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Abstract

We consider the practical construction of successive refinement source codes for real sources
and quadratic distortion. We propose a scheme based on convolutional codes and unitary transfor-
mations, efficiently implemented by FFT/IFFT and interleaving. This scheme offers performances
comparable to the best known TCQ schemes and very fine granularity of rates. Then, we apply our
scheme to adaptive source transmission over noisy channels with fixed spectral efficiency and to the
broadcast approach for the BF-AWGN and broadcast Gaussian channel, extending the approach of
Steiner and Shamai to the case of lossy transmission.

1 Background

Consider a source
�����

with rate-distortion function ���
	�� with respect to a certain distortion measure�� �����������
, inducing the distortion measure on

���������
according to

� �
����� �����  ! �" #
$&% � �('

#
� � '
#
� (1)

An ) -level successive refinement source code of block length
!

is defined by the encoding functions*,+  �����.-  �0/0/0/1�32 +54 and by the reconstruction functions6 +  -  �0/0/0/,�32 % 4 �8707079�:-  �0/0/0/,�32 +04 �;���
The rate ) -tuple of the successive refinement code is given by

- � + �=< +> $&%@?BA�CED 2 > GF �  �0/0/0/,�H) 4
and the achieved distortion ) -tuple is given by- 	 + �JI:K � �
��� 6 + � * % �
�1�3�0/0/0/,� *,+ �
�1�L�L�NM �F �  �0/0/0/,�H) 4
The successive refinement structure of the code manifests itself in the fact that distortion level 	 + is
obtained by refining the coarser description at level

FPO  
by incorporating additional information at rate

increment � + O � +LQ % bits/source symbol.
The source

�
is said successively refinable [1, 2] if, for any desired integer ) , distortion ) -tuple	 %�R 	 D R 70707 R 	TS , U�VXW and sufficiently large

!
, there exists an ) -level successive refinement

source code of block length
!

with rate ) -tuple �
� % �0/0/0/,�H�YSZ� such that

� +�[ ���
	 + �]\�U_^ F �  �0/0/0/,�H) (2)

and IYK � �
��� 6 + � * % �
�1�3�0/0/0/1� *,+ �
�1�L�L�NM [ 	 + \`U_^ F �  �0/0/0/,�H) (3)a
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In other words, the ) -tuple of optimal rate-distortion pairs
- �
���
	 + �3�H	 + �  F �  �0/0/0/,�H) 4 is achievable

by successive refinement.
In the rest of this work we restrict to the quadratic distortion measure

� �(' � � ' ��� � ' O � ' � D and to
sources with mean zero and variance 1 (different variances can be handled by normalization).

It is well-known that a Gaussian i.i.d. source
����� �
W �  � is successively refinable [1, 2]. It is also

well-known that, in the Gaussian case, optimal successive refinement codes have an additive structure
[3], i.e., the

F
-th level representation vector � � + for the source vector � is given by

� � + �
+"> $&% � > � * > �
�1�L� (4)

where
� +  -  �0/0/0/,��� �
	��� Q �������� 4 �;� �

denotes the reconstruction increment function at level
F
.1

Now, consider a spherical codebook� ������� ����� �� �  �0/0/0/,��� ���� "! (5)

where #%$ is a design parameter. The codewords of
�

lie on a
!

dimensional sphere of squared radius
!

.
Consider & � �
W �  M and let ')(  �����.-  �0/0/0/,��� ���� 4 denote the minimum Euclidean distance decoder
for the scaled code * � , i.e., '+(]�
�1� �-,/. C103254� � �
����*6���,� (6)

Lapidoth [4] showed that for #"$ V %D ?BA�C D %7 , *:�98  O & , U V W and for sufficiently large
!

there exist
spherical codes

�
such that IYK � �
����*6�;:=< 	?>�� �NM [ &�\`U (7)

This result holds for any source
�

, not necessarily Gaussian, i.i.d., or even ergodic, under the condi-
tion that

%� � � � D �  
in probability [4]. In some sense, scaled spherical codes with minimum distance

encoding are robust in the sense that they achieve the Gaussian rate distortion bound under very mild
conditions on the source. On the other hand, for these codes all sources appear as hard to compress as
the Gaussian i.i.d. source.

