
1

Architectures of Multimedia Communication Subsystems

Erich Rütsche
Institute Eurecom, Sophia-Antipolis

ruetsche@eurecom.fr

 Matthias Kaiserswerth
IBM Research Division, Zurich Research Laboratory

kai@zurich.ibm.com

Abstract
This paper analyzes the particular requirements that multimedia communication imposes on
the network adapter and the I/O subsystem of a workstation. We show the drawbacks of current
(parallel) communication subsystems and develop new architectural concepts applicable to
multimedia communication subsystems. The key ideas are the separation of isochronous and
asynchronous traffic, parallelism between sender and receiver, and the execution of per-byte
operations in a hardware pipeline. We adapt these concepts to the design of a Gb/s adapter
and to the design of a light-weight, slower speed adapter and present some scenarios for their
application.

1. Introduction
New types of networks such as FDDI, ATM, and FCS provide bandwidth in the range of 100
Mb/s to 1 Gb/s to a single workstation. Multimedia communication requires broadband
communication of data, still images at high resolution, and moving pictures (video, animated
graphics). The aggregation of these data generates not only high-volume continuous data
streams but also dynamic bursts of data. An example of this is cooperative teleworking with
video connections between multiple parties who also exchange high-resolution images, e.g.,
doctors holding a teleconference discussing X-ray images.

The communication of these data imposes a new type of load on the network, on the network
adapter, and on the I/O subsystem of the workstation. Processing requirements of multimedia
protocols are very different from the requirements of traditional transport protocols.
Isochronous multimedia traffic requires the transmission of a large amount of data with low
delay and bounded delay jitter but may accept relatively high bit-error or packet loss rates
[Hehmann 89]. In a video, for example, bit errors or even lost frames are hardly visible,
whereas a delay jitter of more than 10 ms is perceived as disturbing. Asynchronous traffic, for
example file transfer or a remote procedure call, requires comparatively less throughput but
tolerates no errors. In the conference example above, the video connection between the doctors
could tolerate errors, whereas the X-ray images must be displayed error-free.

Conventional protocol processing on a workstation is limited by the available processing
power and the I/O bottleneck [Ramakrishnan 93]. Communication subsystems based on single
processors such as Nectar [Steenkiste 92a] or based on multiprocessors, such as the Parallel
Protocol Engine (PPE) [Giarrizzo 89, Kaiserswerth 93] and similar architectures proposed by
[Zitterbart 89], [Braun 92], and [Ulrich 93] were built to off-load protocol processing from the
workstation. These systems were successful for transport protocol stacks at a network speed of
up to 150 Mb/s. However, these approaches do not fulfill the quality of service requirements
of real-time multimedia data streams transported in higher speed networks. A successful
multiprocessor subsystem for continuous multimedia at moderate speed was demonstrated in
[Blair 93].

In this paper we analyze the new requirements that the transmission of multimedia data impose

2

on the network adapter and the I/O system of the workstation. We show why architectures such
as our PPE are not suitable for high-speed multimedia traffic, and hence develop two
architectural concepts for multimedia communication subsystems.

In the next section we will try to assess the PPE architecture in light of these new requirements.
In Section 3 we present the architectural concepts and what we believe are the key components
of a new subsystem architecture. In Section 4 and 5 we describe the design of two multimedia
adapters, one for Gb/s speeds and one for lower speeds, based on these concepts. Section 6
describes application scenarios for these new adapters. Section 7 is the conclusion.

2. The PPE Architecture
The Parallel Protocol Engine was developed to investigate parallel protocol implementation on
a communication subsystem which would off-load protocol processing from a workstation to
remove the protocol processing bottleneck.

The PPE uses two separate memories, one for transmitting, one for receiving data. Two or more
processors (T425 transputers) are connected to each of these shared memories. Both shared
memories are also mapped into the address space of the workstation.

In the implementation of the ISO 8802.2 LLC [Kaiserswerth 91] and of TCP/IP [Rütsche 92]
on the PPE, the protocol processing performance was commensurate with the network
bandwidth (120 Mb/s). The successful use of the PPE in parallel protocol execution was
possible because the delay and overhead for interprocessor communication on the PPE was
small compared to the execution times of the individual protocol functions. Parallelism was
best exploited in full duplex communication between the receive and transmit side of the PPE.
Pipelining the execution between the protocol layers TCP and IP was unsuccessful because of
the vastly different processing requirements. The analysis of the measured execution times
showed that a two-processor solution, with only one processor on the receive and one on the
transmit side, would make more sense, as it would allow a speed-up of 1.7 over a single-
processor implementation.

