paging process; (iii) multi-core CPU better exploits the parallel
executions. Considering the OS, each one has a different architecture with different interruptions,
scheduling policies, and algorithms for page replacement in cache, central memory management,
and swap. In addition, the device drivers and the used compiler may impact game performance.

For all games, the time needed to generate one frame is smaller on the Dell than on tablet, which
in turn is faster than smartphones. Regarding OS, we observe a difference in the frame duration, e.g.
Viking Village game at fast quality is three to four time faster in Linux than in Windows. For other
games (e.g. Tower Bridge), the frame duration has different variations depending on the executions
in Linux and Windows. We also notice that the frame generation time on the web players is (to our
surprise) in the same range as when the frame is directly generated on Windows and Linux. We
explain this by the screen resolution, which is automatically reduced to almost a half of the screen
window. Some parameters of the quality setting are independent of the screen size, but multiple
parameters directly depend on the viewport size.
Impact of the game genre. Some games are more demanding than others with respect to scene
complexity, AI, and scripting. The various game genres impact the frame duration. For the same
platform and the same quality settings, two different games exhibit different profiles of resource
consumption and variability of resources. In particular, we observe that the variability of the frame
generation times differs among the games: for some games, all the frames take approximately the
same time to be generated, while the generation of a frame can be eight times longer than another
frame for some other games. Each game has a behavior signature.

4.2 Game Classification
Game providers are interested in determining the best option to host the game engine. From our
previous results and analysis, we identify two criteria to characterize games: the variability of
resource demand, and the relation between resource demand and quality settings, which we call
playability. We set thresholds for both criteria and we define predicates, which can be either verified
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or not by each game. Finally, we classify games based on the set of validations. In the following, we
first detail the predicates (criteria and threshold), and then we explain the classification process.
Playability. It is a mix of framerate and quality settings. To evaluate a framerate for a game, we
take the 90th percentile of the longest frame duration.This percentile is a basis for the setting of the
achieved framerate of the game. The higher is the framerate, the better is the QoE. The latter also
depends on the quality setting. The higher is the quality setting, the better is the immersion, so
the higher is the QoE. We combine both by setting that a given game is playable if the framerate
is greater than 30 fps (respectively 60 fps) for good quality (resp. fast quality) settings. That is,
the 90th percentile should be lower than 33ms (resp. 16ms) to validate the playability of a given
game. This criteria depends on the platform on which the game engine runs. For example, Tower
Bridge at good quality on the Dell M4800 is playable on Linux but not on Windows. When a game
cannot verify the playability criteria on a device, the game engine cannot run on the device in the
traditional client-server mode. Other options must be considered, either cloud gaming platform or
computation offloading.
Resource Variability. It describes the variability in frame generation time. We consider two
values to differentiate high and low variabilities: the range and the Interquartile Range (IQR). The
range is the difference between the highest and the lowest score, while IQR corresponds to the
range of half of the scores around the median (the difference between the 75th and the 25th). We say
that the variability is low when the range (resp. IQR) is less than 20ms (resp. 10ms). For example,
Survival Shooter, Tanks, and Tower Bridge games exhibit a low resource variability.
The resource variability matters because it impacts the efficiency of the implementation on a

virtualized hardware. A high resource variability means that the game provider must reserve a vast
amount of resources to absorb the peak, at the expense that the game engine only uses a fraction
of these resources during most of the execution time. High resource variability, thus, means an
inefficient resource reservation and a lower benefits for the game providers. On the contrary, a game
characterized by a low resource variability is easy to pack into a well-sized Virtual Machine (VM)
(or container), which enables a better consolidation and low infrastructure cost.

Based on both predicates, we classify the games as follows:

• Client-server, where all functions of the game engine (except session and multi-player manage-
ment) run on the device. A game falls into this category if and only if it verifies the playability
criteria.

• Cloud gaming, which means that the game as a whole runs in a VM in a data-center, while the
client only runs a video decoder. A game falls into this category if both it is not playable on the
device and it exhibits a low resource variability.

• Computation offloading, which means that the game engine is distributed among a client and a
server, both of them being linked with a high-bandwidth low-latency network connection. A
game falls into this category if the playability criteria is not verified and the game exhibits a high
resource variability.

