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Abstract

Within the field of pattern recognition, biometrics is the discipline which is con-

cerned with the automatic recognition of a person based on his/her physiological

or behavioral characteristics. Face recognition, a central area in biometrics, is a

very challenging task and is still largely considered an open problem. However, it

is worthwhile to note that most face recognition algorithms focus on the feature ex-

traction issue, and that much less attention has been given to the classification stage.

In this dissertation, we introduce a novel measure of “distance” between faces

which involves the estimation of the set of possible transformations between face

images of the same person. The global transformation, which is assumed too com-

plex for direct modeling, is approximated with a set of local transformations under

a constraint imposing consistency between neighboring local transformations. The

proposed local transformations and neighboring constraints are embedded within the

probabilistic framework of the two-dimensional hidden Markov model (2-D HMM)

in the case of discrete states and of the two-dimensional state-space model (2-D

SSM) in the case of continuous states.

To make the proposed face recognition approach practical, we also consider novel

efficient approximations of the intractable 2-D HMM and 2-D SSM: the turbo HMM

and the turbo SSM respectively. They consist of a set of inter-connected horizontal

and vertical 1-D Markov chains that communicate through an iterative process.

Once a proper measure of distance has been defined, we turn to the problem of

face image retrieval in large databases. To reduce the computational cost, the face

space is partitioned through a clustering of the data. The main challenge that we

address is the computation of a cluster centroid which is consistent with the pro-

posed measure of distance.

Finally, we consider the problem of identity verification which requires a robust

confidence measure. The issue is the accurate modeling of wrongful claims. For a
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distance such as the one introduced in this dissertation, we can model either the

set of possible transformations between face images of different persons or directly

the impostor distribution. We show that the latter approach leads to the best

classification.



Résumé

Dans le domaine de la reconnaissance des formes, la biométrie est la discipline

qui consiste à identifier une personne à partir de ses caractéristiques physiques

ou comportementales. La reconnaissance de visages, qui tient une place centrale

en biométrie, est une tâche particulièrement difficile et est généralement considérée

comme un problème ouvert. Cependant, il convient de noter que la plupart des algo-

rithmes de reconnaissance de visages se concentrent sur le problème de l’extraction

des vecteurs caractéristiques et que l’étape de classification a reçu une attention

moindre.

Nous introduisons dans cette dissertation une nouvelle mesure de “distance”

entre visages qui nécessite d’estimer l’ensemble des transformations possibles en-

tre images de visages d’une même personne. La transformation globale, que nous

supposons trop complexe pour être modélisée directement, est approximée par un en-

semble de transformations locales, sous la contrainte que des transformations voisines

doivent rester cohérentes entre elles. Transformations locales et contraintes de voisi-

nage sont incorporées dans le cadre probabiliste d’un modèle de Markov caché bi-

dimensionel (MMC 2-D) dans le cas d’états discrets ou d’un modèle espace-état

bi-dimensionnel (MEE 2-D) dans le cas d’états continus.

Pour que cette approche soit utilisable en pratique, nous considérons aussi de

nouvelles approximations performantes des MMC 2-D et MEE 2-D: les turbo MMC

et turbo MME respectivement. Ils consistent en un ensemble de châınes de Markov

1-D inter-connectées qui communiquent au travers d’un processus itératif.

Après avoir défini cette mesure de distance, nous nous tournons vers le problème

de la recherche d’images de visages dans de grande bases de données. De manière

à réduire le temps de calcul, l’espace des images est partitionné à l’aide d’un algo-

rithme de regroupement des données. La problème principal que nous nous attachons

à résoudre est le calcul d’un centröıde qui soit cohérent avec la mesure de distance

proposée.
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Finalement, nous nous intéressons au problème de la vérification des identités,

ce qui nécessite une mesure de confiance robuste. La difficulté est alors de modéliser

les transactions frauduleuses. Pour une distance telle que celle introduite dans cette

dissertation, nous avons le choix de modéliser la transformation entre images de per-

sonnes différentes ou la distribution des imposteurs. Nous montrons que la seconde

approche conduit à une meilleure classification.
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Introduction

1.1 Motivation

Let us consider the general pattern classification problem where a sample x is to

be assigned to one of a set of possible classes {ωi}. Within the Bayesian decision

framework, the optimal classifier commonly referred to as the minimum risk classifier

employs the following decision rule: assign the observed pattern x to the class ωi

that minimizes the conditional risk given by:

R(ωi|x) =
∑

j

λ(ωi|ωj)P (ωj |x) (1.1)

where the loss function λ(ωi|ωj) quantifies the loss incurred for selecting ωi when

the true class of x is ωj , and where P (ωj |x) is the (posterior) probability of class

ωj given that sample x was observed, which is computed in practice from P (ωj) –

the class prior probabilities – and P (x|ωj) – the class-conditional probability den-

sity functions (pdf). For a detailed review see, e.g., [DHS00]. Typically, the loss

functions are determined by the application and are hence assumed known, whereas

the class priors and class-conditional pdf’s need to be estimated given a training

set of labeled samples. In practice, the more challenging task is the estimation of

class-conditional pdf’s that characterize intra-class variability, and its accuracy is

a primary determining factor for the classifier performance. The quality of these

estimates hinges on two crucial factors: the correctness of the chosen model and

the availability of a sufficiently large training set to estimate the model parameters.
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Obviously, these two considerations are inter-related as the fewer parameters of a

compact model will require less training data to be robustly estimated.

The discipline of biometrics is concerned with the automatic recognition of a per-

son based on his/her physiological or behavioral characteristics [JRP04]. Biometric

applications involve pattern classification systems where the samples are biometric

data from a person under consideration, and need to be classified into categories

whose nature depends on the specific task at hand. For the identification task, a

new biometric sample is assigned to the most likely identity from a predefined set

of identities. In this case, the classes are the possible identities. For the verification

task, the system is probed with a biometric sample and a claimed identity. The

goal is to decide whether the sample indeed corresponds to the claimed identity.

Verification is thus a two-class decision problem where the classes correspond to the

acceptance/rejection decision.

The focus of this dissertation is on automatic face recognition (AFR) [CWS95,

WS99], a central area in biometrics. It is a very challenging task, as faces of differ-

ent persons share global shape characteristics, while face images of the same person

are subject to considerable variability, which might overwhelm the measured inter-

person differences. Such variability is due to a long list of factors including facial

expressions, illumination conditions, pose, presence or absence of eyeglasses and fa-

cial hair, occlusion and aging. Although much progress has been made over the past

three decades, AFR is largely considered an open problem, as observed during the

FERET evaluation [PMRR00] and the facial recognition vendor tests (FRVT) 2000

[BBP01] and 2002 [PGM+03], and is a highly active research topic.

Data scarcity is often a problem of paramount importance in biometric appli-

cations. When a new user first enrolls in a system, only a few instances of the

considered biometrics are typically captured in order to reduce the duration of en-

rollment and minimize inconvenience to the user (as well as maximize user coopera-

tion). Hence, very little intra-class variability can be observed during the enrollment

session. If only one sample is provided, intra-class variability is obviously impossible

to assess. In the case of AFR, the image which is provided (or its representation)

is thus directly used as a template and the likelihood P (x|ωi) can be interpreted as

a possible measure of similarity between the query and enrollment images. More

generally, we note that the main issue is the ability to define a distance between

images which is meaningful for the task at hand.

While most algorithms focus on the problem of representation, i.e. feature ex-

traction, less attention has been given to the derivation and computation of an
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appropriate distance. For instance, the popular eigenfaces [TP91] and Fisherfaces

algorithms [EC96, SW96, BHK97] employ low dimensional coding of face images.

The distance between faces in the face subspace is based on simple metrics such

as L1, L2, cosine and Mahalanobis distances [BSDG01] (c.f. appendix A). Combi-

nations thereof such as the Mahalanobis-L1, -L2 and -cosine [BBTD03] have been

proposed. Variations, such as the “Moon” [MP98] and “Yambor” [YDR00] distances

for eigenfaces or the weighted euclidean distance for Fisherfaces [EC96, Zha99], have

also been suggested. The candidate distance that yields the best results in a given set

of experiments is simply chosen. However, it is often difficult to ascertain why one

distance measure performs better than another. Moreover, as outlined in [BBTD03],

it is even difficult to describe in precise terms what some of these distances are ac-

tually computing.

To define a meaningful distance, it is beneficial to formalize the relationship

between observations of the same class, i.e., between face images of the same person.

Due to the scarcity of data, we have to assume (or postulate) the existence of a

“universal” distance measure that can be applied to different classes, i.e., that the

intra-class variability is similar in the various classes. Thus, the parameters of the

distance measure can be estimated from a larger training set which is not restricted

to images of persons that are enrolled in the system. If It denotes the template

image for class ωi, Iq a query image and R the relationship between images of the

same class, then the class-conditional probability is expressed as:

P (Iq|ωi) = P (Iq|It,R) (1.2)

A distance based on the above expression has already been used by the Bayesian

intra/extra-personal classifier (BIC) [MP97, MWP98] that aims at estimating the

distribution of image differences and by related approaches such as [MNP01]. Note

that, while the Elastic Graph Matching (EGM) [LVB+93] also defines a distance

between face images, it does not make use of a probabilistic framework. However,

other approaches related to EGM such as [VDR99], have made an attempt to define

a probabilistic distance.

1.2 Contributions and Outline

In this dissertation, we introduce a novel measure of “distance” between images.

This measure involves the estimation of the set of possible transformations between

face images. The global transformation, which is assumed too complex for direct

modeling, is approximated with a set of local transformations under a constraint im-

posing consistency between neighboring local transformations. The proposed local
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transformations and neighboring constraints are embedded within the probabilistic

framework of a two-dimensional hidden Markov model (2-D HMM) in the case of

discrete states and of the two-dimensional state-space model (2-D SSM) in the case

of continuous states. This orginal approach will latter be referred to as the proba-

bilistic mapping with local transformations (PMLT).

The outline of the dissertation is as follows. In the next two chapters, we provide

a brief introduction to the discipline of biometrics and review the literature on AFR,

respectively. The following 5 chapters correspond to original contributions:

• In chapter 4, we introduce the turbo hidden Markov model (T-HMM) and the

turbo state-space model (T-SSM) as efficient approximations of the intractable

2-D HMM and 2-D SSM respectively. They consist of a set of inter-connected

horizontal and vertical 1-D Markov chains that communicate through an it-

erative process. We attempt to provide efficient approximate answers to the

three fundamental problems of HMM design [Rab89]. While the work on the

T-HMM and the T-SSM is not the focus of this dissertation, it was necessary

to make the face recognition algorithms developed in the course of this thesis

tractable.

• In chapter 5, we first describe more extensively the proposed framework based

on local transformations and neighboring coherence constraints. We then spe-

cialize it to the problem of face identification in the case of elastic facial dis-

tortions, due, for instance, to expressions using discrete grid transformations.

• In chapter 6, we specialize the proposed framework to the case of illumination

variations using continuous feature transformations. We also consider the case

where we model both facial distortions and illumination variations.

• In chapter 7, we consider the problem of clustering face images using the

proposed measure of distance. The primary motivation is to partition the

face space to reduce the number of comparisons when a query is made on a

database that contains a large number of templates. We first address the issue

of the update step, which is obvious for simple metrics such as the Euclidean

distance, but which is much more challenging in the case of a complex measure

of distance. We then address the problem of multiple clusters assignment of

an observation.

• In chapter 8, we consider the problem of score normalization for robust identity

verification. The issue is to model accurately the distribution of wrongful

claims. However, for a distance such as the one introduced in this dissertation,

we have two different ways to model such claims. The first approach models
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the set of possible transformations between face images of different persons.

The second one models the distribution of impostors. Which of these two

approaches to score normalization is the more robust is not obvious and this

question is the focus of this chapter.

Finally, in chapter 9, we conclude this thesis.
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An Introduction to Biometrics

2.1 Introduction

This chapter introduces the generic biometric system. Although such systems are

based on a wide variety of technologies, much can be said about them. We start

in section 2.2 by defining the term biometric and by discussing the properties of

the ideal biometric. We then present in section 2.3 the two operational modes

of a biometric system. In section 2.4, we describe the architecture of the generic

biometric system. We also explain in section 2.5 how to evaluate the performance

of a biometric system. Finally, we conclude by presenting potential applications

of biometrics in section 2.6. Although multimodality is a very promising research

direction to improve on the performance of individual biometric systems, it falls out

of the scope of this dissertation and thus, it will not be discussed in this chapter.

2.2 Definition and Properties

There exists a wealth of applications that require reliable person identification or

identity verification [JRP04]. The two traditional approaches to automatic person

recognition, namely the knowledge-based approaches which rely on something that

one knows such as a password, and the token-based approaches which rely on some-

thing that one has such as a badge, have obvious shortcomings: passwords might be

forgotten or guessed by a malicious person while badges might be lost or stolen.
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Biometrics recognition, which can be defined as “the automatic identification or

identity verification of an individual based on physiological and behavioral charac-

teristics” [Way00a] is an alternative to these traditional approaches as a biometric

attribute is inherent to each person and thus cannot be forgotten or lost and might

be difficult to forge. The face, the fingerprint, the hand/finger geometry, the iris

or the retina are examples of physiological characteristics while the signature, the

gait or the keystroke are examples of behavioral characteristics. It should be under-

lined that there is no clear cut between physiological and behavioral characteristics

and that all biometric devices have both physiological and behavioral components

[Way00b]. For instance, while the voice biometric is generally classified as behavioral

it is dependent on physiological characteristics of the person under consideration

such as his/her vocal tract length. On the other hand, every biometric, even those

traditionally classified as physiological, has to be presented to the system and the

presentation itself is a behavior.

Ideally a biometric should be [JRP04, Way00b]:

• universal: all the persons should have the characteristic.

• permanent: the characteristic should not vary over time.

• distinctive: samples corresponding to different persons should be as different

as possible, i.e. the inter-class variability should be as large as possible.

• robust: samples corresponding to the same person should be as close as possi-

ble, i.e. the intra-class variability should be as small as possible.

• accessible: the sample should be easy to present to the sensor.

• acceptable: it should be perceived as non-intrusive by the user.

For instance the face biometric is universal, very easily accessible and it is gener-

ally considered as well accepted by users. However, it scores low on the permanence,

distinctiveness and robustness.

2.3 Operational Mode

It is of utmost importance to distinguish between the two operational modes of a

biometric system:

• In the identification mode, the user makes no claim of identity and the system

has to perform a search over the entire database to find the most likely identity

(one-to-many comparisons). A close-set is generally assumed which means

that all the trials are supposed to be from persons who are registered in the

database.
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• In the verification mode, the user claims an identity and the system has to de-

cide whether the sample indeed corresponds to the claimed identity (one-to-one

comparison). An open-set is generally assumed, which means that the input

samples may correspond to persons who are not registered in the database.

In the following, we use the generic term recognition when we do not want to make

the distinction between identification and verification.

2.4 Architecture

Biometric applications involve typical pattern classification systems as explained in

the introductory section (c.f. section 1.1). The architecture of the generic biometric

system is depicted on Figure 2.1. It is composed of at least two mandatory modules,

the enrollment and the recognition modules, and an optional one, the adaptation

module.

DATABASE

ADAPTATION

ENROLLMENT

PRE
PROCESSING

FEATURE
EXTRACTION

MODEL
ESTIMATION

SENSING

LOW QUALITY SIGNAL

LOW QUALITY SIGNAL

LOW CONFIDENCE

STORAGE

RETRIEVAL

ACCEPT/REJECT

RECOGNITION

PRE
PROCESSING

FEATURE
EXTRACTION

SENSING
DECISION
MATCHING ID

Figure 2.1: Architecture of a typical biometric system.

Enrollment is performed when a person registers in a biometric system. The

typical stages of the enrollment are as follows. The biometric of interest is first

captured by a sensing device. A series of pre-processing steps is then applied to

the obtained signal. For the problem of AFR, such pre-processing operations may

include face detection/segmentation, geometric or photometric normalization, etc.

A very important component of many pre-processors is the quality checker: if the

quality of the input signal is too poor, the system may require another sample from

the user. Then features are extracted from the signal. The goal of the feature extrac-
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tion step is to extract the unique features that characterize the considered person

while discarding irrelevant information. Thus, feature extraction can be generally

understood as a form of non-reversible compression. Finally, a model can be esti-

mated with the available features. It is subsequently stored, for instance on a smart

card or in a centralized database.

The first steps of the recognition are generally similar to the ones of the enroll-

ment: sensing, pre-processing and feature extraction. Then one or multiple tem-

plates are retrieved from the database, depending on the operational mode. The

extracted set of features is then compared with the template(s). Based on the out-

come of the matching and the decision policy of the biometric system, a decision

is taken. In the verification mode, the system can take an acceptance or rejection

decision or, in a case of uncertainty, request additional data from the user.

During the enrollment phase, a user friendly system generally captures only a

few instances of the biometric which is insufficient to describe with great accuracy

the characteristics of this attribute. Moreover certain biometrics such as the face

or the voice are not permanent. The goal of the adaptation module is hence to

maintain or even improve the performance of the system over time by updating the

model after each access to the system.

Note that the focus of this dissertation will be on the matching module but that

we will also consider the issue of template retrieval.

2.5 Performance Evaluation

The technical performance evaluation of biometric systems is a very challenging

issue which is too often overlooked. During the experimental evaluation we followed

some guidelines, referred to as “best scientific practices”, for conducting technical

performance testing [MW02]. Especially, we systematically used disjoint datasets

to train our face classifier and to evaluate its performance. We never used the same

persons to train and test the system. When carrying out verification experiments,

we also assumed that the impostors were unknown to the system. That being said,

we now briefly describe the performance measures of a biometric system and how

to evaluate the uncertainty of these performance estimates.

2.5.1 Performance measures

As the identification and verification are two different operational modes, they re-

quire different measures of performance.
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Identification

The identification rate is generally used to report the performance of a biometric

system in the identification mode. If the top match corresponds to the identity of

the person who submitted the query, then a success is declared. The identification

rate is the percentage of such successful requests. Another measure of performance

is the cumulative match score. A success is declared if the identity of the person who

submitted the query is among the top N matches. The performance of a system can

be represented by drawing the cumulative match score as a function of N .

When a search has to be performed over a very large database of templates,

strategies have to be devised to reduce the number of comparisons. The traditional

approach is to partition the templates into a number of datasets or classes which are

meaningful for the biometric under consideration. For instance, for the fingerprint

recognition problem, these sets correspond to the global patterns at the center of

fingerprints such as the arch, the loop, the whorl, etc. When a query is probed, the

first step consists in associating the query to one of the datasets and then to match

the query with the templates associated with this class. When such a partitioning

of the database is defined, two other measures of performance can be considered.

The penetration rate can be defined as the expected proportion of the template

data to be searched under the rule that the search proceeds through the entire

partition, regardless of whether a match is found [MW02]. A binning error occurs

if the template and a subsequent sample from the same user are placed in different

partitions and the binning error rate is the expected number of such errors [MW02].

Obviously, the larger the number of classes, the lower the penetration rate but the

greater the binning error rate.

Verification

When a biometric system works in the verification mode, it can make two types of

errors. It can either reject a person that made a rightful identity claim, also referred

to as a client, or accept a person that made a wrongful identity claim, also referred

to as an impostor. The false rejection rate (FRR) is the expected proportion of

transactions with truthful claims of identity that are incorrectly denied. This is

also referred to as a Type-I error or a miss. The false acceptance rate (FAR) is

the expected proportion of transactions with wrongful claims of identity that are

incorrectly confirmed. This is also sometimes referred to as a Type-II error or a false

alarm. Note that the FAR and FRR are defined over transactions. To avoid am-

biguity with systems that allow multiple attempts or that have multiple templates

per user, the false match rate (FMR) and the false non-match rate (FNMR) have

been defined for a single comparison of a query against a single enrolled template.
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However, as we will always consider the case of a single comparison against a single

template, in this dissertation we do not make a distinction between the FAR and

FMR on one hand and the FRR and the FNMR on the other hand.
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Figure 2.2: Impostor and client distributions for a typical biometric system.

To take an acceptance/rejection decision, a biometric system typically compares

the matching score to a decision threshold θ. If the matching score falls below θ,

then the claim is considered wrongful. If the matching score is higher than θ, then

the claim is considered rightful. Obviously, the FAR and FRR are conflicting types

of errors. The higher the decision threshold θ, the lower the FAR but the higher the

FRR. On the other hand, the lower θ, the lower the FRR but the higher the FAR

(c.f. Figure 2.2). The system performance can be depicted in the form of a receiver

operating characteristic (ROC) curve. It plots, parametrically as a function of θ, the

FAR against the FRR (c.f. Figure 2.3 (a)). For a given application, θ should be set

according to the desired level of security.

Note also that the detection error trade-off (DET) curve has been proposed as

an alternative to the ROC curve [MDK+97]. In the DET curve a normal deviate

scale is used to spread out the plot and distinguish better systems that have similar

performances. If the client and impostor distributions are close to Gaussians, then

the DET curve is almost linear (c.f. Figure 2.3 (b)). Moreover, a shift or the scaling

of the client or impostor distributions can be readily interpreted as a shift or a tilt

of the DET curve [ACLT00].

The equal error rate (EER), which corresponds to the point where FAR = FRR,

is often used to report the performance of a system. A decision cost function (DCF)

may also be used to summarize the performance of a system with one unique figure

for a given threshold θ:

DCF (θ) = CfrPcltPfr(θ) + CfaPimpPfa(θ) (2.1)
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Figure 2.3: (a) ROC curve and (b) DET curve for the same client and impostor
distributions.
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where Cfr and Cfa are respectively the costs of a false rejection and of a false accep-

tance, Pclt and Pimp are respectively the prior probabilities of client and impostor

attempts and Pfr(θ) and Pfa(θ) are respectively the FRR and FAR for a given

threshold θ. Note that the definition of the DCF is the direct interpretation of the

conditional risk for the two-class decision problem (c.f. equation 1.1). The DCF is

especially useful as an objective target for setting and measuring the goodness of a

priori thresholds [RH01].

Interestingly, the FAR and FRR which are measures used in the detection theory

can be directly related to the recall and precision which are information retrieval

measures [SRSC01]. The recall is the proportion of relevant material retrieved from

the database of templates. The precision is the proportion of retrieved templates

which is relevant. Assuming that the probability Pt of each template (also referred

to as the richness of the database) is uniform, then the recall R and the precision

P can be written as functions of Pt, Pfr(θ) and Pfa(θ):

R(θ) = 1 − Pfr(θ) (2.2)

P (θ) =
Pt × (1 − Pfr(θ))

Pt × (1 − Pfr(θ)) + (1 − Pt) × Pfa(θ)
(2.3)

A typical example of a precision versus recall curve is shown on Figure 2.4.
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Figure 2.4: Precision versus recall curve. The client and impostor scores used to
draw this curve are the same as the ones used in Figure 2.3. Pt = 0.1

2.5.2 Uncertainty of estimates

We briefly introduce the two types of uncertainties on the performance estimates:

the systematic errors and random errors [MW02].
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Systematic errors

Systematic errors are those due to a bias in the test procedure. This bias may be

due to the fact that certain categories of the population, e.g. based on the age or

the ethnicity, are either over- or under-represented. A solution to mitigate this bias,

is to carry out experiments on as large a number of varied databases as possible.

Another potential bias may arise if we train a system and assess its performance

on the same database, i.e. if we consider perfectly matched conditions, which will

generally give an overly optimistic performance estimate. To make sure also that our

system is not too sensitive to a mismatch between the training and test conditions,

whenever possible, we train and assess the performance of our system on different

databases.

Random errors

Random errors which are due to the limited number of trials will reduce as the size

of the test increases and they can be estimated using statistical tools.

It is possible to derive error bounds on the estimated error probability for a

biometric system with a given confidence. Note that these confidence intervals do

not represent a priori estimates of performance in different applications or with

different populations. One generally assumes that trials are independent and that

the error probability does not vary across the population [Way00b]. Thus, the

probability distribution for the number of errors can be considered binomial. Let N

be the number of trials, p be the error probability of the system and e be the number

of observed errors. Then the maximum likelihood (ML) estimate of p is given by:

p̂ =
e

N
(2.4)

If Np is sufficiently large (typically Np > 10), then the binomial distribution can

be approximated with great accuracy by the normal distribution. Let σ2 be the

variance of the error rate. Under the assumption of normality, the true error rate

will be with 1 − α confidence in the interval:

[p̂ − z(1 − α/2)σ, p̂ + z(1 − α/2)σ] (2.5)

where z() is the inverse of the standard normal cumulative distribution. For instance,

for a 95% confidence interval, we have z(1 − α/2) = 1.96 and for a 99% confidence

interval, z(1 − α/2) = 2.58. As the standard deviation σ is unknown, it is replaced

by its estimate σ̂:

σ̂ =

√

p̂(1 − p̂)

N − 1
(2.6)
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If we want to compare two algorithms A1 and A2 on the same database, one may

also determine directly whether the observed difference can be considered significant.

If the errors are assumed independent, a simple approach is to perform McNemar’s

test. Let m be the number of samples for which A1 made an error while A2 was

correct and let n be the number of samples for which A2 made an error while A1 was

correct. Assuming for instance that m < n, then the probability that the observed

difference happened purely by chance is given by:

P = 2
m+n
∑

i=n

(

m + n
i

)(

1

2

)i

(2.7)

and thus A1 can be declared to outperform A2 with a 100 × (1 − P )% confidence.

2.6 Applications

In this section, we first give a classification of biometric applications and then provide

a few examples of such applications.

2.6.1 Classifying applications

All applications can be partitioned according to the following seven categories [Way00b]:

• cooperative/non-cooperative: This terminology refers to the behavior of the

deceptive user. In applications verifying a positive claim of identity, the de-

ceptive user cooperates with the system in the attempt to be recognized. On

the other hand, in systems verifying a negative claim of identity, the deceptive

user will be non-cooperative in the attempt not to be recognized.

• overt/covert: A system is said to be overt if the user is aware that one of his

biometrics is being measured. If not, the system is covert.

• habituated/non-habituated: This refers to the frequency of the interaction of

a user with the biometric system.

• Attended/non-attended: This refers to whether the use of the biometric device

is observed or guided by a person. Nearly all systems supervise at least the

enrollment process.

• Standard/non-standard environment: This refers to the conditions of opera-

tion of a biometric system. For instance, outdoor systems will generally be

considered as non-standard environment applications.
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• Public/private: This refers to whether the users of the system will be customers

or employees of the system management.

• Open/closed: This refers to whether the system will be required to exchange

data with other biometric applications.

2.6.2 Example applications

There are mainly four areas of applications for biometrics: access control, transac-

tion authentication, law enforcement and personalization.

Access control can be subdivided into two categories: physical and virtual access

control [LS01]. The former one controls the access to a location. An example is

the Immigration and Naturalization Service’s Passenger Accelerated Service System

(INSPASS) deployed in major US airports which enables frequent travelers to use

an automated immigration system that authenticates their identity through their

hand geometry [INS]. The latter one enables the access to a resource or a service

such as a computer or a network.

Transaction authentication represents a huge market as it includes transactions

at an automatic teller machine (ATM), electronic fund transfers, credit card and

smart card transactions, transactions on the phone or on the Internet, etc. Mas-

tercard estimates that a smart credit card incorporating finger verification could

eliminate 80% of fraudulent charges [O’S97]. For transactions on the phone, bio-

metric systems have already been deployed. For instance, the speaker recognition

technology of Nuance is used by the clients of the Home Shopping Network and

Charles Schwab [RH01].

Law enforcement has been one of the first applications of biometrics. Fingerprint

recognition has been accepted for more than a century as a means of identifying a

person. Automatic face recognition can also be very useful for searching through

large mugshot databases.

Finally, personalization through person authentication is very appealing in the

consumer product area. For instance, Siemens allows to personalize one’s vehicle

accessories, such as mirrors, radio station selections, seating positions, etc. through

fingerprint recognition [SIE].
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3

Face Recognition:
a State of the Art

3.1 Introdcution

In this chapter we present a survey of the literature on AFR from still intensity

images. An exhaustive review is out of the scope of this dissertation due to the large

body of existing work. Indeed AFR has been a very active research topic for the

past three decades. Thus we will focus on those approaches that we see as the most

significant ones. The reader can also refer to other surveys [CWS95, WS99, Gru00].

As explained in the previous chapter, a typical AFR system first detects and

segments a face, then extracts features and finally performs a matching with one or

multiple templates. In this chapter, we will not consider the problem of face detec-

tion or segmentation and the interested reader can refer to [HL01, YKA02]. Instead,

we will focus on the core of the pattern recognition system: the feature extraction

and the classification. However, we will not review these two components separately

(as done for instance in [CWS95]) since the classifier is generally heavily dependent

on the extracted features.

This chapter will be split into two parts. In the first one, we will review global

approaches to AFR, i.e. the ones that consider the face as a whole. In the second

part, we will review local approaches, i.e. the ones that consider local features. While
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the latter approaches are generally more robust to variabilities in the face appear-

ance such as rotation of the head, occlusion and gross variations due for instance to

the presence or absence of facial hair, they also generally require significantly more

computation than the former ones.

During this review, we will also show that, for both global and local approaches,

the vast majority of the research has focused on the issue of face representation but

that relatively little effort has been devoted to the matching problem.

3.2 Global Approaches

In this section we review those approaches to AFR that consider the face pattern

as a whole. We first describe the basic correlation approach. We then present

approaches based on the singular value decomposition (SVD). Next we describe

four classes of subspace approaches: the popular eigenfaces and Fisherfaces, the

subspace approaches that go beyond the second order statistics and the Bayesian

intra-/extra-personal criterion (BIC). Then we will briefly present the matching

pursuit filters. Also we will consider neural networks which have been used for both

feature extraction and classification. Finally, we will very briefly present the support

vector machines (SVM).

3.2.1 Correlation

Although correlation-based methods are now rarely used, they are still very inter-

esting to review because of their simplicity and because many algorithms that were

developed for AFR can be seen as extensions of this basic method.

The technique consists in using the whole gray-level image as the template. Al-

though the Euclidean distance could be used directly to compute the matching score

between two face images, the cross-correlation is often preferred [Bar81, BP93] as

it rescales the template and query images energy distributions so that their aver-

ages and variances match, thus making the score more robust to different ambient

illuminations or characteristics of the digitizing device. In [BM95] Brunelli and Mes-

selodi compare the standard correlation coefficient to three measures of similarity

which are based on the L2 and L1 norms. These estimators were investigated both

statistically, in the estimation of the correlation parameter of a bivariate normal

distribution, and experimentally on a face recognition task. The similarity measures

based on the L1 norm were shown to be more robust.

To compensate for scale variation Burt proposes a hierarchical approach [Bur88].

Such an approach also speeds-up the computationally intensive correlation estima-
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tion. This work was also extended to the recognition of faces under varying pose by

Beymer [Bey94]. When a query image is probed, features such as the eyes, nose and

mouth are first located through a template matching approach and the pose of the

face is then estimated (in [Bey94] the pose estimator can only distinguish between

face turned left and right). Then, the query image is matched with the template

images corresponding to the same general pose (left/right).

3.2.2 Singular value decomposition

In [Hon91] image features are divided into four classes: visual features, statistical

features of pixels, transform coefficient features and algebraic features. Algebraic

features are intrinsic to the image but not necessarily visible. The singular values

(SVs) of an image, considered as a matrix of pixels, are examples of algebraic fea-

tures.

