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Abstract. This paper focuses on the formal assessment of the properties of 
cooperation enforcement mechanisms used to detect and prevent selfish behavior of 
nodes forming a mobile ad hoc network. Taking as a reference the CORE mechanism 
introduced in [9], we present two alternative approaches based on game theory that 
provide a powerful analytical method to study cooperation between self-interested 
players. We demonstrate that the formation of large coalitions of cooperating nodes is 
possible only when a mechanism like CORE is implemented in each node. Game 
theory also provides further insight to features of CORE such as the convergence 
speed to a cooperative behavior. 
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1. Introduction 
An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the 

support from any established infrastructure or centralized administration. In such an environment, it may be 
necessary for one mobile host to enlist the aid of other hosts in forwarding a packet to its destination, due to 
the limited range of each mobile host’s wireless transmissions. Indeed, as opposed to networks using 
dedicated nodes to support basic networking functions like packet forwarding and routing, in ad hoc 
networks these functions are carried out by all available nodes in the network.  

However, there is no good reason to assume that the nodes in the network will eventually cooperate, 
since network operation consumes energy, a particularly scarce resource in a battery powered environment 
like MANET. The lack of cooperation between the nodes of a network is a new problem that is specific to 
the ad hoc environment and goes under the name of node selfishness. A selfish node does not directly 
intend to damage other nodes by causing network partitioning or by disrupting routing information (mainly 
because performing these kinds of attacks can be very expensive in terms of energy consumption) but it 
simply does not cooperate to the basic network functioning, saving battery life for its own communications. 
Damages provoked by a selfish behavior can not be underestimated: a simulation study available in the 
literature [8] shows the impact of a selfish behavior in terms of global network throughput and global 
communication delay when the DSR [7] protocol is used. The simulation results show that even a little 
percentage of selfish nodes leads to a severe degradation of the network performances. 

Several mechanisms that detect and prevent a selfish behavior are available in the literature [10, 11, 12, 
13, 14]: we take as a reference the CORE [9] mechanism. In CORE, node cooperation is stimulated by a 
collaborative monitoring technique and a reputation mechanism. Each node of the network monitors the 
behavior of its neighbors with respect to a requested function and collects observations about the execution 
of that function. If the observed result and the expected result coincide, the observation takes on a positive 
value, otherwise it take s on a negative value. Based on the collected observations, each node computes a 
reputation value for every neighbor. The formula used to evaluate the reputation value avoids false 
detections (caused for example by link outage) by using an aging factor that gives higher weight to past 
observations: frequent variations on a node behavior are filtered out. Furthermore, an indirect reputation 
value can be granted to those nodes that are not within the radio range of the monitoring node and whose 
contribution to the network operation can be verified based on an acknowledgement mechanism such as the 
Route Reply message of the DSR protocol. Only positive ratings are assigned as part of the indirect 
reputation mechanism. The CORE mechanism resists to attacks performed using the security mechanism 
itself: no negative ratin gs are spread between the nodes  so that it is impossible for a node to maliciously 
decrease another node's reputation. The reputation mechanism allows the nodes of the MANET to 
gradually isolate selfish nodes: when the reputation assigned to a neighboring node decreases below a pre-
defined threshold, service provision to the misbehaving node will be interrupted. Misbehaving nodes can, 
however, be re-integrated in the network if they increase their reputation by participating in the network 
operation. 

We suggest a n original approach based on an economic model in order to formally assess the security 
features of a cooperation enforcement mechanism such as CORE. In this model, service provision (e.g. the 
execution of the packet forwarding function) preferences for each node are represented by a utility 
function. The utility function quantifies the level of satisfaction a node gets from using the network 
resources. Game -theoretic methods are applied to study cooperation under this new model. Game theory is 
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a powerful tool for modeling interactions between self-interested users  and predicting their choice of 
strategy. Each player in the game maximizes some function of utility in a distributed fashion. The games 
settle to a Nash equilibrium if one exists, but, since nodes act selfishly, the equilibrium point is not 
necessarily the best operating point from a social point of view. 

In this paper we propose two methods to evaluate the effectiveness of the CORE mechanism based on a 
cooperative game approach (presented in section 2, also adopted in [5]) and a non-cooperative game 
approach (presented in section 3). 

2. Cooperative games approach 
In an attempt to explain cooperation and coalition formation, most theoretical models use a two-period 

structure as introduced in [5]. Players must first decide whether or not to join a coalition. In a second step, 
both the coalition and the remaining agents  choose their behavior non-cooperatively. A coalition is stable if 
no agent has an incentive to leave2. Simulations presented in [23, 26, 27] have shown that, although there is 
cooperation, the coalition size is rather small.  

In this paper we suggest an approach based on a preference structure as defined by the ERC-theory [4]. 
This theory explains most of the behavior of agents observed in diverse experiments but deviates little from 
the traditional utility concept. The utility of an agent is not solely based on the absolute payoff but also on 
the relative payoff compared to the overall payoff to all agents . Given a certain relative payoff share, the 
utility is strictly increasing in the own absolute payoff of the agent. Given a fixed absolute payoff, the agent 
is best off when receiving just the equal (fair) share. To both sides of this equal share, i.e. when receiving 
less or more than the fair amount, utility is lower, even if the absolute payoff does not change3. 

