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Abstract

In this paper we explore the use of Variational Bayesian
(VB) learning in unsupervised speaker clustering. VB
learning is a relatively new learning technique that has
the capacity of doing at the same time parameter learn-
ing and model selection. We tested this approach on the
NIST 1996 HUB-4 evaluation test for speaker clustering
when the speaker number is a priori known and when it
has to be estimated. VB shows a higher accuracy in terms
of average cluster purity and average speaker purity com-
pared to the Maximum Likelihood solution.

1. Introduction

An important task in many speech recognition applica-
tions consists in clustering speakers. A huge number of
techniques for achieving robust speaker clustering have
been proposed: they generally consist in vector quan-
tizer [11], Hidden Markov Models (HMM) [2] and Self-
Organizing Maps (SOM) [3]. A main issue in unsuper-
vised learning is that the exact speaker number is not
known; in order to determine a reasonable number of
clusters a model selection method must be used; gener-
ally the BIC criterion is used or a “revisited” BIC [2].

In this paper we propose the use of a relatively new
learning technique that allows simultaneous parameter
learning and model selection; it is generally referred as
Variational Bayesian Learning (or Ensemble Learning).
Models like GMM and HMM can be learned using the
VB framework (see [4],[10]). VB training has the advan-
tage of using as optimization criterion an expression that
can be also used for model selection. Even if VB learn-
ing is an approximated method, it has already been suc-
cessfully applied in speech recognition problems for state
clustering ([5]), dimension reduction ([6]), and GMM es-
timation ([7]). Here we apply VB methods to speaker
clustering.

The paper is organized as follows: in section 2 we de-
scribe the baseline system featuring HMM trained using
the EM algorithm, in section 3 we describe the general
VB framework, in section 4 we describe speaker cluster-
ing system that uses VB learning and finally in section 5,
we describe experiments and results.

2. HMM based speaker indexing

A popular approach to automatic speaker clustering uses
Hidden Markov Model. This method introduced in [1]
consider a fully connected HMM in which each state rep-
resent a speaker and the state emission probability is the
emission probability for each speaker. In [2] an ergodic
HMM with duration constraint is proposed. Duration
constraint has the advantage of giving a non-sparse solu-
tion. Using a given number of consecutive frames gives
in fact enough statistic to model a certain speaker in a
robust way. In [3], it was shown that 100 consecutive
frames are enough to build a speaker model.

Let us now details the model. An ergodic HMM is
a fully connected HMM in which all possible transition
are allowed. Let us define �������
	 �
��� the probability of
observation ��� given state ��� at time � . Let us define �����
the transition probability from state � to state � . We make
here the assumption that the probability of transition to
state � is the same regardless the initial state i.e.

� ����� � �
����� ��� � � �!� ��" �$#%#&#&� ' (1)

where � �(" ��#&#&#&�
' with ' the total number of states;
in other words, under this assumption we can model the
ergodic HMM as a simple mixture model and write the
probability of an observation �)� as:
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In a model with duration constraint, the observation � �
is a group of 3 consecutive frames where 3 is the dura-
tion constraint. A possible way to model �����)��� is using
a Gaussian Mixture Model with mixing coefficients 4657� ,
means 8 57� and variance 9 57� where : �;" �$#&#%#&� < with <
the number of Gaussians. It is then possible to write the
whole model as:

=?>%@BADC -;EFG�HJILK G
MONPQ HJISRF T HJIVU
T G�W >&@BA Q$XDY T G X[Z T G C[\ (3)

It is so possible to write the log-likelihood of a given
sequence � � with � ��" ��#&#&#&�
] :
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In other words this model is a Hierarchical Mixture
Model in which the first layer represents the ' speakers
and the second layer represents speaker models that is ac-
tually a GMM. � � can be seen as the prior probability of
the � � � � speaker.

Once the model is learned, observations can be as-
signed to a cluster (speaker) using a simple Viterbi de-
coding.

This kind of model can be completely trained using
classical EM algorithm. We have previously made the
hypothesis that the speaker number is a priori known but
this is not always the case. For this reason a model se-
lection criterion must be used, if speaker number is not
a priori known. In the next section we will consider the
case of EM training when the speaker number is known.