The architecture of the PPE using a separated receive and transmit data memory helped to
reduce memory contention when simultaneously receiving and sending at network speed. The
distributed shared memory for protocol state variables, which was implemented using
transputer links between sender and receiver, had only a minor impact on the performance.

The protocol processing performance on the PPE was somewhat limited by per-byte operations
such as copying. Computing the TCP checksum in software was switched off because of its
performance penalty. For a next generation interface these per-byte functions must be
supported by dedicated hardware.

The main problem of the PPE was to make its processing power available to the application on
the host. The protocol processing performance of the PPE was in the range of 100 Mb/s
whereas the host interface only provided a throughput in the range of 27 Mb/s. The poor
performance of the host interface was due primarily to the interface hardware but also to the
processing of the application programming interface on the host. The performance of this
interface was clearly not sufficient for high-speed multimedia communication. For a subsystem
connected to a higher speed network with multimedia requirements, the architecture must be
changed because the hardware components such as processor and memories cannot be scaled
to higher speeds.

3

3. Concept
For a new generation of communication subsystems the network I/O bottleneck must be
considered first of all. The throughput of a network interface is limited mainly by the interrupt
service time and the copy time of the I/O bus. Ramakrishnan showed that for a specific
architecture a speedup of at most two can be achieved going from a non-programmable
(shallow) to a programmable (deep) adapter [Ramakrishnan 93]. For multimedia
communication, e.g., video, the required I/O bandwidth is higher than for classical computer
communication. Thus for multimedia communication we must find a way to alleviate this I/O
bottleneck.

We develop now the concepts for a new communication subsystem architecture that avoids the
bottlenecks of the PPE and supports high-speed multimedia traffic. These concepts also build
on the previous work of [Steenkiste 92b] and [Blair 93].

Separation of Isochronous and Asynchronous Traffic

The quality of service requirements of isochronous multimedia traffic and of asynchronous
data traffic are very different. Separate paths for the processing of the two traffic types help
provide sufficient resources to handle isochronous traffic. Protocol processingand the
workstation interfaces are separated for both paths. A dedicated workstation interface for
isochronous traffic is crucial because the workstation interface is the critical bottleneck in high-
speed protocol processing.

Sender/Receiver Parallelism

Our TCP/IP implementation on the PPE showed that exploiting the parallelism between sender
and receiver was the most successful approach in applying parallel processing to a protocol
implementation. The communication between sender and receiver required in connection-
oriented protocols can be accommodated with (the transputer’s) low-speed serial message
links. Splitting the memory into a sender and a receiver part reduces memory contention and
allows the use of less expensive and slower memory devices.

Pipelining in hardware

Per-byte operations such as copying and computing a checksum limit the protocol processing
performance. Therefore these operations should be implemented in a closely coupled pipeline
of hardware devices that overlaps header processing. This approach has been implemented by
[Kanakia 88] and [Steenkiste 92a].

3.1. Architecture Concept

Figure 1 shows the architectural concept. The communication adapter is split into similar send
and receive sides. Both sides consist of a hardware pipeline and separate processing units and
host interfaces for asynchronous and isochronous traffic.

On the receiver side, the pipeline demultiplexes asynchronous and isochronous packets
arriving over the network. The network access unit implements the medium access control
(MAC) functions and provides a frame-oriented interface to the next pipeline step. The
protocol filter, described in detail below, is the key device that performs the demultiplexing
functions. It analyzes protocol headers and extracts a unique connection number (CN). The
checksum/CRC1 unit uses the CN to calculate the appropriate check sequence required by the
given connection. The check sequence is calculated on the fly as the data are passed to the
DMA unit. The DMA unit on the receiver uses the CN to forward isochronous and
asynchronous data to dedicated processing units. Each unit uses a dedicated interface to the

1. We will henceforth use the more generic termcheck sequence whenever we speak
of a checksum as in TCP/IP or a Cyclic Redundancy Check sequence (CRC) as in OSI TP4.

4

workstation.