We shall construct ) -levels successive refinement codes from a single spherical code
�

, denoted as
the “basic code”. Fig. 1 provides a pictorial representation of the geometry of the proposed construction.
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Figure 1: Geometry of a successive refinement source code based on spherical code.

1We define J%K6LNM and OPK6LRQ .



The encoding function at level
F

is based on the minimum distance decoder of the basic code. It
computes the

F
-level index *,+ �
�1� �9' (�� 7 ���� �(� O � � +LQ % � (8)

where

� � + �
+"> $&% * 8 & > Q % ����� 	?>�� (9)

is the representation vector at level
F
. Such multistage structure can achieve the rate ) -tuple

- � + � F #%$ F �  �0/0/0/,�H) 4 with distortion ) -tuple
- 	 + ��& +  F �  �0/0/0/,�H) 4 .

Lastras and Berger [5] showed that any well-behaved source can be encoded by successive refine-
ment incurring a bounded rate penalty at each level. In particular, let

�
be an arbitrary i.i.d. source with

mean zero, variance 1, finite differential entropy �&� � � and rate-distortion function ���
	�� . The distortion) -tuple �
	 % �0/0/0/ �H	TS � can be achieved by successive refinement at rates �
� % �0/0/0/,�H�YS � such that

� + [ ���
	 + �]\  � ?BA�CED  
�	� (10)

where
�	� � D�
��� ���D���� is the entropy power of

�
, i.e., it is the variance of a Gaussian source with the same

differential entropy of
�

.
The multistage spherical code can achieve 	 + � & + at rate � + � +D ?BA�C D %7 . By using the Shannon

lower bound on the rate distortion function [6], we find that the rate penalty is bounded by

� + O ���
	 + � � F� ?BA�CED  & O ��� & + � [ F� ?BA�C D  & O  � ?BA�C �	�& + �  � ?BA�CED  
�	� (11)

which coincides with the bound in (10). In other words, the behavior of the proposed scheme meets
Lastras and Berger bound for any source for which Lapidoth result [4] holds. In practice, a successive
refinement code that approaches the Gaussian rate-distortion bound for any target distortion ) -tuple and
any well-behaved source is highly desirable. This is pretty much all what we can hope for in practical
applications, when the statistics of the source is not known a priori and might not be ergodic. A typical
example is provided by image coding, where the statistics of the output of the “analog” part of the
encoder, essentially given by a linear transformation followed by segmentation and decimation, gives
origin to blocks of signal � to be quantized, that are nearly uncorrelated and whose statistics may change
from image to image and it is usually estimated adaptively, [7].

2 Code design

Suppose that we are given a “capacity achieving” spherical code
�

, for the real AWGN channel with
SNR � 2. Then, we choose #/$Y� %D ?BA�C D �  \��9� , & �  �� �  \��9� and *`��� � � �  \��9� . We can write
the source vector as

� � S" + $&% * 8 & +LQ % ���  	?>�� \��ES (12)

where �ES is the representation error vector at level ) . By interpreting (12) as the output of a multiple-
access channel with background noise �GS , we notice that the levels are successively decodable by strip-
ping in the order

 �0/0/0/,�H) . In fact, the interference plus noise ratio (SINR) seen by stage
F

of the
stripping decoder is given by * D & +LQ %& S \ * D < S> $ + � % & > Q % ��� (13)

2This notion is meaningless since a single code cannot achieve capacity. However, what we mean here is that  is a
member of a sequence of codes that work arbitrarily close to the capacity limit for increasing block length.



Unfortunately, spherical codes that work very close to the AWGN capacity and admit minimum distance
decoders with practical complexity (say, polynomial in the block length) have not been found so far. If
they were available, both the problems of channel coding and of source coding would have been already
solved. Hence, driven by complexity considerations, we propose to use as basic code a trellis-terminated
binary convolutional code with binary antipodal modulation (i.e., mapping the alphabet

- W �  4 onto- \  � O  4 ). In this case, the minimum distance decoder ' ( � 7 � is efficiently implemented by the Viterbi
algorithm.

Since trellis-terminated convolutional codes with fixed (not increasing with the block length) trellis
complexity do not approach the AWGN capacity, the choice of * and & according to a threshold SNR
� outlined at the beginning of this section is not optimal any longer. On the contrary, for a given basic
code we find the optimal scaling factor * and the resulting optimal distortion & numerically. Let � be
Gaussian i.i.d.

