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Abstract

We investigate the spectral efficiency achievable by random synchronous CDMA
with QPSK modulation and binary error-control codes, in the large system limit
where the number of users, the spreading factor and the code block length go to
infinity. For given LDPC code ensembles, we maximize spectral efficiency assuming
an MMSE successive stripping decoder for the cases of equal rate and equal power
users. In both cases, the maximization of spectral efficiency can be formulated
as a linear program and admits a simple closed-form solution that can be readily
interpreted in terms of power and rate control.

Keywords: Low-Density Parity-Check codes, channel capacity, multiuser detection.

1 Introduction

All points in the capacity region of the scalar Gaussian multiple-access channel are
achievable by successive single-user encoding decoding and interference cancellation (strip-
ping) [1, 2]. The Cover-Wyner capacity region was generalized in [3] to encompass the
case of CDMA with arbitrary signature waveforms. As in the scalar case, all points in the
boundary of the capacity region of the CDMA channel can also be achieved by stripping
and single-user encoding/decoding, as long as the stripping decoders incorporate MMSE
filters against yet undecoded users at each successive cancellation stage [4]. Key to the
optimality of stripping is the use of Gaussian codes of rate arbitrarily close (but not larger)
than the capacity of the channel obtained by removing the already decoded users. In this
way, optimal spectral efficiency is achieved by simple single-user coding and decoding,
with linear complexity in the number of users.

For given signature waveforms, successive stripping generally requires that every user
must transmit at a different rate, or must be received at a different SNR level. This can
be avoided by designing the signature waveforms such that the equal-rate point coincides
with a vertex of the equal-power capacity region. However, optimizing the signature
waveforms (e.g., [5, 6]) is highly impractical in real-life applications, where transmission
is usually affected by frequency selective fading channels.



On the other hand, existing nonorthogonal CDMA systems [7, 8] are largely based on
pseudo-random waveforms. The maximum spectral efficiency of randomly spread (syn-
chronous) CDMA, in the large system limit, where the number of users and the spreading
factor grow without bound while their ratio tends to a constant (3, was found in the case
of power-constrained inputs in [9, 10], and in the case of binary antipodal inputs in [11].

While in the power-constrained case capacity is achieved by Gaussian inputs, practi-
cal systems make use of discrete small-size modulation alphabets. Given its widespread
application and the fact that QPSK is optimal in the wideband low SNR regime [12] we
shall restrict our analysis to QPSK-modulated CDMA.

We consider a pragmatic approach to QPSK-modulated CDMA based on applying
single-user binary coding and the same stripping decoding approach which would be
optimal for Gaussian codes. Moreover, we constrain our system to have only a finite
number of coding rates and/or of received SNR, levels. For this setting, we compute the
achievable spectral efficiency in the large system regime with optimal (i.e., single-user
capacity achieving) binary codes and with the best known LDPC code ensembles [13],
in the limit for large code block length, in the cases of equal received SNRs or equal
rate users. The proposed equal-power and equal-rate design approaches can be effectively
applied to non-asymptotic code block length, and provide a simple tool to dimension
CDMA systems for given target BER, user codes, and desired spectral efficiency.

The rest of the paper is organized as follows. Section 2 presents the basic synchronous
CDMA AWGN model where users are grouped into a finite number of classes such that
users in a given class have the same rate and received SNR. The existing results on the
optimum spectral efficiency of the power-constrained CDMA channel are summarized in
Section 3 with particular emphasis on the finite class model. Our choice for the input
constellation is QPSK, justified on the basis of complexity and asymptotic optimality, as
shown in Section 4.1. Then, we consider the optimization of the received power profile
of the different classes in Section 4.2, assuming that the users employ equal-rate codes.
Conversely, in Section 4.5 we optimize the code rate profile assuming equal received SNR
for all users. Both problems are formulated as linear programs whose solution can be
found explicitly. Section 5 presents numerical examples of both methods when the user
codes are irregular LDPC codes found in [13].