On the sender side, the pipeline multiplexes the two data streams to the network. Each
processing unit gets its data from a dedicated workstation interface and forwards them to the
transmit pipeline. In the pipeline, the check sequence is again calculated on the fly as the data
is moved to the network access unit. The CN is used to determine which check sequence
algorithm is to be used and where in the packet the calculated check sequence is to be stored.

Figure 1. Architecture Overview

3.2. Protocol Filter

The Protocol Filter (PF) is a central device of the architecture needed to separate isochronous
and asynchronous traffic. It scans each incoming packet header and extracts the information
defining a connection. If a known connection is found, the protocol type and the connection
number are returned. The connection number is a unique number that can be used as a pointer
to the connection control information.

Figure 2. Protocol Address Tree Structure (Internet Protocols)

Protocol Filter

Checksumming/CRC

Copy/DMA

Checksumming/CRC

Copy/DMA

Asynchronous
Processing

Isochronous
Processing

Network AccessNetwork Access

T
ra

ns
m

it
P

ip
el

in
e R

eceive P
ipeline

Interfaces

Asynchronous
Processing

Isochronous
Processing

Source/Dest Port Q

ProtocolType

Protocol/Version

Source Address C

Destination Address A

Source/Dest Port P

Source Address B

Destination Address E

Protocol/Version

Source/Dest Port R

Path a

Path b

Source Address D

Destination Address D

5

The addresses and protocol specific information used in the various layers of a protocol stack
form a tree. A connection is defined by the path through the tree (see Figure 2). This path is
stored in a content addressable memory (CAM). A CAM row contains the information of the
tree level, the protocol type and the address information. For each branch of the tree, the CAM
returns the address of the matched word. These addresses are concatenated to form a unique
connection number.

The architecture of the PF is shown in Figure 3. The PF consists of two hardware state
machines built around the central CAM. The Mask Generator extracts the relevant header fields
from the protocol header and generates a mask that is compared in the CAM. The Connection
Number Builder reads the addresses given by the CAM and builds a unique CN. As the
connection detection works in O(1) time, the PF can be built to run at network speed. A detailed
description of the PF is given in [Rütsche 93a].

Figure 3. Protocol Filter

4. A Gb/s Adapter
In this section we describe the application of the presented architectural concepts to a Gb/s
network interface. For such networks protocol processing must be performed on the subsystem,
because current workstations are unable to cope with this processing load and run applications
at the same time1. Therefore we propose an adapter architecture that implements protocol
processing of isochronous and of asynchronous traffic on the adapter. The architecture of this
Multimedia Protocol Adapter (MPA) for a 622 Mb/s network2 is described in more detail in
[Rütsche 93b].

For isochronous traffic, we consider the Internet Stream Protocol ST-II [Topolcic 90]. ST-II
supports the delivery of multimedia data streams with a guaranteed quality of service. In the
data transfer phase the protocol only requires the detection of the packet header without further
processing. Therefore we do not need a dedicated processor for multimedia. Instead, the DMA

1. An optimized TCP/IP implementation on a workstation still takes a fixed overhead of 110µs/data
packet [Dalton 93].
2. 622 Mb/s would, for example, be the line rate of a STM-3 or SONET OC-12 ATM line.

Addr 1

n

CAM

M
at

ch Connection

Mask Generator

Connection Number (CN)Number
Builder

Input Data

6

unit forwards isochronous data directly to the multimedia host-interface. This interface is a
multimedia FIFO connected to a multimedia bus or a multimedia device. Compression/
decompression is not supported on the adapter because we believe that these functions would
not be required for Gb/s networks.

For the processing of asynchronous data traffic we foresee a protocol processor to support
different protocols flexibly (e.g., TCP/IP, TP4/CNLP, or XTP).

The analysis of TCP/IP on the PPE showed that two protocol processors provide optimal speed-
up. We therefore suggest that two processors be used that are required to process only
asynchronous traffic. To achieve optimal performance we partition the memory system to
guarantee the processors fast access to the most frequently used data. The memory is separated
into a header memory that holds packet headers and a data memory that holds the payload of a
packet. The header memory is closely coupled to the processor and can be accessed similar to
a data cache without wait states. The processors need no access to the data memory in the
normal data transfer phase because all per-byte operations are implemented in the hardware
pipeline. Therefore the full power of the protocol processors can be exploited in the most
common case.