� � �
W �  � . By Monte Carlo simulation, we find

*:�-,/. C 03254����� I � � �
�����6�;:	� 	?>�� ��
 (14)

and the resulting distortion is given by & � I� � �
����*6�;:=< 	?>�� ��� . Fig.2 shows I � � �
�����6�;:	� 	?>�� ��
 versus� , where the optimal pair � * ��&�� is clearly evidenced.
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Figure 2: Distortion vs � for #"$ �  ����
and

 ��� states for Gaussian sources.

It is interesting to observe that for the optimal value of * and & , the convolutional code works
“above capacity”. More precisely, suppose that we can write the source � as

� ��*6�;:=< 	?>�� \�� % (15)

where � % is the representation error signal, such that IYK %� � � % � D M � & (by definition). If we inter-
pret (15) as a binary-input AWGN channel, its SNR is given by * D � & . The corresponding capac-
ity, ����� �������G� * D � &�� , is found to be less than the rate #"$ of the basic code

�
. For example, for the

code of rate #/$ �  ����
and 128 states of Fig.2 we find * �_W / �"� and &.� W / �/��� , yielding capacity����� �������G� * D � &�� ��W / �"�� �� , which is less than

 ����
.

Another countermeasure we take to partially compensate for the gap of binary convolutional codes
from the AWGN capacity consists of introducing unitary transformations at each level such that the
signals input to the Viterbi decoders look like Gaussian. In particular, let ! + denote a unitary transfor-
mation of

� �
. Each Viterbi decoder at level

F
computes

*,+ �
�1� �9' ( � 7 ���� �"! + �
� O � � +LQ % �L� (16)

Then, the representation vector at level
F

is given by

� � + � � � +LQ % \ * 8 & +LQ % ! Q %+ ���  	?>�� (17)



Ideally, we should select the unitary transformations independently at each level, according to the Haar
measure, i.e., uniformly distributed on the manifold of unitary

! � !
matrices. This approach requires

common randomness between encoder and decoder, and might be seen as a spherical version of the
dithering approach commonly used in lattice quantizers [8]. In fact, since lattices are additive groups,
randomization with lattice quantizers is obtained by translating the source vector by a dither vector �
uniformly distributed over the lattice Voronoi cell. In our case, since spherical codes obtained from
binary convolutional codes are multiplicative groups, we obtain randomization by rotating the source
vector by a unitary matrix ! uniformly distributed over the unit sphere (Haar measure), and hence also
over the code Voronoi cell because of the geometric uniformity property.

Notice that both translations and rotations are isometries of
� �

, therefore, they preserve Euclidean
distance (distortion). This means that the only effect of randomization via the unitary transformation is
to present to each level Viterbi decoder a signal whose statistics is more adapted to the basic code.

We notice also that this approach might be extended to other families of spherical geometrically
uniform codes, such as linear trellis codes over

���
mapped to the 2 -PSK constellation [9].

In practice, sampling elements from the Haar measure is quite computationally intensive for large di-
mension

!
. Moreover, matrix-vector multiplications have complexity ��� ! D � and matrix inverse ��� !�� � .

Also, precomputing and storing
! � !

real matrices with no special structure is highly impractical for
large

!
. Hence, for the sake of complexity and practical implementation, we propose the use of struc-

tured unitary transformations given by

! + ��� + 	�
 O�� 
�� (18)

where � + is a random permutation of size
!

(interleaving),

 \�� � ��� D��� and where � is the Fourier

matrix of dimension
! � � , with ������� � elements � Q >�����! #" , for �8��� �:- W �0/0/0/1� ! � � O  4 . In this way, the

product ! +%$ can be efficiently computed by FFT and interleaving.
In standard trellis coded quantization (TCQ) [10], a trellis code defined over a multilevel alphabet