We first study a symmetric N-node prisoner’s dilemma (PD) game in which the agents have only two 
options available — cooperate or defect. We analyze Nash-equilibrium when agents’ preferences can be 
described by ERC, i.e. players value both their absolute and their relative payoff. In particular, we look at 
the number of agents who play cooperatively. We show that non-cooperation is always an equilibrium, 
since — if no other node cooperates — a node would maximize its absolute payoff and receive the equal 
share by choosing to defect. Additionally, however, there may be Nash-equilibrium in which nodes 
cooperate: if, for example, the rest of the agents play cooperatively, a player can get the equal share by 
choosing to cooperate as well. Hence, if it values its relative payoff being close to the equal share more 
than its absolute payoff, it will choose to complete the grand coalition. Clearly, partial cooperation can also 
occur, whereby some nodes cooperate while others defect. For such equilibrium, we show that the number 
of cooperating nodes  is rather large: since cooperation leads to a lower absolute payoff, for a node to 
choose to cooperate, playing cooperatively must move it closer to the equal share than defecting would. As 
we show, this can only be the case if at least half of the nodes  cooperate. This result contrasts with the 
standard result presented in [23] which states that the coalition size is rather small.  

Note, however, that in the prisoner’s dilemma, the nodes  have only the discrete choice of cooperating or 
defecting, but with respect to the cooperation enforcement problem, the nodes of an ad hoc network might 
choose their cooperation level4 continuously. We therefore introduce a symmetric continuous cooperation 
game based on the ERC preference structure. An interesting finding of this analysis is that ERC alone 
cannot improve upon the non -cooperative Nash-equilibrium with standard preferences in which only the 
absolute payoff matters to a node.  

A further refinement of the cooperative approach consists of a combination between the ERC 
preference structure and the two-stage coalition formation method. In contrast to the traditional models 
from the game theory literature, the ERC prefe rence structure allows coalitions to involve a rather large 
fraction of players . Furthermore, this model allows for a precise characterization of conditions under which 
even a grand coalition can be obtained. 

2.1. The preference structure 
Our analysis relies on a preference structure in which players, along with their own absolute payoff, are 

motivated (non-monotonously) by the relative payoff share they receive, i.e. how their standing compares 
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to that of others. We use the ERC model presented in  [4] and enhance it with a complete information 
framework. Let the (non-negative) payoff to node i be denoted by yi , i, . . . , N, and the relative share by 
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2.2. The prisoner’s dilemma 
In this section we study a simple symmetric N-node prisoner’s dilemma where each mobile node can 

cooperate, ‘c’, or defect, ‘d’. In terms of the node misbehavior problem, this means that the node either 
correctly executes the network functions or it doesn’t.  

Let the total number of cooperating nodes be denoted by k . For any given k , the payoff to a node is 
given by B(k ) if the node defects (tries to free-ride). If a node plays cooperatively, it must bear some 
additional costs C(k ). Its payoff is therefore given by B(k ) - C(k). We assume decreasing marginal benefits 
for a node if the number of mobile nodes rises, i.e. B(k ) is increasing and concave. Furthermore, the total 
cost of cooperation, kC(k ), increases in k . 

In order to generate the standard incentive structure of a PD game, we make the following assumption. 
 
Assumption 1. PD structure:  B(k+1) - B(k) < C(k+1) 
 
Assumption 1 implies that playing cooperatively reduces the absolute payoff, given an arbitrary number 

of ‘c’-nodes. To make cooperation more attractive from both the social and the individual point of view, we 
make the following assumptions: 
 

Assumption 2. “Socially desirable”: )()()1()1()1( kkCkBNkCkkBN −⋅≥++−+⋅    (1) 
 

Assumption 3. “Individually desirable”: )()()1()1( kCkBkCkB −≥+−+    (2) 
 

Furthermore, we assume that payoffs for both cooperating and defecting nodes are non-negative for all 
k . 

The reputation measure introduced in [9] is compliant with the incentive structure given by (1) and (2). 
Cooperation is made attractive from an individual point of view because the cost of participating to the 
network operation is compensated with a higher reputation value, which is the pre-requisite for a node to 
establish a communication with other nodes in the network. On the other hand, when the number of 
cooperating nodes increases, the cost for participation is compensated by a more connected network that in 
turn increases the benefit of cooperation. 

Section 2.6 provides a detailed description of the interactions between the reputation mechanism 
implemented in CORE and the cooperative game model presented throughout this paper. 