Let us remind that if A is a real m × n matrix of rank r, then there exists two

orthonormal matrices U = [u1, u2, ..., um] of size m×m and V = [v1, v2, ...vn] of size

n × n and a diagonal matrix Σ = diag(λ1, λ2, ...λr, 0, ..., 0) of size m × n such that:

A = UΣV T (3.1)

The λi’s are the singular values of A. Formula 3.1 can be rewritten as:

A =
r
∑

i=1

λiuiv
T
i (3.2)

which can be understood as a decomposition of the image A on the orthogonal basis

uiv
T
i . The larger the corresponding singular value, the greater the contribution to

the reconstruction of the image.

The foundation of the characterization of images with their SVs is based on the

properties of the SVD. We cite here the ones that are particularly relevant to face

recognition [Hon91]:

• stability properties and, hence, insensitivity to image noise or small changes

of gray values incurred from different illumination conditions;

• proportionality to the variance of the image intensity;

• invariance to rotation, translation and mirror transform.

Tian et al. recently argued in [TTWF03] that the SVs of an image contain only

partial useful information about the face and that much information is carried by

the orthonormal matrices U and V . This is directly linked to the fact that SVs
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represent information that is not necessarily visible. This claim was supported by

a series of simple experiments. The authors swapped the SVs of different persons

and reconstructed the corresponding image with good accuracy. The only noticeable

difference was in the change of the gray level distributions. They even showed that

face images could be reconstructed with the SVs of a non-facial image.

The idea of using the information contained in the orthonormal matrices ap-

peared also in a much earlier paper [CLYW92] but without the justification provided

by [TTWF03]. Let A and B be two matrices. Let uiv
T
i be the orthogonal basis of

the SVD of A. If λi = uT
i Bvi, then B =

∑

i λiuiv
T
i is called the projective image of

B on A. If Ai,j is a set of training images for person i, the idea is to perform the

SVD of the average image Ai to obtain the orthonormal matrices Ui and Vi. (small

SVs are discarded in [CLYW92]). Training and test face images are then projected

on Ui and Vi.

3.2.3 Eigenfaces

In this section, we first present the basic eigenfaces approach and we then consider

one of its extension to multiple spaces.

The basic eigenface approach

Eigenfaces are based on the notion of dimensionality reduction. Kirby and Sirovich

first outlined that the dimensionality of the face space, i.e. the space of variation

between images of human faces, is much smaller than the dimensionality of a sin-

gle face considered as an arbitrary image [KS90]. As a useful approximation, one

may consider an individual face image to be a linear combination of a small num-

ber of face components or eigenfaces derived from a set of reference face images.

The idea of the Principal Component Analysis (PCA) [Jol86], also known as the

Karhunen-Loeve Transform (KLT), is to find the subspace which best accounts for

the distribution of face images within the whole space.

Let {x1, ..., xN} be a set of reference or training faces, x be the average face

and δi = xi − x. δi is sometimes referred to as a caricature image. Finally, if

∆ = [δ1, ..., δN ], the scatter matrix S is defined as:

S =
N
∑

i=1

δiδ
T
i = ∆∆T (3.3)

The optimal subspace PPCA is the one that maximizes the scatter of the projected

faces:

PPCA = arg max
P

|PSP T | (3.4)
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where |.| is the determinant operator. The solution to problem 3.4 is the subspace

spanned by the eigenvectors [e1, e2, ...eK ] corresponding to the K largest eigenvalues

of the scatter matrix S:

Sek = λkek k= 1,...,K (3.5)

As the number of images in the training set is generally lower than the dimension

of the image space, i.e. the number of pixels in an image, the number of non-zero

eigenvalues is N − 1. Due to the size of the scatter matrix S, the direct estimation

of its eigenvalues and eigenvectors is difficult. They are generally estimated either

through a SVD of the matrix ∆ or by computing the eigenvalues and eigenvectors of

∆T ∆. It should be underlined that eigenfaces are not themselves usually plausible

faces but only directions of variation between face images (c.f. Figure 3.1).

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k)

Figure 3.1: (a) Eigenface 0 (average face), (b)-(f) eigenfaces 1 to 5 and (g)-(k)
eigenfaces 995 to 999 as estimated on a subset of 1,000 images of the FERET face
database.

Each face image xi is represented by a point wi in the K-dimensional space:

wi = [w1
i , w

2
i , ...w

K
i ]T = PPCA × δi. Each coefficient wk

i is the projection of the face

image on the k-th eigenface ek and represents the contribution of ek in reconstruct-

ing the input face image. PCA guarantees that, for the set of training images, the

mean-square error introduced by truncating the expansion after the K-th eigenvec-

tor is minimized.

The eigenfaces were applied by Turk and Pentland to the problem of AFR [TP91].

To find the best match for an image of a person’s face in a set of stored facial images,
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one may calculate the distances between the vector representing the new face and

each of the vectors representing the stored faces, and then choose the image yielding

the smallest distance. The distance between faces in the face subspace is generally

based on simple metrics such as L1 (city-block), L2 (Euclidean), cosine and Maha-

lanobis distances [BSDG01] (c.f. appendix A). Combinations thereof such as the

Mahalanobis-L1, -L2 and -cosine [BBTD03] have been proposed. Variations, such

as the “Moon” [MP98] and “Yambor” [YDR00] distances have also been suggested.

Based on the work of others [BBTD03] and our own experience, the Mahalanobis-

cosine distance is the one that yields the best results. However, the reasons for this

superior performance compared to the other metrics are not clear.

Brunelli and Poggio argued that, from a theoretical point of view, eigenfaces

cannot achieve better results than the simple correlation based method but that it

may be able to reach a comparable performance with a much smaller computational

effort [BP93]. Note however that, as the feature extraction makes use only of the

first few eigenfaces, some irrelevant information contained in the higher eigenfaces

is discarded (c.f. Figure 3.1) and thus, in practice eigenfaces can outperform the

correlation approach.

Extension to multiple spaces

The eigenfaces approach was extended to multiple spaces. When a large amount

of training data is available, one can either pool all the data to train one unique

eigenspace or split the data into multiple training sets and train multiple eigenspaces.

The first approach which was introduced by Murase and Nayar, and which was in-

spired by research on general 3-D object recognition, is referred to as the parametric

approach [MN93]. The idea is to take pictures of objects under different views and

lightning conditions and to build a universal eigenspace with the whole set of images.

The alternative method, which is known as the view-based approach, consists in

building a separate eigenspace for each possible view. The approach followed by

Pentland et al. in [PMS94] is the following one. For each new target image, its ori-

entation is first estimated by projecting it on each eigenspace and choosing the one

that yields the smallest distance from face to space. One can use pruning strategies

to reduce the computational load incurred from projecting the face image in mul-

tiple eigenspaces. The performance of the parametric and view-based approaches

were compared in [PMS94] and the latter one performs better. The problem with

the view-based approach is that it requires large amounts of labeled training data to

train each separate eigenspace.
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More recently mixtures of principal components (MPC) were proposed by Kim

et al. [KKB02] and by Turaga and Chen [TC02] to extend the traditional PCA.

An iterative procedure based on the EM algorithm was derived in both cases to

train automatically the mixture of principal components. However, while [KKB02]

represents a face by the best set of features corresponding to the closest set of

eigenfaces, in [TC02] a face image is projected on each component eigenspace and

these individual projections are then linearly combined. [TC02] tested MPC on a

database of face images that exhibit large variabilities in poses and illumination

conditions. Each eigenspace converges automatically to varying poses and the first

few eigenvectors of each component eigenspace seem to capture lightning variations.

3.2.4 Fisherfaces

In this section, we first present the basic Fisherfaces approach and we then consider

possible extensions.

The basic Fisherfaces approach

While PCA is optimal with respect to data compression [KS90], in general it is sub-

optimal for a recognition task. Actually, PCA confounds intra-personal and extra-

personal sources of variability in the total scatter matrix S. Illumination conditions

are a source of large variabilities between face images of the same person and the

extra-personal variability due to lightning can even be larger than the intra-personal

variability. Thus eigenfaces can be contaminated by non-pertinent information. It

has been suggested that by throwing out the first several (typically 3) principal

components, the variation due to lightning would be reduced [BHK97]. However, it

is unlikely that these components model solely variation in lightning and relevant

information might also be discarded.

However, this does not necessarily mean that one should give up on linear di-

mensionality reduction techniques. The argument in [BHK97] is the following one:

all the images of a Lambertian surface 1 without self-shadowing and taken from a

fixed view point lie in a 3-D linear sub-space. Therefore, under the ideal conditions

listed above, the classes are linearly separable. This is a strong argument in favor

of using linear methods for dimensionality reduction in the AFR problem, at least

when one is concerned with compensating for illumination variations.

For a classification task, a dimension reduction technique such as Fisher’s Lin-

ear Discriminant (FLD) should be preferred to PCA. The idea of FLD is to select

1A Lambertian surface is a surface whose radiance is independent of direction, which means that
it adheres to Lambert’s cosine law.
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a subspace that maximizes the ratio of the inter-class variability and the intra-class

variability. Whereas PCA is an unsupervised feature extraction method, FLD uses

the category information associated with each training observation and is thus cate-

gorized as supervised. The application of the FLD to the problem of AFR is mainly

due to Etemad and Chellappa [EC96] Swets and Weng [SW96] and Belhumeur et

al. [BHK97].

Let xi,k be the k-th picture of training person i, Ni be the number of training

images for person i, xi be the average face for person i and C be the number of

persons in the training set. SB and SW , respectively the between- and within-class

scatter matrices, are given by:

SB =
C
∑

i=1

Ni(xi − x)(xi − x)T (3.6)

SW =
C
∑

i=1

Ni
∑

k=1

(xi,k − xi)(xi,k − xi)
T (3.7)

The optimal subspace PLDA is the one that maximizes the between-scatter of the

projected face images while minimizing the within-scatter of the projected faces:

PLDA = arg max
P

|PSBP T |
|PSW P T | (3.8)

The solution to equation 3.8 is the sub-space spanned by [e1, e2, ...eK ], the general-

ized eigenvectors corresponding to the largest eigenvalues of the generalized eigen-

value problem:

SBek = λkSW ek k= 1,...,K (3.9)

However, if the dimensionality of the feature space is higher than the number

of training individuals, which is generally the case, then SW is singular and this

principle cannot be applied in a straightforward manner. To overcome this issue,

generally one first applies PCA to reduce the dimension of the feature space and

then performs the standard FLD [BHK97, SW96]. The eigenvectors that form the

discriminant subspace are often referred to as Fisherfaces [BHK97]. In [SW96], the

space spanned by the first few Fisherfaces is called the most discriminant features

(MDF) classification space while PCA features are referred to as most expressive

features (MEF).

The distance between faces in the face subspace is generally based on simple

metrics as is the case for the eigenfaces approach. However, as the eigenvalues as-

sociated to each eigenvector are directly related to the discriminatory power of the
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(a) (b) (c) (d) (e) (f)

Figure 3.2: (a) Fisherface 0 (average face) and (b)-(f) Fisherfaces 1 to 5 as estimated
on a subset of 1,000 images of the FERET face database.

considered dimension, this information can be used. For instance, Zhao suggested a

weighted Euclidean distance where the weight associated to dimension k is λα
k and

α is a parameters which has to be hand-tuned [Zha99] (c.f. appendix A). Also, in

[KLM00] the gradient direction metrics was proposed for the verification problem.

The distance between a probe image and a model is measured in the gradient di-

rection of the a posteriori probability of the hypothesized client identity. A mixture

of Gaussian distributions with identity covariance matrix is assumed as the density

function of the possible impostors. In [SK04], the previous approach is extended to

the case of a general shared covariance matrix for the components of the GMM.

Note that, while Fisherfaces usually perform significantly better than eigenfaces,

Mart̀ınez and Kak, showed experimentally that when the training dataset is small

or when there is a significant mismatch between the training and test conditions,

then eigenfaces can outperform Fisherfaces [MK01].

Alternative approaches

Other solutions to equation 3.8 were suggested.

The FLD procedure involves the simultaneous diagonalization of the two within-

and between-class scatter matrices which is stepwise equivalent to two operations

[Fuk90]: first whitening the within-class scatter matrix, and second applying PCA

on the between-class scatter matrix using the transformed data. As during whiten-

ing the eigenvalues of the within-class scatter matrix appear in the denominator, the

small eigenvalues cause the whitening step to fit for irrelevant variations and thus

lead to poor generalization. The Enhanced FLD Model (EFM) proposed by Liu and

Wechsler improves on the basic FLD by retaining an optimal number of components

in the reduced PCA space [LW02]. The goal is to maintain a balance between the

need that the selected eigenvalues account for most of the spectral energy and the

requirement that the eigenvalues of the within-class scatter matrix (in the reduced
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PCA space) are not too small.

Chen et al. suggested that the null space of SW , i.e. the space spanned by the

vectors x that satisfy SW x = 0, carries most of the discriminative information as in

such a space perfect classification of the training data can be performed [CLK+00].

Therefore, the construction of a discriminant subspace is done in two steps: 1) the

null space of SW is estimated 2) the vector set that maximizes the between-class

scatter matrix of the transformed samples (in the null space of SW ) are chosen.

Yang and Yang also propose to make use of the information contained in the

null space of SW [YY03]. Let S̃W and S̃B the transformed versions of SB and SW

in the PCA space. In the null space of S̃W , the Fisher criterion is replaced by the

maximization of the scatter matrix in the projection space which is similar to the

approach of [CLK+00]. In the orthogonal complement, the projection of S̃W is pos-

itive and the optimal discriminant vectors can be directly extracted from the Fisher

criterion.

3.2.5 Beyond the second order statistics

While the eigenfaces and Fisherfaces have been successfully applied to AFR, both

approaches rely on second order statistics. However, it has been argued that in

a task such as AFR, much of the important information is contained in the high-

order statistics of the images [BS97, Yan02]. Therefore, a representation where the

high-order statistics are decorrelated may be more powerful for AFR than one in

which only the second order statistics are decorrelated. In this section, we will thus

consider two such representations: kernel approaches and independent component

analysis (ICA).

Kernel approaches

The basic idea underlying kernel approaches is to transform the vector space into

a higher dimensional space. The justification stems from Cover’s theorem which

states that non-linearly separable patterns in an input space are linearly separable

with high probability if the input space is transformed non-linearly to a high dimen-

sional feature space [Hay99]. One can thus extend the eigenfaces and Fisherfaces

approaches to kernel eigenfaces and kernel Fisherfaces [Yan02].

Let {xi, i = 1...N} be a set of training vectors and let Φ be the transformation

from the input space to the higher dimensional space. If SΦ is the total scatter matrix
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in the transformed space, then the eigenvalue problem for the kernel eigenface is:

SΦeΦ
k = λΦ

k eΦ
k k= 1,...,K (3.10)

As the vectors eΦ
k lie in the span of [Φ(x1), ...Φ(xN )], there exists coefficients αk,i’s

such that:

eΦ
k =

N
∑

i=1

αk,iΦ(xi) (3.11)

Let the kernel function k(., .) and the N × N kernel matrix K be defined as:

k(xi, xj) = Φ(xi)
T Φ(xj) (3.12)

Kij = k(xi, xj) (3.13)

The eigenvalue problem turns into:

Nλkαk = Kαk (3.14)

where αk is the vector [αk,1, ..., αk,N ]T . The projection of a new vector Φ(x) into

the kernel eigenfaces space is obtained in the following manner:

Φ(x)T eΦ
k =

N
∑

i=1

αk,iΦ(x)T Φ(xi) =
N
∑

i=1

αk,ik(xi, x) (3.15)

One of the most interesting properties of kernel approaches is that all the calculation

can be achieved by using k(., .) only and we do not need to know Φ. In [YAK00],

Yang, et al. use polynomial kernels. The conventional eigenfaces approach is a

special case of kernel eigenfaces with a polynomial kernel of first order. Note that

the distance computation in the kernel eigenface space is based on the same simple

metrics used for the eigenfaces. The Fisherfaces approach can be extended in a

similar manner [Yan02].

Independent component analysis

Independent component analysis (ICA) is a generalization of PCA which decorre-

lates the high-order statistics of images. In [BS97] Bartlett and Sejnowski calculate

the independent components through an unsupervised learning algorithm that max-

imizes the mutual information between the input and the output of a non-linear

transformation. Various approaches for selecting a subset of the independent com-

ponents were discussed. The best performance is obtained when the components

with the highest between-class to within-class variability are chosen. The Euclidean

distance is used to estimate the distance between face representations in the lower

dimensional space. In [BS97] the authors reported that ICA outperformed PCA, es-

pecially in the case of pose or lighting variations. However, in [Mog99] Moghaddam

did not report any improvement for ICA over PCA.
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3.2.6 The Bayesian intra-/extra-personal criterion

In [MP97], Moghaddam and Pentland argue in favor of a probabilistic measure

of similarity in contrast to simpler measures of similarity such as the Euclidean

distance. The focus of [MP97, MWP98, Mog02] is on modeling the difference δ

between face images. The observed variability can be explained by two mutually

exclusive classes of variability: the intra-personal variability ΩI (equivalent to our

notation R) and the extra-personal variability ΩE . The chosen measure of similarity

between two face images is P (ΩI |δ) which, using Bayes rule, can be evaluated as

follows:

P (ΩI |δ) =
P (δ|ΩI)P (ΩI)

P (δ|ΩI)P (ΩI) + P (δ|ΩE)P (ΩE)
(3.16)

This measure of similarity is referred to as the MAP classifier in [MWP98].

The difference between face images of the same person is assumed to be a nor-

mally distributed random variable:

P (δ|ΩI) =
1

(2π)N/2|S|1/2
exp

{

−1

2
δT S−1δ

}

(3.17)

Due to the high dimensionality of δ the direct estimation of the parameters of this

probability density function, i.e. of the covariance matrix S, is difficult. Moreover,

estimating P (δ|ΩI) can be very computationally intensive. In the following, we

summarize the optimal approach for estimating high-dimensional Gaussian densi-

ties described in [MP97].

Using a PCA, one can write Λ = ΦT SΦ where Φ = [Φ1, ...ΦN ] is the matrix of

eigenvectors of S (c.f. Figure 3.3), and Λ = diag{λ1, ..., λN} is the corresponding

diagonal matrix of eigenvalues. If y = [y1, ...yN ]T is the projection of δ on the basis

defined by ΦT , i.e. y = ΦT δ, and if we denote d(δ) = δT S−1δ, we have:

d(δ) = yT Λ−1y =
N
∑

i=1

yi
2

λi
(3.18)

The image difference space can be split into a principal subspace F = {Φ1, ...ΦM}
and its orthogonal complement F = {ΦM+1, ..., ΦN}. d(δ) can thus be separated

into dF (δ) + dF (δ) and P (δ|ΩI) into PF (δ|ΩI)PF (δ|ΩI). While the terms of dF (δ)

are easy to compute, the terms of dF (δ) are difficult to estimate due to the high

dimensionality of the problem. Hence dF (δ) (resp. PF (δ|ΩI)) is approximated with

d̂F (δ) (resp. P̂F (δ|ΩI)):

dF (δ) =
N
∑

i=M+1

y2
i

λi
≈ d̂F (δ) =

1

ρ

N
∑

i=M+1

y2
i =

ε2(δ)

ρ
(3.19)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.3: (a)-(e) Intra-personal eigenfaces and (f)-(j) extra-personal eigenfaces as
estimated on a subset of 1,000 images of the FERET face database.

where ρ is a constant and ε2(δ) is the distance of δ to the face difference space which

can be computed as follows:

ε2(δ) = ||δ||2 −
M
∑

i=1

y2
i (3.20)

The optimal value of ρ which minimizes the Kullback-Leibler divergence between

P (δ|ΩI) and its estimate PF (δ|ΩI)P̂F (δ|ΩI) is given by:

ρ =
1

N − M

N
∑

i=M+1

λi (3.21)

Using all the previous derivations, we finally obtain:

P (δ|ΩI) ≈
exp

{

−1
2

∑M
i=1

y2
i

λi

}

(2π)M/2
∏M

i=1 λ
1/2
i

exp
{

−1
2

ε2(δ)
ρ

}

(2πρ)(N−M)/2
(3.22)

In the case where the distribution of the difference images in the F -space is multi-

modal, the estimation of PF (δ) can be improved by the use of a mixture of Gaussians

instead of a single Gaussian.

Assuming that the distance between face images of different persons is also Gaus-

sian [Mog02], a similar approach can be used to estimate P (δ|ΩE). However, a sim-

ple ML formulation which makes use only of the intra-personal similarity P (δ|ΩI) is
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often preferred to the more complex MAP classifier as it requires twice as less com-

putation with very little, if no, degradation of the performance [?]. The reason for

the very small observed difference between the ML and MAP classifiers is explained

in [WT03]. As the extra-personal subspace is similar to the PCA eigenspace, it does

not contribute significantly to separating intra- and extra-personal variabilities.

While the approach devised in [MP97, MWP98] uses a simple intensity difference,

Moghaddam, et al. have shown experimentally in [MNP01] that a deformable XYI-

warping method for obtaining pixel to pixel correspondence does lead to an improved

representation for the “difference” between face images.

3.2.7 Matching pursuit filters

The matching pursuit filter technique is an adaptive wavelet expansion. A wavelet

expansion of an image is said to be adaptive if the choice of the wavelet basis depends

on the image under consideration. The original matching pursuit idea of Mallat and

Zhang uses a greedy heuristic to iteratively construct a best-adapted decomposition

of a function f [MZ93]. At each iteration, the next wavelet in the expansion is chosen

by minimizing the error between the original image and the reconstructed image.

Let D be a dictionary of non-necessarily orthogonal wavelets. Let Ri(f) denote the

residue of f after the i-th iteration with R0(f) = f . Then at the i-th iteration, gi is

chosen such that:

gi = arg max
g∈D

|Ri−1(f)
T
gi| , for i ≥ 1 (3.23)

and the residual is updated in the following manner:

Ri(f) = Ri−1(f) − αigi (3.24)

where αi is the projection of the residual image Ri−1(f) onto the basis element gi:

αi = Ri−1(f)
T
gi (3.25)

In [Phi98], Phillips applies the matching pursuit filter to the problem of face

detection and recognition. To extend this technique to the problem of pattern recog-

nition the right hand side in equation 3.23 is replaced with a cost function Cg which

allows 1) the simultaneous expansion of multiple templates and 2) to incorporate

knowledge of the given pattern recognition problem. Indeed, while for the face de-

tection problem, the cost function measures how well coefficient vectors cluster, for

the AFR problem, we search for a basis that separates the coefficients as much as

possible.
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For his expansion, Phillips uses a dictionary composed of 2-D directional wavelets.

The dictionary is derived from the second partial derivatives of Gaussian den-

sities and their Hilbert transforms, which were selected because they are direc-

tional edge detectors. High frequency wavelets were excluded to reduce the effect

of high-frequency noise. Low-frequency wavelets were also excluded for computa-

tional considerations but also to avoid encoding information in the background.

Let {x1, ..., xN} be the set of templates used to design the matching pursuit fil-

ter, let αk
i be the coefficient estimated for template k at the i-th iteration and

Λi−1 = {α1
1, ..., α

1
i−1, ..., α

N
1 , ..., αN

i−1}. The cost function for the identification task

is:

Cg(R
i−1(x1), ..., R

i−1(xN ), Λi−1) = −
∑

k

max
j 6=k

dθ(k, j)

+λ
∑

k

||[αk
1 , ..., α

k
i−1, R

i−1(xk)
T g]|| (3.26)

where the function dθ(k, j) equals the cosine of the angle between the vectors

[αk
1 , ..., α

k
i−1, R

i−1(xk)
T
g] and [αj

1, ..., α
j
i−1, R

i−1(xj)
T
g]. Thus, the first term in Cg

forces the coefficients vectors to separate and the second term searches for a set of

coefficients vectors with the largest average magnitude. The parameter λ sets the

relative importance of the two terms. While the focus in [Phi98] is on the case where

only one example image is available per person, the extension to multiple images

per person is straightforward.

As for the similarity measure between two faces, a simple angle distance between

their coefficient vectors was chosen.

3.2.8 Neural networks

Artificial Neural Networks (ANNs) have been applied to AFR for both feature ex-

traction and classification.

Feature extraction

While the popular back-propagation (BP) neural net may be trained to recognize

face images, the direct application of this principle is often impossible due to the size

of the input features [CF90, LGTB97, ZYL97] as it would lead to a complex net-

work which would be difficult to train. Therefore, before classification is performed,

a dimension reduction technique should be applied.

To perform dimension reduction, Cotrell and Fleming use in [CF90] a Multi Layer

Perceptron (MLP) that works in the auto-association mode where the input units
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communicate their values to the output units through a hidden layer. While the first

part of the network compresses the n redundant measurements into a smaller number

of characteristics p (usually p � n) which should convey the essential information,

the second part of the network works in the opposite way, and uses the compressed

information to regenerate the n original inputs as accurately as possible. It was

proved that the optimal solution of the MLP is, under the best circumstances (lin-

earity of the network), strictly equivalent to the Karhunen-Loeve Transform (KLT)

and that the network projects the input onto the sub-space spanned by the first p

principal components [Bou00].

Lawrence et al. suggested in [LGTB97] another approach based on a Self-

Organizing Map (SOM), introduced by Kohonen [Koh89]. The SOM is an unsu-

pervised learning process for arranging high-dimensional data without any class

information by performing simultaneously projection and clustering. The perfor-

mance of this dimensionality reduction technique was compared to KLT and it was

shown that, while both frontends exhibited similar performance, the use of KLT

produced slightly worse results.

Classification

WISARD (Wilkie, Aleksander and Stonham’s Recognition Device) [Sto84] is a sin-

gle layer neural network which is composed of discriminators, one for each class of

object (face) that needs to be recognized, each discriminator comprising a set of

function nodes. Classification is achieved by determining the classifier that gives

the highest response for a given input image. The quality of the data used during

the training phase is a major factor in the performance level of this system. While

in [Sto84] invalid training material had to be rejected manually, in [MK90] Krin and

Stonham propose a network that can control its own training. For this purpose, the

training material is partitioned into sub-sets using a neural network with clustering

capabilities.

In [CF90], after performing dimension reduction, the features (i.e. the outputs

of the hidden layer of the MLP in auto-associative mode) are fed into a second

network that works in the classification mode. In [LGTB97], the features are fed

into a Convolutional Network (CN) which provide for partial invariance to global

transformations such as translation, rotation and scale and to deformation. The per-

formance of this network was compared to a MLP and experimental results showed

that the MLP performed very poorly compared to the CN.

Lin, Kung and Lin introduced in [LKL97] a Probabilistic Decision-Based Neural

Networks (PDBNNs) for AFR. PDBNNs have the merits of both neural networks
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and statistical approaches. They inherit the modular structure from its predeces-

sor, the Decision Based Neural Network (DBNN) and the discriminant function of

PDBNNs is in a form of a probability density. This approach was shown to have a

performance comparable to the system combining SOMs and CNs while requiring a

much smaller amount of computation at both training and classification time.

3.2.9 Support vector machines

The support vector machine (SVM) is a binary classification method that finds the

optimal linear decision surface based on the concept of structural risk minimization

[Vap95, Bur98]. Let {(xi, yi), i = 1, ..., N} be a set of labeled training data where

xi is the data to be classified and yi ∈ {+1,−1} is the label. In the simple linearly

separable case, the linear decision surface has the form:

wT x + b = 0 (3.27)

where w, the normal to the decision surface, is written as:

w =
N
∑

i=1

αiyixi (3.28)

Among the hyperplanes minimizing the empirical risk, we search for the one that

minimizes the expected risk. It can be shown that this optimal hyperplane is ob-

tained by minimizing ||w||2 with respect to the αi’s subject to a set of constraints.

This is a quadratic optimization problem. There exists a simple geometric interpre-

tation: the optimal hyperplane is the one that maximizes the sum of the distances

to the closest positive and negative training samples, the support vectors. This sum

is called the margin of the separating hyperplane. This framework can be extended

to non-separable training sets but also to non-linear decision surfaces using kernel

functions.

In [Phi99], Phillips reformulated the AFR problem as a problem in difference

space, which models dissimilarities between faces of different people. The two classes

are: dissimilarities between faces of the same person and dissimilarities between faces

of different persons as is the case in [MWP98]. Experimental results indicate that,

for both identification and verification, the SVM is superior to a simple eigenface

approach where a Euclidean distance is used to compute the distance in the face

subspace.

While Phillips used generic support vector machines in [Phi99], in [JKLM99,

JMKL00] Jonsson et al. use client specific support vectors. They tried to apply
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the SVM both to PCA and LDA representations of the face. Their study supports

the hypothesis that the SVM approach is able to extract the relevant discriminatory

information from the training data. Thus, when the representation space already

captures and emphasizes the discriminatory information as is the case for the LDA,

SVM are not superior to simple Euclidean or correlation distances anymore.

3.3 Local Approaches

In this section, we consider those approaches to AFR which view the face as a collec-

tion of features. We first very briefly review the geometric feature-based approaches.

We then describe the component-based algorithms which are generally direct ex-

tensions of global approaches. Next we present approaches based on the Gaussian

mixture model (GMM) and the hidden Markov model (HMM). We also consider the

graph-based approaches such as the elastic graph matching (EGM) and the elastic

bunch graph matching (EBGM). Finally, we present the local feature analysis (LFA)

which is the core of Visionics FaceIt’s AFR module.

3.3.1 Geometric features

The earliest techniques used for the problem of AFR are the geometric feature-

based approaches. The idea of such systems is to extract relative positions and

other parameters of distinctive features such as eyes, mouth, nose and chin. For

instance, in [BP93] a set of 35 geometrical features are extracted automatically:

• eyebrow thickness and vertical position at the eye center position

• a coarse description of the left eyebrow-s arches

• nose vertical position and width

• mouth vertical position, width, height, upper and lower lips

• radii describing the chin

• face width at nose position

• face width halfway between nose tip and eyes

These features are matched using a Mahalanobis distance. However, it is generally

difficult to extract such features with great accuracy and it was shown in [BP93]

that this approach was outperformed by a component-based approach.
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3.3.2 Component-based approaches

Many global approaches to AFR were extended to consider different components of

the face, such as the eyes, the mouth or the nose instead of the whole face pattern.

The design of a component-based approach thus relies mainly on the choice of the

components, the measure of similarity between two components and the way the

outputs of the different matchers are fused. In the following, we give several exam-

ples of such approaches.

Elaborating on the work of Baron [Bar81], Brunelli and Poggio extended the cor-

relation approach to multiple templates [BP93]. Four components were considered:

the eyes, the nose, the mouth and the face (from eyebrows downward). Each feature

is matched separately and the combination is done through the use of a HyperBF

network. The experimental analysis shows that the most discriminating features are

the eyes, then the nose, the mouth and that the whole face is the least discriminating

one.

In [PMS94] Pentland et al. proposed an extension of the eigenfaces, called mod-

ular eigenfaces. As is the case in [BP93], the global representation of the face is

augmented by local prominent features such as the eyes, the nose or the mouth. The

notion of eigenface is thus extended to eigeneyes, eigennose and eigenmouth. Note

that the notion of eigenfeatures was first applied by Welsh and Shah to the problem

of image coding [WS92]. For a small number of eigenvectors, the eigenfeatures ap-

proach outperformed the eigenface approach and the combination of eigenfaces and

eigenfeatures outperformed each algorithm taken separately.