2 Synchronous CDMA canonical model
We consider the complex baseband discrete-time channel model

y, =Sx;+mn;, i=1,...,n (1)
originated by sampling at the chip-rate a synchronous CDMA system [14], where:

1) y;,n; € CV, are the vector of received chip-rate samples and the corresponding AWGN
samples ~ N (0, 1) received at time i;



2) S € CV*K contains the user spreading sequences by columns. Spreading sequences are
proper complex, known to the receiver, with i.i.d. chips with zero mean, variance
1/N and finite fourth order moment;

3) x; € CK is the vector of user modulation symbols transmitted at time i, where its
k-th component z, ; takes on values in some signal constellation, with given average
energy per symbol E[|x; x|?], possibly different for each user;

4) N,K and n denote the spreading factor, the number of users and the code block
length, respectively.

For the purpose of system design it is convenient to consider a system formed by .J
user classes. The size of class j is K, and we denote by 3; = K;/N the “class load” of
class j. Thus, the total channel load is

J
8= Z B; users/chip.
7=1

Users in class j have the same received SNR, denoted by v;. Without loss of generality,
we assume y; < --- < ;. The total system spectral efficiency is given by

J

p=>_ BiR

J=1

where R; denotes the average rate of users in class j. The users individual Ej/Ny’s are
in general different. Nevertheless, for the sake of comparison with a reference equal-rate
equal-power system, it is convenient to define a “system” Ej,/Ny by

(@) a Xiei B
No / oys Z}'le BiR;

which coincides with the individual E,/Ny’s in the case where users are dynamically
assigned to the classes so that each user belongs to class j for a fraction 3;/f of the time.

(2)

3 Existing results on fundamental limits

In [10] the spectral efficiency (in bit/s/Hz) of random CDMA in the large system limit
(K, N — oo with K/N = [3) subject to fading with an input power constraint is found to
be

C(B,7) = C™*(8, ) + log, % + (7 1)logye 3)

where (3 2 (B1,...,0;) and 5 2 (71, - --,77), nis the large-system multiuser efficiency [14]
of the linear MMSE receiver, given by the solution of the Tse-Hanly equation [15], which
for later use we write as

n = fr(n,6s) (4)



where we define

filn,z) 2 (1+z1+] iZBH ) )

and where C™™¢(3, ~) is the achievable spectral efficiency of a system based on linear
MMSE filtering followed by single-user decoding, given by

Cmme(8, ) Zﬁj logs (1 + 1) (6)

The spectral efficiencies in (3) and in (6) are achieved with codes whose empirical distri-
butions are Gaussian.

As shown in [10], the supremum of (3) over all possible J, 3, (for a fixed E,/Ny and [3)
is achieved by J = 1 (one class only). This can be readily seen by writing the total spectral
efficiency for finite K, N and given S as < log, det(I+ SNR SA?S¥), where the k-th user

SNR is denoted by SNR |Ag|?, where L35 |A¢2 = 1 and A 2 diag(|A],...,|Axk]).
Then, we notice that, for K/N = § and assuming that the empirical distribution of the
scaling factors |Ag| converges to any fixed (non-random) distribution, the limit

1 1
dim == log, det(I+ SNR SA?SH) = lim ~F [log, det(I+ SNR SA*S™)]

K—o00

holds with probability 1 [10]. Finally, by averaging over all K x K permutation matrices
IT, by noticing that S and SII are identically distributed and by using Jensen’s inequality,
it follows from the concavity of logdet(-) on the cone of non-negative definite Hermitian
symmetric matrices that

E [log,det (I+ SNR SA?S™)] = %ZE [log, det (I + SNR SIIA’IT?S")]

< F |log,det I+—ZSHA2HHSH

= F [log,det (I+ SNR ssH)}

where the last line is achieved when all users are received with the same SNR.
The supremum over 3 is achieved for § — oo, and coincides with the AWGN single-
user capacity C*, implicitly given by