2.1. EM learning

Model 4 is a latent variable models that can be learned us-
ing the well known Expectation-Maximization algorithm
[12]. Two kinds of latent variables � and � must be con-
sidered here: a variable � that designate the speaker (or
equivalent state) that is speaking, and � (conditioned to� ) that designate the gaussian component that has emit-
ted the observation. For the Expectation step, it is easily
demonstrated that:
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For the Maximization step, following reestimation
formula can be derived.

K G -cbFA HJI ��� A H G���� (7)

U
T G - � b A HJI � NQ HJI ��� A H G ��
 A Q H

T � � A H�G� b A HJI � NQ HJI ��� A H G (8)

Y T G - � b A HJI � NQ HJI ��� A H G � 
 A Q H
T � � A H�G @BA Q� b A HJI � NQ HJI ��� A H G ��
 A Q H
T � � A H G (9)
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3. Variational Bayesian Learning

In this section we introduce the Variational Bayesian
learning. First, we consider a very general framework
and then we show how to train the model (4).

3.1. Variational Bayesian Framework

Given a set of observed variables � and some parame-
ters � , Bayesian learning aims at optimizing the so called
marginal likelihood �/��� � , where parameters � have been
integrated out. From Bayes rule we have: �/��� � ��L��� ���������L� � 	 ��� and considering the log of both mem-
bers it is possible to write: ! "�#$�/����� � !�"�#$�L��� ����� �

! "�#%�L��� 	 � � . Instead of integrating parameters � w.r.t.
their true unknown pdf, an approximation called varia-
tional posterior, and denoted as &J� � 	 � � , is used. Taking
expectation w.r.t &J��� 	 � � , we obtain:

^`_Da('�>�)�C -+*-, >/. 	 )?C&^`_Da('�>�) X . C�0�. � *1, >/. 	 )SC&^`_!a2'�>3. 	 )?C�0�.
- * , >/. 	 )?C&^`_Da54 ' >6) X . C � , >3. 	 )�C3780�.59;:O> , >3. 	 )�C C 	<	 '�>3. 	 )�C[C

(11)

where 3 ��&J� � 	 ���
��	&	 �L��� 	8=�� represents the Kullback-
Leiber (KL) distance between the variational
posteriors and the true posteriors. The term> &J��� 	 � �?! "�#A@ �L��� �B���C�D&J��� 	 ����E F(� is often indicated as
negative free energy G������ . Because of the KL-distance
property 3 � HB	&	 IV�KJML (with equality if H � I ), G�� ��� rep-
resent a lower bound on ! "�#%�L��� � i.e. ! "�#%�L��� �NJOG������ .
Variational Bayesian learning aims at maximizing the
lower bound G � ��� that can be rewritten as:

P?>3. C -+*Q, >3. 	 )SC&^`_Da('�>�) 	 . C�0�. � :O> , >3. 	 )�C 	<	 ' >/.
C C (12)

The second term in eq. (12) represents the distance be-
tween the approximate posterior and the parameter prior
and can be interpreted as a penalty term that penalizes
more complex models. For this reason G������ , can be used
to determine the model that best fits to data in the same
way the BIC criterion is used.

Maximum a Posteriori can be seen as a special case
of VB learning. In fact, if &J� � 	 ��� �SR � � � � � � , finding
the maximum of equation (12) means:

TVU �
WYX Z�[�P?>/.
C - T\U � Z � *-] >/. � . � C&^`_Da�4 '�>�) 	 . C<'�>3. C67�0B.
- T\U � Z � ^`_Da�4 '�>�) 	 . � C8' >/. � C[C67 (13)

where the term
> &J� ���?!�"�#^&J� ����F(� has been dropped be-

cause it is constant. Expression (13) corresponds to
the classical MAP criterion. It is important to no-
tice that the VB approach carries information about
the uncertainty on parameters � while MAP does not.
In fact in MAP, parameter learning is done punctually
( _`H(�V! "�#;@ �/��� 	 � � ���/� � � �
�aE ) while in VB, parameters are
integrated out, even if they are integrated w.r.t. variational
posterior ( _bH2� > &J� � 	 � �(! "�#5@ �L��� 	 �����/� ����E F(� ). Further-
more VB allows model comparison: free energy value
gives information on the model quality, while MAP only
gives best parameters for an imposed model. The price to
pay is that the free energy is only a lower bound and not
an exact value.