is used. The resulting code is similar to Ungerboeck TCM [11]. It turns out that the probability with
which the points in the code alphabet are selected is not uniform. Hence, rate improvement can be
obtained by binary labeling the points with variable-length labels. A modified Max-Lloyd algorithm
that exploits Viterbi decoding and training vectors is used in order to optimize the code alphabet and
the binary representation of the points. This approach is generally known as Entropy-Constrained Trel-
lis Coded Quantization (ECTCQ). The best known trellis quantizers for standard i.i.d. sources such as
Gaussian, uniform and Laplacian, are found in the family of ECTCQ [12]. It is natural to ask if some
rate improvement can be achieved in our scheme by applying entropy coding on the quantization in-
dices *,+ �
�1� . Notice that *1+ �
�1� is the sequence of information bits (input to the convolutional encoder)
that corresponds to the codeword found by the Viterbi algorithm in (16). We run some experiments
by applying the BWT-MDL source modeler of [13]. This modeler identifies the tree source model that
best explains the binary sequence *�+ �
�1� by using the Burrows-Wheeler transform and the Minimum De-
scription Length principle, i.e., the tree source model for which the overall description length (including
coding and model redundancy) of * + �
�1� is minimized. We simulated � W�W�W independent source sequence
of length

! �  W�W�W and we computed the empirical entropy of * + �
�1� according to the BWT-MDL
model. For all simulated frames this was always equal to 1 bit per symbol. This shows that the output
of our multistage quantizer is close to an i.i.d. sequence of fair bits and that, in practice, post-processing
entropy coding cannot improve performance.

Fig. 3 shows the performances of the multistage trellis quantizer for Gaussian, Laplacian and uni-
form sources, in terms of RSNR defined as

O  W ?BA�C % � & + vs �+$Y� F #%$ , with #%$Y�  ����
and

 ��� states.
The performances are compared with the optimal RSNR corresponding to the distortion-rate function.
For Laplacian and uniform sources we plot also the Shannon lower bound (SLB) [6] and the RSNR
obtained with the Gaussian distortion-rate function. Out scheme achieves the same performance for all
three sources, in agreement with Lapidoth result [4]. Unfortunately, due to the suboptimality of convolu-
tional codes with respect to ideal spherical codes, it suffers some gap from the Gaussian distortion-rate



function. Nevertheless, these performance are comparable with the best known TCQ (not successive
refinement) and are only slightly outperformed by the best known ECTCQ (also not successive refine-
ment).
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Figure 3: RSNR vs � of Multistage TQ scheme for rate

 ����
and

 ��� states for ���@� Gaussian, � � �
Laplacian, and ��� � uniform source.

3 Lossy adaptive transmission over noisy channels

We consider the transmission of a source
�

over a channel ����� � . The decoder must provide a reproduc-
tion of the source such that end-to-end distortion is minimized. Roughly speaking, practical source en-
coders involve some linear transformation (e.g., wavelet transform, subband decomposition, predictive
filtering, etc ...) followed by some segmentation and decimation (e.g., deleting certain high-frequency
components of the signal). Eventually, the analog data is quantized and the sequence of quantization
indices is lossless compressed by the so-called “entropy coding”. We identify the weak point of the
conventional approach in the fact that the source encoding inverse function may have a catastrophic
behavior: a little Hamming distortion in its input may cause large distortion in its output. This imply an
overly strict constraint in the BER at the output of the channel decoder.

The non-catastrophic behavior of convolutional encoders has been widely studied. Convolutional
codes admit non-catastrophic encoders such that small Hamming distance between encoder input se-
quences cause small distance in encoded sequences. In particular, this is the case of feedback-free
non-catastrophic convolutional encoders. Our multistage source encoder inherits this property from its
basic code

�
. We consider the concatenation of the multistage source code with a standard channel

code and compare the achieved end-to-end distortion with the separation limit. Let 	 denote spectral
efficiency measured by the number of source symbols per channel use (equivalently, by the ratio of the
(discrete-time) source bandwidth over the (discrete-time) channel bandwidth). Let ���
	�� denote the
source rate-distortion function and ����
P� denote the channel capacity-cost function. Hence, spectral
efficiency 	 can be achieved with distortion 	 and input cost 
 if and only if 	 [�� 	 ��� 	�� � . For fixed
spectral efficiency, the best achievable distortion as a function of the channel input cost is given by	������ ��� Q % ������
P� � 	G� .