Table 4 summarizes the classification of the games based on the aforementioned devices (more
details in the appendix). We observe that, for these representative games and devices, cloud gaming
is rarely the best option (only for two games on the mobile devices, and one game on Dell, and
browsers). On the contrary, solutions based on computation offloading are the best option for four
games in all devices except the fourth game on the Dell and browsers. This result calls for a deeper
exploration of computation offloading solution, which has not been studied for gaming so far.
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Games Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village Offload Offload Offload Offload Offload

Tower Bridge Client-server Client-server Client-server Client-server Client-server

Stealth Offload Offload Offload Offload Offload

Survival Shooter Client-server Client-server Cloud Cloud Client-server

Tanks Client-server Client-server Client-server Client-server Client-server

Space Shooter Client-server Client-server Client-server Client-server Client-server

Car Client-server Client-server Cloud Cloud Client-server

Unity Lab Offload Offload Offload Offload Offload

Multiplayer Cloud Offload Offload Offload Cloud

Table 4. Best option for architecture implementation per game and device

5 IS COMPUTATION OFFLOADING POSSIBLE IN GAME ENGINES?
We address now a second part of our measurement analysis with a focus on modular aspects of
game engines. Our main motivation is the study of solutions based on computation offloading. In
this approach, the resource requirements of each module and the interactions between the modules
are two needed key information for an efficient implementation. A secondary motivation is the
study of solutions based on cloud gaming. In existing platforms [18, 29], the game engine is seen as
a “black box". One of the improvements we would like to study in the future is to distribute a game
engine into several physical machines in a data-center to enable parallel computation. Similarly,
one needs to understand the resource requirements at the module scale as well as the interactions
between the modules.

5.1 CPU Consumption per Module
To understand the time consumption of eachmodule per frame, we look at the CPU usage percentage
at the modular level. We gather modules into seven families: Rendering, Scripts, Physics, Garbage
Collector (GC), Global Illumination (GI), Vsync, and Others. We abusively use the term "modules"
hereafter to refer to a family of modules.

Figure 7 shows the consumption (in % of CPU) of modules. We considered for each module, the
percentage of time it takes to compute in relation to the overall consumption needed to generate
one frame. We aggregated all the data corresponding to the nine games, the two qualities on the
different devices (except the Dell tower server) into Figure 7a. We plotted the three keys values:
average, minimum, and maximum consumption. For more details, readers may refer to Figures 15
and 16 in the appendix.

For every game, the frame duration is limited by one of three threads: the CPU game thread, the
CPU render thread, or the GPU thread. In Figure 7a, we identify the rendering engine as the most
consuming module. It is responsible of up to 70% of CPU usage in average. Since the rendering is
done by the GPU, it means that the game performance is limited by the GPU thread. Indeed, once
the CPU launches the rendering process in the GPU, it can run in parallel some other modules,
including AI, physics and scripting. As soon as the process of these modules terminates, the CPU
waits for the GPU process termination. For some highly-graphical games such as Viking Village,
the rendering modules is responsible of 95% of the CPU consumption on the Dell Win7 platform at
high-quality.
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We are also interested in understanding the differences in the module consumption per platform
and game quality. For a given platform and a given user quality setting, we compute the average time
consumption for all frames and all games to obtain a global average platform-dependent quality-
dependent module requirement. We thus get eight measures of the average module requirement
(four platforms and two game qualities), noted rpq for each platform p and each quality q. We
compute the average requirement, noted R for the eight measures. Then, we compute, for one given
platform-quality pq, the difference to the average measure, rpq − R. A platform-quality pq with a
high difference means that, for this given module, the requirement significantly differs from the
other platform-quality, and thus it would justify the game provider to pay a specific attention. Our
idea is also to check if some modules exhibit much wider different behaviors than others. To enable
comparison across modules, we thus compute a relative measure of the difference by computing
the ratio of this difference rpq −R to the standard deviation µ. We call this measure the relative load
variability. The higher is the relative load variability of a platform-quality pq, the more different is
the platform-quality pq from the other platforms.