2 —1 E,
— = (7)
C Ny

The spectral efficiency C(3,-) can be achieved by single-user decoding with successive
stripping and MMSE filtering against undemodulated users. Suppose that users are de-
coded one by one, starting from users in class .J, then class J—1 and so on. Then, C(3, )



can be written as ;
Bj
CB) =3 [ o1+ () ®)
j=1"0

where 7;(z) is the solution to n = f;(n, 2). Notice that stripping of the users one by one
implies that users in the same class have different rates. Namely, the user decoded in
position | K;z/3;] of class j (where z € [0, §;]), transmits at rate log, (1 + v,;7;(2)).

4 Approaching the optimal spectral efficiency

4.1 QPSK input constellations

Information theory teaches us that one way to approach (3) is to use single-user capacity
approaching codes for the AWGN channel, successive interference cancellation and MMSE
filtering at each cancellation stage [4]. Furthermore, substantial progress has been made
in the last few years in designing binary codes and low-complexity decoders whose rate
comes fairly close to single-user capacity at vanishing BER. Among those modern codes
are Turbo codes, Repeat-Accumulate (RA) codes, and Low-Density Parity-Check codes
(LDPC), all of which are decoded by efficient iterative techniques (see the special issue [16]
and references therein). These code ensembles are characterized by rate-threshold pairs
(R,g), such that for SNR > g the BER can be made arbitrarily small in the limit of
n — oo. For carefully optimized code ensembles [17, 18, 19, 20], on the standard single-
user additive white Gaussian noise channel, the rate-threshold pairs achieved so far come
remarkably close to the curve R = Cypex( SNR), where

> —v2/2
qusk( SNR) =211-— / 10g2 (1 + 6_2 SNR—Q\/WU> 6—de (9)
- V2

is the QPSK-input AWGN channel capacity, as a function of SNR. For example, Fig. 1
shows the QPSK capacity (9) (solid curve) and rate-threshold pairs (marks) corresponding
to some LDPC code ensembles from [13].

Then, it makes sense to design CDMA systems assuming that decoding is error-free
when the decoder operates above its threshold SNR. Our goal is to find the vectors 3
and ~ so that, at each stripping decoder stage, the threshold requirement of each single-
user decoder is satisfied. We shall refer to this condition as the successive decodability
condition.

In the large system limit, under our system assumptions, it is well-known that the
residual interference at the output of the MMSE filter at any cancellation stage is complex
Gaussian with circular symmetry [21]. Assuming optimal QPSK codes characterized by
the rate-threshold pairs (R, C-L (R)), for R € [0,2], (see Fig. 1), the spectral efficiency

qpsk
achieved by a stripping decoder is given by

o0

J 5].
quSk(/Ba7) = Z/O qusk(’)/jnj (Z))dz (10)



Fig. 2 shows Cqps(3,7) and C(f3,7) (for a single-class system, i.e., J = 1) vs. [, for
Ey/No = 3 and 10 dB. The corresponding AWGN capacity C* is shown for comparison.
We notice that the loss incurred by QPSK codes with respect to Gaussian codes gets more
pronounced as Ej,/Ny increases. Although for any fixed E,/N, and sufficiently large £,
the loss vanishes, for high Ej,/N, exceedingly large values of  are required to make the
loss negligible.