In our example, for simplicity, we fix the channel to be a binary-input AWGN (BI-AWGN) channel,
defined by � � � � $��T\�� (19)

where � �`- O  � \  4 and � � � �
W ��� � � � � , and the source to be Gaussian i.i.d. with quadratic distor-
tion. Notice that in this case the conditions of [14] do not hold, hence we have to code the source and
the channel in smart ways. The multistage source encoder produces the indices � * % �
�1�3�0/0/0/1� * S �
�1�L� in
the form of binary sequences. Namely, *�+ �
�1� is the sequence of information bits corresponding to the
codeword � �  	?>�� selected by the Viterbi decoder at level

F
. As channel codes we may consider any family

of good binary codes for the BI-AWGN channel. In particular, in our example we considered convolu-
tional codes with 64 states and rates

 ���� �  ���� �  �� �E��� ��� � ����� �	� �  , and the turbo code with component



generators (37,21) (octal notation) taken from [15] with interleaving size 65536 and puncturing in order
to have rates

 ���� �  �� �E�=� ��� � ����� �	� �  E�  � ��E � . The source code is based on the convolutional code of
rate 1/4 and 128 states already used in Fig. 2.

Fig. 4 shows the resulting distortion for 	 �  ����
versus the channel SNR, defined as � $ � � � . The

separation limit is shown for comparison. Remarkably, the performance of the turbo-coded system is
quite close to the theoretical optimum. Degradation comes from two effects: a horizontal displacement
due to the SNR gap of the punctured turbo codes with respect to their capacity limit, and a vertical
displacement due to the gap of the multilevel source code with respect to its rate-distortion limit. In
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Figure 4: RSNR vs SNR for #"$��  ����
with

 ��� states. The channel codes are  � states convolutional
codes and � � � ���  � turbo codes [15], punctured to obtain different rates. The bound based on separation
theorem and the performances of uncoded BPSK transmission are also plotted.

practice, coupling our multilevel source code with channel coding of different rates can easily implement
a variable-quality scheme that operates at fixed target spectral efficiency and adapts itself to the user SNR
condition.

As far as the reconstruction is concerned, several recent works focused on soft reconstruction, where
the channel decoder provides soft-output symbol-by-symbol information and this is used by the source
decoder to mitigate the effect of residual post-decoding channel errors. We have checked that soft
reconstruction, accomplished using the BCJR algorithm [16] to re-encode the convolutional codewords,
processing the soft reliability values produced by the channel soft-in soft-out decoder, yields practically
no improvement with respect to simple hard reconstruction.

4 Broadcast approach to the BF-AWGN channel

In this section we consider a (complex baseband equivalent) block-fading AWGN channel (BF-AWGN)
described by � � � � � � \�� � � � �  �0/0/0/,��� (20)

where � is a fading coefficient, random but constant for the whole duration of transmission ( � channel
uses), and � � � � � �
W ��� � � is complex circularly-symmetric AWGN. We let ��� � � � D denote the fading
power gain, with continuous pdf ��� ���E� and cdf ��� ���E� . The input constraint is given by IYK � � � D M [ � $ ,
and we define 
:� � $ � � � as before.

This channel may also model a Gaussian broadcast channel [6] with � �	�
users, such that the

empirical distribution of the users SNRs converges almost everywhere to the cdf �
� ���E� . The BF-AWGN
channel becomes completely equivalent to the Gaussian broadcast channel under the assumption, made
here, that the transmitter is not informed about the value of the fading gain � (it does now, though, its
statistics). A broadcast approach to the BF-AWGN channel was proposed and analyzed in [17] (and



references therein). It consists of splitting the information message into ) parallel streams and mapping
each stream onto a layer of a superposition coding scheme. Each layer is modulated with a power
level �����@� such that if the fading gain is � � � then the layers up to � can be reliably decoded. The
power profile �����@� is optimized under the overall power constraint IYK �������NM [ 
 such that the average
successfully received rate is maximized. This problem can be solved elegantly and in closed form in
[17] since the associated Euler equation for the optimization problem takes on a particularly simple
form.

In our case, we wish to optimize the layer power profile in order to minimize the end-to-end average
distortion. Due to the fact that the source distortion-rate function, � Q % � 7 � , is generally non-linear,
the elegant solution of [17] does not apply here and in general the Euler equation associated to the
distortion minimization problem cannot be solved in closed form. Hence, we take a different route and
consider a more practical discretized system with ) layers, where the number of source code layers
coincides with the number of superposition channel coding layers and each layer has source coding rate#%$ bit/source symbol and channel coding rate #�� bit/channel uses, so that 	 ��#�� � #%$ . Clearly, by letting) arbitrarily large with #"$ arbitrarily small our numerical computable solution will approach arbitrarily
closely the solution of the non-computable problem defined in the continuous domain. Moreover, our
formulation encompasses either ideal Gaussian channel coding with ideal successive refinement source
coding, either practical given channel codes and multistage source codes.