3.2. Variational Bayesian learning with hidden vari-
ables
Variational Bayesian learning can be extended to the in-
complete data case. In many machine learning problems,
algorithms must take care of hidden variables c as well
as of parameters � (see [4]). In the hidden variable case,
the variational posterior becomes &J��c ��� 	 � � and a fur-
ther simplification is assumed considering it factorizes as&J��c �B� 	 � � � &J��c 	 � �C&J� � 	 � � . Then the free energy to



maximize is:P?>3. X �OC -+* 0�.�0�� , >��OC , >3. C&^`_!a�4 '�>�) X � X . C � , >�� C , >3. C67
-�� ^`_!a '�>�) X � 	 . C, >�� C����
	 Z � : 4 , >/.
C 	<	 ' >/.
C37 (14)

where � #
� � means average w.r.t. � . Note that & is
always understood to be conditioned on � . It can be
shown that when ��� � the penalty term reduce to�
	 ��� 	 ��� �?!�"�#�� where ��� is the number of parameters i.e.
the free energy becomes the Bayesian Information Crite-
rion (BIC). To find the optimum &J����� and &J��c � an EM-
like algorithm is proposed in [4] based on the following
steps:

&J��c ����� � ^`_!a2'�>�) X � 	 � C � Z
(15)

&J� ������� � ^`_!a2'�>�) X � 	 .
C ��� �/� ��� (16)

Iteratively applying eq.(15) and eq.(16) it is possible to
estimate variational posteriors for parameters and hidden
variables. If �L����� belongs to a conjugate family, posterior
distribution &J����� will have the same form as �L����� .

An interesting property of VB learning is that extra
degrees of freedom are not used i.e. the model prunes
itself. There are two possible opinions about the correct-
ness of the model self pruning: on the one hand it is not
satisfactory because prediction will not take into account
uncertainty that models with extra parameters can pro-
vide (see [8]), on the other hand it can be used to find the
optimal model while learning the model itself, initializ-
ing it with a lot of parameters and letting the model prune
parameters that are not used.

4. Speaker clustering using VB

In this section we derive formulas that can be used to
estimate parameters in model (4). Before applying the
EM-like algorithm previously described, we have to de-
fine prior probabilities on parameters. So let us define
the following probabilities that belong to the conjugate
family.

�����6��� � 3�:��J��� K � � � �[4 57��� � 3�:��J��� U � ���� 8B5 � 	 9B57��� � � � � � �"! � 9B57� � ����9B57��� �$# ��% � �'& � � (17)

where 3�:�� designates a Dirichlet distribution, � a Nor-
mal distribution and # a Wishart distribution. The ad-
vantage in using probability functions that belong to the
conjugate family is that posterior probability will have
the same analytical form as priors. So let us introduce the
parameters posterior probabilities.

����� � � � 3�:��J��� K � � ��� 4 57� � � 3�:��J��� U 5 � ���� 8 5 � 	 9 57� � � � � � 57� �"! 57� 9 57� � � ��9 57� � �(# ��% 5 � �)& 57� � (18)

Figure 1 shows a direct graph that represent the model.
It is now possible to apply the EM-like algorithms

that consists in iteratively applying equations (15) and
(16).

Again in the E step we have to consider two kinds of
latent variables, � and � that respectively designate the
cluster (i.e. the speaker) and the gaussian component:

&J� � � ��� � ' �*��� � �,+-� ! "�#d� � A �/.
� ! "�# 4 � A X � A Q �0.1� ! "�# � ��� � ' 	 � � ��� � ' �2��3 (19)

Developing 19, it is possible to derive formulas similar
to formulas (5) and(6) but computed on the base of pa-
rameter expected values instead of parameter values. We
will designate them with 45 �2A -J� and 45 � A Q -65�	 � A -J� .

