
1

A Scalable Video Server:
Architecture, Design,
and Implementation

November 1994

Christoph Bernhardt, Ernst Biersack
Institut Eurécom,

2229 Route des Crêtes,
06904 Sophia-Antipolis — France

Phone: +33 93002611
FAX: +33 93002627

email: {bernhard,erbi}@eurecom.fr

I INTRODUCTION

Multimedia applications such as Video On-Demand, Tele-Shopping, or Distance Learn-
ing require a storage facility for audio and video data, calledvideo server. All these applica-
tions are very demanding in terms of storage capacity, storage bandwidth, and transmission
bandwidth. A video server must also meet the requirements that stem from the continuous
nature of audio and video. It must guarantee the delivery of continuous media data in a timely
fashion.

Since a wide range of applications requires different size video servers, a video server
architecture should be scalable. For good scalability we propose a new architecture, where
individual server nodes are grouped into aserver array. A single video is distributed over mul-
tiple server nodes, whereas each server node only stores a subset of the original video data. To
retrieve a video, all server nodes storing pieces of the original video must send their subset in a
coordinated fashion to the client.

The next section describes the scenario in which a video server will be used. Scalability
is discussed in Section III. In Section IV we talk about the design criteria for our video server
prototype and Section V illustrates its implementation

II SCENARIO

A networked video application employing stored video information, such as Video On-
Demand, resembles a client-server application [2]. A video server stores video data that can be
requested by clients connected to it via a data network. The retrieval, transmission, and render-
ing of the stored video information requires a path from the storage medium in the server to the
application in the client that preserves the continuous property of video data. Pertubations of
the continuity, as for example caused by delayed or early video frames, degrade the perceived
quality of the video.

To avoid quality degradation a certain quality of service (QoS) must be guaranteed by all
parties:

• The server has to guarantee the necessary storage bandwidth and it must guar-
antee the timely delivery of the video data to the network.

Presented at Reaitime Systems Conference,
Paris, France, January 1995, pp.63-72

2

• The network also must provide the required bandwidth. Furthermore it has to
limit the transmission delay variance (jitter) for the data.

• The client must guarantee the bandwidth from the network adapter to the dis-
play hardware. The client’s operating system must be able to meet the realtime
requirements for the video data on their way from the network to the display.

All these requirements are generally not met in today’s computing environments. Bottle-
necks in the hardware architecture and in the operating systems of PCs and workstations make
their use as clients difficult. Modern networks start to evolve that provide the bandwidth to
accommodate several concurrent video streams as well as the required resource reservation,
but there are still many questions left as to how they can be used to efficiently carry video traf-
fic. And especially conventional network file servers are not suited for storing and retrieving
video data for real time play back.

A video server stores several up to thousands of different video streams. It must be able
to service multiple up to thousands of concurrent requests for the stored streams. Thus it
requires a large storage volume that is optimized for the concurrent retrieval of large continu-
ous data files, i.e. video information [1].

The server operating system must guarantee the necessary quality of service for every
retrieved stream. This requires specialized scheduling algorithms in the server controlling the
data retrieval from the server storage.

The following sections focus on the architecture, design, and implementation of such a
video server. We only consider harddisks as storage medium. A complete design could also
incorporate solid state memory as cache for “hot data” and magnetic tape or optical disks as
tertiary storage. However, it is expected that hard disks will still have the lion’s share in the
storage and retrieval of continuous data.

III VIDEO SERVER ARCHITECTURE AND SCALABILITY

A video server architecture must be scalable with respect to the number of streams that
can be serviced concurrently and with respect to the amount of material stored. A single server
node is limited by its system bus bandwidth. If the demand for bandwidth exceeds this bus
bandwidth further adding of disk bandwidth does not yield any improvement and instead new
server nodes have to be added. Traditionally all server nodes are autonomous and independent.
We propose a new architecture where the server nodes are configured into aserver array.

Such an array works similar to a disk array. As opposed to the autonomous video server,
a server node is not storing an entire stream. Instead, a single stream is distributed over several
server nodes of the server array. Each server node only stores asubstream of the original
stream. To make use of a server array, clients must be able to handle multiple substreams. The
clients are responsible to split a stream into substreams for storage and to re-combine the sub-
streams during the retrieval of a stream.

The next section compares how both server types, the autonomous and our server array,
perform when a new server node is added to scale to increased demand for bandwidth.