A general successive refinement source code is defined by a distortion function 	 + ��	:� F #%$ � (where	 � �  
), where

F
is the number of layers successively decoded. The superposition coding scheme is

obtained by summing independently selected codewords of a “a basic channel code”
���

modulated at
different power levels. In general

���
is identified by the rate SNR-threshold pair � #	�5���9� such that for

SNR larger than � the code yields acceptable performance (roughly speaking, low-enough bit-error
rate). The transmitted superposition codeword is given by

$ � S" + $&% 8 � + � �+
where � + and � �+ are the power level and the codeword of

���
associated to level

F
, respectively.

We define fading gain thresholds W R � % R 70707 R �ES (where � S � % � � ) such that layers up to
F

can be decoded if � � K � + ��� + � % � . The condition for successive decodability of the superposition code
up to layer

F
is given by � + � + \�� + < S> $ + � % � > 
 � (21)

The resulting average distortion is given by

	 ��� � #%$0�� % �0/0/0/,�� SZ� � � � ��� % �]\ S" + $&% 	 + � � � ��� + � % � O � � ��� + �L� (22)

The levels � + are uniquely defined by the power levels � + by imposing the constraint (21) with equality.
Conversely, the � + ’s can be expressed in terms of the � + ’s by solving the triangular linear system � + � + O� � + < S> $ + � % � > � � � F �  �0/0/0/,�H) , which yields � + ����  \�� 
� �� � \�< S> $ + � D � 
� � �  \��9� > Q +LQ % . In

order to minimize 	 ��� with respect to
- � % �0/0/0/,�� S 4 subject to < + � +�[ 
 we consider the Lagrangian

functional
� ��	 ��� � #%$0�� % �0/0/0/ �� S �]\�� S" + $&% � + (23)

The
F
-th partial derivative is given by

� �
� � + �

+LQ %"> $&% K 	 > Q % O 	 > M � D> � � ��� > � O K 	 +LQ % O 	 + M
 
� �
D+ � � ��� + �]\�� (24)



¿From the Kuhn-Tucker conditions, we see that these derivatives must be zero for � + V W , and non-
negative for � + �XW . With the substitution � + � � D+ � � ��� + � , the system given by �

�
�

�  �XW is linear and

lower triangular, and the solution is given by � + � �
� 	 % � � � ����� ���� Q �  � � � + where

� + 7� � 	 % � � � ����� ���� Q �  .
Fig. 5 shows the average distortion achievable with the successive refinement and superposition

coding scheme over a BF-AWGN channel with Rayleigh fading for spectral efficiency 	J� � ��� and
an i.i.d. Gaussian source. Using ideal Gaussian codes, characterized by the rate-threshold pair # �T�?BA�C �  \ �9� and an ideal successive refinement source code characterized by 	 + ��� Q D �� + , we see that#%$ �  ����

achieves already almost optimal average distortion performance (the optimal is for #�$ � W ).
We have designed and simulated a practical system obtained by using our multistage source code (with
basic code of rate

 ����
and 128 states) and as

���
the turbo code of rate

 ����
of [15] with interleaving size

65536 and generators � � � ���  � mapped onto QPSK modulation. For comparison, an ideal system based
on separation theorem, transmitting a single layer with optmized rate #�$ is shown. This single-level
optimized system is representative of a conventional approach, where a non-successive refinement code
is coupled with a channel code, as in the examples of the previous section.

Fig. 6 shows the number of layers that a user can reliable decode and the associated reconstruction
quality of the practical system with multilevel coding versus the channel istantaneous SNR for given
average SNR 
:�����E/ � � dB. It is interesting to notice that the RSNR smoothly degrades as a function of
the SNR yielding acceptable reconstruction quality for low SNR conditions.
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Figure 5: RSNR vs SNR for multilevel coding for 	:� � ��� with ideal (Gaussian) channel and source
code, #%$��  ����

and
 ��� states convolutional source code and � � � ���  � -TC with rate

 ����
. The ideal

ssystem based on separation theorem optimized for each SNR is given as a comparison.
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