6�87
 A Q H T � � A H G - 6U
T G 6Z I 9;:T G=< ��' M �
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B 5&��C > - .? >&@ A Q �ED A Q C bGFZ
T G >%@ A Q��ED A Q C (20)
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 A Q H T � � A H�G� T 6� 7
 A Q H T � � A H G (21)

6� 7� A H G - 6K G�NPQ HJI RF T HJI 6� 7
 A Q H T � � A H�G (22)
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where # is the dimension of acoustic vectors.
Parameters expected values can be computed as fol-

lows: ^`_!aH6K G -JI >LKNM G C � I > F G KNM G C (24)

^`_!a 6U
T G -JI >LKNO T G C � I > F G KNO T G C (25)

^`_!a 6Z T G -QPF T HJI I > > @ T G 9 . � 5 C � ? C � ^`_!a 	 R T G 	 9 a ^`_Da ?
(26)

FZ
T G - @ T G RTS IT G (27)

where U is the digamma function.
In the M step, we know that posterior distributions

will have the same form of prior distributions. Reestima-
tion formulas for parameters are given by:

K G - � b A HJI 6� � A H�G� (28)

U
T G - � b A HJI � NQ HJI 6� � A H�G 6� 
 A Q H T � � A H G� b A HJI � NQ HJI 6��� A H�G (29)

Y T G - � b A HJI � NQ HJI 6� � A H�G 6� 
 A Q H T � � A H G @ A Q� b A HJI � NQ HJI 6� � A H G 6� 
 A Q H T � � A H G (30)

Z T G - � b A HJI � NQ HJI 6��� A H�G 6��
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 A Q H T � � A H G
(31)

and hyperparameter reestimation formulas are given by:

KNM G - bFA HdI WLG 9EKNM�V
(32)

K O T G - W T G 9WK O)V
(33)

D
T G - W T G Y T G 9�X V D VW T G 9 D V (34)

X T G - W T G 9YXAV
(35)

R
T G - W T G Z T G 9 W T G XAV > Y T G �ZD V
C > Y T G ��D V C bW T G 9 D V 9 R V

(36)

@ T G - W T G 9 @ V
(37)

where � 57� �\[ � ��-/. [ :' -/. 45 � A -J� 45 �
A Q -65�	 �2A -J� and � � �
[ � ��-/. 45 ��A -J� .



4.1. Model selection using VB

An extremely interesting property of the Variational
Bayesian learning is the possibility of doing model se-
lection while training the model. As it was outlined in
the previous section, the free energy (12) can be used
as a model selection criterion because the KL distance
between parameter posterior distributions and parameter
prior distributions acts as a penalty term similar to the
BIC criterion penalty. We will now consider a more rig-
orous framework for model selection.

Let us introduce the model posterior probability &J� _ �
on a given model _ . It can be shown (see [4]) that opti-
mal &J� _ � can be written as:

&J� _ �*��� � �,+ G � � ��c ��_ � 3 �L��_ � (38)

where �L��_ � is the model priors. In absence of any prior
information on model, �/� _ � is uniform and optimal &J� _ �
will simply depend on the term G�� � �Cc ��_ � i.e. free en-
ergy can be used as model selection criterion.

In other words free energy can be used exactly as a
model selection criterion. An important advantage is that
no threshold must be manually set (as for example in the
BIC criterion). For the model considered here, it is pos-
sible to obtain a closed form for the free energy (12) (see
Appendix A).

As previously outlined, another interesting point in
using Variational Bayesian learning is the capacity of
pruning extra freedom degrees. It means that it is possi-
ble to initialize the system with a high number of clusters
and with a high number of gaussians per speaker and let
the system eliminate clusters and gaussians that are not
used. In gaussian based model the capacity of pruning
extra parameters is somehow regulated by the prior pa-
rameter & � that seems to be the more sensitive parameter
w.r.t. clustering result (see e.g. [6]). In other words large
values of &H� will result in smaller number of final clusters
or smaller number of final gaussians.

In [13] an important point is outlined: when differ-
ent speakers speak for a different amount of time, it is
reasonable to model them with different models. Au-
thors propose to use a BIC criterion to determine the best
model between a GMM (that performs better when a lot
of training data are available) and a VQ (that performs
better when few training data are available). The use of
Variational Bayesian learning allows a somehow similar
effect; if we initialize speaker models with an initial high
gaussian number, VB automatically prunes together with
the cluster number, the best gaussian model at the same
time, resulting in smaller models where few observations
are available and in bigger models where more observa-
tions are available.