In [Phi98] Phillips used matching pursuit filters to encode the interior of the

face, but also the tip and the bridge of the nose, and the left and right eyes. For

each template, a total score is computed which is a weighted sum of the scores of

the individual features. The weighting scheme is very simple: the weight for the in-

terior of the face is set to 0.5 and the weights for the remaining features are set to 1.0.

Finally in [HHWP03] Heisele et al. extended the global SVM approach to the

component-based approach. In a first step, 10 facial components are detected. Then

to generate the input of the face classifier, each component is first normalized in size

and their gray values are combined into a single feature vector which is subsequently

fed to an SVM classifier.
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3.3.3 Gaussian mixture model

The application of the Gaussian mixture model (GMM) to the problem of AFR by

Sanderson and Paliwal [SP02, San02] is directly inspired by the work of Reynolds et

al. on speaker recognition [RQD00].

In [Rey95], Reynolds introduced the GMM for the speaker recognition problem.

Let O = {o1, ..., oT } be a sequence of observations emitted by a GMM whose pa-

rameters are denoted λ. If we assume that these observations are independent, then

the log-likelihood of the sequence of observations is:

log P (O|λ) =
T
∑

t=1

log P (ot|λ) (3.29)

where P (ot|λ) is given by:

P (ot|λ) =
K
∑

k=1

wkN (ot; µk, Σk) (3.30)

λ = {wk, µk, Σk, k = 1...K}, where wk, µk and Σk are respectively the mixture

weights, Gaussian means and covariance matrices. The model parameters λC of a

given client C were trained through a ML estimation using only data from client C.

However, Reynolds et al. showed in [RQD00] that an improved performance

could be obtained by adapting the client model from a universal background model

(UBM). This UBM is a large GMM (it contains typically between 512 and 2,048

Gaussians) that represents the speaker-independent distribution of features. Thus,

the UBM parameters, denoted λUBM , should be trained with a large amount of data

corresponding to different persons or conditions to reflect as much acoustic diversity

as possible. The model of client C is estimated through a MAP adaptation of the

UBM using client specific data. For the verification problem, if θ is the decision

threshold, then the following test is performed:

1

T
[log P (O|λC) − log P (O|λUBM )] ≷ θ (3.31)

In [SP02, San02] the features used are DCT-based. The downside of using a

GMM based classifier is that much information about the face structure is lost.

Therefore, in order to increase the performance of the GMM approach without

sacrificing its simplicity, in [CSB04] Cardinaux et al. propose to augment features

with their position of extraction. An improved performance is obtained at the

expense of a modest increase of the computational cost.
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3.3.4 Hidden Markov model

In [Sam94], Samaria pioneered the use of the hidden Markov model (HMM) for the

problem of AFR. The starting point of this work is the observation that a face can be

segmented into a number of regions which contain facial landmarks such as the eyes,

nose, mouth, etc. If these regions could be reliably located, then standard pattern

matching techniques could be applied to each region individually as done for instance

in [BP93]. However, Samaria argues that the accurate location of such points is a

difficult problem and that the boundaries between adjacent regions are unclear.

A potential solution to the problem of traditional pattern matching techniques is

to associate facial regions with the states of a HMM. Samaria [Sam94] and Nefian

[Nef99] both started with a simple 1-D HMM and then considered the more complex

case of the 2-D HMM.

1-D HMM

If a face is in an upright, frontal position, one can assume that regions of the face

will appear in a predictable order: forehead, eyes, nose, mouth, chin. This natural

ordering suggests the use of a top-to-bottom model, similar to the traditional left-to-

right model used in speech recognition, where the states of the model correspond to

the five facial landmarks previously listed. The observations emitted by each state

are blocks of consecutive lines or their compressed version through a DCT. Models

are estimated using the Baum-Welch algorithm based on the EM principle and at

test time the Viterbi algorithm is performed to determine the best model.

However such an approach is limited by the 1-D modeling of a 2-D object. While

it can compensate for vertical deformations of the face, it cannot deal with the same

variabilities in the horizontal direction, such as in-depth rotation.

2-D HMM

As the complexity of the Baum-Welch and Viterbi algorithms for a true 2-D HMM

is exponential in the size of the data, and thus intractable for the problem of inter-

est, [Sam94] and [Nef99] used the pseudo 2-D HMM (P2D HMM) also sometimes

referred to as planar HMM or embedded HMM, introduced for the problem of optical

character recognition (OCR) by Agazzi et al. [AKLP93, KA94]. The assumption

of the P2D HMM is that there exists a set of “super” states which are Markovian

and which subsume a set of simple Markovian state. Hence, the network of sim-

ple Markovian states is not fully connected in 2-D. The super states correspond to

the same facial regions as in the 1-D case ordered in a top-to-bottom fashion and

they contain simple left-to-right 1-D HMMs. Observations are blocks of pixels or

their compressed version through DCT. It was shown in [EMR00, CSB04] that an
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improved performance could be obtained if the individual HMM models were de-

rived from a generic HMM face model using, for instance, through MAP adaptation.

Recently, Nefian introduced the embedded Bayesian network (EBN) which gen-

eralizes the P2D HMM by allowing each HMM to be replaced by any arbitrary

Bayesian network, and applied it successfully to the problem of AFR [Nef02].

3.3.5 Graph-based approaches

In this section, we will review the elastic graph matching (EGM) and the elastic

bunch graph matching (EBGM). We will also consider the extensions of both algo-

rithms to incorporate discriminatory information.

Elastic graph matching

The Elastic Graph Matching algorithm (EGM), which has roots in the neural net-

work community, was introduced by Lades et al. [LVB+93]. Given a template face

image It, one first derives a face model from this image. A grid is placed on the face

image and the face model is a vector field O = {oi,j} where oi,j is the feature vec-

tor extracted at position (i, j) of the grid which summarizes local properties of the

face (c.f. Figure 3.4). Gabor coefficients are generally used but other features, like

morphological feature vectors, have also been considered and successfully applied

to the EGM problem [KTP00]. The lattice formed by the vector field is generally

much coarser than the “natural” lattice formed by the vector field of pixels. Given

a query image Iq, one also derives a vector field X = {xk,l} but on a finer grid than

the template face (c.f. Figure 3.4).

QUERYTEMPLATE

Figure 3.4: Possible mapping between a template image and a query image.

In the EGM approach, the distance between the template and query images is

defined as a best mapping M∗ among the set of all possible mappings {M} between

the two vector fields O and X. The optimal mapping depends on the definition
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of the cost function C. Such a function should keep a balance between the local

matching of features and the requirement to preserve spatial distance. Therefore, a

proper cost function should be of the form:

C(M) = Cv(M) + ρCe(M) (3.32)

where Cv is the cost of local matchings, Ce the cost of local deformations and ρ is a

parameter which controls the rigidity of the elastic matching and has to be hand-

tuned. Cv is the sum of all local matchings and the measure of similarity between a

vector oi,j in It and a vector xk,l in Iq is a simple cosine distance.

As the number of possible mappings is extremely large, even for lattices of mod-

erate size, an exhaustive search is out of the question and an approximate solution

has to be found. Toward this end, a two steps procedure was designed:

• rigid matching: the whole template graph is shifted around the query graph.

This corresponds to ρ → ∞. We obtain an initial mapping M0.

• deformable matching: the nodes of the template lattice are then stretched

through random local perturbations to reduce further the cost function until

the process converges to a locally optimal mapping M∗, i.e. once a predefined

number of trials have failed to improve the mapping cost.

The previous matching algorithm was later improved. For instance, in [KTP00]

the authors argue that the two-stage coarse-to-fine optimization is sub-optimal as

the deformable matching relies too much on the success of the rigid matching. The

two stage optimization procedure is replaced with a probabilistic hill-climbing algo-

rithm which attempts to find at each iteration both the optimal global translation

and the set of optimal local perturbations. In [TKP01], they further drop the Ce

term in equation 3.32. However, to avoid unreasonable deformations, local transla-

tions are restricted to a neighborhood.

Elastic bunch graph matching

The Elastic Bunch Graph Matching (EBGM) approach elaborates on the simple

EGM [WFKvdM97]. One of the major innovations of the EBGM is to associate

graph nodes to facial landmarks. Thus the same graph nodes correspond to the

same facial features for different faces.

The face representation of a given image is built using a face bunch graph (FBG).

A FBG is a general representation of the face. All vectors in a FBG referring to

the same facial feature (called fiducial point) are bundled together in a bunch. Each
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fiducial point is represented by several alternatives to account for as many possible

variations of that feature. For instance, an eye bunch may include features (called

jets) from close, open, female and male eyes, etc. Such an FBG has to been ini-

tiated by locating manually the fiducial points on a set of reference images. The

EBGM is used to extract the fiducial points on the face and thus to generate the

graph representation of an image. The cost function which is used to estimate the

similarity between an image graph and the FBG is very similar to the cost function

of the EGM (c.f. equation 3.32). However, a difference is in the use of the phase

information in the EBGM. It is used to disambiguate features which have a similar

magnitude but also to estimate local translations. To find the face graph which

minimizes this cost function, a coarse to fine approach similar to the one used for

the EGM is employed: first the algorithm compensates for global translation, scale

or aspect ratio and then for local distortions.

Since the nodes of the graphs correspond to the same facial features, the match-

ing of two face graphs is greatly simplified. The similarity function between two face

graphs is defined as the average over the similarities between pairs of corresponding

jets. The similarity between corresponding jets is measured with a simple cosine

distance.

It should be noted that the idea of associating the nodes of a graph to salient

features of the face appeared in earlier work by Majunath et al. [MCvdM92]. Fea-

ture points are detected without assuming any knowledge of the face structure. The

feature extraction consists of two basic steps. During the first step, one performs

a Gabor wavelet decomposition to extract information at different scales and ori-

entations. The second step makes use of local scale interactions between oriented

features. Typically, 35 to 50 points are obtained in this manner and form the face

graph. They generally correspond to salient facial features such as the eyes or the

nose. Once features are extracted from the face, a topological graph is built to

model the interaction between features. To compare two face graphs, a two-stage

matching similar to the one suggested in [LVB+93] is developed. One first compen-

sates for a global translation of the graphs and then performs local deformations for

further optimization. However, another difference with [LVB+93] is that the cost

of local deformations (also called topology cost) is only computed after the features

are matched which results in a very fast algorithm. However, one advantage of

[WFKvdM97] over [MCvdM92] is in the use of the bunch graph which provides a

supervised way to extract salient features.
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Incorporating discriminatory information

An obvious shortcoming of both EGM and EBGM is that the cost of local matchings

is a simple sum of all local matchings. This contradicts the fact that certain parts

of the face contain more discriminant information and that this distribution of the

information across the face may vary from one person to another. Hence, the cost of

local matchings at each node should be weighted according to their discriminatory

power.

A general method for combining linearly multiple experts was developed and ap-

plied to the weighting of the nodes of and EBGM system in [Krü97]. The weighting

is defined by a parameterization function (the same for all nodes) and the parameters

of the function are estimated on a training set by maximizing an evaluation function

using the simplex method. [KTP00] derived coefficients based on the between- and

within-class variability at each node of an EGM graph. Fisher’s Linear Discriminant

has also been used in [DFB99, KTP00] to project the feature vectors in maximally

discriminant sub-spaces. Finally, [TKP01] reformulates the classical Fisher’s Dis-

criminant ratio to a quadratic optimization problem subject to a set of inequality

constraints. The optimal separating hyperplanes are found at each location using

SVMs [Vap95].

3.3.6 Local feature analysis

Visionics FaceIt’s AFR module is based on local feature analysis (LFA) introduced

by Penev and Atick [PA96, Pen00]. LFA aims at addressing two shortcomings of

PCA. The PCA representation is non-local, i.e. the support of the eigenfaces, which

can be viewed as global filters, extend over the entire image, as is the case for all

global approaches. Moreover, the PCA representation is non-topographic, which

means that nearby values in the feature representation do not possess any relation-

ship among each other.

This does not mean that interesting information cannot be retrieved from the

eigenfaces. Let us denote by [e1, ..., eN ] the first N eigenfaces, i.e., if σ2
n is the

eigenvalue associated with en, σ1 ≥ σ2 ≥ ... ≥ σN . LFA uses a set of local analysis

filters Ki,j which are different at each position (i, j) where the face is analyzed:

KN
i,j(k, l) =

1

σk

N
∑

n=1

en(i, j)en(k, l) (3.33)

Let I be a face image whose projection on the PCA space gives the following vector

[w1, ..., wN ]T . Then the feature vector oi,j extracted with LFA at position (i, j) is
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given by:

oi,j =
∑

k,l

KN
i,j(k, l)I(k, l) =

N
∑

n=1

wn

σn
en(i, j) (3.34)

and the original image can be reconstructed as follows:

I(i, j) ≈
N
∑

n=1

σn





∑

k,l

en(k, l)ok,l



 en(i, j) (3.35)

It turns out that the filters KN
i,j are feature detectors (and not edge detectors

as would be the case for instance with Gabor filters) different from each other and

matched to the feature that is expected near their respective centers. The properties

of these filters are extensively discussed in [PA96, Pen00]. One of the most important

ones is that, for a given dimension N , the outputs at different positions on the grid

are maximally decorrelated. Another important property is that the reconstruction

error for the LFA representation is exactly equal to that for the PCA representation.

However, a problem with this approach (and more generally, with all local ap-

proaches) compared to PCA is that the output is no longer low-dimensional, a

desirable property. To remove the local correlation between features at adjacent

positions, a sparsification algorithm is used, i.e. we search for the set of points that

best reconstructs the face. A greedy heuristic is used to find incrementally the best

points. The algorithm is initialized with an empty set of points. Now let us assume

that the best set of points to reconstruct the face was obtained at the i-th step.

At the i + 1-th step of the algorithm, one first calculates the residual error at each

position of the grid and then looks for the point (i, j) which has the largest residual

error. This point is added to the set of points and the procedure is repeated until

the residual error falls below a predefined threshold or a maximum number of points

was obtained.

Very little information is provided about the way such features are matched to

perform recognition.

3.4 Conclusion

In this chapter, we have reviewed the major approaches to AFR which can be sep-

arated into global and local approaches. Note that, far from being exclusive, global

and local techniques can be combined to make the best out of their complementary

natures. For instance, in [LW02] the eigenfaces and Fisherfaces algorithms are ap-

plied on a Gabor representation of the face and the performances of these algorithms

are greatly improved compared to the case where they are applied on a gray level
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representation.

As underlined in the introductory section of this dissertation, the majority of the

work on AFR has focused on the problem of representation and that relatively little

work has been devoted to the matching problem. Indeed, for the classification step

most approaches employ simple measures of similarity such as the L1, L2, cosine or

Mahalanobis distances without any guarantee that they are optimal for the problem

at hand.

One noticeable exception is BIC which focuses on the modeling of image differ-

ences (c.f. section 3.2.6). Note that this algorithm was one of the top performers

during the FERET evaluation [PMRR00]. Due to its relative simplicity and its ex-

cellent performance, BIC will serve as a baseline for the comparison with our novel

approach.
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4

Turbo HMM and Turbo SSM

4.1 Introduction

The one-dimensional hidden Markov model (1-D HMM) is a class of stochastic signal

model which has a long history of success in various problem domains, perhaps most

notably in the field of automatic speech recognition (ASR). This success is largely

due to the development of computationally efficient algorithms to solve the three

fundamental problems of HMM design [Rab89]. Given a sequence of observations

O = {o1, ..., oT } and the model parameters λ, these problems are the following ones:

• Problem 1: How to efficiently compute P (O|λ), the probability of the obser-

vation sequence given the model parameters?

• Problem 2: How to choose the sequence of states Q = {q1, ..., qT } which is

optimal in some meaningful sense?

• Problem 3: How to adjust the model parameters λ to maximize P (O|λ)?

The solution to these three problems are respectively the forward-backward, Viterbi

and Baum-Welch algorithms.

The Markov random field (MRF) is the 2-D counterpart of the 1-D Markov

chain where the natural ordering of past, present and future is replaced by the

spatial concept of neighborhood. The MRF modeling process generally consists of

the following steps [Li94]: defining a neighborhood system, defining cliques, defining
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the prior clique potentials, deriving the likelihood energy and deriving the posterior

energy. In this dissertation, we will consider a subclass of MRF models, the Markov

mesh random field (MMRF), which reintroduces the notion of past, present and

future thanks to the raster scan [AHK65]. More precisely, we will focus on the first

order MMRF. Let Q = {qi,j , i = 1, ..., I, j = 1, ..., J} be a I × J array of states and

let Qi,j be the set of states to the left or above qi,j : Qi,j = {qm,n, m < i or n < j}.
Then the first order MMRF can be defined by the following property (c.f. also

Figure 4.1):

P (qi,j |Qi,j) = P (qi,j |qi,j−1, qi−1,j) (4.1)
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Figure 4.1: Markovian property of transitions among states for the first order
Markov mesh random field (c.f. equation 4.1).

Reintroducing the notion of past and future is beneficial as it allows to develop

the joint distribution of states P (Q|λ), as is the case for the 1-D HMM. Thus, the

forward-backward, Viterbi and Baum-Welch algorithms developed for the 1-D case

can be extended to the 2-D case. However, even with the simple first-order Marko-

vian model considered, the direct extension of these algorithms to the 2-D case is

exponential in the size of the data [KA94], and hence intractable for most applica-

tions of practical value. Thus, approximations are required.

The approach we pursue here is to start from a hypothetical 2-D HMM and to

first convert it into a turbo HMM (T-HMM): a set of inter-connected horizontal

and vertical 1-D HMMs that “communicate” through inducing prior probabilities

on each other. The solutions to the three problems of HMM design rely on a modi-

fied version of the forward-backward algorithm. It is performed successively on rows

and columns and the process is iterated until convergence. We will also consider

the continuous state HMM, generally referred to as the state-space model (SSM)

[TKH00]. We will thus introduce the turbo state-space model (T-SSM).
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In this chapter, we will first very briefly review previous approximations of the

2-D HMM. In section 4.3, we will derive the approximation of the likelihood function

that will next be used to provide efficient approximate answers to the three problems

of HMM design in sections 4.4 to 4.6. As the modified-forward backward algorithm

is iterative, we will also consider convergence issues in section 4.7. Finally, we will

compare experimentally the proposed approximate solution to the ML solution in

section 4.8 before outlying future work.

4.2 Previous Approximations of the 2-D HMM

The goal of this section is not to provide an extensive review of the literature on

approximations of the 2-D HMM but to give an idea of the approaches which have

been pursued. It seems that most approximations attempt to replace the 2-D HMM

with a 1-D HMM or a set of 1-D HMMs whose properties are well understood.

Perhaps the simplest approach is to trace a 1-D scan that takes into account as

much of the neighborhood relationship (or 2-D structure) of the data as possible

such as the Hilbert-Peano scan (c.f. Figure 4.2), as done by Abend et al. [AHK65] .

Figure 4.2: Examples of Hilbert-Peano scans for various array sizes.

A more recent approach is the path constrained variable state Viterbi (PCVSV)

introduced by Li et al. [LNG00] which considers a sequence of states on a row as

the states of a 1-D HMM. However, such a 1-D HMM has such a huge number of

states that the direct application of the algorithms designed for the 1-D HMM is

unpractical. The central idea of PCVSV is thus to consider only the N sequences

with the largest prior probabilities. A fast algorithm is designed to avoid the cal-

culation of posterior probabilities for all state sequences. It separates the blocks

on a row from other blocks by neglecting their statistical dependencies. Columns

or diagonals could also be considered instead of rows. In [LNG00], diagonals are

chosen since blocks on diagonals are more geometrically distant than blocks on rows

or columns and are therefore expected to exhibit less correlation.

Certainly the most famous approximation of the 2-D HMM that makes use of a

set of 1-D HMMs is the pseudo 2-D HMM (P2D HMM) of Kuo and Agazzi [KA94],
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also sometimes referred to as planar or embedded HMM, which has been applied

to the problem of OCR and face recognition [Sam94, Nef99]. The assumption of

the P2D HMM is that there exists a set of “super” states which are Markovian

and which subsume a set of simple Markovian states. Hence, the network of simple

Markovian states is not fully connected in 2-D.

Figure 4.3: A Pseudo 2-D HMM

Another approach is to consider independent horizontal and vertical 1-D HMMs.

In [HLSS02] Hallouli et al. explore two different fusion schemes for the problem of

OCR: decision fusion and data fusion. In the decision fusion scheme, the classifiers

are assumed independent which enables to derive an approximation of the joint like-

lihood function. On the contrary, in the data fusion scheme line and column features

occurring at the same spatial index are considered highly correlated.

In [MHNM97], Miller et al. consider inter-dependent horizontal and vertical 1-D

HMMs and focus on the decoding problem for binary image reconstruction. The de-

coding algorithm is based on the following intuitive heuristic. If the horizontal and

vertical passes agree on a bit at a given position, then it is fixed for the subsequent

iterations and the process is repeated until a cost function based on sum of squared

errors decreases.

Finally, in [TC01, Tok01] Tokuyasu and Chou introduce the turbo recognition

(TR), which is an approach to layout analysis of scanned document images inspired

by the turbo decoding from communication theory. The TR algorithm is based on

a generative model of image production in which two finite state grammars simul-

taneously describe the structure in horizontal and vertical directions. The decoding

algorithm used by TR is derived from graphical models as applied in particular to

turbo codes. Note that a similar approach has also been applied to the problem of

solving crossword puzzles [SLK99].
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4.3 Approximation of the Likelihood Function

We assume in the following that the reader is familiar with 1-D HMMs (see e.g.,

[Rab89]). Let O = {oi,j , i = 1, . . . , I, j = 1, . . . , J} be the set of all observations.

For convenience we also introduce the notations oHi and oVj for the i-th row and j-th

column of observations, respectively. Similarly, Q = {qi,j , i = 1, . . . , I, j = 1, . . . , J}
denotes the set of all states, while qHi and qVj denote the i-th row and j-th column of

states. Finally, let λ be the set of all model parameters, and let λH
i and λV

j be the

respective rows and columns of parameters.

The joint likelihood of observations O and states Q given λ is:

P (O, Q|λ) = P (O|Q, λ)P (Q|λ)

=
∏

i,j

P (oi,j |qi,j , λ)P (qi,j |qi,j−1, qi−1,j , λ). (4.2)

Note that the conditional probability P (qi,j |qi,j−1, qi−1,j , λ) reduces to P (q1,j |q1,j−1, λ)

if i = 1, to P (qi,1|qi−1,1, λ) if j = 1 and to P (q1,1|λ) if i = j = 1.

In the next two subsections, we will present the approximations of P (O, Q|λ)

underlying the T-HMM framework. The first step is to separate the 2-D HMM into

a set of horizontal and vertical 1-D HMMs. As solving the three problems of interest

is still too computationally intensive, an additional approximation has to be made.

4.3.1 Separating a 2-D HMM into horizontal and vertical 1-D HMMs

We will assume from now on that P (qi,j |qi,j−1, qi−1,j , λ) is separable, i.e. that it

can be decomposed into the product of horizontal and vertical components. This

approximation will allow us to run the forward-backward algorithm on rows and

columns. Hence:

P (qi,j |qi,j−1, qi−1,j , λ) = ν(qi,j−1, qi−1,j)f
H(qi,j , qi,j−1)f

V(qi,j , qi−1,j) (4.3)

where ν(qi,j−1, qi−1,j) is a normalization factor:

ν(qi,j−1, qi−1,j) =
1

∑

qi,j
fH(qi,j , qi,j−1)fV(qi,j , qi−1,j)

(4.4)

Here we derive equations for the optimal horizontal and vertical components. We

then show that, if fH(qi,j , qi,j−1)’s and fV(qi,j , qi−1,j)’s are optimal, then they effec-

tively approximate P (qi,j |qi,j−1, λ) and P (qi,j |qi−1,j , λ), respectively.

Let us first consider the problem generally. Consider a conditional distribution

pi|jk where
∑

i pi|jk = 1, ∀(j, k). We want to approximate pi|jk into the product
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aijbik, where aij and bik are non negative and satisfy the requirement:
∑

i aij =

1, ∀j and
∑

i bik = 1, ∀k. A positive normalization factor njk is needed to ensure:
∑

i njkaijbik = 1, ∀(j, k). Since for all (j, k), both pi|jk and njkaijbik are probability

distributions, we can define the divergence [CT93] (see also appendix B):

Djk =
∑

i

pi|jk log

(

pi|jk

njkaijbik

)

(4.5)

Our goal is to minimize
∑

j,k Djk subject to the above constraints. We hence mini-

mize the Lagrangian:

L =
∑

j,k

Djk +
∑

j

λj(
∑

i

aij − 1) +
∑

k

µk(
∑

i

bik − 1) (4.6)

We obtain the following formulas:

∂L
∂aij

= 0 ⇒ aij =

∑

k pi|jk
∑

i,k pi|jk
, ∀(i, j) (4.7)

∂L
∂bik

= 0 ⇒ bik =

∑

j pi|jk
∑

i,j pi|jk
, ∀(i, k) (4.8)

Since index j and k run from 1 to J and K, respectively, we can simplify the formulas

for aij and bik:

aij =

∑

k pi|jk

K
bik =

∑

j pi|jk

J

Now to interpret the result we observe that in general pi|k =
∑

j pi|jkpj|k. If we

further assume that pj|k is maximally non-informative, i.e., uniformly distributed

then we obtain

pi|k =
∑

j

pi|jk

J
,

which is exactly the formula we derived for bik above. A similar observation can be

made regarding aij .

Next we specialize to the problem of interest, hence, pi|jk is replaced with

P (qi,j |qi,j−1, qi−1,j , λ), aij with fH(qi,j , qi,j−1) and bik with fV(qi,j , qi−1,j). So, when

fH(qi,j , qi,j−1)’s (resp. fV(qi,j , qi−1,j)’s) are chosen optimally, they approximate

P (qi,j |qi,j−1, λ
H
i )’s (resp. P (qi,j |qi−1,j , λ

V
j )’s) assuming no prior information on

P (qi−1,j |qi,j−1, λ) (resp. P (qi,j−1|qi−1,j , λ)). Hereafter, we will replace the notations

fH(qi,j , qi,j−1) and fV(qi,j , qi−1,j) with the more intuitive notations P (qi,j |qi,j−1, λ
H
i )

and P (qi,j |qi−1,j , λ
V
j ).
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Moreover, we propose an additional simplifying assumption. To avoid the com-

plexity due to terms that depend on states that are both on different rows and

columns we assume that ν(qi,j−1, qi−1,j) is (approximately) constant, i.e. does not

depend on qi,j−1 and qi−1,j . We therefore obtain:

P (O, Q|λ) =
∏

i,j

P (oi,j |qi,j , λ)P (qi,j |qi,j−1, λ
H
i )P (qi,j |qi−1,j , λ

V
j ) (4.9)

4.3.2 Approximation of the conditional probability

Note that equation 4.8.2 can be re-written as follows:

P (O, Q|λ) =
∏

j

P (oVj |qVj , λV
j )P (qVj |λV

j )
∏

i

P (qi,j |qi,j−1, λ
H
i )

=
∏

j

P (oVj , qVj |λV
j )
∏

i

P (qi,j |qi,j−1, λ
H
i ) (4.10)

where each term P (oVj |qVj , λV
j ) corresponds to a vertical 1-D HMM. This formula still

does not allow an efficient computation of P (O|λ) and an additional approximation

is required. The complexity of the estimation is due to the horizontal transition

probabilities P (qi,j |qi,j−1, λ
H
i ) which relate adjacent vertical 1-D HMMs. To sim-

plify P (O, Q|λ) we should replace the conditional probability P (qi,j |qi,j−1, λ
H
i ) by

a term which does not depend on qi,j−1 but which still conveys horizontal context

information. A possible solution is to perform the following substitution:

P (qi,j |qi,j−1, λ
H
i ) → P (qi,j |oHi , λH

i ) (4.11)

Hence, when performing the substitution 4.11 in equation 4.10 one obtains the

following quantity:

PV(O, Q|λ) =
∏

j

[

P (oVj , qVj |λV
j )
∏

i

P (qi,j |oHi , λH
i )

]

(4.12)

where the term
∏

i P (qi,j |oHi , λH
i ) is in effect a horizontal prior for column j. Hence,

horizontal and vertical HMMs can “communicate”. We have to assume that the

quantity P (qi,j |oHi , λH
i ) is known, i.e., that it was obtained during a previous hori-

zontal step. Obviously, an iterative procedure is required to compute these horizon-

tal and vertical quantities. Note that one can derive a similar formula PH(O, Q|λ)

where horizontal 1-D HMMs communicate through the use of vertical priors.

4.4 Solution to Problem 1

In this section, we first derive the computation of P V(O|λ) from the approximation

of PV(O, Q|λ). We then provide the equations for the modified forward-backward
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iterations, first in the case of discrete states and then in the case of continuous states.

Finally, we consider the modified forward-backward operationally.

4.4.1 Computation of the likelihood function

If we sum (or integrate) over all possible paths, we obtain the marginal:

PV(O|λ) =
∑

Q

PV(O, Q|λ)

=
∑

qV
1

...qV
J

∏

j

[

P (oVj , qVj |λV
j )
∏

i

P (qi,j |oHi , λH
i )

]

=
∏

j

∑

qVj

[

P (oVj , qVj |λV
j )
∏

i

P (qi,j |oHi , λH
i )

]

(4.13)

Let us note P V
j =

∑

qVj

[

P (oVj , qVj |λV
j )
∏

i P (qi,j |oHi , λH
i )
]

. PV
j ’s can be computed

independently with a modified version of the forward-backward algorithm. The

only difference with the forward-backward for the 1-D HMM is that we have to

perform the following substitution for the emission probability:

bqi,j
(oi,j) → bHqi,j

(oi,j) = bqi,j
(oi,j)γ

H
i,j(qi,j) (4.14)

For a summary of HMM notations, the reader can refer to Table 4.1.

notation definition

πV
q1,j

P (q1,j |λV
j )

aVqi,j ,qi−1,j
P (qi,j |qi−1,j , λ

V
i )

bqi,j
(oi,j) P (oi,j |qi,j , λ)

αV
i,j(qi,j) P (o1,j , ...oi,j , qi,j |γH

1,j , ...γ
H
i,j , λ

V
j )

βV
i,j(qi,j) P (oi+1,j , ...oI,j |qi,j , γi+1,j , ...γI,j , λ

V
j )

γH
i,j(qi,j) P (qi,j |oHi , γV

i , λH
i )

Table 4.1: HMM notation summary.