We represent, for each module, the eight relative load variability measures in Figure 7b. We have
two observations. First, the resource requirement is sensitive to platform-quality. Some platform-
quality pq have a difference to the average that is nearly 1.5 larger than the standard deviation. It
calls for paying attention to platform-quality when implementing a computation offloading because
these platform-quality exhibit specific and unusual resource consumption. Second, all modules
have similar relative load variability. This is counter-intuitive since we expected that rendering
modules would be more sensitive to platform-quality than other modules.
In Figure 8, we represent the consumption per module for the web players. The CPU spends a

lot of time computing other type of modules, like scheduling the tasks over the different layers.
The rendering portion of time is lower than for the case of standalone platforms, which is due to
the default resolution used in the web players. The script and physics take more portion of CPU
than in the standalone cases.

5.2 GPU Consumption per Module
We concluded from Figure 7 that the Rendering modules are the most consuming modules regarding
CPU use. One of our previous explanations is that CPU is bounded by the performance of GPU to
render the scene. In the following, we look at the GPU consumption to validate this statement. We
plot in Figure 9a the time spent by the GPU to generate one frame for each of the games on the
Dell laptop. In Figure 9b, we show the percentage of time the GPU spends in each subfamily of the
rendering module. We derive from Figure 9a that the time taken by the GPU is approximately the
same as the CPU in Figures 7a. It confirms our intuition that, since the CPU finishes processing
tasks faster than the GPU, the CPU waits for the GPU to finish the frame generation. As we will see
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Fig. 8. CPU consumption per modules on Dell M4800 for Web Players
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Fig. 9. GPU consumption per frame and per module on Dell M4800 for Windows 7

later, the “waiting mode" is considered as a module to schedule and synchronize the two processors.
Moreover, in Figure 9b, the consumption per rendering activity is different for each game. Indeed,
the nine game worlds are different. We also observe that the GPU is not entirely used for rendering
processing. Typically a game like Tower Bridge consumes the entirety of available GPU for other
types of module.

5.3 Calls between Modules
We pay now attention to the modular architecture and the interactions between these modules.
This study is key for the implementation of computation offloading, and it is also useful for new
implementation of cloud gaming systems.

We depict in Figures 10 and 11 the main calls inside each family of modules. Specifically, Figure 10
(resp. 11a, 11b, 11c, 11d, and 12) corresponds to the Physics module family (resp. Audio, AI, Animator,
Script, and Rendering module families). In each graph, the vertices represent each module in the
family, while the oriented edges are a combination of two parameters: the first one is the number
of time the source vertex calls the destination vertex (the calls frequency), the second value is
the execution time of the destination vertex. These flowcharts correspond to the case of Survival
Shooter game on the HTC One (M8) for the good quality encoding.

Each module family can be offloaded as a separate service. Indeed, we observe in the figures that
these families exhibit few interactions and data sharing each other, which is expected since these
families of modules are often designed and implemented by different teams. The main coordination
and synchronization task is done through the modules Update and Fixed Update, which are shared
between all the families and represent the main game thread. Since the frequency calls between
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Fig. 10. Internal calls inside the Physics module

families are low, the offloading per module families makes sense. Inside each module family, here
are our main observations:

• The Physics family (see Figure 10) can be spread into three sub-families: Physics3D, Physics2D,
and PhysX. PhysX interacts only with Physics3D over the Processing class, and Physics3D
shares with Physics2D only one class (the Simulate class). It would thus be relatively simple
to distribute the computation of these three sub-families over distinct computers.

• The Scripting family (see Figure 11d) is the only module that interacts directly with the
Physics engine. It would thus make sense to run this family of modules on the same computer
as the one that hosts the Physics modules.

• The Audio family (see Figure 11a) has no interaction with the other main modules and only
deals with the game thread. This module can thus be offloaded as an API to a remote machine.
The communication between the client and the remote machine can be done either by RPC
or by streaming the audio data.

• The AI family can be computationally intensive. It is difficult to simulate the game on
constrained-resource devices without reducing the complexity of the AI. Since this family is
also mostly independent, the module family can be offloaded.

Finally, we address in Figure 12 the Rendering modules. We revealed in our previous results that
this family is the most resource consuming, and thus is a candidate to migrate from the lightweight
client devices to nearby servers in a computation offloading solutions (or from one standard server
running the game engine to a specialized GPU-enabled server in the same cluster of servers for the
case of a cloud gaming solution).