Figure 4. Architecture of a Gb/s Multimedia Adapter

The architecture of the MPA is shown in Figure 4. The pipelines are implemented as proposed
in the architectural concept presented above. All the pipeline steps are implemented in
hardware. The protocol filter parses the headers of incoming packets and generates a unique
CN for each known connection. This CN is used by the following stages of the receive pipeline.
The checksum/CRC generator (CG) uses the CN to calculate the appropriate check sequence
of the packet. The DMA unit determines the packet format via the CN and splits it into its
header and data parts. Isochronous data are written to a multimedia FIFO and the header is
discarded. For each active connection a separate multimedia FIFO is provided to reduce
queueing at the multimedia interface. For asynchronous data, the header is written to the header
memory and the data part is written into the data memory. The pointer to the header is placed

DMA Unit (DMAU)

Header

Protocol Filter (PF)

Protocol
Processor

M
ultim

edia
FIFO

Direct

Local Memory

Serial Links

Figure 1. MPA Architecture

Memory

Media Access Control Unit (MACU)

DMA Unit (DMAU)

Checksum

Data

Protocol
Processor

M
ultim

edia
FIFO

Local Memory

Generator (CG)

Memory

Header
Memory

Data
Memory

Bus (BC)
Controller Device

Attachement

Direct
Device

Attachement

Workstation Bus Workstation Bus

Data
Control

Checksum
Generator (CG)

Bus (BC)
Controller

Transm
itter

R
eceiver

S
end Q

ueue

R
eceive Q

ueue
Media Access Control Unit (MACU)

7

in a receive queue. The DMA unit adds the calculated check sequence to the receipt
information maintained in the header memory.

On the transmit side, the protocol processor writes commands to transmit a packet to the send
queue. The DMA unit serves this send queue and triggers the CG to calculate the check
sequence on the fly as the packet is written to the network access unit. The DMA unit gathers
a packet header from header memory and the data from a multimedia FIFO or data memory.

For multimedia applications that require a reliable transport service, the protocols can be
processed on the MPA. The processor then moves the data to a multimedia FIFO. The bus
controller implementing the asynchronous host interface can be built with a powerful
busmaster DMA controller or with anAfterburner interface [Dalton 93].

4.1. Performance Evaluation

The performance of this architecture can be evaluated by scaling our measurements of the PPE.
From the measured execution times on the PPE, the execution times on the new architecture
are estimated by excluding the number of instructions replaced by dedicated hardware and by
then scaling the remaining instruction cycles with the faster processor (Inmos T9000 instead of
T425) and improved memory interface. A detailed evaluation of this process is given in
[Rütsche 93b].

The TCP/IP process pipeline for bidirectional traffic is shown in Figure 5. The throughput is
limited by the receive processing of TCP (tcp_recv) and of IP (ip_demux), which add up to 26.7
µs. Transmit processing is also less costly than in the original PPE implementation because of
the faster network speed.

Figure 5. TCP/IP Execution Time (µs)

The throughput calculated for unidirectional TCP/IP traffic between two MPA systems is
35720 TCP segments/s. For bidirectional traffic, the throughput is 20290 segments/s if an
acknowledgment packet is sent for every eight packets. The throughput numbers are
independent of the packet size because all data copying is done in hardware overlapped with
the protocol processing. However for large packets, the network speed becomes the bottleneck
(4 kByte segments would require more than 1 Gb/s network throughput). If we assume a
segment size of 1024 bytes, the throughput is 292 Mb/s, which is already more than most
current workstations can handle.

For isochronous traffic, we assume the use of ST-II. In the normal data transfer only the
connection information must be analyzed; no further processing is necessary. As the
connection is detected in the PF hardware, ST-II can be processed at network speed.

tcp_recvip_demux user-task
ip_send driver_send

 25 1 1.7

write
4.3

tcp_snd_data
 9.8

write
4.3

tcp_snd_data
 9.8

0.7 1

copy
15.4

copy
15.4

Receiver

Transmitter

DMAU

8

5. A Light-Weight Adapter
At more moderate network speeds in the range of 100 - 155 Mb/s, the design criteria for
adapters are different than for Gb/s speeds. Lumley [Lumley 92] argues that protocol
processing on an adapter is too costly for commercial use. Traditional transport protocols can
be processed at these speeds by the powerful (RISC) processor of a workstation. However the
quality of service requirements of multimedia data still call for protocol support on the adapter.
Therefore we propose an architecture that supports processing of isochronous multimedia
traffic on the adapter but leaves the protocol processing of asynchronous traffic to the
workstation.