2.3. The Nash equilibrium 
In the following section we analyze the Nash equilibria in the one shot PD game under the assumption 

that all the nodes joining an existing network choose simultaneously. Assume that k  nodes, aside from node 
i, play cooperatively. Then node i chooses to play ‘c’ if and only if: 
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This is equivalent to node i playing ‘c’ if and only if: 
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In order to choose ‘c’ the node must be overcompensated for the loss in absolute gain by mo ving closer 

to the average gain. 
The general conditions for a Nash equilibrium of a ERC-PD game [4] of N nodes whereby the number 

of cooperating nodes is k* can be used to study expression (4): 
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Conditions (5) and (6) can be used to evaluate the number of nodes k* that may possibly cooperate in a 

Nash equilibrium.  On one hand, as long as 0)1*( <−kδ , there is no chance of having a coalition of size k* 

because )1*( −> k
i

i δ
β
α  for all types and condition (5) cannot hold for any node. On the other hand, the 

conditions for a Nash equilibrium given by (5) and (6) imply that if 0)1*( >−kδ  then there are types 
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α  of nodes such that k* nodes cooperate and N-k* nodes free-ride. Note that for a given 

distribution of ERC-types, 0)1*( >−kδ  is a necessary condition but it is not sufficient to get a coalition size 
of k*. For a given payoff structure with 0)1*( >−kδ , however, there exist ERC -types such that k* is the 
equilibrium for any coalition size. 

 
In order to find feasible coalition sizes, we must therefore study conditions under which ( )kδ  is 

positive.  
 

Note that in (4) the denominator of )(kδ  is positive due to assumption 1. The sign of the numerator, 
however, depends on the number k  of cooperating nodes.  

For k=0 the sign of the numerator is negative, since 
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For k=N-1 the sign of the numerator is positive, since 
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Therefore, )1(0)0( −<< Nδδ  and no nodes unilaterally cooperate whereas all nodes playing ‘c’ can 

establish an equilibrium, provided that all nodes’ types 
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In general, there are equilibria where only a certain number k* of nodes cooperate. The crucial point is 
to find whether or not the numerator is positive. Remember that we previously assumed that 
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It is necessary, in order to obtain 0)( >kδ , that a node choosing ‘d’ further deviates from the equal share 
(1/N) than by playing ‘c’,  i.e.:   
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It is possible to show that inequality (7) is satisfied for k>N/2 5. 
Assumption (1) and (2) imply that the condition  0)( >kδ  is necessary (but not sufficient) to state that, 

for any given vector of types, if a node plays ‘c’ at the equilibrium, then at least half of the nodes 
cooperate.  
 
Proposition 1. For any given payoff structure of the PD game with ERC preferences, there is always an 
equilibrium in which all nodes defect.  

Proposition 2. Given Assumption 1 and Assumption 2, there is a Nash equilibrium where at least N/2 
nodes cooperate. 

Based on proposition 2, if there is a coalition of cooperating nodes then it is rather large.  
 

2.4. The cooperation game  
In section 2.3, we assumed that nodes only have only a discrete option as to whether to cooperate or not. 

Now, we turn to cooperation games where nodes can continuously choose their cooperation levels. ERC 
alone cannot improve upon the non-cooperative Nash-equilibrium with standard preferences whereby only 
the absolute payo ff matters. However, introducing more structure to the game, i.e. if nodes play a coalition 
game, ERC may yield a rather large coalition size or even support the grand coalition. 

Let the number of nodes again be denoted by N. We define the cooperation level qi ( [ ]1,0∈ ) as the 
fraction of packets (both data and routing packets) that node i forwards to its neighboring nodes or to the 
destination node. Each node must choose its cooperation level qi (i = 1,…, N). Cooperation induces some 
costs C(qi) that are assumed to be increasing and convex in the cooperation level ( ( ) ( ) 0,0 >′′>′ CC  ). 
Cooperation also yields some benefit  B(Q)  in terms of network connectivity and aggregate cooperation 
effort made available by cooperating nodes, where ∑=

i

iqQ denotes the aggregate cooperation level. 

Benefits from cooperation are increasing and concave, ( ) ( ) 0,0 <′′≥′ BB . The payoff to a node is therefore 
determined by: )()( iqCQB − . 

2.4.1. Nash equilibrium in the one shot cooperation game 
We again analyze the Nash equilibrium when nodes act simultaneously. Node i chooses  qi to maximize  

its utility function )()( iiii ryu σβα + , where: 
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By choosing qi, each node determines  its own cooperation costs and the benefits from cooperation. The 
choice of qi also impacts the payoff of the remaining nodes that in turn is fed back to the node’s own utility 
through the relative payoff. The first order condition6 is therefore given by: 
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The first order condition can rewritten as: 

                                                 
5 The proof of this affirmation is given in Appendix 1. 
6 The first order condition corresponds to the identification of the singularity points of the utility function, i.e. finding the roots of the 
first order derivative of the utility function. 
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The reaction of node i to a given cooperation strategy for the rest of the network can be calculated from 
this first order condition. Let us first study the two extreme cases, ai=0 and ßi=0, respectively. 

 
• For ßi=0, i.e. an absolute payoff maximizer, the first order condition reduces to: 

( ) ( ) 0=′−′ iqCQB . 
 

• For ai=0, the node is solely interested in getting the equal payoff share. Thus, it would choose 
qi to satisfy: ( )∑=

j
ji qCqNC )( . 

• For ai, ßi?0 the chosen cooperation level is between the levels for those extreme cases. 
 