The offloading mechanism can be instruction-based or image-based. In instruction-based systems,
the client renders the graphics by itself using the commands received from the server. This system
consumes less bandwidth as only graphics drawing commands transit over the network. Image-
based system streams the rendered game as a real-time video. The clients are platform- and
implementation-independent, and demand fewer resources. However, it is harder to distribute
this module. Indeed, we identify some “sub-families" within the Rendering family that are rarely
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independent. We observe in Figure 12 that the calls come from multiple other modules, which
are not necessarily in their own sub-family. These inter-calls between modules, from different
sub-families, make the code offloading harder. Indeed, the calls frequency is high, which implies
intensive communication between the different computers and ultra-low-delay data mirroring in
the case of offloading. Moreover, some sub-families are more called than the others. For example,
SharedSet-Pass, RenderTexture, and MeshVBOModule are called to generate the frames. Finally, the
WaitingForJobs module is used to synchronize the modules that have different running time. The
time spent into the WaitingForJob module is a waste of time and CPU consumption.
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Fig. 11. Internal flow concerning the main modules: Audio, AI, Animations and Scripting.

6 GAME PERFORMANCEWHEN ASSISTED BY SERVER.
In Section 4, we tested the different games in the traditional client-server architecture, from which
we derived a game classification for the different platforms. In Section 5, we studied the possibility to
offload a game engine and concluded with promising solution regarding offloading the game engine
modules. Now, we present the performance of the games when we offload a part and the whole
game engine to a server as in the two architectures (cloud gaming and computation offloading). We
present the needed CPU-time to generate one game frame on the client device in both architectures.
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Fig. 12. Internal calls inside the Rendering module

For a fair comparison between the games, we offload the same game objects namely NPC, Player
Character (PC), environment, and lights. Table 5 summarizes the game module distribution. Table 8
presents the used devices for each architecture.

Element Module Client Server

Player character

Rendering
Audio

Animations
Scripting
Physics
Inputs

�✗
�✗
�✗
�✗
�✗
�X

�X
�X
�X
�X
�X
�✗

Non-Player character

Rendering
Audio

Animations
AI

Physics

�✗
�✗
�✗
�✗
�✗

�X
�X
�X
�X
�X

Particle Effects
Rendering
Animation
Physics

�X
�X
�X

�✗
�✗
�✗

Arena Rendering
Physics

�✗
�✗

�X
�X

Sound Audio
Scripting

�X
�X

�✗
�✗

Sun Light Rendering �X �✗

Arena Light Rendering �✗ �X

Main Camera Rendering �X �✗

Weapon Camera Rendering �✗ �X

Game Manager Scripting �X �✗

Table 5. Location of the game objects in case of computation offloading
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Figure 13 depicts the time needed to generate one frame on the three architectures (i.e., client-
server, cloud gaming, and computation offloading) for each of the used games for the good (Fig-
ure 13a) and fast qualities (Figure 13b). We use box-plots to present the results since we focus on the
variability of CPU consumption per frame. Indeed, the consolidation of resources in a data-center is
easier when the consumption of processing resources is accurately predicted. The more stable are
the CPU and GPU consumption, the more games can concurrently run in a cluster.
We distinguish three categories of game. Some games are ideal for client-server architecture

and/or consolidation because all frames take approximately the same CPU and GPU time to be
generated. The 10th and 90th percentiles are so close that they nearly overlap. It is notably the
case of Tanks and Space Shooter. A game offering a small variability features scenes that are not
complex and are thus easily rendered by the GPU. For the good quality, a frame is generated in less
then 33ms and in less then 16ms for the fast quality. These games are device-friendly.

Some other games exhibit a high variability, notably Viking Village, Stealth, and Unity Lab. These
are the worst cases for cloud provider, which has to reserve resources to accommodate the peaks
(more than 75ms CPU for Viking Village, 65ms for Stealth, and 67ms for Unity Lab), although the
median frame requires almost quarter the time (16ms here). The reserved resources are wasted.
These games in general are the most consuming for the CPU and GPU resources due to the scene
complexity. Since these games are not desirable for cloud gaming architectures, and cannot be
played locally on the wearable devices, then these games should be offloaded.