The following result shows that as the system load grows without bound, QPSK suffers
no loss of optimality. The result applies to the general case where the received user SNRs
are given by SNR|A.|?, where the scaling factors |A;| have been defined in Section 3,
under the mild requirement that, as K — oo, the empirical distribution of the {|Ag|}

converges to a given non-random distribution Fja. For example, as in [10] |A;|? might
represent the fading coefficient of user k.
Theorem 1. Let
B
Co(B,SNR) :/ E[C s (|A]* SNR7(2, SNR))]d2 (11)
0
where 7(z,SNR) is the solution to
SNRJ|A|?7
E LR 12
ntz {1+SNR|A|277 (12)
where |A| ~ Fla.
Fix # and ﬁ—’; and define
Ey
CalB. 1) = Cal5, SNR) (13)
0
for the SNR satisfying
E
—Co(5,SNR) = BSNR (14)
No
E
Then, for all v 2> log, 2, .
lim Cq(f, ~2) = C* 15
Jim Co(f, 37) (15)

Proof. Fix % > log, 2. In view of the result shown in [10, Eq. 163] and since the use
of QPSK cannot improve upon the result obtained with Gaussian inputs with the same
power, it is enough to show that

) E N
Jim Co(5, ﬁf}) > C (16)

where C* is given by (7).
To show (16), we will show that for every 5 and SNR



2
Co(B,SNR) > log, (1 + BSNR) — % log, e, (17)
where E[|A|4]
Al) = U T
“UAD = Eam)e

denotes the kurtosis of the distribution of |A].
The bound in (17) will be sufficient for our purposes because if we choose the following
signal-to-noise ratio

Cr B,

SNRg = — — 18
=N (18)
then,
Ey %
Co(B,SNRg) > log,(1 + BSNRj) — n(|A|)SNRﬁ$ log, e. (19)
41
E
— log,(1 4+ —2C*) (20)
No
= (21)
Furthermore the % required by SNRg is upper bounded by
E
__PSNRs bl (22)
Cq(B,SNRg)  — log,y(1 + £C*) — eC*
E, 1
= — 23
NO 1—c¢€ ( )
for an arbitrarily small €, provided [ is large enough.
To show (17) we need the following two inequalities:
qusk(x) Z (.ZU - 1'2) loge 2 (24)
and
1
N2 o (25)
1+ ASNR
where 7 is the solution to
SNRJ|A|?n
E A g 26
o {1+SNR|A|277 (26)
To show (25) rewrite the Tse-Hanly equation as
SNR|A|*n
SNR = nSNR SNRE | ——————— 27
ISNR + [1 T SNRIA[Z7 27)

< nSNR + SNR’p (28)



where the inequality comes from E[|A|?] = 1. Inequality (24) follows from the definition
of qusk-
Now, (17) readily follows from

Co(B,SNR) = E[Cysx(JA|> SNR7(2, SNR))]dz (29)
B |A]2 SNR
> E | Copsc | ———
= /0 [O‘*pk <1+zSNR>] dz (30)
% T|A]> SNR |A|* SNR?
> E|——11 —E|————|log,ed 1
= /0 [1+zSNR] 082¢ [(1+zsNR)2] ogzedz (1)
#  SNR k(|A|)SNR?
— — " _log,ed 2
= /0 1+ 2SNR 22°7 (14 zsNR)z B2¢%° (32)
k(|A]) BSNR®
= log,(1 + #SNR) — ——— 33
0gy(1 + FSNR) 1+ ASNR 08 (33)
thus concluding the proof. O

Interestingly, the optimality of QPSK in the large § limit proved in Theorem 1 is
different in nature from its wideband optimality proved in [12]. In fact, as a consequence
of the rotational invariance of the spreading sequences, Theorem 1 also holds if the mod-
ulation is BPSK. A related result on the optimality of binary inputs in the absence of
spreading admits a very different (central-limit based) proof [3].

In the following we consider two alternative pragmatic CDMA optimization problems:
(1) equal-rate, non-uniform power, and (2) equal-power, non-uniform rate systems. We
assume that, in both cases, users in each class 7 are decoded in parallel by a bank of single-
user decoders, while classes are stripped off from J to 1, i.e., in decreasing SNR order
(for the equal-rate case) or in increasing rate order (for the equal-power case). Notice
that our approach is pragmatic in two ways: it makes use of QPSK rather than Gaussian
codes and it performs class-by-class stripping, rather than user-by-user, as implied by
expressions (8) and (10).