4.4.2 The modified forward-backward: discrete case

Forward α variable

• Initialization:

αV
1,j(q1,j) = πV

q1,j
bHq1,j

(o1,j) (4.15)
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• Recursion:

αV
i+1,j(qi+1,j) =





∑

qi,j

αV
i,j(qi,j)a

V
qi,j ,qi+1,j



 bHqi+1,j
(oi+1,j) (4.16)

• Termination:

PV
j =

∑

qI,j

αV
I,j(qI,j) (4.17)

Backward β variable

• Initialization:

βV
I,j(qI,j) = 1 (4.18)

• Recursion:

βV
i,j(qi,j) =

∑

qi+1,j

aVqi,j ,qi+1,j
bHqi+1,j

(oi+1,j)β
V
i+1,j(qi+1,j) (4.19)

Occupancy probability γ

γV
i,j(qi,j) =

αV
i,j(qi,j)β

V
i,j(qi,j)

∑

qi,j
αV

i,j(qi,j)βV
i,j(qi,j)

(4.20)

Similar formulas can be derived for the horizontal pass. We can see that the inter-

action between horizontal and vertical processing, which is based on the occupancy

probability γ, is more elaborate than the one used in [MHNM97]. It is worthwhile

also to note that our re-estimation equations are similar to the ones derived for the

page layout problem in [Tok01] based on the graphical model formalism.

4.4.3 The modified forward-backward: continuous case

Note that the equations that were derived in the previous sub-section for the dis-

crete state HMM are valid in the continuous case, with the exception that we have

to replace sums by integrals. However, while in the discrete case the forward and

backward equations relate the forward and backward probabilities at adjacent posi-

tions, in the continuous case, these quantities are pdf’s and we are interested in the

equations that relate their parameters.

To keep the mathematical analysis tractable, we choose the emission probabil-

ities, horizontal and vertical transition probabilities and initial occupancy proba-

bilities to be Gaussians. In this dissertation, we will only present results for the

case where the observations and states are uni-dimensional. Using the state-space
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formalism, the emission probability (or measurement model) can be expressed by

the following equation:

oi,j = fi,jqi,j + ui,j , i = 1, . . . , I, j = 1 . . . J (4.21)

where ui,j ∼ N (0, σi,j
2) is the measurement noise. The horizontal and vertical

transition probabilities (or process models) can be written as:

qi,j = gHi,jqi,j−1 + vHi,j , i = 1, . . . , I, j = 2 . . . J (4.22)

qi,j = gVi,jqi−1,j + vVi,j , i = 2, . . . , I, j = 1 . . . J (4.23)

where vHi,j ∼ N (0, sHi,j
2
) and vVi,j ∼ N (0, sVi,j

2
) are respectively the horizontal and

vertical process noises. Finally, we introduce the horizontal and vertical initial oc-

cupancy probabilities:

qi,1 = vHi,1 , i = 1, . . . , I (4.24)

q1,j = vV1,j , j = 1, . . . , J (4.25)

As the emission, transition and initial occupancy probabilities are Gaussians, if

we also initialize the occupancy probabilities γH
i,j ’s in a Gaussian manner (assuming

that we start with a column operation), it is straightforward to show using equations

4.15-4.20 that αV
i,j and βV

i,j have a Gaussian shape:

αV
i,j(qi,j) =

cαV
i,j

σαV
i,j (2π)

1

2

exp

{

−
(qi,j − µαV

i,j )2

2σαV
i,j

2

}

βV
i,j(qi,j) =

cβV
i,j

σβV
i,j (2π)

1

2

exp







−
(qi,j − µβV

i,j )2

2σβV
i,j

2







and that γV
i,j is a Gaussian with mean µγV

i,j and variance σγV
i,j

2
. Introducing the

following notations µbH
i,j , σbH

i,j
2

and cbH
i,j :

µbH
i,j =

fi,joi,jσ
γH
i,j

2
+ µγH

i,j σ2
i,j

fi,j
2σγH

i,j

2
+ σ2

i,j

(4.26)

σbH
i,j

2
=

σγH
i,j

2
σ2

i,j

fi,j
2σγH

i,j

2
+ σ2

i,j

(4.27)

cbH
i,j =

exp

{

−1
2

(oi,j−fi,jµγH

i,j )2

(σi,j
2+fi,j

2σγH

i,j

2
)

}

(2π)
1

2 (σi,j
2 + fi,j

2σγH
i,j

2
)

1

2

(4.28)

we can compute µαV
i,j , µβV

i,j , µγV
i,j , σαV

i,j
2
, σβV

i,j

2
, σγV

i,j

2
, cαV

i,j and cβV
i,j using equations

4.15-4.20 1.
1The following formulas were derived using the software Maple.
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Forward α variable

• Initialization:

µαV
1,j =

µbH
1,js

V
1,j

2

sV1,j
2
+ σbH

1,j
2 (4.29)

σαV
1,j

2
=

sV1,j
2
σbH

1,j
2

sV1,j
2
+ σbH

1,j
2 (4.30)

cαV
1,j =

cbH
i,j exp

{

−1
2

(µbH
1,j−µV

j )2

σV
j

2
+σbH

1,j

2

}

(2π)
1

2 (sV1,j
2
+ σbH

1,j
2
)

1

2

(4.31)

• Recursion:

µαV
i+1,j =

gVi+1,jµ
αV
i,j σbH

i+1,j
2
+ µbH

i+1,j(s
V
i+1,j

2
+ gVi+1,j

2
σαV

i,j

2
)

σbH
i+1,j

2
+ sVi+1,j

2
+ gVi+1,j

2
σαV

i,j
2

(4.32)

σαV
i+1,j

2
=

σbH
i+1,j

2
(sVi+1,j

2
+ gVi+1,j

2
σαV

i,j
2
)

σbH
i+1,j

2
+ sVi+1,j

2
+ gVi+1,j

2
σαV

i,j
2

(4.33)

cαV
i+1,j =

cαV
i,j cbH

i+1,j exp

{

−1
2

(µbH
i+1,j−gVi+1,jµαV

i,j )2

σbH
i+1,j

2
+sVi+1,j

2
+gVi+1,j

2
σαV

i,j

2

}

(2π)
1

2 (σbH
i+1,j

2
+ sVi+1,j

2
+ gVi+1,j

2
σαV

i,j
2
)

1

2

(4.34)

• Termination:

PV
j = cαV

I,j (4.35)

Backward β variable

• Initialization:

µβV
I,j = 0 (4.36)

σβV
I,j

2 → ∞ (4.37)

cβV
I,j

2
= 1 (4.38)
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• Recursion:

µβV
i,j =

1

gVi+1,j





µbH
i+1,jσ

βV
i+1,j

2
+ µβV

i+1,jσ
bH
i+1,j

2

σβV
i+1,j

2
+ σbH

i+1,j
2



 (4.39)

σβV
i,j

2
=

1

gVi+1,j
2



sVi+1,j
2
+

σbH
i+1,j

2
σβV

i+1,j

2

σbH
i+1,j

2
+ σβV

i+1,j

2



 (4.40)

cβV
i,j =

cβV
i+1,jc

bH
i+1,j exp

{

−1
2

(µbH
i+1,j−µβV

i+1,j)
2

σbH
i+1,j

2
+σβV

i+1,j

2

}

(2π)
1

2 |gVi+1,j |(σbH
i+1,j

2
+ σβV

i+1,j

2
)

1

2

(4.41)

Occupancy probability γ

µγV
i,j =

µαV
i,j σβV

i,j

2
+ µβV

i,j σαV
i,j

2

σαV
i,j

2
+ σβV

i,j

2 (4.42)

σγV
i,j

2
=

σαV
i,j

2
σβV

i,j

2

σαV
i,j

2
+ σβV

i,j

2 (4.43)

Similar formulas can be derived for horizontal quantities.

4.4.4 The modified forward-backward operationally

In Table 4.2 we consider the steps of the algorithm which are very similar in the

discrete and continuous cases. This algorithm is clearly linear in the size of the data

and can be further accelerated with a parallel implementation, simply by running

the modified forward-backward for each row or column on a different processor.

Whether the iterative process is initialized with row or column operation may the-

oretically impact the performance.

Note that we do not obtain one estimate of P (O|λ) but two: a horizontal one

PH(O|λ) =
∏

i P
H
i and a vertical one P V(O|λ) =

∏

j PV
j . Relating PH(O|λ) or

PV(O|λ) to the true likelihood function P (O|λ) is not obvious because of the sub-

stitution 4.11. However, we can consider the combination of these two scores as a

classical problem of decision fusion. One can show that the optimal estimate P̂ (O|λ)

based on a divergence criterion is (c.f. appendix B):

P̂ (O|λ) ∝
√

PH(O|λ)PV(O|λ) (4.44)

Of course, we could have considered more elaborate fusion schemes but, as we will

see in the next chapter, this approach yielded acceptable results for the problem of

interest.



4.5. Solution to Problem 2 61

1 Initialize the horizontal occupancy probability.
Assuming no prior information:

discrete case: initialize γH
i,j ’s uniformly, ∀(i, j).

continuous case: set σγH
i,j → ∞, ∀(i, j).

2 Apply the modified forward-backward on the ver-
tical 1-D HMMs.

3 Apply the modified forward-backward on the hor-
izontal 1-D HMMs.

4 Go back to step 2 until convergence of the hori-
zontal and vertical priors.

Table 4.2: Steps of the modified forward-backward iterations, assuming that we
start with a vertical pass.

4.5 Solution to Problem 2

Problem 2 is concerned with the issue of finding the sequence of states Q that “best”

explains in some sense the sequence of observations O. This is generally understood

as the Q that best explains O globally:

Q∗ = arg max
Q

P (Q|O, λ) = arg max
Q

P (O, Q|λ) (4.45)

However, due to the complexity of this problem for both the discrete and continuous

states cases, we will consider the states that best explain O locally:

q∗i,j = arg max
qi,j

P (qi,j |O, λ) (4.46)

Obviously, we do not have a direct access to P (qi,j |O, λ) but to its estimates γH
i,j

and γV
i,j . Using one more time a criterion based on the Kullback-Leibler divergence,

the optimal estimate P̂ (qi,j |O, λ) is:

P̂ (qi,j |O, λ) ∝
√

γH
i,j(qi,j)γV

i,j(qi,j) (4.47)

In the continuous case, as γH
i,j and γV

i,j are Gaussian, P̂ (qi,j |O, λ) will be Gaussian

with mean:

µ̂γ
i,j =

σγV
i,j

2
µγH

i,j + σγH
i,j

2
µγV

i,j

σγV
i,j

2
+ σγH

i,j

2 (4.48)

and thus q∗i,j = µ̂γ
i,j .
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Choosing the globally optimal sequence of states is equivalent to choosing the

locally optimal states if and only if:

P (Q|O, λ) =
∏

i,j

P (qi,j |O, λ) (4.49)

i.e., in the case where there is no context information (uniformly distributed tran-

sition probabilities in the discrete case). In the case where there is some context

information, it is also interesting to determine when this approximation is valid.

Using the following set of inequalities:
∏

i,j

P (qi,j |O, λ) ≤ P (Q|O, λ) ≤ P (qi,j |O, λ) (4.50)

we see that finding the locally optimal states is equivalent to finding globally optimal

states in the case where the distribution P (Q|O, λ) is sharply peaked, i.e. when one

path Q∗ accounts for most of the total probability: P (Q∗|O, λ) ≈ 1. In this latter

case, we can provide an alternative solution to problem 1. Indeed, we have:

P (O|λ) =
∑

Q

P (O, Q|λ) ≈ P (O, Q∗|λ) (4.51)

However, there exists a potential problem if the HMM is not fully connected. Indeed,

in such a case the “optimal” state sequence may, in fact, not even be a valid state

sequence [Rab89], i.e. P (O, Q∗|λ) = 0.

4.6 Solution to Problem 3

In the 1-D case, the ML estimate of the HMM parameters λ are generally derived

using the Baum-Welch algorithm which is based on the EM principle. Let Q be

Baum’s auxiliary function defined as:

Q(λ|λ′) =
∑

Q

P (Q|O, λ′) log P (O, Q|λ)dQ (4.52)

where λ′ represents the current estimate of the HMM parameters. It has been

proved that the maximization of Q(λ, λ′) with respect to λ will lead to an increased

likelihood [DLR77]:

λ̂ = arg max
λ

Q(λ|λ′) ⇒ P (O|λ̂) ≥ P (O|λ′) (4.53)

In our case, as we do have not one but two estimates of P (O, Q|λ), a horizontal and

a vertical one, we have two Q functions:

QH(λH|λ′) =
∑

Q

PH(Q|O, λ′) log PH(O, Q|λ)dQ (4.54)

QV(λV |λ′) =
∑

Q

PV(Q|O, λ′) log PV(O, Q|λ)dQ (4.55)
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If we refer to equation 4.12, then clearly QH (resp. QV) can be written as the sum

of I terms (resp. J terms) where each term corresponds to the i-th horizontal (resp.

j-th vertical) 1-D HMM:

QH(λH|λ′) =
I
∑

i=1

QH
i (λH

i |λ′) (4.56)

QV(λV |λ′) =
J
∑

j=1

QV
j (λH

j |λ′) (4.57)

Moreover, these horizontal and vertical terms can be subdivided in the sum of 3

terms which correspond respectively to the initial occupancy, transition and emis-

sion probabilities. Note that emission probabilities are both horizontal and vertical

parameters and thus that it may not be possible to optimize QH and QV separately

in the case where the horizontal and vertical occupancy probabilities do not reach

agreement. To address this issue, we simply maximize:

Q(λ|λ′) = QH(λH|λ′) + QH(λV |λ′) (4.58)

which is equivalent to accumulating the horizontal and vertical statistics for the

emission probabilities.

Note that, obviously, the re-estimation formulas for the parameters are depen-

dent on the HMM model and thus, on the problem of interest. Therefore, these

formulas will be derived in the next chapters once our face recognition model based

on the 2-D HMM is introduced.

4.7 Convergence Issues

The solutions to the 3 problems of HMM design for the T-HMM and the T-SSM

rely on the modified forward-backward iterations. It is thus of interest to determine

whether the horizontal and vertical passes converge in some well-defined sense and,

if possible, to improve the convergence.

4.7.1 A measure of convergence

Let γH and γV be respectively the joint distributions of the γH
i,j ’s and γV

i,j ’s. D(γH, γV),

the symmetric divergence (c.f. appendix B), is a measure of how well the horizontal

and vertical passes agree over the entire image. If we further assume independence

of γH
i,j ’s and similarly of γV

i,j ’s, then:

D(γH, γV) =
∑

i,j

D(γH
i,j , γ

V
i,j) (4.59)
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This measure of convergence is useful as a stopping criterion. After the n-th iter-

ation, we compute D(n)(γH, γV) and stop iterating if D(n) − D(n−1) falls below a

pre-defined threshold θ.

In the case of discrete states, we have not been able to prove yet that the hori-

zontal and vertical priors agree, i.e. that D(γH, γV) converges to zero. However, we

have observed experimentally that in practice γH and γV converge.

In the continuous case, as γH
i,j ’s and γV

i,j ’s are Gaussians, there exists a closed

form solution (c.f. appendix B):

D(γH, γV) =
1

2

∑

i,j





σγH
i,j

2

σγV
i,j

2 +
σγV

i,j

2

σγH
i,j

2 − 2 +





1

σγH
i,j

2 +
1

σγV
i,j

2



 (µγH
i,j − µγV

i,j )2



 (4.60)

which is equal to zero if and only if µγH
i,j = µγV

i,j and σγH
i,j

2
= σγV

i,j

2
, ∀(i, j). Since µγH

i,j −
µγV

i,j converges to zero and σγH
i,j

2
/σγV

i,j

2
converges to one (c.f. appendix C), for the

T-SSM D(γH, γV) converges to zero. Note that we have not yet been able to prove

that µγH
i,j and µγV

i,j actually converge. However, we have observed experimentally

that it was the case.

4.7.2 Annealing

Whether the iterative process is initialized with row or column operation may the-

oretically impact the performance. To soften the influence of one direction on the

other, especially during the first few passes where much of the “decisions” are taken,

Tokuyasu applied turbo iterative updates in a graduated fashion [Tok01]. Such an

approach is inspired by the use of deterministic annealing for HMM design [MRC94].

In the discrete case, we can for instance raise the horizontal and vertical priors

γH
i,j(qi,j)’s and γV

i,j(qi,j)’s to the power of a variable that we will call τ in the forward-

backward equations. We then multiply them by a normalization constant such that

the new horizontal and vertical priors sum to one. In the continuous case, we can

divide the variance σγH
i,j by τ . In both cases, τ will first be close to zero, which means

that, loosely speaking, there will be little communication between both directions

during the first few iterations. Then, τ is raised according to an annealing schedule,

and the interaction between the horizontal and vertical passes becomes stronger.

4.8 Experimental Validation

In this section, we will show the potential of the T-HMM and the T-SSM on simple

problems. In the following, we will focus on the decoding problem. In the discrete
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and continuous cases, we will first describe the problem of interest. Note that in

both cases, we are not interested in modeling the following problems with a true

2-D HMM but with a set of horizontal and vertical 1-D HMMs. Then we present

the ML solution and finally compare the turbo solution to the ML solution. For a

fast prototyping, we decided to implement the following experiments in Matlab.

4.8.1 Discrete case

Description of the problem

To validate the T-HMM we consider the problem of decoding a binary image cor-

rupted by a bit-flip noise (c.f. Figure 4.4).

(a) (b)

Figure 4.4: Examples of (a) a 8× 8 binary image and (b) a corrupted version of the
same image (bit-flip noise).

The states of our system are the possible values of a pixel in the original image

(0 or 1). The transition probabilities describe the statistics of the original image.

We will assume the following transition probabilities:

aH0,0 = aH1,1 = aV0,0 = aV1,1 = 1 − a (4.61)

aH0,1 = aH1,0 = aV0,1 = aV1,0 = a (4.62)

The observations emitted by our system are the possible values of a pixel in the

corrupted image (0 or 1). Let b be the probability of a bit flip. Then the emission

probabilities are given by:

b0(0) = b1(1) = 1 − b (4.63)

b0(1) = b1(0) = b (4.64)

We assume that the initial occupancy probability is uniformly distributed to keep

the number of parameters in our system as small as possible:

πH
0 = πH

1 = πV
0 = πV

1 =
1

2
(4.65)
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To summarize, our HMM has two parameters: a and b. In the following we will

assume that the values of these parameters are known as our focus is on decoding.

Description of the ML solution

To find the ML solution, we assume that a set of states on a row, a column or a

diagonal is a state of a 1-D HMM. The Viterbi algorithm can thus be applied in a

straightforward manner on this 1-D HMM. Obviously, this is still computationally

very intensive as such an HMM has a very large number of states. However, de-

pending on the chosen isolating element, the amount of computation can vary.

In the following we will use square images of size N×N . Thus, the complexity of

the decoding is the same if we consider rows or columns. If we consider a sequence

of states on a row to be a single state, then the corresponding 1-D HMM has 2N

states. The number of operations required by the Viterbi algorithm is hence on the

order of:

(N − 1) × 2N × 2N = (N − 1) × 4N (4.66)

In the case where we choose the diagonal as the isolating element, the number of

operations required by the Viterbi algorithm is on the order of:

2 × (21 × 22 + 22 × 23 + ... + 2N−1 × 2N ) = 24 ×
N−2
∑

i=0

4i ≈ 4

3
× 4N (4.67)

Although the complexity is still exponential in the size of the data, the decrease

is significant. Thus, in the following experiments, we use the diagonal as an isolating

element to find the ML solution.

Experimental results

All the results we present in the following are for the 8 × 8 image considered on

Figure 4.4(a). We carried out experiments with different images but, as we obtained

similar results, they will not be presented here. Even for this simple system which

contains two states and for the small images considered the time required to find

one ML solution was approximately 6 sec. on a 2 GHz Pentium 4 with 1 GB Ram.

We now have to set the value of the parameter a. For the original pattern under

consideration the length of a white or a black region is 4 pixels. The duration of a

state is defined as the expected number of observations emitted successively by this

state. The duration of the states of the considered system is equal to 1
1−(1−a) = 1

a

[Rab89]. We thus set a = 1
4 .
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The first results are presented on Figure 4.5 as the difference between the log-

likelihood of the ML solution and the T-HMM solution without annealing. Obvi-

ously, this is a positive quantity and the lower this value the better the T-HMM

solution approximates the ML solution. To obtain meaningful results, for a given

bit-flip rate we generated 1,000 corrupted images and averaged the log-likelihoods.

For this particular set of experiments, only limited improvement was obtained after

25 iterations.
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Figure 4.5: Simulation results for the pattern considered in Figure 4.4(a) for various
numbers of iterations for the T-HMM. Difference between the log-likelihood of the
ML solution and T-HMM solution without annealing versus bit-flip rate.

On Figure 4.6, we compare the results of the T-HMM solutions without and with

annealing. It it interesting to note that, for a small number of iterations, annealing

decreases the performance. This is not surprising as the annealing softens the com-

munication process between the horizontal and vertical passes and thus, a greater

number of iterations is required to reach agreement. On the other hand, for a large

number of iterations annealing greatly improves the performance, especially for a

high bit-flip rate.

On Figure 4.7, we present the result of the decoding process of the corrupted

pattern considered on Figure 4.4. For this example, no annealing was applied. Even

for this difficult configuration, the T-HMM manages to find the ML solution which,
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Figure 4.6: Comparison between the T-HMM solutions with and without annealing
for two different numbers of iterations. Difference between the log-likelihood of the
ML and T-HMM solutions versus bit-flip rate.

in this case, is the original image. Note that a fairly large number of iterations

is required to reach the ML solution (40). However, even with 40 iterations, the

amount of computation of the T-HMM is still very low compared to the amount of

computation required by the ML solution as the time required for one horizontal

and one vertical iteration is on the order 3 ms.

Finally, we compare on Figure 4.8 the convergence properties of the T-HMM

solutions without and with annealing when decoding the image of Figure 4.4. While

the evolution of the symmetric divergence is irregular when no annealing is applied

it is much more regular with annealing. The down-side is that, in the latter case,

the convergence is also much slower.

4.8.2 Continuous case

Description of the system

To validate the T-SSM we consider the problem of decoding a signal embedded in

additive white Gaussian noise. The states of our system are the possible values

of the original signal at a given position. The transition probabilities describe the
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.7: Example of a decoding for the corrupted pattern considered on Figure
4.4. The left and right columns correspond respectively to the results after the
horizontal and vertical passes respectively. (a) and (b) 1 iteration, (c) and (d) 2
iterations, (e) and (f) 10 iterations, (g) and (h) 40 iterations.



70 4. Turbo HMM and Turbo SSM

0 5 10 15 20 25 30 35 40 45 50
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

number of iterations

sy
m

m
et

ric
 d

iv
er

ge
nc

e

no annealing
annealing

Figure 4.8: Comparison of the convergence properties of the T-HMM solutions with
and without annealing for the decoding problem of Figure 4.4. Symmetric divergence
(c.f. equation 4.60) versus number of iterations.

(a) (b)

Figure 4.9: Examples of (a) a 32x32 plane wave and (b) a corrupted version of the
same plane wave (additive Gaussian noise).
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statistics of the original signal. We will assume the following transition probabilities:

sHi,j
2

= sVi,j
2

= s2 , ∀(i, j) with i 6= 1 or j 6= 1 (4.68)

As each position, the system emits an observation. We choose the emission proba-

bility to be of the following form:

fi,j = 1 and σi,j
2 = σ2 , ∀(i, j) (4.69)

We also assume that the initial occupancy probability is non-informative, i.e.:

sHi,1
2 → ∞ , ∀i and sH1,j

2 → ∞ , ∀j (4.70)

To summarize, the considered T-SSM has only two parameters: s2 and σ2. In the

following, we will also assume that the values of these parameters are known as our

focus is on decoding.

Description of the ML solution

Using equation , the joint likelihood is given by:

log P (O, Q|λ) = −1

2

∑

i,j

[

(qi,j − oi,j)
2

σ2
+

(qi,j − qi,j−1)
2

s2
+

(qi,j − qi−1,j)
2

s2

]

+ C

(4.71)

with obvious boundary conditions for i = 1 or I and j = 1 or J . C is a constant

which is independent of the qi,j ’s. To find the best sequence of states Q∗, we set

∂ log P (O, Q|λ)/∂qi,j = 0, ∀(i, j) and obtain the following system of I ×J equations

with I × J unknowns:

qi−1,j + qi+1,j + qi,j−1 + qi,j+1 − qi,j

(

s2

σ2
+ 4

)

= −oi,j

(

s2

σ2

)

, ∀(i, j) (4.72)

The solution to this system does not depend on s2 and σ2 separately but on the

ratio s2/σ2.

In the following, we consider that I = J = N . The complexity of solving a linear

system of N2 equations with N2 unknowns in the general case is on the order of

N6 operations. However, if we order equations properly, this system is banded with

bandwidth N . Hence, the complexity of solving this system is on the order of N 4

operations [QSS00]. While this is much lower than the complexity of the general

case, this might be too demanding if N is large.

Finally, if s2 � σ2 this system of equations is ill-conditioned [QSS00], i.e. a

very small perturbation on the observations oi,j (due to noise) or on the parameters

(due to estimation errors) might lead to completely different solutions, an unwanted

effect.
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Experimental results

All the results we present in the following are for the 32 × 32 image considered on

Figure 4.8.2 (a).

We now have to the set the value of the parameter s2. The original signal under

consideration is the following plane wave.

S(i, j) = cos

[

3π

2

(

−1 + 2
i − 1

N − 1

)]

+ cos

[

3π

2

(

−1 + 2
j − 1

N − 1

)]

(4.73)

i = 1, .., 32, i = 1, .., 32

A reasonable estimate of s2 is:

ŝ2 =
1

2π

∫ 2π

0

[

cos

(

3πt

N − 1

)

− cos

(

3π(t + 1)

N − 1

)]2

dt (4.74)

= 1 − cos

(

3π

N − 1

)

(4.75)

The first results are presented on figure 4.10 as the difference between the log-

likelihood of the ML solution and the T-HMM solution without annealing. To obtain

meaningful results, for a given ratio s2/σ2 we generated 1,000 corrupted images and

averaged the log-likelihoods. For this problem, little improvement was obtained after

25 iterations. On Figure 4.11 we compare the results of the T-SSM solutions without

and with annealing. A difference with the T-HMM is that, in our experiments, the

performance did not decrease for a small number of iterations (typically 3). In the

case where the variance of the measurement noise is very large, the performance is

greatly improved with the annealing, as was the case for the T-HMM.

Finally we compare on Figure 4.12 the convergence properties of the T-SSM

solutions without and with annealing. The evolution of the symmetric divergence is

regular for both cases which is to be contrasted with the T-HMM. We believe that

this is due to the continuous nature of the states of the T-SSM while the states of

the T-SSM are discrete. Obviously, the convergence of the T-SSM with annealing

is much slower than the T-SSM without annealing.

4.9 Conclusion

In this chapter, we introduced the turbo hidden Markov model (T-HMM) as an effi-

cient approximation of the intractable 2-D HMM. The T-HMM can be defined as a

set of interconnected horizontal and vertical 1-D HMMs that communicate through

an iterative process by inducing prior probabilities on each other. We also consid-

ered the turbo state-space model (T-SSM) which is the extension of the T-HMM
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Figure 4.10: Simulation results for the signal considered on Figure 4.8.2 for various
numbers of iterations for the T-SSM. Difference between the log-likelihood of the
ML solution and T-SSM solution without annealing versus standard deviation of the
measurement noise.
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Figure 4.11: Comparison between the T-SSM solutions with and without anneal-
ing for 25 iterations. Difference between the log-likelihood of the ML and T-SSM
solutions versus standard deviation of the measurement noise.
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Figure 4.12: Comparison of the convergence properties of the T-SSM solutions
with and without annealing for the decoding problem of Figure 4.8.2. Symmetric
divergence (c.f. equation 4.60) versus number of iterations.
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to continuous states. For both the T-HMM and T-SSM we attempted to provide

efficient approximate answers to the three problems of HMM design. We also con-

sidered the convergence properties of the iterative process. Finally, we showed the

potential of the T-HMM and the T-SSM on simple problems.

However, many convergence properties were observed rather than proved for-

mally, especially in the case of the discrete state T-HMM. As the forward-backward

iterations of the T-HMM seem to bear some similarity with those derived for the

turbo decoding problem using the graphical model formalism [Fre98], we believe

that we could certainly benefit from the large body of work on turbo codes to prove

some of these properties.

As for the T-SSM, we assumed a very simple model with linear Markovian dy-

namics and Gaussian pdf’s. Note that linear dynamics represent a first order fit to

any true underlying dynamical system, however complex, and often capture most of

the salient features of the underlying system. Therefore, we believe that the Gaus-

sian assumption is more restrictive. As an arbitrary pdf can be approximated with a

linear combination of Gaussians, we could use mixtures of Gaussians and the equa-

tions we derived could be extended in a straightforward manner. However in such a

case the complexity of the modified forward-backward iterations would be exponen-

tial in the size of the data. The generalized pseudo-Bayesian (GBP) algorithm was

proposed to address this issue [BSL93]. The assumption is that it is not important

to keep track of distinct mixture histories whose differences occurred more than a

given number of observations in the past.

Note that for both the T-HMM and the T-SSM, we use a very simple technique

to fuse the horizontal and vertical scores obtained during the modified forward-

backward iterations. Obviously, we believe that more elaborate fusion schemes could

be envisioned.

In the following chapters, we will consider the application to the T-HMM and

the T-SSM to the problem of AFR.



76 4. Turbo HMM and Turbo SSM



5

Modeling Elastic Facial Distortions

5.1 Introduction

In this chapter, we will first elaborate on our probabilistic model of image mapping

which is based on local transformations and neighborhood consistencies (section

5.2). We will then specialize this very general framework to the problem of mod-

eling elastic facial distortions. The goal is to derive a measure of distance between

face images which is robust to facial expressions. In section 5.3 we describe the

components of our HMM-based transformation model. In section 5.4 we explain

how to perform the matching with this model and in section 5.5 we explain how

to train it. In section 5.6 we discuss the choice of local features. In section 5.7 we

first evaluate the influence of a degradation of the image resolution or an imprecise

segmentation of the face on the recognition rate of the proposed approach. We then

assess its robustness with respect to facial expressions, but also to a degradation of

the image resolution, an imprecise segmentation, illumination, pose and occlusion.

In both cases we compare the performance of the proposed approach with BIC (c.f.

section 3.2.6). In section 5.8 we provide an analysis of our transformation model.

Finally, in section 5.9, we will draw conclusions.

5.2 Framework

Our premise is that a global transformation between two face images may be too

complex to be modeled directly and that it should be approximated with a set of
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local transformations. These local transformations should be as simple as possible

for efficient implementation but the composition of all local transformations (i.e.,

the global transformation) should be rich enough to model a wide range of variabil-

ities between face images of the same person. However, if we do not restrict the

set of admissible combinations of local transformations, the model might become

over-flexible and “succeed” to patch together very different faces.

This observation naturally leads to the second component of our framework: the

neighborhood coherence constraint whose purpose is to provide context information

and to impose consistency requirements on the combination of local transformations.

It must be emphasized that such neighborhood consistency rules introduce depen-

dencies in the local transformation selection for the various image regions, and the

optimal solution must therefore involve a global decision.

To combine the local transformation and consistency costs, we propose to embed

the system within the probabilistic framework of the turbo hidden Markov model

(T-HMM) introduced in chapter 4, and whose complexity is much lower than the

2-D HMM. As discussed in section 3.3.4, the HMM has already been successfully ap-

plied to the problems of face detection and face recognition. However, the approach

we propose is fundamentally different as our focus is on modeling a transformation

between face images while the goal of [Sam94, Nef99] is on modeling the face.