III.1 Growing demand for storage bandwidth

A growing demand for bandwidth cannot simply be met by adding more disks. New
disks provide more raw disk bandwidth, but there are design limits that impose an upper limit
on the maximum, concurrently usable disk bandwidth. One of these limiting factors is the sys-

3

tem bus of the server; another could be the CPU.

To overcome the limited bandwidth, additional autonomous servers must be added in a
traditional video server configuration. The simple duplication of resources creates problems.
Since each autonomous node stores entire streams, it must be decided which streams are to be
stored on which server. Whenever a new server is added a new distribution across all autono-
mous servers must be found. Whereby the distribution must be constructed in order to avoid
load balancing problems resulting inhot spot servers. Such a hot spot server is a server that
stores streams that are more frequently requested than others. It will be higher utilized than
other servers that store less popular streams. Eventually, a hot spot server will be overloaded
and unable to accept new requests for service while other servers are still available. The only
escape from this situation is to duplicate popular streams on more than one server. But with
duplication precious storage volume is wasted. Another principal problem is that the popular-
ity of streams might not be known in advance. To adapt to the changing demand for individual
movies, complex on-line data reorganization is needed [3].

The server array scales easier in that just another server node is added. The distribution
of the substreams must be re-organized once after adding the node to take advantage of the
added bandwidth and capacity. During operation of the server, load balancing is provided auto-
matically analogous to disk striping in disk arrays. Each stream is distributed over several
server nodes. During storage or retrieval of a stream all server nodes involved are equally uti-
lized. The load balancing is optimal if each stream is distributed over all server nodes. In real-
ity, for ease of maintaining the server array, it might be necessary to store streams only on
subsets of server nodes. However, to achieve optimal conditions again, it is still possible to do
a complete reorganization off-line. The heuristic for determining subsets of server nodes is still
open and for further research.

ATM-
switch

Client

Client

Client

Client

autonomous
server node

autonomous
server node

autonomous
server node

disk-
array

...

...

...

Figure 1: Autonomous Server

4

Fig. 1 and Fig. 2 give an example for a situation where two videos are retrieved from a
video server. In Fig. 1 the traditional video server architecture is used. The two videos happen
to be stored on the same server. It is clear that this server and also its net connection are hot
spots in the overall server configuration. In Fig. 2 our new architecture is depicted. The two
videos are distributed over all nodes of the server array. All servers contribute an equal share to
the overall effort of retrieving the videos. The load is balanced uniformly.

IV THE DESIGN OF A PROTOTYPICAL VIDEO SERVER FOR VIDEO ON-DEMAND

Since our video server is organized as a server array consisting of several server nodes,
each video consists of a sequence of frames that are striped over all server nodes.

IV.1 Block types

In such a design the following types of blocks exist (c.f. Fig. 3):

• Disk blocks defining the unit of storage and retrieval of the data from a disk

• Network blocks, defining the unit of network transfer

• Striping blocks defining the number of contiguous frames that is entirely stored
on a single server node.

The size for each of the three block types is a design parameter that must be chosen in
trading-off various aspects:

The disk block size is chosen trading-off buffer requirements vs. available/achievable
disk bandwidth/throughput: Each server needs to provide a buffer large enough to hold one

ATM-
switch

Client

Client

Client

Client

disk-
array

server node

server node

server node

...

...

...

server array

Figure 2: Server Array

5

disk block. The retrieval time of a disk block is the sum of a (1) variable seek time, the (2) rota-
tional latency and the time to (3) transfer the disk block. (1) and (2) are independent of the
amount of data transferred per block-retrieval and constitute the incurred overhead when read-
ing a block. To reduce the overhead one must choose the disk block size as large as possible.

Thenetwork block size is determined either by the (1) available transmission rate or the
(2) buffer space available at the client. There are different ways of transmitting the data: The
data are sent (continuously) in small network blocks at a rate equal to the rate at which they are
consumed at the receiver, or the data are sent as large blocks in periodic bursts, with the burst
transmission rate being higher than the average consumption rate (c.f. Fig. 4; the different

frame sizes indicate the case where a VBR coding scheme is used for the video information).

.

. .
.

. . .
. . .

. . .

. . .

Striping Block

Disk Block

Server Node

Server Node

Server Node

Figure 3: Striping Blocks and Disk Blocks

Server Node

Server Node

Individual Frames

Batch of Frames

NETWORK BLOCK = FRAME

NETWORK BLOCK = BATCH OF FRAMES

Network Block
Consumption Period

Frame Consumption
Period

Figure 4: Network Block

6

The client must be able to buffer (at least) one network block. Therefore, the “kind” of trans-
mission determines the size of the buffer required.