4.2 Optimization for equal-rate systems

We assume that users in all classes make use of codes drawn randomly and independently
from the same ensemble with rate-threshold pair (R, g). The Signal to Interference plus
Noise Ratio (SINR) at the output of the MMSE filter for class ¢ users, assuming that all
users in classes i + 1,...,.J have been perfectly canceled, is given by v;n;(/3;). Hence, the
condition for successive decodability of all users is

ni(B) > g/vi, foralli=1,..., J.

We fix the received power levels «, and consider the optimization of the class loads 3.
Without loss of generality, we assume 7, > g, since for all j such that v; < g, we would
have trivially 8; = 0. This problem can be formulated as a linear program as follows.



Because of the monotonicity in the first argument of the function in (5), and the fact that
the solution to n;(z) = f;(n;(2), 2), is unique [15] we can conclude that

V z € [0,00) r <ni(z) &z < fix,2) (34)
Accordingly, the successive decodability condition is equivalent to

i -1
Yy g .
1+ B;i——— >= Vi=1...,J (35)
( 2 flw-%) %

which can be written in compact form as
AB <b,
where A is a J x J lower triangular matrix with non-zero elements

PR G Ve TR (36)

Vi + 59
and b is a positive vector with elements

(1+9)(vi—9)
Yig

b = (37)

Notice that a;; =1, a;; (for 1 < j <) is increasing with j and decreasing with ¢ and b;
is increasing with 1.

For a desired spectral efficiency p = (R, the optimal vector B which achieves (if
possible) arbitrarily small BER with minimal (E,/Np)sys is the solution to the linear
program:

minimize Z;’Zl Bivi

subject to A3 <Db
i B> B,
B >0

(38)

given by the following result:

Proposition 1. The equation Ax = b has a unique solution with nonnegative compo-
nents 7. Furthermore, the feasible set in (38) is nonempty if and only if § < Z}']:1 T;.
The solution of (38) is given explicitly by

7, i=1,...,J—1
Br=q B8-S0 i=J (39)
0, 1=J+1,...,J

where .J denotes the minimum i for which 3 < 23:1 T;.
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Proof. See Appendix A O

4.3 Optimization for equal-power systems

In this case, we assume that the users in all classes have fixed SNR +, but users in each
class 7 make use of a different code ensemble, characterized by the rate-threshold pair
(Rj, g;). Without loss of generality, we assume Ry > --- > Ry and g; > --- > g;. ' For
example, the pairs (R;, g;) can be obtained by sampling the curve of Fig. 1 (assuming
optimal binary random codes) or by taking the points corresponding to good existing
LDPC code ensembles [13], also shown in Fig. 1. Without loss of generality, we assume
v > g1, since for all j such that v < g;, we would have trivially 3; = 0.
The successive decodability condition is given by

mwaz%ﬁmmi:anJ

which translates into .
> Bi<b, i=1,...,J (40)
7=1

with

(1+g)(v — )
V9i

using again property (34). Hence, for given rate-threshold pairs (R;,g;), the spectral

efficiency p = Z;’Zl B3; R; maximized over the class loads is obtained as the solution to the

following linear program:

b =

(41)

maximize Z;.le GiR;
subject to LB <b

S B < B,
B>0

(42)

where L is a lower triangular J x J matrix with /;; = 1 for all 7+ > j and where b =
(b1, ...,bs)T with b; given in (41). We have the following result:

Proposition 2. The problem (42) is always feasible and its solution is given explicitly

by
by —bi1, i=1,...,J—1
Br=% B-b;,, i=J (43)
0, i=J+1,...,J

where by 2 0, and J denotes the minimum i for which B < b;.

L Any good family of codes satisfies the condition that codes with larger rate have larger SNR thresh-
olds.
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Proof. See Appendix A. O

5 Numerical examples

In this section we give some examples of the equal-rate and the equal-power system designs
using various good asymptotic constructions of LDPC codes found in [13].