We will now explicate the probabilistic framework. Let us assume that feature

vectors are extracted on a grid from the query image Iq. At any location on Iq, the

system is assumed to be in some unknown state. If we assume that the horizontal

and vertical 1-D HMMs which form the T-HMM are first-order Markovian, the state

of the system at a given position depends on the states at the adjacent positions in

both horizontal and vertical directions, as quantified by the transition probabilities.

At each position, an observation is emitted according to the state-conditional emis-

sion probabilities. In our framework, local transformations are identified with the

states of the HMM, and emission probabilities model the local mapping cost. These

transformations are “hidden” and information on them can only be extracted from

the observations. Transition probabilities relate states of neighboring regions and

implement the consistency rules.

The set of possible global transformations, and hence the resulting distance,

primarily depends on the allowed local transformations. In this dissertation we

consider in particular two types of local transformations: grid transformations and

feature transformations. A grid transformation consists in a local deformation of the

feature extraction lattice of the query image. A feature transformation consists in
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transforming the extracted features directly through the application of a meaningful

operator. Note that, if we work in a transform domain, a feature transformation

can reflect both geometric or photometric transformations in the pixel domain.

In the following sections of this chapter, we will specialize this framework to com-

pensate for facial expressions using grid transformations. Feature transformations

will be the focus of the next chapter.

5.3 The HMM-Based Transformation Model

If we examine our score P (Iq|It,R), it is clear that the HMM parameters, denoted

λt,R to reflect their dependence on both It and R, may be conveniently separated

into face dependent (FD) parameters λt, i.e,. parameters that are directly extracted

from It, and face independent transformation (FIT) parameters λR, i.e., the pa-

rameters of the shared transformation model R which can be reliably estimated by

pooling together the training images of all available individuals.

In the following, we will consider respectively the emission and transition prob-

abilities of our HMM. The issue of the initial occupancy probability will be very

briefly discussed at the end of this section.

5.3.1 Emission probability

We assume that feature vectors are extracted from Iq on a sparse grid and from It

on a dense grid. Let oi,j be the observation extracted from Iq at position (i, j) on the

sparse grid and let O denote the set of all observations: O = {oi,j , i = 1, . . . , I, j =

1, . . . , J}. Let qi,j be the associated state at position (i, j). Let mk,l be the fea-

ture vector extracted from It at position (k, l) on the dense grid. We thus have

λt = {mk,l, k = 1, . . . , K, l = 1, . . . , L}. λt will be later referred to as the template.

It τ = (τx, τy) is a translation vector, the emission probability, i.e., the probabil-

ity that at position (i, j) the system emits observation oi,j given that it is in state

qi,j = τ , is denoted bτ
i,j = P (oi,j |qi,j = τ, λt, λR). A translation τ maps a feature

vector oi,j in Iq into a feature vector in It that will be denoted mτ
i,j (c.f. Figure 5.1).

The emission probability bτ
i,j represents the cost of matching oi,j and mτ

i,j and, thus,

models the intra-class variability of the face around position (i, j) that cannot be

explained purely by a translation.
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templatequery

xi,j

oi,j

mτ
i,j

yi,j

xi,j + τx

yi,j + τy

τ

Figure 5.1: Local mapping of a feature vector oi,j in the query image into a feature
vector mτ

i,j in the template image.

We model bτ
i,j with a mixture of Gaussians:

bτ
i,j =

Ki,j
∑

k=1

wk
i,jb

τ,k
i,j (5.1)

This choice is motivated by the fact that linear combinations of Gaussians can

approximate arbitrarily shaped densities. Ki,j is the number of components at

position (i, j), bτ,k
i,j ’s are the component densities and wk

i,j ’s are the mixture weights

and must satisfy the following constraint:

Ki,j
∑

k=1

wk
i,j = 1 , ∀(i, j) (5.2)

Each component density is a D-variate Gaussian function of the form:

bτ,k
i,j (oi,j) =

1

(2π)
D
2 |Σk

i,j |
1

2

exp

{

−1

2
(oi,j − µτ,k

i,j )T Σk
i,j

(−1)
(oi,j − µτ,k

i,j )

}

(5.3)

where µτ,k
i,j and Σk

i,j are respectively the mean and covariance matrix of the Gaussian,

D is the dimensionality of the feature space and | · | denotes the determinant oper-

ator. This HMM is non-stationary as Gaussian parameters depend on the position

(i, j). During the scoring process, this allows to weight automatically the different

parts of the face according to their variability or their discriminatory power accord-

ing to the considered training criterion.

We now relate µτ,k
i,j to mτ

i,j by writing µτ,k
i,j as a function of mτ

i,j . In the follow-

ing, we will consider that the observed variability can be modeled with an additive
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component δk
i,j :

µτ,k
i,j = mτ

i,j + δk
i,j (5.4)

Note that we could also have considered the more general case where µτ,k
i,j is obtained

through an affine transformation of mτ
i,j :

µτ,k
i,j = W k

i,jζ
τ
i,j (5.5)

where ζτ
i,j =

[

1
mτ

i,j

]

is a vector of size D + 1 and W k
i,j is a D × (D + 1) matrix.

Obviously, this latter approach would enable a more accurate modeling of the vari-

ability at the expense of a higher computational cost.

Interestingly, similar equations have been written in the field of ASR for the class

of speaker adaptive training (SAT) algorithms [AMSM96]. Especially in [AH96,

Boc00], the authors make use of “bi-partite” models for the Gaussian means to sep-

arate variabilities. These models are made of two components: one models mostly

the speaker dependent (SD) part of the acoustic variabilities, and the other the

residual speaker independent (SI) variabilities. The Gaussian means are written as

a function f of the SD parameters where the parameters of f are SI, which is exactly

what is expressed by equations 5.4 and 5.5.

wk
i,j , W k

i,j , Σk
i,j

oi,j
mτ

i,j

bτ
i,j(oi,j)

Figure 5.2: Separation of the emission probability parameters into FD parameters
(mτ

i,j) and FIT parameters (wk
i,j , δk

i,j and Σk
i,j).

It is interesting to understand the meaning of the previous equations and, espe-

cially, the impact of the separation of the emission probability parameters into FD

parameters and FIT parameters. While the shape of bτ
i,j depends only on the FIT

parameters wk
i,j , Σk

i,j and W k
i,j , it should be maximum at mτ

i,j , a FD parameter (c.f.

Figure 5.2).



82 5. Modeling Elastic Facial Distortions

Note that if we have some prior knowledge on the relative locations of the faces

in Iq and It, e.g. if we know that they are approximately located at the same

position, then it is not necessary to try to map a feature vector oi,j in Iq with all the

feature vectors mk,l in It. Indeed considering all the possible local matchings would

be unnecessarily costly. Hence, we should restrict the set of possible translations

τ between oi,j and the mk,l’s to a region of It. Ti,j denotes the set of possible

translations at position (i, j) and is characterized by the following property:

bτ
i,j(oi,j) = 0 if τ /∈ Ti,j (5.6)

The shape and the extent of Ti,j depend on several factors such as the accuracy of

the face segmentation or the elasticity of the different parts of the face. While the

first factor has the same impact on all the different parts of the face, the second one

has a different impact as different parts of the face have different elastic properties.

Thus, Ti,j depends on (i, j) and should be learned during the training phase.

5.3.2 Transition probability

The neighborhood consistency of the transformation is ensured via the transition

probabilities of the horizontal and vertical 1-D HMMs that compose the T-HMM.

The horizontal and vertical transition probabilities are denoted: aH
i,j(τ ; τ ′) = P (qi,j =

τ ′|qi,j−1 = τ) and aVi,j(τ ; τ ′) = P (qi,j = τ ′|qi−1,j = τ). Note that this corresponds

to a fairly simple model of the elasticity of the face where each part of the face is

linked to its horizontal and vertical neighbors with springs.

Invariance to global shift in face images is a desirable property. Hence, if τ ′ =

τ + δτ , we choose aH and aV to be of the form:

aHi,j(τ ; τ + δτ) = aHi,j(δτ) (5.7)

aVi,j(τ ; τ + δτ) = aVi,j(δτ) (5.8)

We can apply further constraints on the transition probabilities to reduce the number

of free parameters in our system. For instance, we can assume separable transition

probabilities. If δτ = (δτx, δτy), then:

aHi,j(δτ) = aHx
i,j (δτx) × aHy

i,j (δτy) (5.9)

aVi,j(δτ) = aVx
i,j (δτx) × aVy

i,j (δτy) (5.10)

We can also assume parametric transition probabilities. If It and Iq have the same

scale and orientation, then the horizontal transition probabilities could have the

following form:

aHi,j(δτ) ∝ exp







−1

2





(

δτx

σHx
i,j

)2

+

(

δτy

σHy
i,j

)2










(5.11)
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A similar formula can be derived for vertical transition probabilities. Another idea

to reduce the number of transition probability parameters would be to use the face

symmetry. If (i, j′) is the symmetric of (i, j) with respect to the line of symmetry

of the face, then we can impose the following constraints:

aHi,j(δτx, δτy) = aHi,j′(−δτx, δτy) (5.12)

aVi,j(δτx, δτy) = aVi,j′(−δτx, δτy) (5.13)

aHi,j and aVi,j model respectively the horizontal and vertical elastic properties of

the face at position (i, j) and are part of the face transformation model R. Note

that using multiple horizontal and vertical transition probabilities at different loca-

tions enables to model the different elastic properties of the various parts of the face.

To limit the number of possible output transition probabilities at each state we

discard unlikely transitions, i.e. unreasonable distortions of the face. The set of

possible transition probabilities δθ between positions (i, j − 1) (resp. (i− 1, j)) and

(i, j) is denoted ∆TH
i,j (resp. ∆TV

i,j). Thus, ∆TH
i,j and ∆TV

i,j are characterized by the

following equations:

aHi,j(δτ) = 0 if δτ /∈ ∆TH
i,j aVi,j(δτ) = 0 if δτ /∈ ∆T V

i,j (5.14)

As was the case for the set of permissible translations Ti,j , ∆TH
i,j and ∆TV

i,j depend

on the elastic properties of the face at the different positions and thus should be

learned during the training phase.

Finally, we consider the remaining set of HMM parameters – the initial oc-

cupancy probabilities. We assume herein that the initial occupancy probability

distribution is uniform, to ensure invariance to global translations of face images.

5.4 Recognition with the Transformation Model

In this section, we address the issue of estimating the score P (O|λt, λR) with our

transformation model based on the T-HMM. As discussed in the previous chapter

(c.f. sections 4.4 and 4.5) there exists two possible solutions to solve this prob-

lem. The first approach computes two scores, a horizontal one PH(O|λt, λR) and

a vertical one P V(O|λt, λR), and fuses them. The second one looks for the best

sequence of states Q∗ and performs the following approximation: P (O|λt, λR) ≈
P (O, Q∗|λt, λR).

However, the main problem with the second approach is that choosing a set of lo-

cally optimal states Q∗, as suggested in section 4.5, may not lead to a valid sequence
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of states in the case where the states are not fully connected. For the problem of

interest, we are in such a case as we prune unlikely transition probabilities to reduce

the computational cost (c.f. section 5.3.2). Note that we are all the more likely to

end up with an invalid sequence of states during the first few iterations, i.e. when

the horizontal and vertical passes have not had time yet to reach an agreement.

Thus, this approach may require a fairly large number of iterations.
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Figure 5.3: Typical case of convergence of the horizontal and vertical log-likelihoods
as a function of the number of turbo iterations (starting with a horizontal pass and
without annealing).

On the other hand, for the first approach the horizontal and vertical likelihoods

are extremely fast to converge for the problem under consideration in the case where

we do not perform annealing (c.f. Figure 5.3). Although annealing may favorably

impact the recognition rate, it requires a larger number of iterations and therefore

an increased computational cost.

Therefore, in all our experiments, to estimate P (O|λt, λR) we chose the first

approach and did not perform annealing.

5.5 Training the Transformation Model

In this section, we consider the issue of estimating the parameters λR of the face

transformation model. We remind the reader that the λR parameters are the emis-

sion probability parameters wk
i,j , δk

i,j and Σk
i,j , the set of permissible translations Ti,j ,

the transition probability parameters aH
i,j and aVi,j and the set of permissible transi-
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tions ∆TH
i,j and ∆TV

i,j . In this section, we first very briefly introduce the basic idea

of the ML estimation of the HMM, as applied to our problem, and which is based

on the EM principle. We then explicate the E-step and M-step of the estimation.

Finally, we describe the training procedure operationally.

5.5.1 Maximum likelihood estimation

Training the transformation model requires a set of pairs of images {(Ip
t , Ip

q ), p =

1, ..., P} that belong to the same person. The goal of the ML estimation is to adjust

λR to maximize the likelihood:

P
∏

p=1

P (Ip
q |Ip

t ,R) (5.15)

Let us consider the case where we have one pair of images (It, Iq). The re-

estimation formulas can be derived directly by maximizing Baum’s auxiliary func-

tion, which, in the case of interest, takes the following form:

Q(λR|λ′
R) =

∑

Q

P (Q|O, λt, λ
′
R) log P (O, Q|λt, λR) (5.16)

As explained in section 4.6, for the T-HMM we do not have one Q function but

two: a horizontal one QH and a vertical one QV . While this is not a problem for

re-estimating the transition probabilities, this could be an issue for the emission

probabilities in the case where the horizontal and vertical passes do not reach agree-

ment as they are both horizontal and vertical parameters. The solution we suggested

was simply to sum the horizontal and vertical statistics to re-estimate the emission

probability parameters.

The Baum-Welch algorithm can be readily interpreted as an implementation of

the EM algorithm in which the E-step is the calculation of the auxiliary function

Q, or more precisely of QH and QV in our case, and the M-step corresponds to the

maximization over λR.

Note that the ML criterion can be shown to be optimal if certain conditions

hold, such as model correctness and infinite training data. However, in our case, the

true data source is unlikely to be an HMM and only limited training data is avail-

able. Therefore, other training objective functions could be considered, especially

discriminative ones, such as the maximum mutual information (MMI) [Nor96] or

the minimum classification error (MCE) [JCL96].
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5.5.2 E-step

During the E-step, one performs the modified forward-backward iterations to es-

timate the horizontal and vertical occupancy probabilities γH
i,j(τ) = PH(qi,j =

τ |O, λt, λR) and γV
i,j(τ) = PV(qi,j = τ |O, λt, λR) respectively. Let ki,j be the Gaus-

sian mixture index at position (i, j). We also define γH
i,j(τ, k) = PH(qi,j = τ, ki,j =

k|O, λt, λR) (resp. γV
i,j(τ, k) = PV(qi,j = τ, ki,j = k|O, λt, λR)), the probability

of being in state qi,j = τ at position (i, j) during the horizontal (resp. vertical)

pass with the k-th mixture component accounting for oi,j . These quantities can be

estimated as follows:

γH
i,j(τ, k) = γH

i,j(τ)
wk

i,jb
τ,k
i,j (oi,j)

bτ
i,j(oi,j)

γV
i,j(τ, k) = γV

i,j(τ)
wk

i,jb
τ,k
i,j (oi,j)

bτ
i,j(oi,j)

(5.17)

The following quantities are also necessary to re-estimate the transition proba-

bilities: ξHi,j(τ, τ + δτ) = PH(qi,j = τ, qi,j+1 = τ + δτ |O, λt, λR) and ξVi,j(τ, τ + δτ) =

PV(qi,j = τ, qi+1,j = τ + δτ |O, λt, λR). These horizontal and vertical quantities can

be computed as follows:

ξHi,j(τ, τ + δτ) =
αH

i,j(τ)aHi,j(δτ)bVi,j+1(oi,j+1)β
H
i,j+1(τ + δτ)

∑

τ

∑

δτ αH
i,j(τ)aHi,j(δτ)bVi,j+1(oi,j+1)βH

i,j+1(τ + δτ)
(5.18)

ξVi,j(τ, τ + δτ) =
αV

i,j(τ)aVi,j(δτ)bHi+1,j(oi+1,j)β
V
i+1,j(τ + δτ)

∑

τ

∑

δτ αV
i,j(τ)aVi,j(δτ)bHi+1,j(oi+1,j)βV

i+1,j(τ + δτ)
(5.19)

5.5.3 M-step

As explained in section 4.6, the horizontal (resp. vertical) Q function can be written

as the sum of I horizontal (resp. J vertical) Q functions that correspond to the

I horizontal (resp. J vertical) 1-D HMMs. These Q functions can be themselves

separated into the sums of 3 terms which correspond respectively to the initial occu-

pancy, transition and emission probabilities. As we assumed the initial occupancy

to be non-informative, we now only consider the emission and transition probability

parameters. Note that the following equations are straightforward extensions of the

derivations of [Rab89] and [Bil98].

Emission probabilities

As for emission probabilities we have to sum horizontal and vertical statistics, we use

the following notation γi,j(τ, k) = 1
2

(

γH
i,j(τ, k) + γV

i,j(τ, k)
)

. For Gaussian mixtures,

the part of the Q function which corresponds to the emission probability can be

subdivided into two parts. The first one corresponds to the mixture weights while

the second one depends on the component parameters.
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For the mixture weights, we obtain the following quantity:

∑

τ

∑

k

γi,j(τ, k) log wk
i,j (5.20)

Adding the Lagrange multiplier η and using the constraint that
∑

k wk
i,j = 1, we

have to maximize the following quantity:

∑

τ

∑

k

γi,j(τ, k) log wk
i,j + η

(

1 −
∑

k

wk
i,j

)

(5.21)

Taking the partial derivative with respect to wk
i,j and equating to zero, we get the

following estimate ŵk
i,j of wk

i,j :

ŵk
i,j =

1

η

∑

τ

γi,j(τ, k) (5.22)

Now summing over k, we obtain:

ŵk
i,j =

∑

τ γi,j(τ, k)
∑

τ

∑

k γi,j(τ, k)
=
∑

τ

γi,j(τ, k) (5.23)

For the Gaussian components, we obtain the following quantity:

∑

τ

∑

k γi,j(τ, k) log bτ,k
i,j (oi,j)

= −1
2

∑

τ

∑

k γi,j(τ, k)
(

log |Σk
i,j | + (oi,j − µτ,k

i,j )T Σk
i,j

(−1)
(oi,j − µτ,k

i,j )
)

(5.24)

In the following, we consider the case where µτ,k
i,j = mτ

i,j + δk
i,j . If we take the partial

derivative with respect to δk
i,j , we get:

∑

τ

γi,j(τ, k)Σk
i,j

(−1)
(oi,j − mτ

i,j − δ̂k
i,j) (5.25)

and if we equate the previous quantity to zero, we obtain the following estimate δ̂k
i,j :

δ̂k
i,j =

∑

τ γi,j(τ, k)(oi,j − mτ
i,j)

∑

τ γi,j(τ, k)
(5.26)

Finally, if we take the partial derivative of 5.24 with respect to Σk
i,j

(−1)
we get:

2S − diag(S) (5.27)

with

S =
1

2

∑

τ

γi,j(τ, k)
(

Σk
i,j − (oi,j − mτ

i,j − δk
i,j)(oi,j − mτ

i,j − δk
i,j)

T
)

(5.28)
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Setting 2S − diag(S) = 0 implies that S = 0. Thus, if we replace δk
i,j by its estimate

δ̂k
i,j we obtain the following estimate Σ̂k

i,j of Σk
i,j :

Σ̂k
i,j =

∑

τ γi,j(τ, k)(oi,j − mτ
i,j − δ̂k

i,j)(oi,j − mτ
i,j − δ̂k

i,j)
T

∑

τ γi,j(τ, k)
(5.29)

In the previous derivations, we assumed the general case of a full covariance matrix.

Finally, the set Ti,j of permissible translations τ at position (i, j) is given by the

following equation:

τ ∈ Ti,j if γi,j(τ) > θ (5.30)

where θ is a predefined threshold.

Transition probabilities

In QH, the part corresponding to the horizontal transition probability aH
i,j is:

∑

τ

∑

δτ

ξHi,j(τ, τ + δτ) log aHi,j(δτ) (5.31)

Adding the Lagrange multiplier η and using the constraint that
∑

δτ aHi,j(δτ) = 1,

we have to maximize the following quantity:

∑

τ

∑

δτ

ξHi,j(τ, τ + δτ) log aHi,j(δτ) + η

(

1 −
∑

δτ

aHi,j(δτ)

)

(5.32)

Taking the partial derivative with respect to aH
i,j(δτ) and equating to zero, we get

the following estimate âHi,j(δτ) of aHi,j(δτ):

âHi,j(δτ) =
1

η

∑

τ

ξHi,j(τ, τ + δτ) (5.33)

Now summing over δτ , we obtain:

âHi,j(δτ) =

∑

τ ξHi,j(τ, τ + δτ)
∑

τ

∑

δτ ξHi,j(τ, τ + δτ)
=
∑

τ

ξHi,j(τ, τ + δτ) (5.34)

Similarly, the optimal estimate âV
i,j(δτ) of aVi,j(δτ) is:

âVi,j(δτ) =
∑

τ

ξVi,j(τ, τ + δτ) (5.35)

In formulas 5.34 and 5.35 we assumed unconstrained non-separable non-parametric

transition probabilities.
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Finally, the sets ∆TH
i,j and ∆TV

i,j of permissible horizontal and vertical transitions

δτ are given by the following equations:

δτ ∈ ∆TH
i,j if

∑

τ

ξHi,j(τ, τ + δτ) > θ δτ ∈ ∆T V
i,j if

∑

τ

ξVi,j(τ, τ + δτ) > θ (5.36)

where θ is a predefined threshold.

While the re-estimation formulas 5.23, 5.26, 5.29, 5.34 and 5.35 were provided

for the unlikely case where HMM parameters are estimated with only one pair of

images, their extension to the case of multiple pairs of images is straightforward.

Indeed, we just have to accumulate the statistics for all pairs of images.

5.5.4 The training operationally

In this section, we describe the operational training of the HMM-based transforma-

tion model. The training procedure we used, which is similar to the one implemented

in the HMM toolkit (HTK) [YEK+01], was inspired by the vector quantization al-

gorithm [LBG80]. We start with a simple model which contains one Gaussian per

mixture (Gpm) and then increment progressively the number of Gpm.

One Gaussian per mixture model

As the EM-based training is an iterative procedure, we have to find a reasonable

initial estimate of the HMM parameters before applying the EM iterations. Let us

denote δi,j and Σi,j the parameters of the Gaussian at position (i, j). As we want bτ
i,j

to be maximum when oi,j = mτ
i,j , we set δi,j = 0 for the 1 Gpm system. To obtain

a reasonable estimate of Σi,j at each position (i, j), we assume that the query and

template images are perfectly aligned and that there is no local distortion and we

perform a rigid matching of the template and query images. We denote mτ
i,j = mi,j

when τ = 0. Thus, formula 5.29 simplifies in the following manner:

Σ̂i,j = (oi,j − mi,j)(oi,j − mi,j)
T (5.37)

Note that one more time, this formula is for the case where we have only one cou-

ple of training images and that to extend this formula to multiple training images

we just have to accumulate the statistics. Note that the idea to perform a rigid

matching to initialize Σi,j was somewhat inspired by the forced alignment which is

traditionally used in ASR. As for the transition probabilities, we initialized them

uniformly. Note that we have tried other initialization schemes for transition prob-

abilities but that the convergence of the training shows very little sensitivity with

respect to the initial choice of transition probabilities.
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Once the HMM parameters have been initialized, one can re-estimate the pa-

rameters using the Baum-Welch algorithm.

Mixture incrementing

Once we have obtained a good estimate for the 1 Gpm system, we can increase the

number of Gaussians progressively. All the Gaussians which have been estimated

with more than a given number of samples are split into two Gaussians by intro-

ducing a small perturbation in the mean. Let δ−i,j and δ+
i,j be the mean parameters

of the two resulting Gaussians. If we assume the diagonal covariance matrix Σi,j to

be diagonal, with Σi,j = diag{σi,j [1], ..., σi,j [D]}, then the splitting is performed by

slightly perturbing the δ offset:

δ−i,j [d] = δi,j [d] − εσi,j [d] δ+
i,j [d] = δi,j [d] + εσi,j [d] (5.38)

where ε is the parameter which controls the strength of the perturbation. The

weights of the resulting Gaussians are set equal to the weight of the initial Gaussian

divided by two and the covariance matrices are left unchanged.

Once the splitting has been performed for each mixture of Gaussians, the model

can be re-estimated using the Baum-Welch algorithm. The splitting and re-training

can be repeated until the desired number of Gaussians is obtained or as long as

there is enough data to split Gaussians. An advantage of increasing progressively

the number of Gaussians is that it allows to monitor the recognition performance to

find the optimum number of Gaussians per mixture [YEK+01].

5.6 Gabor Features

The choice of the feature set that will be extracted from the query and template

images is an issue of paramount importance. However, as our focus in this dis-

sertation is on the classifier, we will rely on already existing local features (c.f.

section 3.3). Gabor features seem to be among the most popular ones. They

have long been successfully applied to the problems of face recognition and detec-

tion [MCvdM92, LVB+93, WFKvdM97, Krü97, AMU97, LW02] and facial analysis

[Wis97, DBH+99].

Gabor wavelets, which are plane waves restricted by a Gaussian envelope, were

introduced to image analysis due to their biological relevance and computational

properties [LW02]. Indeed, Gabor wavelets kernels are similar to the 2-D receptive

fields profiles of the mammalian cortical simple cells. Moreover, they exhibit desir-

able characteristics of spatial locality and orientation selectivity, and are optimally
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localized in the space and frequency domains.

σθ

ωmin ωmax

ωy

ωx

σρ

Figure 5.4: Gabor decomposition of the Fourier domain. The lines show the inflexion
points of the 2-D Gaussian-shaped filters.

To define a bank of Gabor wavelets, [DFB99] suggests to partition the spectral

half plane into M frequency and N orientation bands (c.f. Figure 5.4). The set of

filters is defined as follows in the Fourier domain:

Gi,j(ωu, ωv) = exp

{

−1

2

[

ω2
u

σ2
ρi

+
ω2

v

σ2
θi

]}

i = 1, ..., M, j = 1, ..., N (5.39)

with:
(

ωu

ωv

)

=

[

cos(ωθj
) sin(ωθj

)

− sin(ωθj
) cos(ωθj

)

](

ωx

ωy

)

−
(

ωρi

0

)

(5.40)

ωρi
and σρi

are respectively the radial center and bandwidth and ωθj
and σθi

are

respectively the angular center and bandwidth. These parameters are defined as

follows:

ωρi
= ωmin + σ0

(f + 1)f i−1 − 2

f − 1
(5.41)

σρi
= σ0f

i−1 (5.42)

ωθj
=

(j − 1)π

N
(5.43)

σθi
=

πωρi

2N
(5.44)



92 5. Modeling Elastic Facial Distortions

with σ0 given by:

σ0 =
ωmax − ωmin

2

(

f − 1

fM − 1

)

(5.45)

Therefore, to define a bank of Gabor wavelets, one has to set five parameters: ωmin,

ωmax, f , M and N (c.f. Figure 5.5).

Figure 5.5: The real part of the Gabor kernels at 4 scales and 6 orientations with
the following set of parameters: ωmin = π/24, ωmax = π/3, f =

√
2.

Gabor responses are obtained through the convolution of an image with the

Gabor wavelets. This can be performed in a fast manner in the Fourier domain. If

I is the image to be filtered and gi,j the Gabor kernel, then we have:

Oi,j = I ∗ gi,j (5.46)

where ∗ denotes the convolution operator and Oi,j is the convolution result. Thus

applying the fast Fourier transform operator F , we get:

F{Oi,j} = F{I}F{gi,j} (5.47)

with F{gi,j} = Gi,j . Now applying the inverse fast Fourier transform operator F−1,

we obtain:

Oi,j = F−1 {F{I}Gi,j} (5.48)
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We use the modulus of these responses as feature vectors.

After preliminary experiments, we chose the following set of parameters for the

problem of interest: M = 4 scales, N = 6 orientations, ωmin = π/24, ωmax = π/3,

f =
√

2. Features were extracted every 4 pixels in both horizontal and vertical

directions from the template images and every 16 pixels from the query images.

Note that we tried a finer resolution for both the template and query images but

did not obtain any significant increase of the performance at the expense of a much

greater computational cost.

5.7 Experimental Validation

In this section, we will first explain our choice of training and test data. We will

then briefly discuss the issue of face segmentation. Next we will fine tune on a

development set BIC and the proposed approach which will be latter referred to as

PMLGT for probabilistic mapping with local grid transformations. BIC was chosen

for the baseline as it is one of the only approaches to AFR which focuses on the

relationship between face images and as it is one of the most successful approaches to

AFR to date (c.f. section 3.2.6). First, we evaluated the influence of a degradation of

the image resolution or an imprecise segmentation of the face on the recognition rate

of the proposed approach. As our goal is on comparing the robustness of PMLGT

and BIC in conditions which are as close to reality as possible, we also assessed the

performance of both approaches in various conditions. We assessed the performance

of PMLGT and BIC with respect to facial expressions, which is the focus of this

chapter, but also illumination, pose and occlusion. Indeed, it is interesting to see

how PMLGT and BIC will cop with variabilities which have not been learned.

5.7.1 Choice of the training and test data

To make sure that BIC and PMLGT are not unduly sensitive to a reasonable mis-

match between the training and test conditions, we always trained and tested both

systems on different databases. For our experiments, we used four face databases:

FERET [PMRR00], AR [AR], Yale B [GBK01]and PIE [SBB02] (c.f. appendix D

for a brief description of these databases and sample images).

In all the following experiments, we used the FERET face database to train our

transformation model. Indeed, this database contains a large number of persons

(1,199). As both BIC and PMLGT make the assumption that the intra-class vari-

ability is the same for all classes, i.e. for all persons, training these systems with a

large number of persons should make them more robust to new individuals. For the

training, we used 695 persons. 200 of them are those persons who have an additional
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FC image and the other 495 persons were chosen randomly among the remaining

persons. We used for each of these persons 2 images: one FA and one FB image.

The FA and FB images were successively used as query and template and thus,

our system was trained with 1,390 pairs of images. We also used an additional 500

persons as a development set to fine tune the PMLGT and the BIC systems. For

these 500 persons, we used their FA and FB images.

In most of the following experiments the test data was extracted from the AR,

Yale B and PIE databases.

5.7.2 Face segmentation

The face segmentation is a very important pre-processing step before recognition

and the performance of the face segmentation can greatly impact the performance

of the subsequent recognition. This is particularly true for global approaches to

AFR such as BIC. In the following, we assume that the locations of the centers of

the eyes and the tip of the nose are known. These positions were either provided

with the database, as is the case for FERET, or manually located. They are used

to localize and normalize geometrically face images. First, each image was rotated

so that both eyes were on the same line. Then a square box twice the size of the

inter-eye distance was centered around the nose. Finally the corresponding region

was cropped and resized to 128x128 pixels. (see Figure 5.6 for a few examples of

normalized face images).

(a) (b) (c) (d)

Figure 5.6: A few examples of normalized FERET face images.

Note that in section 5.7.5 we will evaluate the impact of an imprecise location

of the facial features.
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5.7.3 Training BIC

We implemented the BIC approach which is described in section 3.2.6. The main

issue is the estimation of the ρ parameter. Indeed, if N is the size of the feature

space and M the number of training difference images, estimating the parameter ρ

with equation 3.21 requires the set of eigenvalues {λi, i = M +1, ..., N}, which is not

available. To address this issue, we extrapolated the values λi by fitting a function

of the form 1/i as suggested in [MP97]. For our experiments, we used λi ≈ a/i 1.