Finally, the games that are the less demanding and have less variability, typically Car in our set
of games, are good candidates for cloud gaming systems.
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Fig. 13. CPU-Time required to generate one game frame on the three architectures

7 DISCUSSION AND MAIN FINDINGS
To sum up our findings in this paper: Firstly, the GPU is the main source of performance limitation
in the different cases. The CPU game and CPU render threads are frequently blocked waiting for the
results of the GPU due to a synchronization problem. To improve GPU performance, an idea would
be to free the latter from some jobs. For instance, recent GPU cards improves the game performance
by offloading the PhysX from GPU to CPU, especially for powerful CPU. Unfortunately, this solution
works only for games using PhysX as physics engines (like Batman [6], Assassin’s Creed [34],
and some others17) but it does not work for other engines like Havok, ODE, or I-Collide. We also
identified that both CPU and GPU consumptions have a high correlation, which is useful for the

17http://www.geforce.com/hardware/technology/physx/games
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cloud gaming providers to estimate from the CPU demand the amount of GPU resources that need
to be reserved, as well as the game variability.
Second, the frame rate of device-friendly games is generally higher than 60 fps. This is a waste

of resources, especially in terms of energy. Here, we envision a solution where we first calculate
the number of generated and saved frames in the frame buffer, by monitoring the synchronization,
then the GPU breaks the game main loop when the number of 60 fps is reached. The idle GPU
saves a signfiicant part of the energy consumption. The provider can use the idle GPU to serve
more games using a preemptive scheduling. NVIDIA proposed the mechanism G-Synch, which
improves the V-Sync mechanism, where the monitor refresh is conducted by the GPU frequency. It
finds trade-off between the off- and on-mode of V-Sync. Indeed, when V-Sync is deactivated, the
GPU sends the frames following its own pace. At each screen refresh cycle, multiple frames are
displayed because the frame rate is maximal causing the phenomenon of tearing. Now, when the
V-Sync is activated, the GPU follows the screen tempon so tearing no longer occurs. But, when the
time to render a frame is longer than a refresh cycle, the phenomenon of stutter and display delay
(lag) occurs because the monitor has to display again the last frame.

Third, some modules related to rendering are mostly in waiting mode, meaning that the CPU
consumption associated with these modules is not significant. These waiting times are not necessar-
ily a waste of resources when only one game runs on a computer, since the rendering pipeline is at
a given step and no further actions can be taken. However, in the context of cloud computing, these
waiting times represent opportunities to free some resources and to better exploit the processing
units.
Fourth, a non-graphic component of the game engine can represent a significant part of the

CPU consumption, typically in games where the AI, the physics, and the scripts are complex. A
motivation behind code offloading is to study the gains when the display device embeds dedicated
GPU resources, and powerful servers are available nearby. This configuration matches the new
generation of game centers with VR headsets.

Finally, the game classification of the games into the three architectures matches our predictions
based on the criteria: playability, and resource variability.

8 CONCLUSION
This paper deals with the topic of game engines. We presented a general architecture and conducted
a set of experiments on three architectures: client-server, cloud gaming, and computation offloading.
We used nine representative games, including FPS, TPS, Racing, and MMOG. We adapted these
games to different platforms and tested their performances on each platform for two quality
encodings. Based on our results, we classified the games into the three architectures depending on
two parameters: playability and resource variability. We also identified that the quality settings, the
used platforms, and the game genre exhibit varying behaviors. Next, we provided a detailed view of
the game engine by representing the internal flow that constitutes each module, which is a basis for
solutions exploring computation offloading. Finally, we validated our finding regarding the game
classification according to the aforementioned criteria and the feasibility of game engine offloading.
In our experiments, we used static offloading of the sub-families of modules. Our work opens
new exciting perspectives and research directions to improve gaming experience. Indeed, we may
mention particularly two directions to follows, one based on computation offloading and another
one on cloud gaming consolidation. Regarding computation offloading, it is interesting to explore
not only partitioning algorithms to find the best execution location of each module sub-family,
but also use systems for polygon rendering to decompose an object, or an entire image to offload
some part aiming at improving the rendering process between the client and the server. About
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game consolidation, it will be useful to define a regression model for the resource consumption to
maximize the consolidation and minimize the risks, and find somehow to serve different gamers in
Single Online Shared Game Instance (SOSGI) (i.e., throw only one instance of game engine).
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A APPENDIX
A.1 Rendering Pipelines
Unity 3D uses four additional rendering activities, which occur in conjunction with the main
pipeline. We summarize these rendering activities hereafter.