Equal-rate design. In Fig. 3, the curves labelled by “LDPC, R=0.2, 1.0, 1.8” are the
spectral efficiencies achieved by the equal-rate design with the LDPC codes of rate 0.2,
1.0 and 1.8 bit per QPSK symbol (corresponding to binary rate 0.1, 0.5 and 0.9), in the
family whose rate-threshold pairs are represented by the marks in Fig. 1. The equal-rate
spectral efficiency curves were obtained considering increasing values of [, and, for each
3, a vector 4 obtained by discretizing the interval [g,¥(3)] with step of 0.01 dB, where
(/) is the minimum ~y; for which the feasible set of (38) is non-empty. The single-user
capacity, C*, is shown for comparison. We notice that the variable-rate design is able to
approach quite closely C* for low R, at the price of a very large load [ and a large number
of power levels.

Equal-power design. In Fig. 4, the curves labelled by “LDPC” and “discr.QPSK” are
the spectral efficiencies achieved by the equal-power design with the LDPC code family
found in [13] with rate-threshold pairs corresponding to the marks in Fig. 1, and rate-
threshold pairs obtained by sampling the QPSK capacity curve from R = 0.05 to 1.95
with step 0.1, respectively. The fact that the "LDPC” curve does not approach the
“discr.QPSK” curve at high ﬁ—’; is due to the fact that the largest rate we used from
the LDPC code family of [13] was limited to 1.8 bits/channel use. It turns out that in
order to approach C*, it is necessary to have many different classes. Even a relatively
finely discretized distribution of rates (such as curve “discr.QPSK”) suffers some loss
away from C*. In Fig. 4 the low (E},/Ny)sys behavior of spectral efficiency is dominated
by the class with lowest coding rate (and SNR threshold). In fact, the value at which
spectral efficiency becomes zero is given by g;/R;, which is the minimum FE},/N, to have
a vanishing fraction of users at non-zero rate.

It is worthwhile to mention that the equal-power spectral efficiency curves are obtained
as the upper envelope of the solution of (42), over all v > ¢; and 3 € [0, by], i.e., for all
pairs (7, ) for which the solution (43) exists.

6 Conclusions

We considered the optimization of a canonical coded synchronous CDMA system charac-
terized by random spreading and QPSK signaling, in the limit for large number of users,
large spreading gain, and large user code block length. Such assumptions may be regarded
as “pragmatic”, in the sense that they are all motivated by today CDMA real systems.
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The CDMA system considered here has low complexity, as it assumes LDPC codes and
successive stripping with MMSE filters (excellent approximations to the MMSE filters can
be precomputed using the large random matrix design approach of [22]). Nevertheless,
the proposed optimization, driven by recent information-theoretic results, yields spectral
efficiencies remarkably close to the optimal (i.e., optimizing also with respect to the user
signature waveforms and using Gaussian codebooks).

We quantified the loss in spectral efficiency due to the use of QPSK in [zeu of Gaussian
inputs. The loss for high SNR is not as pronounced as in the single-user case and in fact
we showed that it vanishes for large channel load 3. Then, we considered two special
cases of the general rate and power allocation problem: namely, the optimization of the
received SNR distribution for an equal-rate system, and the optimization of the user rate
distribution for an equal-power system, subject to the successive decodability condition
imposed by the stripping decoder. Both problems yield linear programs that admit closed
form explicit solutions.

Our numerical results show that, from a practical viewpoint, the equal-rate system
design is more attractive than its equal-power counterpart since it can approach optimal
spectral efficiency uniformly, for all E,/Ny’s, provided that the individual users coding
rate is small. Moreover, controlling the received user SNR is much easier and closer
to today power-control schemes than allocating coding rates (and channel codes) to the
users.