5. Experiments

We run two type of experiments: first set of experiments
is on synthetic data, second set is on real data. The
database we used for tests on real data is the NIST 1996
HUB-4 evaluation dataset that consists of 4 files of al-
most half an hour. The first file consists of 7 speakers,
the second of 13, the third of 15 speakers and finally the
forth of 21 speakers. In files 1, 3, 4 there are large part of
non-speech events while file 3 is almost pure speech.

5.1. Evaluation criterion

In order to evaluate the quality of clustering we use con-
cepts of cluster purity and speaker purity introduced re-
spectively in [9] and [3]. We consider in all our tests an
additional cluster for non-speech events. Using the same
notation of [3], let us define:

��� : number of speakers

� ' : number of clusters

��� 57� : total number of frames in cluster : spoken by
speaker �

��� � : total number of frames spoken by speaker � ,� � L means non-speech frames

��� 5 : total number of frames in cluster :
� � : total number of frames in the file

� �A� : total number of speech frames

It is now possible to define the cluster purity �65 and
the speaker purity &
� :

� 5L�
�,

��- �
� ?57�
� ?5 & � �

+,
5[- �
� ?5 �
� ?� (39)

Definitions of acp (average cluster purity) and asp (aver-
age speaker purity) follow:

H��?� � "
�

+,
5[- � � 5 � 5 HJ��� � "

�A�
�,

��-/. & � � � (40)

In order to define a criterion that takes care of both HJ�C�
and H��?� , the geometrical mean is used:

� �
	 HJ�C��� H��?� (41)

5.2. Results on synthetic data

The importance of experiments on synthetic data consists
in verifying if in ideal condition the system can achieve
very high values of acp and asp. For this purpose we gen-
erated two files in which we simulated a conversation be-
tween four speakers each of them modeled with a 3 com-
ponents gaussian mixture. In the first file (we will refer as



File File 1 File 2
� � acp asp K � � acp asp K

Baseline 4 1 1 1 4 0.89 0.99 0.94
VB system I 4 1 1 1 4 0.75 1 0.86
VB system II 4 1 1 1 4 1 1 1

Table 1: Clustering results on synthetic data: baseline vs. Variational Bayesian system I (a priori known cluster number)
vs. Variational Bayesian system II (initialized with 30 clusters)

File File 1 File 2 File 3 File 4
� � acp asp K � � acp asp K � � acp asp � � K acp asp K

Baseline 8 0.60 0.84 0.71 14 0.76 0.67 0.72 16 0.75 0.74 0.75 21 0.72 0.65 0.68
VB system I 8 0.70 0.91 0.80 14 0.75 0.82 0.78 16 0.68 0.86 0.76 21 0.60 0.80 0.69
VB system II 16 0.81 0.88 0.85 14 0.84 0.81 0.82 14 0.75 0.90 0.82 9 0.53 0.81 0.66

Table 2: Clustering results baseline vs. Variational Bayesian system I (a priori known cluster number) vs. Variational
Bayesian system II (initialized with 30 clusters)

file 1) we considered the case where the four ’speakers’
pronounce the same amount of ’speech’ i.e. 10000 ob-
servations each; in second file (we will refer as file 2) we
tried to simulate a situation that actually we often found
in real conversation in which some speakers pronounce a
big amount of data while others just speak for few sec-
onds. File 2 consists of two ’speakers’ who pronounce
10000 observations, one who pronounces 5000 observa-
tion and one who pronounce just 1000 observations.

We run clustering with three different systems; sys-
tem 1 (we will refer as our baseline) is initialized with
the right number of clusters and the right number of gaus-
sian per cluster and learning is done using EM/ML. Sys-
tem 2 (we will refer as VB system I) is initialized like
the baseline system but learning is done using Varia-
tional Bayesian method and finally System 3 (we will re-
fer as VB system II) is initialized with a huge number of
clusters (30) and each GMM is initialized with 10 gaus-
sian components, learning is done using VB. Results are
shown in table 1.