(1) Forward rendering – It has been introduced for dynamic lighting in 3D environments. It
consists of three passes: (i) Ambient Pass applies a global low lighting to the overall 3D scene.
The results of this pass are saved in the frame buffer; (ii) Light Pass repeats the drawing
process for each opaque object, affected by one of the light sources regardless of others in
the scene. The lighting is accumulated in the frame buffer; (iii) Transparency Pass draws all
the transparent objects in the same way as for opaque objects, but with a drawing order of
transparent objects from back to front. The transparent geometry is added to the frame buffer
and combined with the ambient and opaque results [15].

(2) Deferred shading – The idea is to defer the lighting calculation to the second pass until all
the geometry has been rendered. The deferred shader algorithm uses smart management of
different buffers [40], defined through three passes as follows: (i) Geometry Pass (Opaque Pass)
applies an ambient lighting, saves the results in the frame buffer, and fills the Geometry buffer;
(ii) Light Pass processes the lighting through the buffers transition calculations, starting with
a depth buffer to rebuild origin position of pixels. The results are added to a normal buffer data
to calculate the diffuse light. Then, a specular lighting is calculated using the position, the
normal, and specular data buffers. Finally, the specular light is applied to colour and shading
data buffer and accumulated with all the other light sources. The global colour of these buffers
is accumulated in the frame buffer; (iii) Transparency Pass renders the transparent geometry
using the forward rendering (Ambient Pass and Light Pass) [15, 42].

(3) Pre-pass rendering – Similarly as deferred shading, it addresses the restricted usage of different
material shaders. The lighting is stored in the new buffer with light pre-pass rendering, instead
of applying it to the colour and shading data buffer. This process follows four passes: (i)
Geometry Pass applies the ambient lighting, draws the opaque geometry, and fills the G-buffer;
(ii) Light Pass performs the lighting calculations in the pixel shader using the G-buffer for
all light sources. The results are accumulated with additive primitive in lighting buffer; (iii)
Material Pass draws again the geometry using the lighting buffer as lighting input for the
material-specific shader; (iv) Transparency Pass uses the forward rendering (Ambient Pass &
Light Pass) to process the lighting. The results are saved in the frame buffer.

(4) Vertex lit – This operation is the fastest one and is supported by a large number of hardware.
This process is done in one pass, wherein each object is rendered with lighting calculated on
the vertices of the object from all the light sources.

A.2 Game Description
Viking Village – is a FPS 3D-game. The sequence offers a look at a medieval Viking village. The
scene is characterized by high design quality with many details and various effects like water
vibration, fire and smoke particles, sunlight, firelight, shadows, and reflecting lights, shadows,
and colours by surfaces.

Tower Bridge Defense – is a TPS 2D platformer game. It depicts a player character fighting
against NPC in a physics-driven 2D sample level. The avatars jump between suspended platforms,
over obstacles, to advance the game. It features many objects subject to the 2D physics such as
gravity, velocity, and other forces.
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Fig. 14. Different Graphic Pipelines

Stealth – is a TPS 3D-game that describes a hostile environment characterized with guards (NPC)
and security cameras, laser gates, key-card, and elevator. The game objects have a high rendering
quality. The PC and NPC have an advanced animators, and the AI that manages NPC, laser gates,
key-cards, and elevator is complex.

Survival Shooter – is a TPS 3D action-game, wherein the gamer fights against an NPC. The
objective is to shoot them, eliminate as many as possible, stay alive and try to get a high score.
The game is characterized by 3D physics, character animations, and many NPC.
Tanks – is a 2D MMOG where two players fight in a tank shooting game in a hostile desert
environment. It is characterized by few graphical add-ons (such as rocks, palm trees, and rocky
mountains). The tanks are subject to physics (explosion particles, velocity, and friction), and
directional light to simulate the sun.