In the Nash equilibrium, the first order condition must be satisfied for all nodes simultaneously. Since 
( ) 01 =′ Nr , it follows that there is a symmetric equilibrium where all nodes choose the same cooperation 

level, i.e. s i = 1/N for all types ai/ßi, for i = 1, . . .,N. The resulting cooperation level q* is given by the 
condition:  ( ) ( ) 0** =′−′ qCNqB .  

This situation is equivalent to a Nash equilibrium whereby agents are only interested in their absolute 
payoff (ßi=0) such as the Nash equilibrium in the PD game where all nodes defect. This is the unique 
equilibrium, assuming that, for at least one node, ai is greater than 0. 
 

We can summarize this result in the following proposition: 
 

Proposition 3. (Cooperation game) In the cooperation game for ERC preferences, the equilibrium is given 
by ( ) ( ) 0** =′−′ qCNqB . It is unique as long as at least one node draws utility from its absolute payoff (ai>0). 

 
Sketch of proof. Let us prove by contradiction (reductio ad absurdum) that there is an asymmetric 
equilibrium, i.e. some nodes receive less, and others  more than the equal share. In this case, on the one 
hand, s i < 1/N implies that ( ) 01 >′ Nr , so from equation (8), we obtain ( ) ( ) 0>′−′ iqCQB (8a). On the other 
hand, for s i > 1/N we have ( ) 01 <′ Nr , and therefore equation (9) implies ( ) ( ) 0<′−′ iqCQB  (9a).  
Inequalities (8a) and (9a) imply that a node which gets more than the equal share has larger marginal 
cooperation costs ( ( )iqC′  ) than nodes that receive less, which contradicts the assumed payoff 
distribution.  
Hence, only symmetric equilibrium exists. If ai>0 for at least one node, we get ( ) ( ) 0=′−′ qCNqB from 
equation (8).  
 
Introducing ERC preferences, therefore, does not increase the cooperation effort chosen by the nodes. It 

does not even change the equilibrium cooperation levels. In contrast to the (discrete) prisoner’s dilemma, 
ERC does not add any equilibrium in which there is more cooperation effort. The existence of equilibrium 
in the PD game that mimics cooperative behavior, therefore, only arises in the presence of discrete action 
sets. Having a continuous decision variable, ERC does not change the set of equilibrium. The reason is that 
ERC does not establish a preference for being cooperative, but for being similar to other nodes  with respect 
to the payoff. 



2.5. Coalition formation in the cooperation game 
We now turn to the two-stage game as introduced in [5]. Let us again assume that all nodes are identical 

with respect to their payoff function (i.e. they use the same definition of utility function). In a first stage, 
nodes decide whether or not to join the coalition. By the principle of “rationality”, each node is assumed to 
know the decisions of the other nodes. The cooperation levels (i.e. the strategy) that will be chosen in the 
second stage depend on whether the nodes take part in the coalition or not. The coalition thereby 
maximizes its collective benefits and plays against the nodes  that don’t take part in the coalition, which 
simultaneously maximize their individual utility. 

We first study the case of nodes that have identical ERC-types. We demonstrate that within the 
coalition formation game, ERC-preferences can enforce cooperation and even result in the grand coalition. 
We then look at the case of heterogeneous ERC-types. By studying the extreme scenario of nodes  that are 
solely interested either in their absolute payoff or in equity, we will explore the effects of the existence of 
some equity-oriented nodes in the network. 

2.5.1. Cooperation of identical ERC-types 
We will now solve the coalition formation game backwards, that is, for any coalition size k , we first 

study the first order conditions for the choice of the cooperation level inside and outside the coalition. 
Then, in the second step, the equilibrium coalition size is determined by a stability condition. This means 
that in the equilibrium, k  must satisfy the condition that there is no incentive to leave the coalition7. 

For standard preferences (using ERC-preferences this results  in the special case ß=0), the game theory 
literature shows that the coalition size is rather small. Using ERC preferences, however, the number of 
nodes  within a coalition can be much higher in equilibrium.  

Instead of solving the game in general, we will show that if nodes only value the relative payoff high 
enough, i.e. a/ß is below a certain bound then even the grand coalition can be stable. 

The first order condition for nodes outside the coalition (S ) is given by (10), whereas the cooperation 
strategy of nodes that take part in the coalition is chosen by maximizing the utility function of a 
representative member: indeed all nodes within the coalition S select the same strategy qs since they are 
assumed to be of the same type. This implies that all members of the coalition have identical absolute 

payoff ( )()( SS qCQBy −= ) and relative payoff ( 
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• For nodes that do not belong to the coalition S we know from section 2.4 that if Nj 1)(><σ for 

Sj ∉  then ( )jqCQB ′<>′ )()( .  

• Analogously, for the coalition, we obtain from (10) and (11) that if NS 1)(><σ  then 
( )SqCQBk ′<>′ )()( 8. Since ( )QBkQB ′>′ )( 9, the first order conditions imply that for nodes  within the 

coalition NS 1≤σ and thus: ( ) ( )SqCQBk ′≥′ . To prove that inside the coalition NS 1≤σ , assume 
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coalition. 
8 Assuming that NS 1>σ then ( ) 0<′r and (11) implies ( )SqCQBk ′<′ )( . 
9 For k=2. 



to the contrary that NS 1>σ and that Nj 1<σ for some nodes j outside the coalition. 