In File 1, unsurprisingly all three systems achieve val-
ues of acp and asp of 1. It is interesting to notice that in
VB system II, not only the right number of clusters is
inferred (4), but also the right number of gaussian com-
ponents per clusters is inferred (3). In File 2 the baseline
and VB system I do not achieve a value of K equal to 1;
in fact it looks like the difference of size between clusters
play a serious role in the clustering. Of course the speaker
who is less represented is the one who is worst modeled.
On the other side VB system II is able to achieve a value
of K equal to 1; anyway it must be pointed out that the
final number of gaussian components is not equal to the
number used for the generation of synthetic data in this
case.

5.3. Results on real data

In this section we describe experiments on NIST 1996
HUB-4 evaluation dataset.

Features used consist in 12 LPCC calculated every
30 ms frames with a 10 ms frame rate. We found that
using a minimum duration constraint of 100 frames (i.e.
1 second) and 15 gaussians per state is enough to en-
sure robust speaker identification. For the Variational
Bayesian system we used the following hyperparamters:
� K � � � U � �c" , � � � �� , ! � �c" , & � � �DL L and % � � #
where # is the acoustic vector dimension and

�� is the
observation mean values.

In the first set of experiments we fixed the cluster
number to the real speaker number plus one cluster for
modeling non-speech events as in [3], then we trained
the system using EM/ML and VB learning. Results are
shown in the first and second row of table 2. On the first
two files VB outperforms classical EM/ML while on the
last two they gives almost the same results.

We think that there are basically two reasons to ex-
plain the best performance of the VB learning towards
the classical EM/ML. On one hand final parameters take
advantage of a regularization effect coming from prior
distributions. On the other hand VB system converges
for each speaker to a final GMM model that may have
a component number smaller than the original one (15
gaussians in this case) depending on the speech utter-
ances coming from the speaker in consideration. It gen-
erally results in higher speaker purity as it can be noted
from table (2).

In the second set of experiments we initialized the
model with a high cluster number (30) and we let the
VB learning prune clusters converging to a final cluster
number smaller than 30. Actually in Hub-4 files there
are a lot of non-speech events that radically influence the
clustering. VB system II performances are shown in third



Figure 1: Direct graph that represent the Bayesian model for speaker clustering; � �
and � � ' are hidden variables. The box indicates that the elements inside must be repeated a number of times equal to the
value in the high-right corner.

row of table 2. For the first three files the system outper-
forms the baseline while performance on the last files are
almost identical to the baseline. Let us analyze results file
by file:

� File 1: final cluster number is higher than real
speaker number; anyway extra clusters are clusters
where different non-speech events are organized.
Final clustering results in higher acp and asp re-
spect to the baseline system.

� File 2: final cluster number is close to real speaker
number. This file is almost composed of speech
events. Final asp and acp are very high.

� File 3: again final cluster number is close to real
speaker number and final score is very high (asp =
0.9)

� File 4: in this case many speakers are clustered into
the same cluster. This is probably due to the fact
that our pruning factor & � is too high and to the
fact that in this file there are many speakers that
speak only for a short time. Anyway final system
performance in term of acp and asp is comparable
to the baseline system.

6. Conclusion and future works

In this paper we applied successfully Variational
Bayesian Learning to unsupervised speaker clustering.
Tests on the NIST 1996 HUB-4 evaluation data show that
VB learning can outperform the baseline system. Ac-
tually some considerations must be done. First of all
the system would definitely benefit from a preliminary
discrimination between speech and non-speech because
non-speech events often disturb clustering. Then in the
approach we followed we let the system prunes itself up
to the right cluster number; this technique is actually very
sensitive to local maxima. A possible solution consists in
overclustering the data (using a low value of & � that will
keep more clusters) and then trying to merge clusters us-
ing Variational Bayesian bound (i.e. expression 14) as a
measure.
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A. Free energy

We show in this section that is possible to derive a close
form for the variational free energy (14) when we con-
sider a model like (4). The importance of a close form
for the free energy expression consists, as previously de-
scribed, in the fact that it is equivalent to a model se-
lection criterion that can be used instead of other model
selection criterion (e.g. BIC, MML, etc.).

Let us re-write expression (14) for the model we are
considering:

P?>/. X � C -+* 0�.�0 � , > � C , >3. C&^`_!a 4 '�>%@ X � X .
C � , > � C , >3. C67
-�� ^`_!a '�>%@ X � 	 . C, > � C � � 	 Z � : 4 , >3. C 	<	 '�>3. C67 (42)

where accordingly to our previous discussion, hidden
variable set 5 � + 5 � A Q 	 � A � 5 ��A 3 consists of two variables:
one referred to the cluster and the other referred to the
component.