One solution, the light-weight multimedia adapter (LWMA), is designed to be cost effective.
The adapter performs only those protocol functions that are too costly for execution on the
workstation, namely header parsing and per-byte operations such as check sequence
calculation. The design of an ATM network interface based on these principles is shown in
Figure 6. The Network Access Unit provides a frame interface to the PF and the DMA Unit.
The PF is again used to analyze the headers of received packets. The packets and their CN are
forwarded to a decoder. The decoder is a digital signal processor (DSP) on the adapter that
implements the checksum/CRC unit of the architecture model. DSPs are suitable for this task
because of their short interrupt latency. Their instruction set and cycle time allows fast frame
check sequence calculation. For isochronous traffic the DSP can also be used to decode the
compressed multimedia data in real-time. For asynchronous traffic the packets with the
calculated check sequence and the CN are forwarded to the host.

Figure 6. Architecture of the Light-weight Multimedia Adapter

On the sender side the DSP implements coding functions to calculate the check sequences for

Transmit
Memory

Local

DMA Unit DSP

Coder

Memory

Phy_in

AAL_recv

Local

DMA Unit DSP

Decoder

Memory

I/O Bus Interface Multimedia InterfaceMultimedia Interface

Sender Receiver

Network Access Unit Network Access Unit

free

send

recv

free

free

free

send

recv

Frame Memory

Phy_out

AAL_send

Frame Memory

Memory
Receive

Protocol Filter

9

asynchronous traffic or a compression algorithm for isochronous traffic. The DSP also acts as
a controller for the network access unit. For example, for an ATM network, the network access
unit would implement the ATM Adaptation Layer (AAL) protocols and the DSP processes the
signalling protocol.

The host interface is also split into an asynchronous and an isochronous interface. It is similar
to the Afterburner [Dalton 93]. To separate isochronous and asynchronous traffic we propose
two interfaces with separate hardware queues implemented with FIFOs that control access to
the memory of the sender and of the receiver. Thus asynchronous and isochronous data reside
in the same memory. The fast memory can provide sufficient bandwidth to provide concurrent
access from the interfaces, the DMA unit and the coder/decoder.

To send data an application gets a pointer to a buffer from the free buffer queue. It writes the
data to the buffer in the transmit memory and writes the buffer pointer to the send queue. On
reception the decoder gets a receive memory buffer from the free queue and writes the pointer
to the processed buffer to the receive queue. Again, each active multimedia connection has its
dedicated send and receive queues.

5.1. Performance Considerations

The hardware elements of the pipeline implemented on the LWMA run at network speed. A
modern DSP can calculate a checksum and even a CRC in real-time. Video coding and
decoding functions, e.g., JPEG or MPEG, are not yet possible at the required speed. Dedicated
VLSI implementations of these algorithms could be used to provide these functions.
Isochronous protocols and conversions could then be executed at network speed. The
processing speed of asynchronous protocols is also improved by the architecture. Computing
of the check sequence and header analysis, which make up a considerable part of the processing
load, are implemented on the adapter and off-loaded from the host. The CN can also be used in
protocol processing on the host. The CN can be used as a pointer to the protocol control
information and forprotocol bypassing [Thia 92]. In other words, a dedicated processing path
is executed for a known connection.

The performance of asynchronous protocols like TCP/IP can further be enhanced by using a
Single-Copy Implementation [Dalton 93] which can improve protocol performance by about a
factor of two.

6. Application Scenario
Distributed multimedia applications change the requirements on a computer. As these
requirements are so different, it is better to talk about a multimedia station whose task is not
primarily computing but multimedia communication between a user and a high-speed network.
For this purpose the architecture of the multimedia station must provide sufficient
communication channels between the multimedia devices and the networking devices.
Röthlisberger, for example, suggests the use of a dedicated multimedia bus that connects the
network adapter to the multimedia devices [Röthlisberger 92]. The multimedia adapter
architectures proposed above would fit well into such a system (see Figure 7).

10

Figure 7. Application of a Multimedia Adapter in a Multimedia Station

The Lancaster Multimedia Network Interface (MNI) [Blair 93] uses a similar setup by
connecting multimedia I/O devices directly to the communication subsystem. Protocols are
executed on the subsystem. The workstation acts as a controller and is not concerned with the
handling of the high-bandwidth multimedia streams.