Inequalities (10) and (11) imply that ( ) ( ) ( ) ( )Sj qCQBkQBqC ′<′<′<′ which contradicts the 

assumption of increasing and convex cooperation costs. 
 
Inequalities (10) and (11) can be used to show the following proposition: 
 

Proposition 4. (Coalition game) In the symmetric coalition game for identical ERC preferences (type a/ß), 
the grand coalition is stable if a/ß is sufficiently small, i.e. nodes are interested enough in being close to the 
equal share. 

Note first, that within the grand coalition, the cooperation level satisfies the condition ( ) ( )** qCNqBN ′=′ , 
independently of the ERC-types  and nodes that receive the equal share.  

If node i leaves the coalition (k = N - 1), then from the first order conditions we obtain: 
 
( ) ( )[ ] ( ) ( ) ( )[ ]iSiSiS qqNBqCqCqqNBN +−′>′≥′≥+−′− 111       (12) 
 
Let us now look at the cooperation levels that would result if the ERC-type a/ß goes to zero. In this 

case, nodes get more and more interested in getting their equal share, and their cooperation levels will 
converge: in the limit iS qqq ==~ . However, in the limit, inequality (12) still must hold, i.e. 
( ) ( ) )(1 qCNqBN ′≥′− .  

In the limit the absolute payoff of a node leaving the coalition is smaller than within the grand coalition, 
whereas the relative payoff is the same, i.e. ( ) ( )qCQBN ~~ ′>′ .  

Therefore, as long as a/ß is small enough, the absolute payoff remains lower and the utility derived 
from the relative payoff is also smaller than in the grand coalition. Thus, no node has an incentive to leave 
the grand coalition if a/ß is small enough. 

2.5.2. Coalition of heterogeneous ERC-types 
When nodes with heterogeneous ERC-types  are allowed to take part in the coalition (S), those nodes 

that have the largest ai/ßi will have the greatest interest to leave the coalition in order to obtain a larger 
absolute payoff.  

We will now concentrate on the extreme case in which nodes are either interested in their absolute 
payoff (ßi = 0) or in equity (ai = 0). The former are referred to as A-nodes, the latter as B-nodes. In total, 
there are Na A-nodes and Nb B-nodes; ka of these A-nodes and kb B-nodes form the coalition. The 
cooperation levels are denoted by qas, qbs for nodes  inside S, qan and qbn for nodes outside the coalition. 

 
Let us first look at the behavior of B-nodes.  
Outside the coalition, any B-nodes can arrive at the equal share by choosing the average cooperation 

cost level. Thus, 
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A B-node inside the coalition has  no incentive to leave if it also receives the equal share: 
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In equilibrium, all B-nodes choose the same cooperation level, bsbnb qqq ==̂  and receive the equal share: 
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A-nodes outside the coalition maximize their absolute payoff, )()( anqCQB − . The first order condition is 

given by: )()( anqCQB ′=′ .         (16) 
Within the coalition, the utility of a representative A-type-member is maximized by guaranteeing that 

the B-members get the equal share, i.e. C(qbs). The first order condition for choosing qas is given by: 
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By construction, for any given ka and kb, every B-node is indifferent to being either inside or outside the 

coalition. For a coalition to be stable, an A-node must not have an incentive to leave the coalition. In 
general, for any k b there will be a certain number of A-nodes, k a, that will join the coalition. We have 
multiple equilibria. 

Inequalities (13) - (17) can be used to infer the following results: 
 

Result 5. The larger the total number of equity-oriented nodes (Nb), the higher the incentives for A-nodes 
to join the coalition. Hence, for a given k b, the number of cooperating A-nodes ka increases in Nb. 

Result 6. The more B-nodes join the coalition, the smaller the incentive for A-nodes to do so. In 
equilibrium, kb and k a are negatively correlated. 

Result 7. The total cooperation level increases with the number of B-types outside the coalition. A joining 
B-node improves the payoffs  only if it does not drive out an A-node. 

 
The rationale of results 5 and 6 is the following: if an A-node enters the coalition and the coalition 

increases its cooperation efforts, B-nodes outside the coalition increase their cooperation activities as well 
and thereby additionally reward the entering node.  

If the number of such equity-oriented B-nodes outside the coalition gets larger, this external reward for 
joining a coalition increases and, therefore, the equilibrium coalition size increases. Analogously, if B-
nodes join the coalition, fewer nodes outside the coalition reward the entering A-node by an increase of 
their cooperation activities. Hence, the incentives for A-nodes to enter the coalition decrease and the 
number of A-nodes that are inside the coalition in equilibrium gets smaller.  