The mean square estimate of the value a is given by:

a =
1

M

M
∑

i=1

iλi (5.52)

As our goal in this section is on comparing the PMLGT and BIC classifiers, for

a fair comparison we applied BIC to a Gabor representation of the face and not

directly on the gray level images. Note that the idea to combine a local represen-

tation of the face, such as a Gabor representation, with a global approach to AFR

has already been successfully applied in [LW02]. For the problem of interest, the

Gabor representation consists of the concatenation of the feature vectors extracted

every 4 pixels in both horizontal and vertical directions, which is equivalent to the

representation of template images for the proposed approach.

The results are presented on Figure 5.7. The performance increases extremely

fast for a small number E of features, reaches a maximum identification rate of

94.6% for E = 50 and then decreases slowly. Once the number of features was fixed,

we tried to improve the performance by training a mixture of Gaussians for PF

(c.f. section 3.2.6). However, while the likelihood increased significantly, we did not

observe any improvement of the performance. Therefore, we used a single Gaussian

mixture in the following experiments.

1To avoid the explicit summation over i in the evaluation of ρ, we can make use of the following
inequality:

1

n + 1
≤

∫ n+1

n

dx

x
= log(n + 1) − log(n) ≤

1

n
(5.49)

By summing from M to N − 1 on the left and from M + 1 to N on the right, this yields to:

log(N + 1) − log(M + 1) ≤

N
∑

i=M+1

1

i
≤ log(N) − log(M) (5.50)

We thus obtain the following approximation by averaging the lower and upper bounds:

N
∑

i=M+1

1

i
≈

1

2
log

(

N(N + 1)

M(M + 1)

)

(5.51)
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Figure 5.7: Performance of BIC on the FERET development set. Identification rate
versus number of features.

5.7.4 Training PMLGT

For emission probabilities, we used diagonal covariance matrices to reduce the com-

putational cost. We used general transition matrices but reduced the number of

parameters to estimate by using the face symmetry. Initially, the set of permissible

translations Ti,j was initialized to a maximum of 8 pixels horizontally and verti-

cally. As the precision of the feature extraction grid is 4 pixels for template images,

the maximum number of possible translations (and thus states) at each position is

5 × 5 = 25. In the same manner, the sets ∆TH
i,j and ∆TV

i,j of permissible transi-

tions was initialized to a maximum of 8 pixels horizontally and vertically. Thus, the

maximum number of possible transitions at each position is 5 × 5 = 25. For the

modified forward-backward iterations, we started with a horizontal pass, then per-

formed a vertical pass and ended with a final horizontal pass, as experimentally, we

found that no more than 3 passes were required for the horizontal and vertical scores

to converge (c.f. Figure 5.3). This results in a fast matching algorithm. Indeed,

running our non-optimized code on a 2 GHz Pentium 4 with 1 GB Ram, it takes

on the order of 5 ms to compare two face images with an HMM that contains 16 Gpm.

Training the transformation model was done exactly as described in section 5.5.

To re-estimate the 1 Gpm model, we performed 4 training iterations. A Gaussian

could only be split if it had been estimated with at least 50 observations. The per-

turbation factor ε was set to 0.01. To re-estimate the models with multiple Gpm,
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we performed 12 training iterations.

We measured the impact of using multiple mixtures of Gaussians to weight the

different parts of the face and using multiple horizontal and vertical transitions ma-

trices to model the elastic properties of the various parts of the face. Hence, we

tried one mixture for the whole face (Σk
i,j = Σk, δk

i,j = δk and wk
i,j = wk) and one

mixture at each position (i.e. 49 mixtures). We tried one horizontal and one vertical

transition matrices for the whole face and one horizontal and one vertical transition

matrices at each position (using face symmetry, it resulted in 3 × 7 = 21 horizontal

and 4 × 6 = 24 vertical transition matrices). This made four test configurations.

The performance is drawn on Figure 5.8 as a function of the maximum number of

Gpm.
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Figure 5.8: Performance of the proposed PMLGT on the FERET development set.
Identification rate versus maximum number of Gpm.

We can see that using multiple mixtures has a great impact on the performance

compared to the case where we use only one mixture for the whole face, especially

for a small number of Gpm. Note that this is not a completely fair comparison as in

one case we have the same number of Gpm in both systems but that in the former

case, we have 49 mixtures and thus, approximately 49 times as many Gaussians. The

latter system could be of particular interest in the case where only limited memory

resources are available. On the other hand, using multiple horizontal and vertical

transition matrices only has a very limited impact on the performance compared to
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the case where we use only one horizontal and one vertical transitions matrices for

the whole face. Note that it is well-known also in ASR that transition probabilities

have little impact on the performance of HMM-based systems. This is due to the

relatively high dimensionality of feature vectors (in our case 24). Emission probabil-

ities are generally several orders of magnitude smaller than transition probabilities

and thus have a much greater impact on the likelihood.

The best performance we obtained was a 98% identification rate. To carry out

our experiments on the AR, Yale B and PIE databases, we used our very best system

with multiple mixtures, multiple transition matrices, and a maximum of 16 Gpm.

We made sure with McNemar’s test that the observed difference between PMLGT

and BIC on this development set was significant with more than 99% confidence.

Note that we carried out preliminary experiments to determine whether a more

elaborate model of the face variability, such as the one of equation 5.5, could improve

the performance. Therefore, we tried an affine model of the form W k
i,j = (δk

i,j

...Πk
i,j)

where δk
i,j , the additive component of the variability, is a vector of size D and Πk

i,j ,

the multiplicative component, is a matrix of size D × D. To reduce the number

of parameters to estimate, we chose Πk
i,j to be diagonal. With such a model, the

identification rate was increased up to 99.4%.

5.7.5 Results

We carried out two sets of experiments to evaluate the robustness of BIC and

PMLGT with respect to a degradation of the image resolution or a failure of the

face segmentation system due to an imprecise location of facial features. We then

performed four sets of experiments to compare the performance of BIC and PMLGT

in the presence of facial expressions, illumination or pose variations and occlusion.

For each set of experiments, we carried out the tests on the database(s) that, we

thought, would be the most interesting for the considered variability.

Image resolution

It was shown in [Mog02] that BIC performed very well even for face images with a

very coarse resolution (down to 21 × 12 pixels). Therefore, we carried out a set of

experiments on FERET to know how the proposed approach depends on the resolu-

tion. We used the same enrollment and test images as in the previous section with

the difference that the resolution of face images was downgraded to 64× 64, 32× 32

and 16 × 16. The BIC and PMLGT systems were trained exactly as described in

sections 5.7.3 and 5.7.4 respectively. Results are presented on Figure 5.9.
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Figure 5.9: Influence of the image resolution. Results on the FERET database.

We can see that the dependence of BIC and PMLGT on the image resolution is

similar. Indeed, there is little degradation of the performance down to 32×32 pixels

and a significant degradation for 16 × 16 pixels.

Imprecise segmentation

The robustness of BIC and PMLGT with respect to an imprecise segmentation was

evaluated on the FERET database. We used the same enrollment and test images

as in the previous section. The only difference is that, at test time the localization

of facial features on query images was perturbated with an additive Gaussian noise

with mean zero and a varying standard deviation (c.f. Figure 5.10). The localization

of facial features for enrollment images was not perturbated. The rational behind

this choice is the fact that enrollment is often supervised and thus, an imprecise

location of features can be manually corrected. Results are presented on Figure 5.11.

Obviously, PMLGT is much more robust to an imprecise location of facial fea-

tures than BIC. With McNemar’s test we observed with more than 99% confidence

that, compared to the case of a perfect segmentation, the decrease of performance

for BIC is already significant for a standard deviation of 2 pixels while for PMLGT

it is only significant for 3 pixels. We believe that the robustness of PMLGT is due to

the local grid transformations which allow more flexibility in the matching. There-

fore, we forced the PMLGT to perform a rigid matching by constraining the system

to be at each position (i, j) in the state τi,j = (0, 0). The results we obtained with

this rigid PMLGT for a standard deviation of 1, 2 and 3 pixels were 94.4%, 89.8%

and 85.6% respectively, which validates our claim.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.10: A few examples of normalized FERET face images. The localization
of facial features was perturbated with an additive Gaussian noise with mean zero
and standard deviation (a)-(d) 1 pixel, (e)-(h) 2 pixels and (i)-(l) 3 pixels.
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Figure 5.11: Imprecise location of facial features. Results on the FERET database.

Facial expressions

The robustness of BIC and PMLGT with respect to facial expressions was evaluated

on the AR face database. All the available persons were used. The images labeled

01, which correspond to the neutral expression, were used as enrollment data and

the images 02, 03 and 04, which correspond respectively to the smile, anger and

scream expressions, were used as test images (see Figure D.4).
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Figure 5.12: Facial expression results on the AR database.
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Results are presented on Figure 5.12. The PMLGT algorithm outperforms the

BIC algorithm for all expressions. Both BIC and PMLGT perform fairly poorly for

extreme facial expressions such as the scream. We however point out that the train-

ing data extracted from FERET does not contain such radical expression variations.

The average performance on the 3 facial expressions is 78% for BIC and 89% for

PMLGT. With McNemar’s test, we made sure with more than 99% confidence that

the observed difference was significant.

We wanted to assess the impact of local grid transformations on the perfor-

mance of PMLGT. Hence, we forced the PMLGT to perform a rigid matching as

was the case for the previous set of experiments. The average performance of this

rigid PMLGT is 87% and thus, there is only a slight degradation compared to the

PMLGT. If we perform McNemar’s test of significance, we can see that the observed

difference cannot be considered significant. Hence, for this particular set of exper-

iments, we conclude that local translations only have a very limited impact on the

performance for facial expressions, which is kind of surprising. We will see however

in the next chapter that we will draw a different conclusion for different features.

Illumination

The robustness of BIC and PMLGT with respect to illumination variations was

evaluated on the AR, PIE and Yale B databases:

• For the AR database, sets 05, 06 and 07, which correspond respectively to the

left light on, the right light on and both lights on, were used as test data (see

Figure D.4). The neutral expression was used as enrollment image.

• For Yale B, we used those images which correspond to the frontal camera. The

image which corresponds to the flash which is directly in the optical axis of the

camera was chosen as enrollment image and we used as test data 38 images

which correspond to flashes which make an angle between 20o and 77o with

the optical axis (see Figure D.2). Moreover, these 38 images were subdivided

into three data sets according to the angle between the flash and the optical

axis of the camera: 20o ≤ θ ≤ 25o for “set 1”, 35o ≤ θ ≤ 50o for “set 2” and

60o ≤ θ ≤ 77o for “set 3”.

• For the PIE database, experiments were carried out on the sets with and

without ambient lighting, which will be later referred to as PIE 1 and PIE

2 (see Figure D.3). Only the images corresponding to the frontal camera

were used. For each of the 68 persons, an image corresponding to the pure

ambient lighting of PIE 1 was used as enrollment image and the 2 × 21 other

conditions were used as test data. As was the case for Yale B, the 21 images
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were subdivided into three data sets, according to the angle between the flash

and the optical axis of the camera: θ ≤ 25o for “set 1”, 25o ≤ θ ≤ 40o for “set

2” and 40o ≤ θ ≤ 70o for “set 3”.
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Figure 5.13: Illumination results on (a) AR, (b) Yale B (c) PIE 1 and (d) PIE2.

Results are presented on Figure 5.13. They are contrasted as PMLGT seems to

outperform BIC on AR and Yale B while BIC clearly outperforms PMLGT on PIE

1 and PIE 2. We will now elaborate on these results.

On AR, both algorithms exhibit a good performance for sets 05 and 06, i.e. when

half of the face is illuminated but a low performance on set 07, i.e. when the face

is illuminated from both sides. This is not surprising as, when only half of the face

is corrupted by illumination, the other half can be reliably used to perform recog-
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nition. Note that the poor performance of BIC and PMLGT on set 07 can also be

explained by the fact that many images seem to be over-illuminated and have a very

low contrast. The average performance over the three sets is 79% for BIC and 86%

for PMLGT.

On Yale B, the average performance is 61% for BIC and 69% for PMLGT. While

both algorithms exhibit a perfect recognition rate for set 1, i.e. when the angle be-

tween the optical axis is small, for set 3, i.e. for extreme illumination variations,

the performance is poor for both BIC and PMLGT, considering the fact that this

database contains only 10 persons.

For PIE 1, the average performance is 98% for BIC and only 46% for PMLGT.

To explain the observed difference in performance, we ran the rigid version of our

algorithm on PIE 1 and obtained on the average a 69% recognition rate. Thus, in

the case where there is a pure illumination variation, the rigid mapping outperforms

PMLGT. Indeed, the greater flexibility of PMLGT is a hindrance in this case as,

apparently, PMLGT tries to compensate for the illumination variation with local

translations. However, we can see that there is still a huge gap in performance

between BIC and the rigid mapping and using a global representation of the face

seems to provide a certain amount of invariance to illumination.

Finally, on PIE 2 the average identification rate is 45% for BIC and 16% for

PMLGT. Note that the fact that BIC outperforms PMLGT on PIE 2 might first

be surprising considering that PIE 2 and Yale B images are fairly similar and that

PMLGT outperforms BIC on Yale B. A possible explanation is the difference in

the choices of the templates. While for Yale B, the template image corresponds to

the case where the flash is directly in the optical axis of the camera, for PIE 2 the

template image corresponds to an image with pure ambient lighting.

For for all the previous experiments, we performance McNemar’s test of sig-

nificance and, each time a difference in performance was observed on the average

identification rates, it could be declared to be significant with more than 99% con-

fidence.

Pose

To assess the robustness of BIC and PMLGT with respect to pose variation, we

carried out a set of experiments on the PIE database. We chose the images with

neutral expressions from 6 cameras: 05, 07, 09, 29 and 37. These sets were grouped

as follows: 07 and 09, 05 and 29, 11 and 37 and correspond approximately to up or

down rotations of the head of ±15o and to left or right rotations of ±22o and ±45o
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respectively (see Figure D.3).
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Figure 5.14: Pose results on the PIE database.

Results are presented on Figure 5.15. The PMLGT algorithm outperforms very

significantly (i.e. with more than 99% confidence) the BIC algorithm for all poses.

The average identification rates are 46% and 82% for BIC and PMLGT respectively.

Since we suspected that the difference in performance was primarily due to the grid

transformations of the PMLGT, we ran the rigid version of PMLGT and obtained

an average identification rate of 60% which seems to validate our claim.

Occlusion

To assess the robustness of BIC and PMLGT with respect to occlusion, we carried

out a set of experiments on the AR database. We used as test images the sets 08

and 11 which correspond to an occlusion of the face due to sunglasses and a scarf

respectively (see Figure D.3). The image 01 which corresponds to the neutral ex-

pression was chosen as the template.

Results are presented on Figure 5.15. Both algorithms exhibit a very poor per-

formance for an occlusion due to sunglasses (on the order of 10% identification rate).

For an occlusion due to a scarf, PMLGT clearly outperforms BIC (90% versus 75%)

and, using McNemar’s test, the observed difference could be considered significant

with more than 99% confidence. The reason for the difference in performance for

the PMLGT between an occlusion due to sunglasses or a scarf will be explained in

the next section.



106 5. Modeling Elastic Facial Distortions

sunglasses scarf
0

10

20

30

40

50

60

70

80

90

100

data sets

id
en

tif
ic

at
io

n 
ra

te

BIC
PMLGT

Figure 5.15: Occlusion results on the AR database.

5.8 Analysis

The goal of this section is to analyze which parts of the face are the more variable

ones and which parts are the most elastic ones. This analysis was done on the sys-

tem with multiple mixtures, 1 GpM and multiple transition probabilities.

To measure the variability of one part of the face, we computed the entropy

of the emission probability. In the case where we have a single Gaussian with a

diagonal covariance matrix Σi,j = diag{σi,j [1]
2, ..., σi,j [D]2}, the entropy at position

(i, j) is given by (c.f. also appendix B):

Hi,j =
D
∑

d=1

log(σi,j [d]) +
D

2
(1 + log(2π)) (5.53)

The greater Hi,j , the more variable the face around position (i, j). To measure

the horizontal and vertical elasticity of a given part of the face, we computed the

quantities log(σH
i,j

2
) and log(σV

i,j
2
) where σH

i,j
2

and σV
i,j

2
are respectively defined as:

σH
i,j

2
=
∑

δτ

||δτ ||2aHi,j(δτ) σV
i,j

2
=
∑

δτ

||δτ ||2aVi,j(δτ) (5.54)

The results are presented on Figure 5.16. It is clear that the lower part of the

face is both the most variable and the most elastic one. This means that the upper

part of the face will have a higher contribution during the scoring when comparing

two images. This is consistent with findings from other researchers [CWS95] and

this explains our own results on occlusion (c.f. the previous section). This suggests
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(a) (b) (c)

Figure 5.16: (a) Variability of the different parts of the face: the brighter a dot,
the more variable the corresponding part of the face. (b) and (c) Horizontal and
vertical elasticity of the different parts of the face respectively: the brighter a dot,
the more elastic the corresponding part of the face.

the possibility to discard the lower part of the face for the purpose of AFR, as done

for instance by Sanderson and Paliwal in [SP02, San02].

5.9 Conclusion

In this chapter, we elaborated on our framework based on local transformations and

neighborhood coherence constraints and specialized it to the problem of modeling

facial distortions incurred, for instance, from facial expressions. We detailed our

HMM-based model and explained how to train it and how to use it for the recog-

nition problem. It is worthwhile to note that the proposed PMLGT bears some

similarity with motion estimation algorithms and especially with MAP estimation

of dense motion [Bov00]. We also discussed the important issue of the choice of

features. The performance of the PMLGT was assessed using a large dataset of four

databases (FERET, Yale B, PIE and AR). A comparison was carried out with the

BIC classifier which is one of the most successful approaches to AFR to date.

It was shown that PMLGT compared favorably to BIC for an imprecise segmen-

tation, facial expressions, pose variations and occlusion of the lower part of the face.

While grid transformations have a very positive impact on the recognition rate for

pose variations, they had only a very limited impact for facial expressions. We will

show however in the next chapter that grid transformations may also have a sig-

nificant for facial expression variations using different features. As for illumination

variations, we obtained contrasted results as no algorithm outperforms the other one

under all conditions.
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However, even for reasonable illumination variations, such as those of PIE with

ambient lighting, the drop of performance of PMLGT can be very significant. For

radical illumination variations, such as those of Yale B or PIE without ambient light-

ing, the performance collapses. Obviously grid transformations cannot cop with cer-

tain types of variabilities such as the illumination and may even impact unfavorably

the performance as the classifier may wrongly try to compensate for illumination

variations with small translations.

Clearly, to be robust to illumination, we should compensate for the variation

during the pre-processing or incorporate some knowledge about illumination varia-

tion into our classifier. In the next chapter, we will consider an approach which uses

both strategies.



6

Modeling Illumination Variation

6.1 Introduction

It was shown in the previous chapter that the proposed approach could not cop

in a satisfactory manner with a wide range of illumination conditions if we consid-

ered only local grid transformations. It was even shown experimentally that, in the

case of a pure illumination variation, grid transformations may try to wrongfully

“explain” the observed variability and thus decrease the performance. Indeed, for

any AFR system, illumination remains one of the most challenging variabilities to

cope with as demonstrated during the FERET evaluation [PMRR00] and the facial

recognition vendor tests 2000 [BBP01] and 2002 [PGM+03].

It is possible to deal with the illumination at the different stages of the recogni-

tion: during the pre-processing, the feature extraction or the classification. Note that

the focus of this dissertation is on still intensity images but that it is also possible

to cope with the illumination at the sensing level by considering other modalities

such as infra-red or range images.

Pre-processing algorithms for illumination compensation include general image

processing tools such as histogram equalization and gamma correction [Bov00]. An-

other approach, which is based on Weber’s law 1, consists in applying a logarithm

1Weber’s law states that the change in a stimulus that will be “just noticeable” is a constant
ratio of the original stimulus.
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transform to the image intensity [AMU97, SK03]. Finally, many pre-processing al-

gorithms consist in separating an image into its reflectance and illumination fields.

The assumption is that the luminance varies slowly across the image while sharp

changes can occur in the reflectance. The homomorphic filtering [GW92] or the

approach suggested in [GB03] are examples of such algorithms.

At the feature extraction stage, the goal is to derive features that are invariant

to illumination. Edge maps, derivatives of the gray level and Gabor features were

compared in [AMU97] and an empirical study showed that none of these features was

sufficient to overcome the variations due to changes in the direction of illumination.

Another idea is to learn features which are insensitive to illumination variations such

as the Fisherfaces [BHK97] (see also section 3.2.4).

Finally, various algorithms have been proposed to cope with the illumination

variation at the classification stage. The idea underlying [GBK01] is that the set of

images of an object in fixed pose, but under all possible illumination conditions, is

a convex cone in the space of images that can be approximated by low dimensional

linear subspaces. [BRV02] proposed an approach based on 3-D morphable models

which encode both shape and texture information and an algorithm that recovers

these parameters from a single face image.

An alternative way of classifying illumination compensation algorithms is to dis-

tinguish those that do not require any learning from those that need to learn the

illumination variability. One advantage of the former class of algorithms is that

they do work on all types of images and not only face images. This is of particular

interest for the problem of face detection for instance, when one does not even know

whether a face is present in an image or not. On the other hand, such algorithms are

limited in the sense that they do not make use of some knowledge about the specific

problem at hand. However, the issue of learning-based algorithms is their ability

to generalize on novel data. This is especially true for illumination as it is clearly

impossible to learn all the possible illumination conditions. So it is of particular

interest to know if a certain type of illumination variability is learned, whether the

algorithm will be able to generalize on novel illumination conditions.

In this chapter, we consider an approach to illumination compensation which

works both at the pre-processing and classification stages. In section 6.2, we first

show how to transform, thanks to an additional pre-processing step, the illumination

into an additive variability in the feature domain. In section 6.3, we introduce feature

transformations to compensate for this variability and we explicate the HMM-based

transformation model. In section 6.4, we explain how to perform recognition with
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this model and in section 6.5, we explain how to train it. In section 6.6, we present a

series of experiments which demonstrate a dramatically improved recognition rate in

the case of illumination variations with no significant degradation of the performance

for other variabilities.

6.2 Modeling Illumination

The starting point for modeling illumination is the well-known assumption that an

image I can be seen as the product of a reflectance R and an illumination L [Hor86]:

I(x, y) = R(x, y) × L(x, y) (6.1)

Applying the logarithm operator, we obtain:

log I(x, y) = log R(x, y) + log L(x, y) (6.2)

and the illumination turns into an additive term in the pixel domain. If the feature

extraction operator E is linear, such as the convolution, then we obtain:

E{log I(x, y)} = E{log R(x, y)} + E{log L(x, y)} (6.3)

and the illumination remains additive in the feature domain. Note that, as the

features we use are the modulus of Gabor responses, the illumination cannot be

considered as a perfectly additive term in the feature domain.

As explained in the introductory section, applying the log operator in the pixel

domain has been shown to be a particularly efficient pre-processing step to miti-

gate the influence of illumination. Example face images pre-processed with the log

transform are shown on Figures 6.1 and 6.2. We can see, especially on PIE 2 images

that the results of this very simple approach can be very impressive as it enables

to perfectly distinguish features that were previously barely visible. In the section

on experimental results, we will evaluate the influence of the log transform alone on

both BIC and PMLGT.

Since the system described in the previous chapter can model additive variabili-

ties, as expressed by equation 5.4, a first idea would be to train the Gaussian mixtures

parameters, i.e. w’s, δ’s and Σ’s, not only to model the facial expression variations,

but also the various possible illumination conditions. Although this approach might

first sound appealing, we believe it is suboptimal for two main reasons:

• The “choice” of Gaussians at adjacent positions would be unconstrained, which

is not satisfying as the illumination cannot vary in an arbitrary manner over

the face.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.1: Sample PIE 1 images (i.e. with ambient lighting): (a)-(e) before the log
transform and (f)-(j) after the log transform.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6.2: Sample PIE 2 images (i.e. without ambient lighting): (a)-(e) before the
log transform and (f)-(j) after the log transform.
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• We would confound all sources of variabilities, an unwanted effect as explained

in [KPJ01]. Indeed, consider a system that models N independent variabilities,

such that the i-th variability can be reasonably modeled with ni Gaussians. If

we manage to separate sources of variability, an efficient estimation requires

to estimate the parameters of
∑N

i=1 ni Gaussians. If we confound sources of

variability, however, estimation of the parameters of
∏N

i=1 ni Gaussians is nec-

essary. In the latter case, while performance improvements will be logarithmic

in the amount of data, memory requirements will go up linearly. Eventually,

there is no clear sense of what types of variabilities are modeled by which

Gaussian parameters.

The idea is hence to introduce feature transformations to model the illumination and

to enforce consistency between feature transformations at adjacent positions, in the

same manner we enforced consistency between grid transformations, to constrain

the illumination variation.

6.3 The HMM-based Transformation Model

Our states which represent both local grid and feature transformations are now

doubly indexed: qi,j = (τi,j , φi,j). τi,j and φi,j are respectively the grid and feature

transformation parts of the state. In the remainder of this section, we consider the

emission and transition probabilities of the HMM-based transformation model and

briefly discuss the issue of the initial occupancy probability.

6.3.1 Emission probability

If qi,j = (τ, φ), the emission probability bτ,φ
i,j is modeled with a mixture of Gaussians,

as was previously the case for grid transformations only:

bτ,φ
i,j =

Ki,j
∑

k=1

wk
i,jb

τ,φ,k
i,j (6.4)

where bτ,φ,k
i,j ’s are D-variate Gaussians with means µτ,φ,k

i,j and covariance matrices

Σk
i,j . If the “feature” state φ also denotes the additive contribution of the illumina-

tion in the feature domain, the Gaussian means are of the form:

µτ,φ,k
i,j = µτ,k

i,j + φ = mτ
i,j + δk

i,j + φ (6.5)

In the previous chapter, we separated the variability into inter-class variability and

intra-class variability. In this chapter, we go one step further by separating the

intra-class variability into grid transformation variability caused by facial expres-

sions variations, and feature transformation variability, caused by illumination vari-

ations.
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6.3.2 Transition probability

If we assume that grid and feature transformations model respectively differences in

facial expression and illumination, and that facial expression and illumination vari-

ations are mostly independent (i.e. a facial expression or a pose change between two

adjacent positions has a limited impact on the illumination change between the same

positions and vice versa), then the horizontal and vertical transition probabilities

can be separated as follows:

aHi,j = P (qi,j+1|qi,j) = P (τi,j+1|τi,j) × P (φi,j+1|φi,j) (6.6)

aVi,j = P (qi+1,j |qi,j) = P (τi+1,j |τi,j) × P (φi+1,j |φi,j) (6.7)

From now on, we will denote aτ,H
i,j (resp. aτ,V

i,j ) the part of the horizontal (resp.

vertical) transition probability which corresponds to the grid state and aφ,H
i,j (resp.

aφ,V
i,j ) the part which corresponds to feature state.

While the choice of a discrete number of grid transformations is natural due to

the discrete nature of the feature extraction grid of the template image, it is easier

to deal with the illumination with an infinite continuous set of illumination states.

We choose the horizontal and vertical illumination components of the transition

probabilities to be D-variate Gaussians:

aφ,H
i,j (φ, φ + δφ) = aφ,H

i,j (δφ) =
1

(2π)
D
2 |SH

i,j |
1

2

exp

{

−1

2
δφT SH

i,j
(−1)

δφ

}

(6.8)

aφ,V
i,j (φ, φ + δφ) = aφ,V

i,j (δφ) =
1

(2π)
D
2 |SV

i,j |
1

2

exp

{

−1

2
δφT SV

i,j
(−1)

δφ

}

(6.9)

Obviously, aφ,H
i,j (δφ) and aφ,V

i,j (δφ) are maximum when δφ = 0, i.e. when there is

no illumination variation. The choice of such a form of transition probability is

primarily motivated by its computational tractability. To reduce even more the

complexity, in the following we assume that the covariance matrices SH
i,j and SV

i,j are

diagonal and therefore, that the components of the feature vectors are independent

from each other. SH
i,j ’s and SV

i,j ’s are the only FIT parameters of our model of illu-

mination variation. Intuitively, they model the speed of the horizontal and vertical

variations of the illumination in each feature component at position (i, j).

We do not make use of initial occupancy probabilities to ensure invariance to a

global shift of the energy in each frequency band.
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6.4 Recognition with the Transformation Model

We denote Q = (T, Φ) a sequence of states where T is a sequence of grid states:

T = {τi,j , i = 1, ....I, j = 1, ..., J} and Φ is a sequence of feature states: Φ = {φi,j , i =

1, ..., I, j = 1, ..., J}. In the case where we attempt to model facial expressions and

illumination variations, our similarity measure between face images is:

P (O|Φ∗, λt, λR) (6.10)

where Φ∗ is the sequence of feature states that best explains the illumination varia-

tion, i.e.:

Φ∗ = arg max
Φ

P (Φ∗|O, λt, λR) (6.11)

In the case where the system can be in only one grid state at each position (rigid

matching) and where emission probabilities are Gaussian, we can make direct use of

the modified forward-backward as applied to the T-SSM to find the best sequence

of states Φ∗ (c.f. section 4.4.3). During the modified forward-backward, we can

estimate γi,j(φ) = P (φi,j = φ|O, λt, λR) and then choose the sequence of locally

optimal states:

φ∗
i,j = arg max

φ
γi,j(φ) (6.12)

As discussed in section 4.5, although choosing the sequence of locally optimal states

may not lead to the sequence of globally optimal states, this approximation is valid

in the case where the best sequence of states accounts for most of the total proba-

bility.

In the case where we perform an elastic matching and where emission probabili-

ties are mixtures of Gaussians, a direct application of the modified forward-backward

would be exponential in the size of the data. Instead we propose to apply iterative

passes to find successively the grid states, Gaussian indexes and feature states that

best explain the transformation between two images. Let ki,j be the Gaussian index

in the emission probability at position (i, j) and let K be the sequence of Gaussian

indexes: K = {ki,j , i = 1, ..., I, j = 1, ..., J}. Let us also denote respectively T (n),

K(n) and Φ(n) the best set of grid states, Gaussian indexes and illumination states

after the n-th iteration. The iterative procedure is described in Table 6.1.

Although this iterative procedure is not guaranteed to lead to the optimal solu-

tion or even to converge, it does provide acceptable results. Once Φ∗ is obtained,

the computation of the score P (O|Φ∗, λt, λR) is done with the modified forward-

backward for the T-HMM where we replace the features oi,j with their illumination

compensated version (oi,j − φ∗
i,j).
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1 Initialize Φ0:
∀(i, j), φi,j = 0, i.e., we assume that there is no illumination
variation between Iq and It.

2 T (n) = arg maxT log P (T |O, Φ(n−1)λt, λR):
during the forward-backward, one estimates the occupancy
probabilities γi,j(τ) and chooses at each position (i, j) the
state τ ∗

i,j such that: τ ∗
i,j = arg maxτ γi,j(τ).