While the MNI is a multimedia terminal, separate from the workstation, the presented
multimedia communication adapters support a close integration of real-time multimedia into a
multimedia station. Figure 7 shows the application scenario of a multimedia adapter. The
separated host interfaces are connected to the I/O bus and the multimedia bus of a multimedia
station. The multimedia bus connects all the multimedia end-devices and adapters. The
multimedia adapter can provide coding and decoding functions that then need not be
implemented on the device adapter. With the addition of coding/decoding hardware the
multimedia adapter could be enhanced to a multimedia communication desktop collaboration
system [Chen 92].

The multimedia communication adapter can synchronize networked data streams. The adapter
processors delay the reception or transmission of data until a predefined synchronization point
between the data streams is reached. However, for efficient real-time synchronization at high
speed, hardware support would be useful. The synchronization with workstation-internal data
streams may be supported by the multimedia bus, e.g., with a timing signal.

Processing of multimedia data that require a reliable transport service is performed on the
asynchronous transport path. The potentially necessary retransmissions to make a service
reliable do not allow isochronous service. Taking the example of teleradiology, the multimedia
adapter would move the isochronous video directly between the network and the devices
(digital camera or display memory). For X-ray data a reliable transport protocol, e.g., TCP/IP,
would be processed before the image is written to the memory of a high-resolution display.

Application Areas

Complex architectures such as the MPA are necessary for high-speed multimedia. Applications
of this type of adapter can be found in areas where high speed is truly required and where low
price is not a primary requirement. Examples are video and multimedia servers, visualization
stations and communication subsystems for supercomputers [Steenkiste 92b].

Multimedia

Workstation I/O

CPU

Synchronization

Video
Server

Multimedia
Communication
Adapter

Memory

Bus

Bus

Disc Controller

11

For applications where price is a major consideration, the LWMA is more suitable. For an
ATM network the DSP on the adapter can implement the signaling protocol and the coder/
decoder functions. The additional hardware required to enhance anintelligent ATM adapter to
a multimedia adapter is not too complex nor costly. If only isochronous multimedia support is
required can the architecture of the LWMA be scaled even to Gb/s networks.

7. Conclusions
User-programmable communication subsystems were not very successful in the past because
they were too expensive and complicated for widespread use. Careful protocol implementation
on workstations was sufficient for most applications. However, for new classes of applications
relying on multimedia data transported over high-speed networks, the current shallow
subsystems are insufficient. For high-speed multimedia communications the adapter must
provide support to guarantee a certain quality of service.

We have proposed a new architectural concept for multimedia communication subsystems that
supports isochronous multimedia traffic. The header analysis in hardware is the key function
that allows the early separation of isochronous and asynchronous traffic on the adapter. The
two types of traffic use different processing paths and host interfaces: the standard I/O interface
and a dedicated multimedia interface. Instead of using many parallel processors, we propose
that closely coupled hardware pipelines be used that perform header parsing and all per-byte
protocol functions. Parallelism is exploited primarily between the sender and receiver side of
the adapter. For isochronous traffic, e.g., ST-II, all protocol processing functions are realized
in hardware. How asynchronous data streams are processed depends on the network speed
supported.

For Gb/s networks, the MPA is a powerful architecture that implements protocol processing on
the subsystem. For lower speed networks (100 - 155 Mb/s), the LWMA offers support only for
protocol processing functions, such as computing a check sequence and header parsing, that are
too costly and time-consuming on a workstation. The protocol processing itself is performed
on the host.

The proposed communication subsystem architecture addresses the network I/O bottleneck.
However, for good integration of multimedia into workstations, the workstation architecture
must also be changed and adapted to the high I/O bandwidth requirements.

8. References
[Blair 93] Blair, G., Campbell, A., Coulson, G., Garcia, F., Hutchinson, D., Scott, A.,

Shepherd, D., "A Network Interface Unit to Support Continuous Media," IEEE Journal on

Selected Areas in Communication, Vol. 11, No. 2, Febr. 1993.

[Braun 92]Braun, T., Zitterbart, M., "Parallel Transport System Design," IFIP Conference on

High Performance Networking, Liege (Belgium), 1992.