APPENDIX

A Proofs

Proof of Proposition 1. A necessary condition for 3 minimizing the objective function
in (38) is that the constraint Z]. B; > [ holds with equality. Hence, without loss of
generality we rewrite (38) in the canonical form

minimize ~7(3
subject to —AB > —b

1T13 — ﬁ (44)
B=>0
The dual linear program is given by
maximize (—bT,3) [ Z ]
(45)

subject to [—A”, 1] [ Z } <~

y=>0

where « can be either positive or negative.
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From the properties of the coefficients a;; and b; we get immediately that A is in-
vertible and the vector 7 such that 7 = A ~'b has non-negative components. The vector
B € R] maximizing 178 and satisfying AB < b is 7 (this is easily shown by contra-
diction, since 7 is the unique non-negative vector 3 that makes the inequality A3 < b
componentwise tight). Hence, if 177 < 3 the primal problem is infeasible. On the other
hand, if 177 > 3 the primal problem is feasible, and a feasible point is given by (39).
In order to show that this is indeed the desired solution, we shall assume that 177 > 3
and find a feasible point for the dual problem. Then, we show that the value of the dual
problem at this point is equal to the value of the primal problem at (39).

We rewrite the inequality constraint and the objective function in the dual problem
(45) as

Ay >al—»~ (46)

and
—bly +ap (47)

The vector al — « has decreasing components. For fixed a, let K, denote the number of
positive elements of a1l — 4. It is clear from (46) and (47) that the objective function is
maximized by letting the last J — K, components of y equal to zero. We introduce the
following short-hand notation: for a vector x € R and a matrix M € R”*7, we let x,
and M, denote the K, x 1 subvector of x formed by its first K, components, and the
K, x K, submatrix of M formed by its first K, rows and columns, respectively. Then, a
feasible point for the dual problem is the vector 7 such that its first K, components are
given by

70 = a(AT) 'L, — (AD), (48)

and the remaining .J — K, components are equal to zero.
The value of the objective function (47) at this point is given by

fla) =bg(Ag) 'ya +a (8 —bg(Ay) '1a) (49)

It is not difficult to see that f(«) is a continuous and piecewise linear function of «, for
a < [y1,7s]- The assumption 177 > 3 can be rewritten as 3 — 17 A~'b < 0. Hence, for
«a > 7, for some 1 < s < J, the slope of f(«) is negative, while for a@ < ~, the slope
is positive. Therefore, the maximum of f(«) with respect to « is achieved for o = ~,
and, by definition, s is the minimum index in 1,...,.J such that Z;:l T, > B, le., s = J
defined in (39). The primal objective function evaluated at the feasible point (39) is given
by

(Y15 3%, 0,0, 0)A b+, | B—(1,...,1,0,...,0)A '
N——

S

It is immediate to see that this coincides with the dual objective function f(«) evaluated
at a = 7,. Hence, we conclude that (39) is the sought solution.



14

Proof of Proposition 2. The proof follows immediately by observing that, for 5 < b,
the program (42) can be reformulated as the .J-dimensional polymatroid program [23]

maximize 25:1 BiR;
subject to > ..o 3 <r(S), VSC {1,...,J} (50)
B >0

where the rank function r(S) is defined by
max{S}

r(S) = Z A;

~

where A; = b, —b;_y fori=1,...,J —1and A; = § —b;_,. Since (by,...,b;_,,0) is
increasing, r(.5) is submodular.
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Rate-threshold for LDPC codes with QPSK modulation
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Figure 1: Rate-threshold pairs corresponding to QPSK capacity and for some LDPC
codes from [7].
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CDMA, QPSK vs. Gaussian inputs
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Figure 2: Spectral efficiency vs. (§ for random CDMA with Gaussian and QPSK inputs
(with stripping decoder).
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Figure 3: Spectral efficiency of some LDPC codes with equal-rate design.
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Equal power CDMA
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Figure 4: Spectral efficiency of LDPC and optimal QPSK codes with equal-power design.