Thestriping block size determines the synchronization required among the server nodes
and influences the buffer requirement at the client.

IV.2 Client

The client coordinates the playback of the video. All server nodes involved in the play-
back of the video need to be synchronized (sub-stream synchronization). This synchronization
can be performed once at the start of the movie or continuously during playback. Substream
synchronization is not sufficient since the endsystem and the network introduce delay jitter.
The client must restore synchronization by using additional buffers.

IV.3 Metaserver

Any kind of file server must have information about the data stored, such as file name,
location, size, and type. In the case of a video server there is additional information such as
frame rate, resolution and possibly some descriptive information about the video. In our archi-
tecture, this meta information is stored in a two-level hierarchy. A dedicated centralized meta
server keeps all information associated with the complete video, such as name, frame rate, and
resolution as well as information about which nodes of the server array store sub-streams of a
given video. The individual server nodes only keep meta information concerning sub-streams,
such as their location on the disks of the node.

The meta server provides clients with a directory service and mapping service for the set
of videos stored in the entirety of a server array. This frees the client from knowing about the
number of server nodes or the distribution of a given video in a server array.

V IMPLEMENTATION

We have implemented a first prototype of the video server in our lab. The prototype con-
sists of a set of UNIX workstations for the server nodes, meta server, and clients that are con-
nected via a Local ATM switch and via Ethernet (c.f. Fig. 5). Each server node has a dedicated

disk for video storage. The clients are equipped with a Parallax video card for video decom-

ATM-
server node

...

server node

...

server node

...

(e.g. Ethernet)

Client

Client

Client

-Switch

Meta-Server

Figure 5: Configuration of the Prototype

7

pression and rendering. The meta server is implemented on a separate workstation.

V.1 Block Sizes

In our implementation,

• a striping block corresponds to one video frame

• a network block contains one striping block

• a disk block contains multiple striping blocks.

The size of a video frame depends on the video coding. We use motion JPEG coding pro-
vided by the Parallax video board. In JPEG, the size of a coded frame depends on the contents
of the frame (variable bit coding). We typically used “Quarter PAL” resolution (comparable to
VHS quality) which resulted in compressed frames of about 10-14 kByte size.

The disk block size depends on the characteristics of the disk. Trading off buffer size
against average seek overhead per byte, we chose the disk block size to be equal to the amount
of data that fits onto one cylinder. Therefore, with a Micropolis 4110 AV disk we used a disk
block size of 450 kByte.

V.2 Protocol Issues

When a client wants to replay a video, it contacts first the meta server to get information
about the available videos (c.f. Fig. 6; the control streams are indicated by dashed lines, the

data streams by thick solid lines). The client then chooses a video and transmits its request to
the meta server. Based on the video selected, the meta server determines which server nodes
that store parts of this requested video. Since it is not guaranteed that all server nodes are able
to accept the request, we use atwo phase commit protocol: All server nodes involved are noti-
fied by the meta server. Each server node then tries to allocate the resources for the playback. If
successful, the meta server receives an acknowledgment from each server node. The meta
server informs the client that all server nodes are ready. Before the video can be transferred,
the client must set-up a data connection to each of the server nodes and synchronize the start of
the replay:

• The client sends an Adjust Request (ARequ) to all server nodes

A

B

C

Meta server

Client

ServerServerServer

A: Directory Service & Session Handling

B: Session Handling

C: Video Transmission & Stream Control

Figure 6: Protocol Model of the Prototype

8

• Each server node replies with an Adjust Response (AResp) containing a time
stamp derived from its local clock.

• At reception of aAResp, the client stamps theAResp with another time stamp
derived from its local clock.

• Using the time stamp, the client computes the start time for each server node
expressed in the servers local time. Each server node will then replay his sub-
stream at a fixed rate equal to the consumption rate of his sub-stream by the cli-
ent. In the current implementation there is no mechanism to resynchronize
between sub-streams during replay.

V.3 Server Implementation

The two main activities of the server are the retrieval of the data from the disk and its
transmission over the network. The two activities are implemented by 2 processes, theDisk
Managerand theStream Manager(c.f. Fig. 7).

The Disk Manager works under the control of the Stream Manager. Both processes com-
municate via a Shared Memory pool for the data and a Message Queue for the commands. For
every stream that is retrieved, two disk block worth of buffer are allocated in Shared Memory.
The data from one buffer, which was previously filled by the Disk Manager, is read out and
continuously transmitted by the Stream Manager. In the meantime, the other buffer is filled by
the Disk Manager.