3 K(n) = arg maxK log P (K|O, Φ(n−1), T, λt, λR):
during the forward-backward, one can also estimate
γi,j(τ, k). The optimal Gaussian index k∗

i,j is chosen such
that k∗

i,j = arg maxk γi,j(τ
∗
i,j , k).

4 Φ(n) = arg maxΦ log P (Φ|O, T (n), K(n), λt, λR):
we apply the modified forward-backward for the T-SSM,
estimate γi,j(φ) and choose at each position (i, j) the state
φ∗

i,j such that φ∗
i,j = arg maxφ γi,j(φ).

5 Iterate:

Go back to step 2 until T (n), K(n) and Φ(n) converge.

Table 6.1: Iterative procedure to find the set of grid states T ∗, Gaussian indexes
K∗ and feature states Φ∗ which best explain the observed variability between two
face images.

6.5 Training the Transformation Model

In this section,we focus on the estimation of the feature transformation parameters,

i.e. the SH
i,j ’s and SV

i,j ’s. We train these parameters with a set of pairs of template

and query images in a ML fashion using the Baum-Welch algorithm as described

in 5.5.1. In the following, we explicate the E-step and M-step of the Baum-Welch

algorithm and then we explicate how to train these parameters operationally.

6.5.1 E-step

During the training, for each pair of images (Ip
t , Ip

q ), we perform the algorithm

described in the previous section to estimate Φ∗. During step 4, we compute the

following quantities: µγH
i,j , µγV

i,j , σγH
i,j

2
, σγV

i,j

2
, σαH

i,j
2
, σαV

i,j
2
.

6.5.2 M-step

As SH
i,j ’s and SV

i,j ’s are diagonal, with SH
i,j = diag{sHi,j [1]

2
, ..., sHi,j [D]

2} and SV
i,j =

diag{sVi,j [1]
2
, ..., sVi,j [D]

2}, the parameters sHi,j [d]
2

and sVi,j [d]
2

can be optimized sep-
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arately in each dimension. In the following, to simplify notations, we discard the

dimension index [d]. We also assume that we train these parameters with one pair

of images as was the case in the previous chapter. The extension to multiple pairs

of images is straightforward as it simply consists in accumulating the statistics. If

we denote ξHi,j(φ, φ + δφ) = PH(φi,j = φ, φi,j+1 = φ + δφ|O, λt, λR), the part of QH

(the horizontal Baum auxiliary function) which contains the parameter sHi,j
2

is:

∫

φ,δφ
ξHi,j(φ, φ + δφ) log aφ,H

i,j dφdδφ

= − 1

2

∫

φ,δφ
ξHi,j(φ, φ + δφ)

(

log
(

sHi,j
2
)

+
δφ2

sHi,j
2

)

dφdδφ (6.13)

If we take the partial derivative with respect to sHi,j
2
, we get:

−1

2

∫

φ,δφ
ξHi,j(φ, φ + δφ)

(

1

sHi,j
2 − δφ2

sHi,j
4

)

dφdδφ (6.14)

and, if we equate it to zero, we finally obtain the following estimate ŝHi,j
2 of sHi,j

2
:

ŝHi,j
2 =

∫

φ,δφ
ξHi,j(φ, φ + δφ)δφ2dφdδφ (6.15)

Similarly, if we define ξVi,j(φ, φ + δφ) = P V(φi,j = φ, φi+1,j = φ + δφ|O, λt, λR), the

optimal estimate ŝVi,j
2 of sVi,j

2
is:

ŝVi,j
2 =

∫

φ,δφ
ξVi,j(φ, φ + δφ)δφ2dφdδφ (6.16)

ξHi,j and ξVi,j are given, in the discrete case, by equations 5.18 and 5.19. In the

continuous case, we just have to replace in the previous equations τ with φ, δτ with

δφ and the sum with the integral. Introducing the notations ραH
i,j = s2/(s2 + σαH

i,j
2
)

and ραV
i,j = s2/(s2 + σαV

i,j
2
), we obtain for ŝHi,j

2 and ŝVi,j
2 the following closed form

solutions 2:

ŝHi,j
2 = (µγH

i,j+1 − µγH
i,j )2 + ραH

i,j σαH
i,j

2
+ ραH

i,j
2
σγH

i,j+1

2
(6.17)

ŝVi,j
2 = (µγV

i+1,j − µγH
i,j )2 + ραV

i,j σαV
i,j

2
+ ραV

i,j
2
σγV

i+1,j

2
(6.18)

The first parts of the previous formulas correspond to the horizontal and vertical

estimates of the best path Φ∗ respectively. The additional terms are due to the fact

that we do not only consider the best path Φ∗ but that we integrate over all paths

in the modified forward-backward algorithm.

2The following formulas were derived using the software Maple.
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6.5.3 The training operationally

The training of our HMM-based transformation model with discrete grid transfor-

mations and continuous feature transformations is carried out in two steps.

During the first stage, we train solely the parameters which correspond to the

grid transformations. To train these parameters, we only make use of pairs of im-

ages (Ip
t , Ip

q ) which do not exhibit any illumination variation. Thus, the training is

carried out exactly as described in the previous chapter (c.f. section 5.5).

In the second stage, starting from this model, we train the covariance matrices

SH
i,j and SV

i,j which are the only parameters of the illumination transformation model.

This training is performed using a set of pairs of images that exhibit illumination

variation. The assumption is that, as the transformation model trained on the

data without illumination variations already accounts for variations due to facial

expressions and, in a lesser extent, pose, all the variability that remains unexplained

is purely due to illumination. The diagonal elements of SH
i,j ’s and SV

i,j ’s are initialized

to values close to 0, i.e. we first assume that there is little if no illumination variation.

Then the diagonal elements of SH
i,j ’s and SV

i,j ’s are re-estimated using the Baum-

Welch algorithm. Note that the second stage of the training is similar to the SAT

training used in ASR [AMSM96].

6.6 Experimental Validation

In this section, we carry out two sets of experiments. In the first one, we evaluate

the influence of the log transform in the pixel domain on the identification rate of

BIC and PMLGT. In the second set of experiments, we evaluate the performance of

the proposed approach which will be later referred to as PMLGFT for probabilistic

mapping with local grid and feature transformations

6.6.1 Evaluation of the logarithm transform

In this section, we evaluate the impact of the log transform on the recognition rate

for both BIC and PMLGT, in the case where no illumination variation is observed

during the training. While we expect this pre-processing to improve the performance

of both algorithms for illumination variations, we wanted also to see its impact on

the other types of variabilities. Therefore, we repeated exactly the same facial

expression, illumination, pose and occlusion experiments as the ones we carried out

in the previous chapter 5.7.5. The only difference was in the use of the log transform

on images as a pre-processing step. Both BIC and PMLGT were trained as described

in sections 5.7.3 and 5.7.4 respectively (same data, same parameters).
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Facial expressions

Facial expression results are presented on Figure 6.3 which can be compared to Fig-

ure 5.12 page 101.

smile anger  scream
0

10

20

30

40

50

60

70

80

90

100

data sets

id
en

tif
ic

at
io

n 
ra

te

BIC
PMLGT

Figure 6.3: Facial expression results on the AR database.

For both BIC and PMLGT the impact of the log transform is very limited: for

BIC the identification rate is 78% without the log transform and 79% with the log

transform, and for PMLGT it is 89% without the log transform and 90% with the

log transform. On the average, if we perform a McNemar’s test, the small observed

increase of performance cannot be declared significant. However, PMLGT can still

be declared to outperform BIC with more than 99% confidence.

In the previous chapter, we assessed the influence of grid transformations on the

recognition rate for variations in facial expressions and observed that they had no

significant impact on the performance (c.f. section 5.7.5). We repeated this analysis

in the case where we apply the log transform. The performance of the rigid version

of PMLGT is 84% on the average. If we perform a McNemar’s test, we can make

sure that the difference between PMLGT and the rigid matcher is significant with

more than 99% confidence. Thus, if we first apply a log transform in the pixel

domain, grid transformations have a very positive impact on the performance for

facial expressions.
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Illumination

Illumination results are presented on Figure 6.3 which can be compared to Figure

5.13 page 103. The log transform has a positive impact on both BIC and PMLGT

for almost all data sets.
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Figure 6.4: Illumination results on (a) AR, (b) Yale B (c) PIE 1 and (d) PIE 2.

On the AR face database there is only a small increase of performance on datasets

05 and 06, i.e. when faces are illuminated by one light on the left or on the right,

but a significant decrease for set 07, i.e. when faces are illuminated by both lights,

especially for PMLGT. As discussed in section 5.7.5, the images of set 07 of AR

seem to have a very low contrast. As the log transform reduces even more the con-

trast of an image (c.f. Figures 6.1 and 6.2), it will have a negative impact on the
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identification rate.

On Yale B, the log transform has a very significant impact for both BIC and

PMLGT. On set 2, the performance increases from 67% to 98% for BIC and from

79% to 84% for PMLGT. On the particularly challenging set 3, the performance

increases from 24% to 80% for BIC and from 35% to 64% for PMLGT. Thus, while

PMLGT outperformed BIC with more than 99% confidence without the log trans-

form, if we perform a McNemar’s test, BIC can now be said to outperform PMLGT

with more than 99% confidence.

The log transform has a spectacular impact on the performance of PMLGT on

PIE 1. Indeed, while the average identification rate was respectively 98% and 46%

without the log transform for BIC and PMLGT, it is now a perfect 100% for both

algorithms.

Finally, the log transform has a significant impact (with more than 99% confi-

dence) on the performance of BIC and especially on the performance of PMLGT

on PIE 2. Now, BIC cannot be declared to outperform PMLGT. Note that the

performance of both algorithms is still fairly low. On the very challenging set 3, the

identification rate of BIC and PMLGT is on the order of 30%.

Pose

Pose results are presented on Figure 6.5 and can be compared to Figure 5.14 page

105. While the log transform has no significant impact on the performance of the

PMLGT (1% decrease of the average identification rate), it does have, surprisingly,

a significant impact on the performance of BIC. Indeed, the identification rate in-

creases from 46% to 56% on the average. However, it is difficult to explain this

difference.

Occlusion

Occlusion results are presented on Figure 6.6 which can be compared to Figure 5.15

page 106. As expected, there is no significant difference in performance for both

BIC and PMLGT.

6.6.2 Evaluation of the proposed approach

In this section, we consider the addition of pairs of images with illumination vari-

ations to the training data to improve the performance of the classifiers. These

images are extracted form the FAFC set of FERET [PMRR00] which contains 200

persons (c.f. also appendix D). More precisely, we make use of those frontal images
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Figure 6.5: Pose results on the PIE database.
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Figure 6.6: Occlusion results on the AR database.
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which are referred to as BA, BJ and BK. BA and BJ images correspond to different

facial expressions in the same illumination condition and BK images correspond to

a different illumination condition. Thus the additional training material amounts to

600 images and 400 pairs of images as we consider (BA,BK) and (BJ,BK) pairs.

We evaluate the performance of the proposed approach that will be later referred

to as PMLGFT for probabilistic mapping with local grid and feature transforma-

tions. We outline that for PMLGFT, it is necessary to apply the log transform

in the pixel domain before the feature extraction (c.f. section 6.2). To train the

HMM-based transformation model, we use the two-stage strategy described in sec-

tion 6.5.3. We start from the model trained in the previous section on FAFB images.

Then we train the SH
i,j and SV

i,j covariance matrices with the Baum-Welch algorithm

on the FAFC data. Note that we have tried to use different horizontal and vertical

covariance matrices at different positions. The rational is that the illumination may

vary differently at different positions on the face. For instance, around the nose

sharp variations are likely to happen due to self shadowing. However using multi-

ple SH
i,j and SV

i,j did not improve the performance. This may be either due to our

rather simple model of illumination variation or to the relatively modest amount of

training data. Therefore, we assume in the following that SH
i,j = SV

i,j = S, ∀(i, j).

The parameters we used to estimate Φ∗, as described in Table 6.1, are the follow-

ing ones. To estimate the best grid transformations during step 2, we performed

one horizontal and one vertical pass. To estimate the best feature transformations

during step 4, we performed 5 horizontal and 5 vertical passes. Steps 2 to 4 of the

algorithm were repeated 3 times to reach a reasonable convergence. To train S, we

carried out 3 Baum-Welch iterations. Note that we used the same parameters at

recognition time. This incurs a very significant increase of the computational cost.

Indeed, running our non-optimized code on a 2 GHz Pentium 4 with 1 GB Ram, it

takes on the order of 25 ms to compare two face images with an HMM that contains

16 Gpm with both grid and feature transformations.

We compare PMLGFT to BIC and PMLGT. BIC and PMLGT are trained ex-

actly as described in the previous chapter (c.f. section 5.7.4). The only differences

are that we apply the log transform in the pixel domain, as is the case in the previ-

ous section, and that we add the FAFC images to the FAFB data. Thus, we model

the illumination in the straightforward manner described in section 6.2. We believe

that such an approach is suboptimal and that PMLGFT should outperform PMLGT.

Our goal is to evaluate the performance of the BIC, PMLGT and PMLGFT

classifiers in different illumination conditions, but also on other types of variabilities.

Therefore, we repeated exactly the same experiments as the ones we carried out in
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the previous chapter and in the previous section. Moreover, we carried out one

additional set of experiments to show the impact of both pose and illuminations

variations.

Facial expressions

Facial expression results are presented on Figure 6.7 which can be compared to Fig-

ure 6.3. There is no significant difference in performance, neither for BIC, nor for

PMLGT and PMLGFT, which could be expected as there is no illumination vari-

ation to compensate for. Note that this is a very important for PMLGFT. Indeed,

PMLGFT makes use of two types of transformations, grid and feature transforma-

tions, which “compete” to explain the observed variability. Thus, the performance

of PMLGFT could have been lower than the performance of PMLGT when there

is no illumination variation. This shows that, even if no illumination variation is

observed, the PMLGFT does not try to interpret facial expression variations as

illumination variations.
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Figure 6.7: Facial expression results on the AR database.

Illumination

Illumination results are presented on Figure 6.8 which can be compared to Figure

6.4. Adding the illumination variation in the training data has no significant impact

on BIC and has an impact on PMLGT only on Yale B. On the other hand, it does

have a significant impact on PMLGFT on AR, Yale B and PIE 2. If we perform

McNemar’s test of significance, we can now say that PMLGFT outperforms BIC on

AR and PIE 2 and that no algorithm can be declared to outperform the other one
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on Yale B and PIE 1.
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Figure 6.8: Illumination results on (a) AR, (b) Yale B (c) PIE 1 and (d) PIE2.

The average identification rate of PMLGT without the log transform, of PMLGT

with the log transform and PMLGFT (necessarily with the log transform) are sum-

marized in Table 6.6.2.

Pose

Pose results are presented on Figure 6.9 which can be compared to Figure 6.5. No

significant difference can be observed, neither for BIC, nor for PMLGT or PMLGFT.

This is not surprising as there is no illumination variation in the considered images.

It demonstrates that PMLGFT does not attempt to interpret the pose variability,
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PMLGT PMLGT PMLGFT
(no log) (log) (log)

AR 86% 82% 87%
Yale B 69% 87% 91%
PIE 1 46% 100% 100%
PIE 2 16% 54% 65%

Table 6.2: Illumination variation results: average identification rate of PMLGT
without the log transform, PMLGT with the log transform and PMLGFT (neces-
sarily with the log transform) on AR, Yale B, PIE 1 and PIE 2.

even if it was not observed during the training, as an illumination variability.
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Figure 6.9: Pose results on the PIE database.

Occlusion

Occlusion results are presented on Figure 6.10 which can be compared to Figure 6.6.

There is no significant difference, neither for BIC nor for PMLGT on both data sets.

However, for PMLGFT, there is a very significant increase of the identification rate

on data set 08, which corresponds to an occlusion of the upper part of the face with

sunglasses. We currently have no explanation for this increased performance.

Pose and illumination

Finally, we evaluate the ability of the three classifiers to deal with pose and illu-

mination variations. Experiments were carried out on the Yale B database (c.f.
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Figure 6.10: Occlusion results on the AR database.

appendix D). We used the data from the 9 cameras for this set of experiments and

images were divided into three sets according to the angle θ between the flash and

the optical axis of the frontal camera: 20o ≤ θ ≤ 25o for set 1, 35o ≤ θ ≤ 50o for set

2 and 60o ≤ θ ≤ 77o for set 3. Results are presented on Figure 6.11.
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Figure 6.11: Pose and illumination results on the Yale B database.

The average identification rates over the three data sets are 59% for BIC, 70%

for PMLGT and 71% for PMLGFT. While both PMLGT and PMLGFT outperform

BIC with more than 99% confidence, PMLGFT seems to loose its advantage over
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PMLGT. Indeed, a McNemar’s test proves that PMLGFT can only be considered

to outperform PMLGT with approximately 90% confidence. Considering that Yale

B contains only 10 persons, this shows how difficult it is to cope with multiple

variabilities simultaneously.

6.7 Conclusion

In this chapter, we enriched the transformation model derived in the previous chap-

ter by allowing feature transformations with the goal to compensate for illumination

variations. We first showed how to transform the illumination variation into an ad-

ditive variability in the feature domain, simply by applying a logarithm transform

in the pixel domain. We then explicated the emission and transition probabilities of

the HMM-based transformation model with both grid and feature transformations.

We explained how to perform recognition with the considered model and how to

train its parameters.

We first evaluated the influence of the log transform in the pixel domain and

showed that it had a very significant impact on the performance of both BIC and

PMLT for illumination variations. We also evaluated our novel approach to illumina-

tion compensation and showed that an additional increase of the performance could

be obtained for extreme illumination conditions such as a flash without ambient

lighting. If we compare the results obtained in this chapter and in the previous one,

the performance of the proposed approach is dramatically improved for illumination

variations and is almost unchanged for other types of variabilities. Note however

that when there are multiple sources of variabilities (e.g. pose and illumination),

the performance of the system degrades very significantly.

We would like to outline that very recent work in the ASR community for the

problem of noise estimation and compensation bears a lot of similarity with our

approach to illumination compensation [SR03, DA04]. Indeed, in [SR03] the noise is

modeled as a sequence of states of a dynamical system with a continuum of states.

Observations generated by such a system are assumed to be related to the state

of the system by a functional relation which models clean speech as the corrupting

influence of noise. In our case, we assume that variations due to facial expressions

corrupt the illumination signal. The work of [DA04] brings important differences,

one of which is to perform a joint noise and speech tracking. This is fairly similar

with the joint grid and feature transformations estimation used in our approach.

An advantage of ASR over AFR is that the statistics of the noise model can be

estimated either during the first or last few frames. We believe that one limitation
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of our current approach is the fact that the covariance matrix S in our illumination

transformation model is fixed for all pairs of images. Indeed, we think that S should

incorporate both some a priori knowledge learned off-line through a training phase,

as is currently the case, but also some information which is dependent on the pairs

of images that need to be compared.

Finally, we would like to point out that, while our model of illumination compen-

sation has been introduced in the context of AFR, it could benefit to other research

areas. As our original approachhas a lot in common with motion estimation al-

gorithms, and especially MAP estimation of dense motion [Bov00], we think that

our approach could be applied to the difficult problem of motion estimation in the

presence of illumination variations.

As it was shown that the log transform in the pixel domain could cop with most

of the illumination variations and that feature transformations had an impact mainly

on extreme illumination variations, in the following chapters, we will consider only

grid transformations.
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7

Face Image Retrieval in Large
Databases

7.1 Introduction

As underlined in the introductory chapter of this dissertation, defining a meaningful

distance between images for the problem of AFR is a very challenging issue due

to the long list of variabilities that can affect face images of the same person. A

complex measure of distance is therefore required to accommodate for all possible

variabilities. Although a more elaborate distance may improve the performance, it

will also generally lead to an increase in the complexity. For instance, while the

addition in chapter 6 of feature transformations to our probabilistic model of image

mapping had a positive impact on the identification rate in the case of a strong illu-

mination variation, it also incurred a very significant increase of the computational

cost as the time required to compare two face images was multiplied by a factor of 5.

Hence, it is difficult to design a measure which is both accurate and computationally

efficient.

However, both properties are required to tackle the very challenging task of au-

tomatic retrieval of face images in large databases that can potentially contain from

a few thousands to several millions of images. Mainly, two approaches have been

suggested to address this problem.
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The first approach makes use of two (or even more) measures of distance and

cascades them. Generally, the first distance has a low accuracy but requires little

computation while the second one has a high accuracy but requires significantly

more computation. The first algorithm is run on the whole set of data and the

N -best candidates are retained. The second algorithm is then run on this subset of

images. Such an approach has already been used for multimodal biometrics person

authentication for instance [HJ98].

The second approach is to perform a partitioning of the image space through a

clustering of the data. When a new target image is added to the database, one com-

putes the distance between this image and all clusters and the image is associated to

its nearest cluster. When a query image has to be classified, the first step consists

in determining the nearest cluster and the second step involves the computation

of the distance between the test image and the subset of images of the considered

cluster. Note that both the target and query images can be assigned to more than

one cluster. Indeed, if face images of a given person are close to the “boundary”

between two or more clusters, different images of the same person may be assigned

to different clusters in the case where large variabilities are not fully handled by the

distance measure, as depicted on Figure 7.1. To solve this problem, target and query

images can be assigned to the K nearest clusters or to all the clusters whose distance

falls below a predefined threshold. Obviously, the incurred increase in accuracy is

obtained at the expense of a higher computational cost.

? ?

Figure 7.1: Uncertainty in cluster assignment.

Many clustering algorithms, especially those based on a probabilistic framework,

can be directly interpreted as an application of the EM algorithm [DLR77]. Dur-

ing the E-step, the distance between each observation and each cluster centroid is

computed and each observation is assigned to its nearest cluster (or probabilistically
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to all clusters). During the M-step, the cluster centroid is updated using the as-

signed observations. The update step also depends on the chosen distance since the

centroid is defined as the point which minimizes the average distance between the

assigned observations and the centroid.

Until now our work has focused on the issue of distance computation and the

“missing” stage to be able to perform clustering with the proposed distance is the

update step. When using simple metrics the update step is greatly simplified. For

instance, for the Euclidean distance, the update step is a simple averaging of the

assigned observations. In the case of complex distances, such as the distance induced

by the PMLT, computing the centroid is much more challenging.

The remainder of this chapter is organized as follows. In the next three sections,

we will focus on the robust estimation of cluster centroids. In section 7.2.1, we

explicate the update step for our non-trivial distance. In section 7.3, we discuss

the issue of cluster centroid initialization and propose a procedure for initializing

centroids which is tailored to the problem of interest. In section 7.4, we address the

problem of data scarcity to estimate cluster centroids. Finally, in section 7.5, we

provide an alternative to the multiple cluster assignment paradigm and show that

instead of assigning and image to multiple clusters, it is more efficient to assign it

to all clusters probabilistically.

7.2 EM-based clustering

In this section, we first present the theory of EM-based clustering and apply it to

our problem. A special emphasis is put on the update step. We then present our

first experimental results.

7.2.1 Theory

Our goal is, given a set of N images {I1, ..., IN}, to estimate C clusters {C1, ..., CC}.
The measure of distance between an image In and a cluster is the probability that

this image was generated by the cluster centroid knowing R, the model of relation-

ship between images of the same person. Therefore images {I1, ..., IN} are naturally

treated as query images and cluster centroids as templates. In the following, we

will denote by On the “query representation” of In, i.e. the set of feature vec-

tors extracted on a sparse grid from In. O will denote the set of all observations:

O = {O1, ..., ON}. Following the notation used in the two previous chapters for

the parameters of template images, we will denote by λc the centroid of cluster Cc.

Thus, the measure of distance between In and cluster Cc is P (On|λc, λR).
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As our measure of distance is probabilistic, it is natural to use a ML framework

to perform clustering [DHS00]. We assume that the distribution of the data can be

modeled with a mixture of C components, where each component corresponds to

one of the C clusters:

P (On|λ, λR) =
C
∑

c=1

wcP (On|λc, λR) (7.1)

with λ = {w1, ..., wC , λ1, ..., λC}. The mixture weights wc are subject to the following

constraint:
C
∑

c=1

wc = 1 (7.2)

We also assume that samples are drawn independently from the previous mixture.

P (O|λ) =
N
∏

n=1

P (On|λ) (7.3)

Our goal is to find the parameters {w1, ..., wC} and {λ1, ..., λC} which maximize

P (O|λ). This problem cannot be solved directly and an iterative procedure based

on the EM algorithm is generally used. The application of the EM algorithm to the

problem of the estimation of mixture densities is based on the computation (E-step)

and maximization (M-step) with respect to λ of Baum’s auxiliary Q function. In

this case, the hidden variable must include not only the state sequence Q, but also

a variable Θ that indicates the mixture component (i.e. the cluster). Therefore, the

Q function takes the following form:

Q(λ|λ′) =
∑

Q

∑

Θ

P (Q, Θ|O, λ′) log P (O, Q, Θ|λ) (7.4)

If we split log P (O, Q, Θ|λ) into log P (O, Q|Θ, λ) + log P (Θ|λ), the Q function can

be written as:

Q(λ|λ′) =
C
∑

c=1

N
∑

n=1

γc
n log(wc) +

C
∑

c=1

N
∑

n=1

γc
n

∑

Q

log P (On, Q|λc, λR) (7.5)

where the probability γc
n for image In to be assigned to cluster Cc is given by:

γc
n = P (λ′

c|On, λR) =
w′

cP (On|λ′
c, λR)

∑C
i=1 w′

iP (On|λ′
i, λR)

(7.6)

We remind the reader that the T-HMM framework does not provide one value

P (λ′
c|On, λR) but a horizontal one PH(λ′

c|On, λR) and a vertical one P V(λ′
c|On, λR).
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As was done in the previous chapters the horizontal and vertical statistics are aver-

aged. From now on γc
n denotes this average.

To maximize Q(λ|λ′), we can maximize independently the two terms. To find

the optimal estimate ŵc of wc, we maximize the first term under the constraint 7.2

and obtain (the mathematical computations are similar to the ones derived for wk
i,j

in section 5.5.3):

ŵc =
1

N

N
∑

n=1

γc
n (7.7)

Maximizing the second term is one of the central issues of this chapter and is now

addressed. Let On = {on
i,j , i = 1, ..., I, j = 1, ..., J} and λc = {mc

k,l, k = 1, ..., K, l =

1, ..., L}. In the following, we will use slightly different notations compared to the

two previous chapters as our focus has been until now on the estimation of parame-

ters indexed by the position (i, j) in the query image (e.g., wk
i,j , δk

i,j , Σk
i,j , etc.) while

the focus is now on the estimation of parameters indexed by the location (k, l) in

the template image. We denote by τ k,l
i,j the translation vector which maps on

i,j into

mc
k,l. γk,l

i,j (n, c) is the probability of being in state qi,j = τk,l
i,j at position (i, j) when

matching On with λc and γk,l
i,j (n, c, g) is the probability of being in state qi,j = τk,l

i,j

when matching On with λc with the g-th mixture component accounting for on
i,j .

One more time, we do not have direct access to these quantities but to their hori-

zontal and vertical statistics. In the following, γk,l
i,j (n, c) and γk,l

i,j (n, c, g) denote the

arithmetic averages of the corresponding horizontal and vertical statistics.

The part of log P (On, Q|λc, λR) which contains mc
k,l is:

−1

2

∑

i,j

∑

g

γk,l
i,j (n, c, g)(on

i,j − mc
k,l − δg

i,j)
T Σg

i,j
(−1)

(on
i,j − mc

k,l − δg
i,j) (7.8)

and therefore, the second part of equation 7.5 can be written as:

−1

2

N
∑

n=1

C
∑

c=1

γc
n

∑

i,j

∑

k,l

∑

g

γk,l
i,j (n, c, g)(on

i,j −mc
k,l−δg

i,j)
T Σg

i,j
(−1)

(on
i,j −mc

k,l−δg
i,j)+cte

(7.9)

where cte is independent of the mc
k,l’s. To maximize the Q function we take the

partial derivative with respect to mc
k,l:

−
N
∑

n=1

γc
n

∑

i,j

∑

g

γk,l
i,j (n, c, g)Σg

i,j
(−1)

(on
i,j − mc

k,l − δg
i,j) (7.10)
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and equate it to zero to obtain the following estimate m̂c
k,l of mc

k,l:

m̂c
k,l =





N
∑

n=1

γc
n

∑

i,j

∑

g

γk,l
i,j (n, c, g)Σg

i,j
(−1)





−1

×





N
∑

n=1

γc
n

∑

i,j

∑

g

γk,l
i,j (n, c, g)Σg

i,j
(−1)

(on
i,j − δg

i,j)



 (7.11)

The steps of the clustering algorithm are displayed in table 7.1.

1 Initialize C clusters.

2 For each observation On,
for each cluster c,

compute the distance P (On|λc, λR) and accumulate statistics.

3 For each cluster c,
update wc with equation 7.7,
update λc using equation 7.11.

4 Go back to step 2 until the likelihood P (O|λ) converges.

Table 7.1: Basic clustering algorithm.

7.2.2 First experimental results

In this section, we present our first clustering results. All the experiments in this

chapter were carried out on FERET as it was the only available database which

contained a large enough number of persons to train our system and to assess its

performance.

Cluster centroids were trained on the same data that was used to estimate the

parameters of our face transformation model with local grid transformations only

(c.f. section 5.7.1). We remind that this data consists of 695 persons with 2 images

per person, which makes a total of 1,390 images. The performance of our clustering

algorithm was tested on the same data that was used in section 5.7.4 to assess the

performance of our system. We remind that it consists of 500 persons with 2 images

per person, which makes a total of 1,000 images. Both training and test images

exhibit mainly variations in facial expression. Each image was chosen successively

as the query and the 999 remaining images were used as templates. The transforma-

tion model used to measure the distance between two face images is the one trained

in section 6.6.1. The baseline performance of our system is the identification rate

when each query is compared to all the templates, which is 95.7%. On a 2 GHz
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Pentium 4 with 1 GB RAM, this set of comparisons takes on the order of 5 seconds.

The goal is now to reach a similar performance but with a number of comparisons

which is significantly smaller than N = 999.

Clusters were trained exactly as described in Table 7.1. To initialize the C

clusters we chose randomly a set of C images from the set of training images, making

sure that no two images of the same person would be chosen as two cluster centroids.

We performed 6 EM iterations to train clusters. The assignment of an enrollment

or test image to a cluster or a set of clusters was done in the following manner.

One computes γc
n = P (λc|On, λR) for c = 1, .., C. Then the image In is assigned to

cluster Cc if:

γc
n ≥ θ (7.12)

θ is a threshold which has to be set according to the desired identification rate and

the constraints on the computation time. The lower θ, the smaller the number of

clusters to which an image is assigned and, thus, the lower the computational cost

and the identification rate.

Consequently, to measure the performance we vary the value θ and plot the

identification rate as a function of the percentage of comparisons which has to be

performed compared to the case where we compare the query to the N templates.

We have to take into account the comparisons with all cluster centroids and the

comparisons with all the templates associated to the assigned cluster(s). As we con-

sider in this chapter a flat clustering approach, if C is the number of clusters and

N is the number of templates, then in the ideal case where clusters are perfectly

balanced and where two images of the same person are always assigned to the same

cluster, the number of comparisons is C + N/C. Note that this function reaches a

minimum for C =
√

N and thus the minimum number of comparisons is 2
√

N . As

in our case, N = 999, we know that we should not expect any improvement for more

than 30 clusters approximately. We would like to outline that this is just an upper

bound on the number of clusters.