Space Shooter – is a 2D TPS game that takes place in space. The game is described by a large
number of spacial-ships (enemies) and asteroids objects that are subject to physics: explosion
particles, velocity and friction and, AI management.

Car – is a 3D racing game, with platforms. It is a standard scene, representing a car with a whole
engine system (including speedup, stop, red light, turning left and right, and engine sound). The
scene includes some obstacles (static objects) and has platforms like bridges and pings. The terrain
is a car road with obstacles and platforms around.

Unity Lab – is a 3D TPS game with a simulation about the daily life of Dr. Charles Francis, a
research scientist at Unity Lab. The Unity lab includes different rooms reachable through hallways,
with dynamic doors and elevators. The environment has an improved graphics, including shading,
cinematic image effects, particles systems, and lighting. The NPC is represented by a flying robot.

Multiplayer FPS – is a 3D MMOG FPS game describing a player fighting against a NPC inside
an arena. The player character is a flying robot with blasters. The NPC is a humanoid character.
The game is characterized with various effects for the arena such as fires, smokes, lights, sun,
and storm.
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A.3 Game Classification
- (i) Classification per Playability

We start by collecting the data from Figures 4, 5, and 6, which enable to classify the nine games
on each platform with the two encoding qualities as playable or non-playable. Next, we use the
system 1 to compact the classification through Table 6.

Playability ∧ ¬(Playability) ⇒ ¬(Playability)
Playability ∧ Playability ⇒ Playability

¬(Playability) ∧ ¬(Playability) ⇒ ¬(Playability)
(1)

Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Tower Bridge Playable Playable Playable Playable Playable

Stealth Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Survival Shooter Playable Playable Non-Playable Non-Playable Playable

Tanks Playable Playable Playable Playable Playable

Space Shooter Playable Playable Playable Playable Playable

Car Playable Playable Non-Playable Non-Playable Playable

Unity Lab Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Multiplayer Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Table 6. Games classification per playability

- (ii) Classification per Resource variability
We attribute the predicate high variability or low variability for each game on each platform

and for each quality to the results obtained in Figures 4, 5, and 6. Then, we use the system 2, to
compact the classification through Table 7.


HiдhVariability ∧ HiдhVariability ⇒ HiдhVariability

HiдhVariability ∧ LowVariability ⇒ HiдhVariability

LowVariability ∧ LowVariability ⇒ LowVariability

(2)

- (iii) Classification per Playability and Resource variability
Joining Table 6 and Table 7, by applying the system 3, we obtain the classification of the different

games (i.e., Table IV : “Best option for architecture implementation per game and device”).
Playable ⇒ Traditional

¬(Playability) ∧ LowVariability ⇒ Cloud

¬(Playability) ∧ HiдhVariability ⇒ O f f load

(3)

A.4 Client and Server Devices
Table 8 presents the devices used for each architecture to do our experiments.

A.5 Modular results
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Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village High Variability High Variability High Variability High Variability High Variability

Tower Bridge Low Variability Low Variability Low Variability Low Variability Low Variability

Stealth High Variability High Variability High Variability High Variability High Variability

Survival Shooter Low Variability High Variability Low Variability Low Variability Low Variability

Tanks Low Variability Low Variability Low Variability Low Variability Low Variability

Space Shooter Low Variability Low Variability Low Variability Low Variability Low Variability

Car Low Variability Low Variability Low Variability Low Variability Low Variability

Unity Lab High Variability High Variability High Variability High Variability High Variability

Multiplayer Low Variability High Variability High Variability High Variability Low Variability

Table 7. Games classification per variability

Games Traditional Architecture Cloud Gaming Computation Offloading

Tanks Dell Precision M4800 Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Viking Village Dell Precision M4800 Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Stealth Dell Precision M4800 Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Space Shooter HTC One (M8) HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

Car HTC One (M8) HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

Unity Lab Dell Precision M4800 Dell Precision M4800†

Dell Tower Machine *
Dell Precision M4800†

Dell Tower Machine*

Multiplayer HTC One (M8) HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

Table 8. The chosen device for each game under the three architectures. The symbol (†) represents the client,
and (*) represents the server.
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Fig. 15. How the CPU time is divided among modules on Dell M4800 and HTC One (M8).
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Fig. 16. How the CPU time is divided among modules on different targets
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