The Stream Manager has a scheduler that ensures the continuous playout of the video
data. The scheduler operates in fixed scheduling cycles of 40 ms: For each substream, the
scheduler computes in each cycle how much data must be sent.

V.4 Client Implementation

The client receives the sub-stream data, puts the data in the correct order and displays the
data at a fixed rate. The incoming data are put into a buffer (Frame Queue) before they are dis-
played (c.f. Fig. 8). The buffer is needed to compensate for jitter in the network and the end
stations. The streamhandler passes the frames on to the Parallax card, which decompresses and

Disk Manager

...

...

SHARED MEMORY

PIPES ...

Scheduler

...

Stream Manager

Network Access

Video Video Video
Scheduled
Videos Video Video Video

Video Video Video

Serviced
Videos

Stored
Videos

Disk

Sub-
Stream

Sub-
Stream

Sub-
Stream

Meta-
Stream

Figure 7: Server Implementation

9

displays the frames.

VI CONCLUSION

The character of continuous media streams influences the design of video servers:

• Continuity: A scheduler mustperiodically retrieve data from disk and transmit
them to the client. The server needs to performadmission control for newly
arriving requests to ensure that the already existing streams can be served as
promised.

• High Volume: A single video stream has a data rate of 1 Mbit/s or more and is
typically replayed sequentially. The video server can choose a disk layout where
larger amounts of data (one disk block) are stored consecutively, so that they
can be read within a single disk operation, thus minimizing the overhead for
reading from disk. When choosing the size of the disk block we must trade off
buffer requirements (at server or client) and achievable disk throughput.

We have been able to implement a prototype video server on top of an existing worksta-
tion and operating system. For the data layout on the disk we could circumvent the existing
Unix file system using “raw disk I/O” onto a dedicated audio/video disk. The different streams
are served in 40 ms intervals, which corresponds in our scenario to the highest possible frame
rate of a video of 25 frames per second.

As expected, we encountered some problems using the existing Sun operating system. In
Sun OS the granularity of timer events is limited by the system clock of 100 Hz. Thus, timer
events can only be scheduled with a granularity of 10 ms. In the worst case, a delay of full 10
ms is introduced into our stream scheduler timing, which amounts to 25% of its normal sched-
uling interval.

Another shortcoming concerns the dynamic priority computation and the extensive
blocking of interrupts that is used in some parts of the system. Both lead to unforeseeable
delays in servicing timer and I/O events resulting in jitter and loss of network data. With low
speed networks like Ethernet and conventional applications that use a transport protocol like

User Interface

Pipes

...

Stream Manager

Video

Frame Queue

...

Frame Queue

...
...

Serviced
Videos

Video
ParallaxParallax

Streamhandler Streamhandler

Server
Socket

Server
Socket

Server
Socket

Server
Socket

Meta-
Stream

Figure 8: Client Implementation

10

TCP the existing hardware buffers in the OS are sufficient to buffer all incoming data during
delays in application level I/O handling. With ATM high speed networks and continuous
media applications that cannot use flow control this is not true any more. Hardware buffers are
exhausted within very short periods of time and newly incoming data is then lost. This is espe-
cially bad for continuous media applications where the old data stored in the buffers is often
not valid anymore, since from the application’s perspective it is already delayed too much to be
of any use. It would suite this scenario better to discard old data and to buffer newly arriving
data.

Another shortcoming of the operating system forced us to implement the server in two
processes that use shared memory to communicate. To avoid the complicated shared memory
handling and the overhead of context changes, a better solution would have been to use threads
that operate on the same address space. The use of threads is not possible in Sun OS (below
Version 5 at least) since libraries are not re-entrant.

In the future, we will extend our prototype to use FEC for the transmitted audio/video
information. This should give the server array a fault tolerance comparable to what has been
achieved with disk arrays.

VII REFERENCES

[1] C. Federighi, L. Rowe, “A Distributed Hierarchical Storage Manager for a Video-on-
Demand System,” Storage and Retrieval for Image and Video Databases II, IS&T/SPIE
Symposium on Elec. Imaging Sci. & Tech., San Jose, February 1994

[2] Thomas D.C. Little, D. Venkatesh, “Prospects for Interactive Video-on-Demand,” IEEE
Multimedia, Vol. 1, No.3, 1994, pp. 14-24

[3] P. Lougher, D. Shepherd, D. Pegler, “The Impact of Digital Audio and Video on High-
Speed Storage,” Proceedings of the 13th IEEE Symposium on Mass Storage Systems,
June 1994, pp. 84-89