[Chen 92] Chen, M.-S., Shae, Z.-Y., Kandlur, D.D., Barzilai, T.P., Vin, H.M., "A Multimedia

Desktop Collaboration System," in Proceedings GLOBECOM 92, IEEE, Dec. 1992.

[Dalton 93] Dalton, C., Watson, G., Banks, D., Calamvokis, C., Edwards, A., Lumley. J.,

"Afterburner," IEEE Network, July 1993.

[Giarrizzo 89] Giarrizzo, D., Kaiserswerth, M., Wicki, T., Williamson, R. "High-Speed

Parallel Protocol Implementation," in Protocols for High-Speed Networks, Elsevier/North-

12

Holland, Amsterdam, 1989.

[Hehmann 89] Hehmann, D., Salmony, M., Stüttgen, H., "High-Speed Transport System for

Multimedia Applications," in Protocols for High-Speed Networks, Elsevier/North-Holland,

Amsterdam, 1989.

[Kaiserswerth 91]Kaiserswerth, M., "A Parallel Implementation of the ISO 8802.2 Protocol,"

Proceedings of the IEEE Conference on Communications Software: Communication for

Distributed Applications & Systems, TriComm ’91, Chapel Hill, NC, April 18-19, 1991.

[Kaiserswerth 93]Kaiserswerth, M., "The Parallel Protocol Engine," to appear in IEEE/ACM

Transactions on Networking.

[Kanakia 88] Kanakia, H., Cheriton, D.R., "The VMP Network Adapter Board: High

Performance Network Communication on Multiprocessors," ACM SIGCOMM 88.

[Lumley 92] Lumley, J., "A High-Throughput Network Interface to a RISC Workstation,"

IEEE Workshop on the Architecture and Implementation of High Performance

Communication Subsystems, Tucson , Arizona, Febr. 1992.

[Ramakrishnan 93]Ramakrishnan, K.K., "Performance Considerations in Designing Network

Interfaces," IEEE Journal on Selected Areas in Communications, Vol. 11, No. 2, Febr. 1993.

[Röthlisberger 92] Röthlisberger, U., "A Network for a Multimedia Communication System,"

IEEE Workshop on the Architecture and Implementation of High Performance

Communication Subsystems, Tucson , Arizona, Febr. 1992.

[Rütsche 92] Rütsche, E., Kaiserswerth, M., "TCP/IP on the Parallel Protocol Engine,"

Proceedings, IFIP Conference on High Performance Networking, Liege (Belgium), Dec. 1992.

[Rütsche 93a] Rütsche, E., "Multimedia Communication Subsystems: Architectures,

interfaces and Implementations", Ph.D Thesis ETH Zürich, Nr. 10228, VDI Verlag, Reihe 10,

Nr. 257, Düsseldorf 1993.

[Rütsche 93b] Rütsche, E., "The Architecture of a Gb/s Multimedia Adapter," ACM Computer

Communication Review, Vol. 23, No. 3, July 1993.

[Steenkiste 92a] Steenkiste, P.,"Analysis of the Nectar Communication Processor", Proc. IEEE

Workshop on the Architecture and Implementation of High Performance Communication

Subsystems, Tucson, Az, Febr. 1992.

[Steenkiste 92b] Steenkiste, P., et al., "A Host Interface Architecture for High-Speed

Networks", Proceedings IFIP Conference on High Performance Networking, Liege (Belgium),

Dec. 1992.

[Thia 92] Thia, Y.H., Woodside, C.M., "High-Speed OSI Protocol Bypass Algorithm with

Window Flow Control," 3rd. Int IFIP WG.6.1. Workshop on Protocols for High-Speed

Networks, Stockholm, May 1992.

[Topolcic 90] Topolcic, C. (Editor), "Experimental Internet Stream Protocol, Version 2 (ST-

II)," RFC 1190, Oct. 1990.

[Ulrich 93] Ulrich, R., "Untersuchungen an einem OSI-Kommunikationswerk auf Transputer-

13

basis," Dissertation, Arbeitsberichte des Institus für Mathematische Maschinen und

Datenverarbeitung der Universität Erlangen-Nürnberg, Band 26, Nr. 11, Sept. 1993.

[Zitterbart 89] Zitterbart, M., "High-Speed Protocol Implementation Based on a

Multiprocessor-Architecture," in Protocols for High-Speed Networks, Elsevier/North-Holland,

Amsterdam, 1989.