Result 7 reflects the fact that the more nodes cooperate, the higher the efficiency gains are and the 
closer the aggregate cooperation level is to the efficient one. The impact of A - and B-nodes on the decision 
of the coalition, however, differs in the following way: A joining A-node is interested in the absolute 
payoff and, consequently, the re-optimizing coalition increases its cooperation effort because the positive 
effect on one more node is now taken into account. A joining B-node, however, is not primarily interested 
in the absolute payoff, but in the equal share. Therefore, the coalition will not increase the total cooperation 
level that much because the B-node refrains from deviating from the cooperation level of non-cooperating 
nodes. Consequently, the efficiency gains are larger if an A -node enters the coalition than if a B-node joins. 
Therefore, B-nodes are welcome inside a coalition only if their entering does not drive out an A-node. 

2.6. Reputation mechanism and coalition formation 
Self-interested, autonomous mobile nodes of an ad hoc network may interact “rationally” to gain and 

share benefits in stable (temporary) coalitions: this is to save costs by coordinating activities with other 
nodes of the network. For this purpose, each node determines the utility of its actions in a given 
environment by an individual utility function. In section 2.1 we introduced a more sophisticated model in 
which not only self-centered preferences are taken into account to derive the individual payoff of an action 
but also relative information is used in order to find an extended set of possible equilibrium points. 

Results obtained with the proposed model are promising: in a dynamic network formed by nodes that 
follow the definition of utility given by the ERC theory, depending on the node types, it is possible to 
obtain stable coalitions of a relatively large size and under certain circumstances, even the grand coalition 
becomes feasible. Node types are determined by the two parameters a and ß which represent the key factor 
of the coalition formation process. 

We believe that the reputation technique implemented in CORE can be used as an effective mechanism 
to impose a specific identical ERC type for every node participating in a cooperative setting as an ad hoc 
network. If the two parameters a and ß are represented as functions of the reputation rni defined in [9], then 
it is possible to enforce a particular value to the a/ß ratio: specifically it is possible to dynamically adjust 
the a/ß ratio in order to be compatible with proposition 4. Thus, even the grand coalition is stable, every 
node of the network cooperates bearing the same costs and getting equal benefits by choosing a fair 
operating point in which no one deviates from the average cooperation level chosen by the coalition.  



The relation between a, ß and rni is indirectly proportional: the lower the reputation value (meaning that 
the past strategy selected by the node has been to reduce the cooperation level) the higher will be factor ß 
and the lower will be factor a  thus reducing the a/ß ratio, and vice-versa. 

The relation between the reputation value and the ERC type of a node becomes more complicated if we 
allow the presence of nodes with different ERC types: modeling a network that allows different ERC types 
is interesting when considering mobile nodes with different capabilities such as different battery power and 
different computational power. 

However, in order to provide a formal assessment of the efficiency of the reputation mechanism 
proposed in CORE it is necessary to evaluate the node model presented in the previous sections in a 
dynamic setting: the reputation value is computed based on the past strategies selected by the nodes of the 
network and have an influence on those nodes’ future actions. Furthermore any variation on the strategy 
selection phase of a node has  an impact on the strategies selected by neighboring nodes: solutions to the 
dynamic coalition formation process have still to be examined. 

We believe that the research we have conducted so far has given some interesting results and proposes a 
useful basis  to study the coalition formation process of autonomous self-interested mobile nodes by means 
of reputation mechanisms which is, to the best of our knowledge, a rather unexplored domain. However, 
we think that it is possible to express the dynamic coalition formation process using a more elegant and 
simple methodology, which is  a key requirement for studying dynamic games. The relatively recent 
literature on the subject states that the models of coalition formation may be classified into two main 
categories: utility-based models, as it is largely favored by game theory, and complementary-based models 
[reference klush]. Up to now, most classic methods and protocols for the formation of stable coalitions 
among rational agents follow the utility-based approach and cover two main activities which may be 
interleaved: the generation of coalition structures, that is partitioning or covering the set of agents into 
coalitions, and the distribution of gained benefit among the participants to each of the coalitions. The future 
research direction we will take is to prove that reputation mechanisms in general are compliant to the so 
called Coalition Formation Algorithm. Coalition formation algorithms are those mechanisms that provide a 
feasible solution to a cooperative game in coalitional structure: there are several solution concepts and we 
will focus on the so called Kernel-oriented solutions. Kernel-oriented coalitions are the most suitable for 
our purpose because the related literature gives precise conditions for a coalition formation algorithm to be 
kernel-stable with a polynomial complexity, as opposed to other solution/algorithms that are only of 
theoretical relevance since they have exponential complexity. 

3. Non-cooperative games approach 
In an alternative approach, our analysis focused on the identification of preference relations specific to 

the selfishness problem and the design of a utility function that satisfies this structure. The utility function 
used to model the selfishness problem takes into account the energy that a node spends for the purpose of 
its own communications and the energy that the node has to use when participating in the routing protocol 
and when relaying data packets on behalf of other nodes. Node behavior is represented by the percentage of 
energy a node dedicates for its own communications and the percentage of energy spent for network 
operation. Under these assumptions the utility function used to study the strategy chosen by a node is the 
following: 
 

( ) ( )PFRiiselfni EEfbbEbjbiu +⋅⋅−−⋅= 1),(       (18) 
 

where bi corresponds to the strategy (behavior) adopted by node ni, and bj is the common strategy 
selected by ni’s neighboring nodes : bi is the variable of equation (18). bi and bj represent  the percentage of 
energy consumed by a node and range from 0 to 1: when a node selects b=0 it will use all the available 
energy for its own communications. The other factors that appear in (18) are respectively: 

 
recvrecvsendself EknEEnE )1()( +⋅=+⋅= , energy spent for a node’s own communications 