Considering the factorization �L����� 5 	 ��� ��/��� 	 5 �������/� 5 	 ��� we can rewrite (42) as sum of three
different terms:

P?>3. X � C -+* 0B.�0 � , > � C , >/.
C�4 ^`_!a�> ' >&@ 	 � X . C[C
9)^`_!a$> '�> � 	 . C[C37 9
� * 0�.B0 � , > � C , >3. C&^`_Da , > � C � : 4 , >3. C 	<	 '�>3. C67 (43)

Considering the fact that &J� 5 � A Q � :
� 5 � A � � � �&J� 5 � A � � �Y&J� 5 � A Q � : 	 5 � A � � � and considering the
same notation as before:

5 � A Q -65�	 � A -J� � &J� 5 � A Q � : 	 5 ��A � � � (44)
5 � A -J� � &J� 5 � A � � � (45)

Hidden variables are actually discrete variables. Coming
back to expression (43) we will consider separately the
three terms.
� the first term is:

* 0�.�0 � , > � C , >3. C�4 ^`_Da$> '�>%@ 	 � X . C[C 9)^`_Da$> '�> � 	 . C[C67 (46)

Because of the fact hidden variables are actually
discrete variables, integral w.r.t. 5 becomes a sum
over states and mixtures. Let us explicit expression
(46) w.r.t ] , 3 and hidden variables:

bF A HJI NFQ HJI EFG�HJI RF T HdI � 
 A Q H T � � A H G � � A H G * 0�. , >3. C�4
^`_Da$> '�>%@BA Q 	 X . � 
 A Q H T 	 � A H G C[C 9)^`_Da$> '�> � 
 A Q H T 	 � A H�G C 	 . C[C67 (47)

Considering now the factorization�L� 5 � A Q -65 X � A -J� 	 ��� � �/� 5 � A -J� 	 �����L��� � ' � :
	 � � �� �B��� � � � 4 57� and using the previously defined
quantity 45��� A Q -65�	 � A -J� , it is possible to rewrite (47):

bFA HJI EFG�HdI � � A H�G 4 ^`_!aH6K G 9 NFQ HdI RF T HJI ��
 A Q H
T � � A H G ^`_!a 6� 7
 A Q H T � � A H�G 7 (48)

All elements in (48) are explicit and known.
� Let us now consider the second term in (43):

* 0B.�0 � , > � C , >/.
C ^`_Da , > � C - * , > � C&^`_Da , > � C�0 � (49)

Let us explicit this expression w.r.t. time, duration
and hidden variables. The result is:

bFA HdI NFQ HJI EFG�HdI RF T HdI � � A H�G � 
 A Q H
T
	 � A H�G ^`_!a 4 � � A H�G � 
 A Q H T � � A H�G 7 -

-cbFA HJI EFG�HdI M ��� A H G 4 ^`_Da ��� A H�G 9 NFQ HJI RF T HJI ��
 A Q H
T � � A H�G ^`_Da ��
 A Q H T � � A H�G 7 \

(50)

Again in (50) all terms are explicit and known.



� The last term to consider is the KL divergence
between posterior distributions and prior distribu-
tions. Parameter distributions are Dirichlet distri-
bution, Normal distribution and Wishart distribu-
tion defined in (17-18). Because of independence
between parameter distributions, it is possible to
write:

31@ &J������	&	 �L������E � 3 ��3�:��J��� K � �$	%	 3�:��J��� K � ���
. ,

� 3 ��3�:��J��� U 57� �$	%	 3�:��J��� U � ���
. ,

�
,
5 3 ��� � ��5 �6�"!�57� % 57� & � .57� ��	&	 � � � � �"! � % 5 �N& � .57� ���

. ,
5

,
� 3 � # ��% 57� �'& 57� �$	%	 # ��%-���'&H�V�
� (51)

A close form for all KL divergence in 51 can be
found (a useful summary can be found in [14]).

In this appendix we finally show how it is possible to
compute a close form for the variational free energy.