( )recvsendjR EE
m

tnbE +⋅−= )1( , energy spent for participating in the routing protocol 

( )recvsendjPF EEntbE +⋅⋅⋅−= )1( , energy spent to relay packets for neighboring nodes 

recvsend EkE ⋅= , respectively the energy spent for sending and receiving one packet  



 
n , the number of packets to send 
t , the number of neighboring nodes of node ni 
m, the average number of messages after which a new route discovery phase is needed 
f , is a multiplicative factor that models the non-linearity of the second summand of (18) 
 

A “rational” selfish node always tries to maximize equation (18): the maximum determines the strategy 
bi chosen by that node, which is always to defect, by selecting the total amount of energy dedicated to other 
nodes close to zero. The equilibrium point obtained using (18) has to be considered as static Nash 
equilibrium point. Indeed, the strategy selection phase of a player is determined based only on the 
maximization of the self-centered utility function (18): neither past nor future strategies have an influence 
on the choice of the player. 

Since nodes act selfishly, the equilibrium point is not necessarily the best operating point from a social 
point of view and pricing emerges as an effective tool to enforce the cooperation among the nodes because 
of its ability to guide node behavior toward a more efficient operating point. The pricing factor that has 
been chosen to settle the game at a more socially desirable operating point is the reputation value calculated 
within the execution of the CORE mechanism. The utility function presented in (18) is modified as follows: 

 
( ) ( ) )(1),( niPFRijiselfni rEEfbbbEbjbiu −⋅+⋅⋅−−⋅=       (19) 

 
where the term rni corresponds to the normalized reputation value assigned to node ni and dynamically 

evaluated by its t neighbors depending on the past strategy adopted by node ni. The use of a pricing factor 
modify the position of the maximum of equation (19)  with respect to equation (18) evaluated in the same 
circumstances. By dynamically modifying the position of the maximum, it is possible to impose a selfish 
node to change its strategy to a fair behavior, as shown in Figure 1. 

The identification of the equilibrium point when using the utility function defined in (19) depends on 
past strategies chosen by player ni (due to the reputation factor rni) and has an influence on the selection of 
future strategies by ni’s neighboring nodes (which will increase or decrease their cooperation level 
according to the CORE mechanism). In order to find a feasible solution it is then necessary to consider the 
game as a dynamic non-cooperative game . We proceeded with a numerical analysis of the dynamic game 
using the MATLAB suite, considering the option of an analytical solution as part of our future work.  

The model developed in MATLAB implements the CORE mechanism following faithfully the 
definitions given in [9]: however the reputation value is computed under the hypothesis that neighbors of 
node ni have identical representation of ni’s behavior. This hypothesis holds if the traffic flow between 
neighboring nodes  is uniform, that is, every node sends and receives the same amount of packets. 
Moreover, simulations made with MATLAB also take into account the influence of the reputation value on 
the cooperation effort of the monitoring entities: when reputation decreases the percentage of the remaining 
battery life available for cooperating with node ni decreases.  

The main results obtained with the numerical approach are depicted in Figure 1. The first graph shows 
the reputation evaluated by the t neighboring nodes of node ni: the reputation value depends on the behavior 
of node ni in the past observations. The second graph depicts the strategy chosen by the selfish node versus 
time: at the beginning, the node selfishness is not compensated by the reputation mechanism and the 
strategy chosen by the node falls to zero (i.e. a pure selfish behavior). However, as soon as the node 
behavior is detected to be selfish the node reputation starts to fall: a “rational” selfish node will then chose 
a new strategy that issues from the maximization of equation (19) and that tries to compensate the loss in 
the reputation factor. 

The strategy selection phase stabilizes asymptotically to a fair position where half of the nodes’ energy 
is used to cooperate with other nodes in the network operation. 



 
Figure 1. Node behavior when CORE is adopted in the network. 

4. Conclusions  
In this paper we presented two alternative approaches based on game theory in order to come up with a 

formal assessment of the properties of the cooperation enforcement mechanism presented in [9, Appendix 
2]. We also accomplished the difficult task of validating the use of reputation as an effective tool for 
stimulating cooperation between the nodes of an ad hoc network. 

Using the cooperative game approach, we were able to validate the ERC theory as a suitable alternative 
to the classic definition of utility function: the ERC theory suggests that players evaluate the outcome of a 
game in terms of both absolute and relative payoff.  It has been demonstrated that the ERC preference 
structure can improve the identification of equilibrium points for games in coalitional structure and, when 
applied to a two-stage coalition game, ERC allows for the dynamic formation of even the grand coalition.  
The key issue that has to be addressed in order to find coalitions composed by a significant number of 
cooperating nodes is the identification of specific ERC-types: it is necessary that the nodes taking part in 
the coalition formation process put enough weight in the relative part of the utility function. This can be 
done in a dynamic setting by rewriting the ERC-types as a function of the reputation value computed in 
CORE. We suggest using reputation as a corrective factor that stimulates nodes to give more or less 
relevance to the relative part of the utility function definition. However we still have to provide a formal 
solution (numerical or analytical) to the dynamic coalition formation process: we believe that a more 
elegant approach based on a kernel-oriented algorithm (as opposed to the two -stage game approach) can 
ease our task by assuring a polynomial cost. 

The non-cooperative game approach, on the other hand, provides an analytical proof that an ad hoc 
network with no cooperation enforcement mechanism cannot work: indeed we demonstrated that the best 
strategy for a selfish node interacting with the rest of the network is to defect. Moreover, by introducing the 
reputation mechanism defined in CORE as a pricing factor we demonstrated numerically that it is possible 
to have an asymptotically cooperative behavior. Rational nodes will always choose the strategy that 
maximizes their utility function: the pricing factor is used to move the maximum to a more suitable 
operating point from a cooperative point of view. Further insight to the parameters of CORE were obtained 
through MATLAB simulations: by modifying those parameters it has been possible to analyze the 
convergence speed towards a cooperative behavior, to determine a cooperation rate required from the nodes 
of the network and to study the influence of the sampling frequency of the watchdog mechanism used by 
CORE. 
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Appendix 1. Proof of proposition 2. 
 
We have to show that 0)( >kδ for k>N/2.  
Remember that in (4) the denominator of )(kδ  is positive due to assumption 1. That is, 0)( >kδ if the 

numerator of (4) is positive. Remember also that we assumed 
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The numerator in (4) is positive if r(cooperate) > r(defect). This is the case when equation (7) is 
satisfied. 

 
Let’s proceed by showing that 0)( <kδ for for k<N/2-1. 
It is possible to rewrite equation (7) as follows: 
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Equatio n (17) can also be rewritten as: 
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Now, from the monotonicity and concavity of B() it follows that 
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Furthermore, the total cost of cooperation increases kC(k) in k . Therefore: 
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Since it has also been assumed that payoffs are non negative, )()( kCkB ≥ . Thus: 
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We therefore obtain: 
 

)1(
)()1()(2)1(

1
2

1

1
2

)(
1

)(
1

)1()1(
)(

)1()1(
)(

)1(

+
−−+−++

=





+

−
−

+≤

≤





+

−







−+++







 ++
−

+

kNk
NkkNkkkNkN

k
N

N
kN

k

k
N

kNBkkC
kCk

kkC
kCk

kB
kB

 

 
The numerator equals: NkNNkNk +−−−+− )3()23(2 23 which can be shown to be negative for 

1
2

1 −<≤ Nk , as long as N>8. 

Hence for N>8 we have that the general conditions for a Nash equilibrium of the ERC-PD game 
0)1*( >−kδ  are satisfied for k>N/2. 

 
NOTE: the condition N>8 can be removed if we assume that the total cost of cooperation increases 

more than the total benefits gained by defecting, i.e. : 
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Appendix 2. The CORE mechanism 
 
The security scheme proposed by Michiardi and Molva [9], stimulates node cooperation by a 

collaborative monitoring technique and a reputation mechanism. Each node of the network monitors the 
behavior of its neighbors with respect to a requested function and collects observations about the execution 
of that function: as an example, when a node initiates a Route Request (e.g., using the DSR routing 
protocol) it monitors that its neighbors process the request, whether with a Route Reply or by relaying the 
Route Request. If the observed result and the expected result coincide, then the observation wi ll take a 
positive value, otherwise it will take a negative value. 

Based on the collected observations, each node computes a reputation value for every neighbor using a 
sophisticated reputation mechanism that differentiates between subjective reputation (observations), 
indirect reputation (positive reports by others), and functional reputation (task-specific behavior), which are 
weighted for a combined reputation value. The formula used to evaluate the reputation value avoids false 
detections (caused for example by link breaks) by using an aging factor that gives more relevance to past 
observations: frequent variations on a node behavior are filtered. Furthermore, if the function that is being 
monitored provides an acknowledgement message (e.g., the Route Reply message of the DSR protocol), 
reputation information can also be gathered about nodes that are not within the radio range of the 
monitoring node. In this case, only positive ratings are assigned to the nodes that participated to the 
execution of the function in its totality. 

The CORE mechanism resists to attacks performed using the security mechanism itself: no negative 
ratings are spread between the nodes, so that it is impossible for a node to maliciously decrease another 
node’s reputation. The reputation mechanism allows the nodes of the MANET to gradually isolate selfish 
nodes: when the reputation assigned to a neighboring node decreases below a pre-defined threshold, service 
provision to the misbehaving node will be interrupted. Misbehaving nodes can, however, be reintegrated in 
the network if they increase their reputation by cooperating to the network operation. 

As for the other security mechanism based on reputation the CORE mechanism suffers from the 
spoofing attack: misbehaving nodes are not prevented from changing their network identity allowing the 
attacker to elude the reputation system. Furthermore, no simulation results prove the robustness of the 
protocol even if the authors propose an original approach based on game theory in order to come  up with a 
formal assessment of the security properties of CORE. 

 