The focus of this set of experiments is on the impact of the initialization on the

performance of the system. Therefore, for a given number of clusters, we repeated

100 times the random initialization. Results are presented on Figures 7.2 (a) and (b)

for 5 and 10 clusters respectively. Clearly, the choice of the initial cluster centroids

has a huge impact on the performance in both cases. For instance, for 5 clusters

the identification rate varies between approximately 75% and more than 90% if we

perform 30% of the comparisons. Hence, a robust initialization procedure is required.

This will be the focus of the next section.
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Figure 7.2: Influence of the initialization on the performance.
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7.3 Initializing cluster centroids

In this section, we first present an approach to cluster centroid initialization which is

based on agglomerative clustering and which is specially tailored to suit our needs.

We then provide experimental evidence that this approach leads to good initial

centroid estimates.

7.3.1 An agglomerative clustering approach

While the EM procedure is bound to reach a local optimum, it is by no means guar-

anteed to reach the global one. The quality of the optimum which is found depends

on several factors, one of which is the initialization of cluster centroids. Indeed, se-

lecting the initial centroids in a random manner may lead to very different solutions

as shown in the previous section.

One possible approach to solve this problem is to perform cross-validation. The

development data set is split into a training set and an evaluation set. Different

systems, corresponding to different initializations of cluster centroids, are trained on

the training set and evaluated on the evaluation set. The system that performs the

best on the evaluation set is then subsequently chosen. However, this approach has

two noticeable shortcomings. It requires a large initial training set so that after the

splitting there is enough data to train robustly cluster centroids and to carry out a

statistically significant cross-validation. It requires also a very significant amount of

computation as multiple systems have to be trained.

A simple procedure we employed to alleviate this problem was to perform as an

initialization step a hierarchical agglomerative clustering [DHS00]. The goal is not

to obtain the C best possible clusters but to obtain with a fast procedure reason-

able seed centroids that can be subsequently fed to the EM procedure described in

the previous section. The steps of a typical agglomerative clustering algorithm are

described in table 7.2.

1 Initialize N clusters: Cn = {On}.
2 While the number of clusters > C,

find nearest clusters Ci and Cj ,
merge Ci and Cj .

Table 7.2: Hierarchical agglomerative clustering

Now we still have to define a distance between clusters. Let d(x, y) be a measure

of distance between two observations x and y. Various distances between clusters
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have been successfully used [DHS00]:

Dmin(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (7.13)

Dmax(Ci, Cj) = max
x∈Ci,y∈Cj

d(x, y) (7.14)

Davg(Ci, Cj) =
1

|Ci||Cj |
∑

x∈Ci

∑

y∈Cj

d(x, y) (7.15)

Dmean(Ci, Cj) = d(λi, λj) (7.16)

where |Ci| is the cardinality of cluster Ci and we remind that λi is the centroid of

Ci. Note that the first three distances only employ measures of distance between

observations and require a similar amount of computation. Indeed, once distances

between any pair of images have been precomputed the subsequent merging requires

very little computation. On the other hand Dmean distance requires to estimate a

cluster centroid at each merging step. While all these distances have a “minimum

variance flavor” [DHS00] and thus are related to the ML criterion, which is the cri-

terion of interest in our case, none of these criteria maximizes directly the likelihood.

Let {In} be a set of images assigned to Ci. The likelihood L(Ci) of Ci is given by:

L(Ci) =
∑

n:In∈Ci

P (On|λi, λR) (7.17)

As we want a fast initialization procedure, we do not want to have to use the EM

procedure to estimate λi. Thus we make use of the concept of medoid [KR90]: one

chooses the most likely observation among the set of observations assigned to Ci.

Thus, if λIm is the set of features extracted from Im on a dense grid (template

representation), then:

λi = arg max
m:Im∈Ci

∑

n:In∈Ci

P (On|λIm , λR) (7.18)

Let us remind that, during the initialization step, the goal is to find the C

cluster centroids which maximize the likelihood of the set of observations. After

each merging stage, the likelihood of the set of observations will decrease. While

the distances Dmin, Dmax, Dmean and Davg search for the two clusters that, after

merging, will lead to a cluster with the smallest possible variance, at each step,

our goal is not to merge the two clusters that lead to the highest likelihood (or

the minimum variance) but the clusters that lead to the smallest decrease of the

likelihood. Hence, the distance between two clusters Ci and Cj is defined as the

decrease in likelihood after the merging:

Dlike(Ci, Cj) = L(Ci) + L(Cj) − L(Ci ∪ Cj) (7.19)
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Note that this is similar to the criterion which is often used by Gaussian merging

algorithms [San98]. While at each step we are guaranteed to obtain the smallest

decrease in likelihood, we are not guaranteed that the sequence of steps leads to the

global maximum.

If we apply directly this procedure, the clusters we obtain may be highly un-

balanced, i.e. some clusters may be assigned a large number of data items while

others may contain only a small number of data items. This is a problem as a clus-

ter centroid cannot be robustly estimated with a too small number of data items.

Moreover, for the problem under consideration clusters should be as balanced as pos-

sible to perform the minimum possible number of comparisons at test time. When

we looked at the steps of the clustering algorithm, we noticed that after a few steps

one cluster was getting bigger and bigger by merging with other clusters containing

only a few data items (generally one). This was rather surprising as Dlike(Ci, Cj) is

automatically weighted by the the number of data items assigned to Ci and Cj and

this should prevent a large cluster of getting blindly bigger. However, this statement

is true only in the case where the cluster centroids of Ci, Cj and Ci∪Cj are estimated

exactly. In our case, we use an approximate estimate of the cluster centroid: the

medoid. Let ni and nj be respectively the number of images assigned to Ci and

Cj and let us assume that ni � nj . Let λi and λj be the centroids of Ci and Cj

respectively. When searching for the centroid of Ci∪Cj , as ni � nj , the observations

of Cj will have very little influence and it is likely that λi will be the new centroid

for Ci ∪ Cj . In such a case we obtain:

Dlike(Ci, Cj) =
∑

n:In∈Ci

P (On|λi, λR) +
∑

n:In∈Cj

P (On|λj , λR) −
∑

n:In∈Ci∪Cj

P (On|λi, λR)

=
∑

n:In∈Cj

P (On|λj , λR) −
∑

n:In∈Cj

P (On|λi, λR) (7.20)

which is independent of ni.

Hence, we should find a way to penalize the previous distance in order to take

into account the balance between clusters. Let ni be the number of data items in

cluster Ci and let N be the total number of data items. We also introduce pi = ni/N .

Clearly, the entropy [CT93] (see also appendix B):

H = −
N
∑

i=1

pi log(pi) (7.21)

is a measure of balance as, the larger H, the more balanced is the set of clusters.

Let H be the entropy for the set of clusters {C1, ...CC}. If we merge clusters Ci and
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Cj , then the delta entropy will be:

∆H(Ci, Cj) = pi log(pi) + pj log(pj) − (pi + pj) log(pi + pj) (7.22)

which is a negative quantity. The closer is this quantity to zero, the smaller the re-

duction of entropy, and thus the smaller the reduction of the “balance” in our system.

Hence, we use as a measure of distance between two clusters Ci and Cj :

D(Ci, Cj) = Dlike(Ci, Cj) − ρ∆H(Ci, Cj) (7.23)

where ρ is a parameter that keeps the balance between the two possibly competing

criteria: the minimum likelihood decrease versus the maximum entropy decrease.

7.3.2 Experimental results

We now evaluate the proposed initialization algorithm. We first address the choice

of a proper value ρ. For this set of experiments, we did not perform the subsequent

ML training described in section 7.2.1. On Figure 7.3, we draw the performance

of the system with 20 clusters for different values of ρ. The optimum seems to be

for ρ = 100 and this is the value we will use for all the following experiments in

this chapter. Note that the identification rate seems to vary smoothly with large

variations of ρ which indicates that it is a robust parameter.

We now evaluate the impact of the ML training. Results are presented on Figure

7.4 for C = 20 clusters. The ML training only brings a moderate improvement. In

the next section, we will attempt to improve the quality of the cluster centroid

estimates.

7.4 Dealing with Data Scarcity

We believe that the main reason for the rather small improvement brought by the

ML training is the lack of training data. Indeed, as feature vectors are extracted

on a sparse grid from query images and on a dense grid from template images, one

may need a very large number of images to estimate robustly mc
k,l, ∀c and ∀(k, l).

If little data is available, some parameters mc
k,l may even not be updated at all. A

potential solution to this problem would be to extract feature vectors from query

images on a finer grid but this would increase the computational cost, an unwanted

effect as our goal is to speed-up the comparison between a query image and a set of

template images. A more appropriate solution would be to adapt the cluster centroid

parameters rather than training them in an ML fashion. In this section, we first

provide a very brief review of the literature on adaptation techniques for continuous
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Figure 7.3: Performance of the system without ML training for various values of
the parameter ρ for C = 20 clusters.
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Figure 7.4: Impact of the training for C = 20 clusters.
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density HMMs. We then explain why the eigenvoice technique is chosen and how

to apply it to the problem of interest. Finally, we present experimental results to

assess the impact of the eigenvoice approach on the estimation of the centroids.

7.4.1 Adaptation techniques for continuous density HMMs

There exists three main classes of adaptation techniques for continuous density

HMMs: MAP adaptation, linear transforms and clustering / eigenvoices [Woo01].

In the following, we will focus our attention on the problem of Gaussian mean esti-

mation as this is the problem of interest.

In MAP parameter estimation, the set of parameters λ is chosen to maximize

P (O|λ)P (λ) where P (λ) is the prior distribution of parameters. The use of a prior

distribution alleviates the need of a very large data set to get robust parameter

estimates. MAP estimation is relatively easy if the prior density is from the same

family as the posterior distribution (conjugate prior) if it exists. For HMMs with

mixtures of Gaussians densities, such a conjugate prior of finite dimension does not

exist and an alternative approach is generally used [GL94]. For a particular Gaussian

mean µ, the MAP estimate is:

µ̂ =
τµ0 +

∑

t γtot

τ +
∑

t γt
(7.24)

where τ is the parameter which gives the bias between the ML estimate of the mean

and the prior mean µ0, ot is the training vector at time t and γt is the occupancy

probability of the considered Gaussian at time t. A key advantage of MAP is that

the MAP estimate converges to the ML estimate as the amount of training data

increases to infinity. Its main drawback is that MAP is a local approach to updating

the parameters, i.e. only parameters that are observed in the adaptation data will

be re-estimated. To address this issue, several techniques have been proposed. For

instance, the structural MAP (SMAP) organizes Gaussians into a tree structure and

parameters are re-estimated starting from the root, using the distribution from the

node above as a prior [SL97].

An alternative approach is to estimate a linear transformation of model param-

eters. The popular maximum likelihood linear regression (MLLR) [LW95] updates

a mean according to the following equation:

µ̂ = Aµ + b (7.25)

where A is a n × n matrix, b is a n dimensional vector and n is the dimensionality

of the feature vectors. It can be shown that there exists a closed form solution to

the ML estimation of A and b using the EM algorithm. A trade-off has to be found
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between robust adaptation via a global transform and using specific transforms that

apply to a smaller group of Gaussians. While MLLR is faster than MAP it can lead

to a decrease of the performance compared to a non-adapted model for very small

amounts of adaptation data.

The two previous approaches do not have any information about the correla-

tion between the parameters of the HMM. Clustering strategies such as the cluster

adaptive training (CAT) [Gal00] and the eigenvoice approach [KJNN00] apply con-

straints on the location of parameters in the whole parameter space to drastically

reduce the amount of data required for a robust estimation. While the goal of CAT

is to represent a model as a weighted sum of reference models, the aim of eigenvoices

is to represent a model as an average model plus a weighted sum of vectors which

represent the principal directions of variabilities, the eigenvoices. In both cases the

mean update can be written as:

µ̂ = µ(0) +
E
∑

e=1

weµ(e) (7.26)

In the case of CAT, µ(0) is a bias model and the µ(e)’s are the reference models. In

the case of eigenvoices, µ(0) is the average model and the µ(e)’s are the eigenvoices.

As was the case for MLLR, there exists a closed form solution to the ML estimation

of the weights {w1, ..., wE} using the EM algorithm. While eigenvoices and CAT

require very little data, their performance reaches a plateau for large amounts of

adaptation data.

Note that these algorithms can be combined to make the most out of their

complementary natures. For instance, as MAP is fairly slow compared to MLLR or

eigenvoices, the MLLR or eigenvoice estimates can serve as a prior for MAP.

7.4.2 Adapting cluster centroids using eigenvoices

In the following, we will choose the eigenvoice approach to estimate cluster cen-

troids. This choice is motivated by the fact that we have little data to estimate

cluster centroids (some of the mc
k,l parameters may not be re-estimated) and by the

strong correlation that exists between the mc
k,l’s, especially at adjacent positions.

For the problem of interest, the parameters we want to adapt are {λ1, ..., λC}.
We assume that we have performed PCA on a set of template images. µ(0) =

{µk,l(0), k = 1, ..., K, l = 1, ..., L} denotes the average vector and µ(e) = {µk,l(e), k =

1, ..., K, l = 1, ..., L} is the e-th eigenvector which represents the e-th direction of

variation. If we constrain the cluster centroid λc to lie in the subspace spanned by
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the first E principal components, then we can write:

mc
k,l = µk,l(0) +

E
∑

e=1

wc
eµk,l(e) ∀(k, l) (7.27)

The goal is now to estimate the weights wc
e. This procedure is known as the maxi-

mum likelihood eigen-decomposition (MLED). If we incorporate equation 7.27 into

equation 7.9, and take the partial derivative with respect to wc
e, we obtain:

−
N
∑

n=1

γc
n

∑

i,j

∑

g

γk,l
i,j (n, c, g)µk,l(e)

T Σg
i,j

−1



on
i,j − δg

i,j − µk,l(0) −
E
∑

f=1

wc
fµk,l(f)





(7.28)

Now if we equate this quantity to zero, we obtain the following estimate ŵc
e of wc

e:

E
∑

f=1

ŵc
f





∑

k,l

µk,l(e)
T





N
∑

n=1

γc
n

∑

i,j,g

γk,l
i,j (n, c, g)Σg

i,j
−1



µk,l(f)



 =

∑

k,l

µk,l(e)
T

N
∑

n=1

γc
n

∑

i,j,g

γk,l
i,j (n, c, g)Σg

i,j
−1
(

on
i,j − δg

i,j − µk,l(0)
)

(7.29)

Thus,we obtain C linear systems of E equations with E unknowns (one per cluster).

Generally, E is fairly small and thus inverting the corresponding matrix requires

little computation.

It should be underlined that a space derived using PCA is not optimal for our

problem as it minimizes a mean square error while the criterion of interest is ML. In

[Ngu99] the maximum likelihood eigenspace (MLES) was proposed to address this

issue. The basic idea is to incorporate equation 7.27 into equation 7.9, to take the

partial derivative with respect to µk,l(e) and then to equate it to zero. However, in

our case we cannot apply this principle as the amount of data required to train the

eigenspace in a ML fashion is comparable to the amount of data required to train

cluster centroids with ML.

7.4.3 Experimental results

We now compare the performance of MLED adaptation to ML training. Results

are presented on Figures 7.5 (a) and (b) for 5 and 20 clusters respectively. For 5

clusters, MLED does not improve over ML. MLED may even result in a decrease

of the performance if the number of eigenvectors E is chosen too small. It seems

to indicate that there is enough data to train 5 clusters with ML. For 20 clusters

MLED outperforms ML if the number of eigenvectors is large enough (i.e. E ≥ 25),
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Figure 7.5: Comparison of the ML training with the MLED adaptation.
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especially when the percentage of comparisons is small. For instance, when the per-

centage of comparisons is 15% the performance of the ML system is approximately

86% while the performance of the MLED system with E = 50 is more than 91%.

We attempted to perform a MAP post-smoothing but no improvement was obtained.

We believe that the increase in performance is due both to the use of the corre-

lation between feature vectors but also to the smoothing effect of MLED. If enough

data is available to train the cluster centroid of C, then the intra-class variability

will be averaged. However, in the case where only a small number of observations

are assigned to a cluster C, these variations may not cancel and irrelevant intra-class

variability may “contaminate” the centroid. However, when using a small number of

eigenfaces in MLED, the face is only imperfectly reconstructed. Thus, if irrelevant

variabilities are not modeled by the first directions of variation of the PCA space,

they will be canceled.

7.5 Alleviating the Multi-Class Assignment

In this section, we first show that the multi-class assignment is likely to result in

wasteful comparisons and that to avoid this paradigm, one can assign each face

image to all classes probabilistically. We then present experimental results to assess

the performance of the probabilistic assignment.

7.5.1 Probabilistic assignment

A limitation of the current approach is that we do not make the most out of the

available information. To make our argument clear, let us assume that the face

space is partitioned as depicted on Figure 7.6. When the template image It is added

C1
C2

C3

C4

C5

C8

C6

C9
C7

Iq

It

Figure 7.6: Uncertainty in cluster assignment.

to the database, it is likely to be assigned to clusters C6, C7 and C8. At test time,
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the query image Iq is first assigned to C2, C8 and C9 and then compared to all the

template images contained in one of these clusters, which includes It. However, It

and Iq are fairly distant and, thus, unlikely to belong to the same person. There-

fore, such a comparison will most likely be wasteful. The reason why It and Iq were

compared while they should not have been is that, when assigning an image to one

or multiple clusters, we throw away a lot of valuable information: the “distances”

P (On|λc, λR). Indeed, the vector v = [P (On|λ1, λR), ..., P (On|λC , λR)]T could be

used to characterize the face image.

A similar approach has already been proposed in the field of speaker detection

and indexing. In [SRSC01], a speech utterance s is scored against a set of models

{A1, ..., AN} referred to as anchors and the vector v = [P (s|A1), ..., P (s|AN )]T is

used to characterize the speech utterance. This characterization vector can be con-

sidered as a projection of the target image into a speaker space. We propose two

major improvements over the original anchor modeling approach:

• As in [SRSC01] the number of anchor models was large (N = 668 in their

experiments), methods for reducing the size of the Euclidean distance com-

parison were investigated in an effort to increase performance by using only

those anchor models that provide good characterizing information. However,

such an approach does not reduce the cost of computing v which can also be

significant. In the proposed approach, our anchors are not faces but the cen-

troids which are obtained after clustering a set of face images. The clustering

step should therefore perform a dimension reduction and drastically decrease

the cost of computing v and of comparing it with other vectors.

• Instead of using a characterization vector v based on the likelihood, we propose

to use posterior probabilities: v = [P (λ1|On, λR), ..., P (λC |On, λR)]T . Such a

vector should be more robust as it normalizes the likelihood.

Let vq be the characterization vectors of Iq. Then at test time, we first com-

pute the distance between vq and the characterization vectors of all template images

contained in the database. Although there are as many distances to compute as

template images, this is very fast as these vectors are very low dimensional. Then Iq

is compared with the template images It that are less than a given threshold distant

from Iq.

Note that this approach can be seen as a special case of the first method described

in the introductory section to reduce the computational cost. The characterization

vectors are shrewd representations of the images and thus identification based purely

on these vectors has a low accuracy. However, they are fairly fast to estimate and

very fast to compare. An interesting property of such an approach is that the
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characterization vector retains the properties of the costly distance. Indeed, if the

distance is robust to some variations, then the characterization vector should not

be significantly affected by these variations, a property that is not discussed in

[SRSC01].

7.5.2 Experimental results

As opposed to the three previous sections, the focus is not on the estimation of

cluster centroids but on the best way to use them. Therefore, we will make use of

the best centroid estimates we have obtained, i.e. the ones that have been adapted

with MLED (with E = 50 eigenvectors) in the previous section.

The goal of the first set of experiments is to determine 1) which distance is

the most appropriate to measure the similarity of characterization vectors and 2)

whether the characterization vector based on posteriors is superior to the one based

on likelihoods. Thus, in this first set of experiments, we perform identification with

the characterization vectors only. We tested the L1, L2 and cosine metrics on both

types of characterization vectors. As a posterior-based characterization vector de-

fines a discrete probability distribution, we also tried the symmetric divergence on

this type of vectors (c.f. appendix B).

Note that the likelihoods P (On|λc, λR) are extremely large (on the order of

1010,000) and thus they are difficult to compare directly. Therefore, in the follow-

ing we did not use likelihood-based characterization vectors but characterization

vectors based on the log-likelihood. In the same manner, P (On|λc, λR)’s are so

large that the posteriors P (λc|On, λR) are equal to 1 for the most likely centroid

and 0 for the other ones. Thus, to increase the fuzziness of the assignment, we

raised the posteriors to the power of a small positive factor β and then renormalized

them so that they would sum to unity. In the following experiments we set β = 0.01.

Results are presented for C = 20 clusters on Figure 7.7 On Figure 7.7 (a), we

compare the performance of the L1, L2 and cosine metrics for characterization vec-

tors based on the log-likelihood. Clearly, the cosine is by far the best choice. On

Figure 7.7 (b), we compare the performance of the L1, L2, cosine and symmetric di-

vergence metrics for posterior-based characterization vectors. Results are improved

for the first three metrics (especially for L1 and L2) compared to log-likelihood-based

vectors. The four measures of distance exhibit a similar performance but the sym-

metric divergence seems to outperform the three other metrics by a slight margin.

Hence, in the following experiments, we will use posterior-based characterization

vectors and the similarity of two such vectors will be measured with the symmetric

divergence.
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Figure 7.7: Performance of a system with C = 20 clusters which makes use of
(a) log-likelihood-based characterization vectors (b) posterior-based characteriza-
tion vectors. Cumulative identification rate versus N-best (as a percentage of the
database).
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Now that we have chosen the type of characterization vector and the metric,

we can evaluate the performance of our system when characterization vectors are

used during a pre-processing step to find the most likely candidates. As was the

case in the previous sections, we present results as the identification rate versus the

percentage of comparisons for various numbers of clusters (Figure 7.8). While the

increase of performance from 5 to 10 clusters is very significant, especially for a

small number of comparisons, it is smaller when going from 10 to 20 clusters. No

improvement could be obtained with more than 20 centroids. This shows that, for

the problem of interest, clustering is very important as only a very small number of

clusters is required to reach the best performance.
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Figure 7.8: Performance of the system with probabilistic cluster assignment for a
varying number C of clusters.

Now if we compare the results of Figure 7.8 with those of Figure 7.5, we can see

that the probabilistic assignment leads to a much better performance, especially for

a small number of comparisons. We remind that the performance of the baseline

system is a 95.7% identification rate. We can see on Figure 7.8 that we can obtain

a 95% identification rate with only 15% of the computation.
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7.6 Conclusion

In this section, we have worked on the challenging problem of image clustering with

the aim of partitioning the image space. Our work has first focused on the robust

estimation of cluster centroids. We first applied the general EM framework to our

problem. We then addressed two important issues. We first proposed a simple, but

effective, initialization procedure to estimate the seed cluster centroids that will be

subsequently fed to the EM procedure. We then addressed the problem of data

scarcity by adapting the model parameters using the eigenvoice approach rather

than estimating them with ML. We also discussed an alternative to the multiple

cluster assignment paradigm which consists in assigning a face image to all clusters

probabilistically. Note that we are aware that a similar approach has already been

proposed but we have suggested two major improvements which have been shown

to increase the performance of our system very significantly.

While this work has been applied to speed up the comparison of a query image

with a set of template images, it has numerous applications. First of all, the ability

to estimate a centroid may be very useful when multiple images are available to

estimate a face model. These images may either be available all at enrollment time

or they may be available later to adapt the face model. In the next chapter, we

will estimate a centroid for the problem of identity verification. The ability to

cluster images also has many applications. Multiple transformation models could be

estimated, one per cluster for instance, to better model the intra-class variability of

each class of persons.
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8

Modeling Wrongful Claims for
Robust Verification

8.1 Introduction

A biometrics authentication/verification system accepts or rejects a person based

on a claimed identity and a sample of the considered biometrics. Hence, authentica-

tion is a two-class decision problem and the success of an authentication system is

based on the accurate modeling of both rightful and wrongful claims. Although this

framework has long been applied to other biometrics such as speaker verification

[Rey95, RP96, RQD00], surprisingly, the issue of modeling wrongful claims seems

to have drawn very little attention from the face verification community as outlined

in [SP02].

Indeed, let MC be the model of a client C and let Iq be a query image. Then a

näıve thresholding of the score leads to the following test:

P (Iq|MC) ≷ θ (8.1)

However, it is impossible to find a threshold θ which can be used in all conditions.

If the threshold is set too high, clients might be wrongfully rejected in the case of a

mismatch between the training and test conditions, which will result in a high FRR.

On the other hand, if it is set too low to accommodate for all possible mismatches,
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then the FAR will increase dramatically. A more robust approach to verification is

to train an impostor model MC for C, and to perform the following comparison:

P (MC |Iq)

P (MC |Iq)
≷ θ (8.2)

In the case of a mismatch between the training and test conditions, the decrease

of the likelihood P (MC |Iq) is likely to be compensated by a similar decrease of

P (MC |Iq). Therefore, the ratio will be relatively unaffected by the mismatch. Note

that this technique can be applied to relational approaches to AFR such as the BIC

or the proposed PMLT if we consider that the combination of It and R is the model

MC of client C.

However, in the case of relational approaches, another approach has also been

suggested in [MWP98, Mog02]. While the previous approach raises the question:

“Is this sample more likely to belong to C or to and impostor of C?”, the relational

approach to impostor modeling considers the following question: “Is the observed

variability between the template image It and the query image Iq more likely to be

intra-class or inter-class variability?”. Let R be the relationship between face images

of two different persons. The acceptance/rejection decision is therefore based on the

following likelihood ratio:

P (R|Iq, It)

P (R|Iq, It)
(8.3)

As we will see in the remainder of this chapter, although the questions raised by

these two approaches to modeling wrongful claims are semantically very close, they

lead in effect to two very different classifiers. Which of these two approaches to

modeling wrongful claims is the more robust is not obvious and this question is the

focus of this chapter.

The remainder of this chapter is organized as follows. In the next section, we

describe with more details the two possible strategies to verification. In section 8.3,

we compare them from a theoretical point of view. In section 8.4 we present an

experimental comparison carried out on the FERET, AR and PIE databases. The

focus this time is not on the comparison of BIC and PMLT but on the comparison

of the two approaches to impostor modeling. Both the theoretical and experimental

comparisons indicate that the latter approach results in a better performance, es-

pecially in the challenging case where variabilities that were not learned during the

training phase are observed at test time.
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8.2 Two Strategies to Impostor Modeling

To illustrate the two authentication strategies for relational approaches, we make

use of the simple Gaussian classifier considered in [MP97, MWP98, Mog02]. The

difference between face images of the same person is supposed to be a normally

distributed random variable. If we denote δ = Iq − It, then:

P (δ|R) =
1

(2π)N/2|S|1/2
exp

{

−1

2
δT S−1δ

}

(8.4)

where N is the dimension of the image space, i.e. the number of pixels in Iq or It.

The covariance matrix S is the only parameter and is estimated with pairs of images

of the same person. Although this classifier has little practical value due to the high

dimensionality of the image space, the theoretical comparison of both strategies to

authentication on this classifier is simple. Interestingly, P (δ|R) ≡ P (Iq|It,R) with:

P (Iq|It,R) =
1

(2π)N/2|S|1/2
exp

{

−1

2
(Iq − It)

T S−1(Iq − It)

}

(8.5)

The difference is that the notation P (δ|R) assumes that δ is emitted by a Gaussian

with zero mean while the notation P (Iq|It,R) assumes that Iq is emitted by a

Gaussian with mean It. We will see in the following that the difference between

P (δ|R) and P (Iq|It,R) is not purely notational.

8.2.1 Relational approach

Generalizing the approach to authentication introduced in [MWP98, Mog02], accep-

tance/rejection should be based on the following test ratio:

P (R|Iq, It)

P (R|Iq, It)
≷ θ (8.6)

where θ is an application dependent threshold which is set according to the desired

level of security / convenience. However, as P (R|Iq, It) and P (R|Iq, It) are difficult

to estimate, one uses Bayes’ formula to rephrase the previous test ratio as follows:

P (Iq|It,R)

P (Iq|It,R)
≷ θ′ (8.7)

where θ′ now incorporates also P (R|It) and P (R|It), respectively the probabilities

of a client or an impostor trial on the template It. If the difference between face

images of different persons is also assumed to be Gaussian [Mog02], then we can

write:

P (Iq|It,R) =
1

(2π)N/2|S|1/2
exp

{

−1

2
(Iq − It)

T S
−1

(Iq − It)

}

(8.8)
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where S is estimated on pairs of images of different persons.

The relational approach to score normalization will be later referred to as R-

norm.

8.2.2 Generative approach

If It is the template image for client C, then in the expression P (Iq|It,R), (It,R)

can be seen as a model of C: MC ≡ (It,R). Note that grouping It and R would not

have been possible if we had kept the notation δ. Let MC denote the anti-model of

C, i.e. the model of all the impostors that could try to gain access to the system by

claiming the identity of C. Then the classical approach to verification in this case

is:
P (MC |Iq)

P (MC |Iq)
≷ θ (8.9)

Using one more time Bayes’ formula, we get:

P (Iq|MC)

P (Iq|MC)
=

P (Iq|It,R)

P (Iq|It,R)
≷ θ′ (8.10)

where θ′ now incorporates P (MC) and P (MC), respectively the probabilities of a

client and an impostor trials on the model MC .

There exists two traditional approaches to model MC : cohort models and back-

ground models [RP96]. The first approach uses a set of cohorts {C1, ..., CK} whose

selection might depend on the client C and a score is obtained for each cohort. The

normalization score is of the form:

P (Iq|MC) =
1

K

K
∑

k=1

P (Iq|MCk
) (8.11)

The second approach makes use of a single model constructed by pooling training

utterances from more than one person, whose selection might also depend on C.

It was shown in [Rey97] that a background model trained with a large amount of

data and which is not specific to C, also referred to as universal background model

(UBM), leads to a very robust normalization score. As the focus of this paper is

not on the comparison between these two approaches (see [RQD00] for such a com-

parison in the case of face authentication), and as the UBM approach is simple and

performs very well, we use a UBM denoted U.

In practice, if P (Iq|It,R) = P (Iq|U) is also supposed to be Gaussian, the pa-

rameters of U , which include this time both the mean and the covariance matrix,
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are simply estimated with training data from a large number of people. Let µ and

Σ denote respectively the mean and covariance of this distribution:

P (Iq|It,R) =
1

(2π)N/2|Σ|1/2
exp

{

−1

2
(Iq − µ)T Σ−1(Iq − µ)

}

(8.12)

The “generative” approach to score normalization will be later referred to as G-norm.

8.3 A Theoretical Comparison

While the likelihood ratios of both strategies to authentication have the same nu-

merator (see equations 8.7 and 8.11), i.e. while client distributions are modeled in

the same manner, denominators are different as MC = (It,R) 6= (It,R) and thus

the distribution of wrongful claims is modeled differently. Since Σ ≈ S (e.g. see

[WT03]), for this Gaussian classifier the main difference between P (Iq|It, R) and

P (Iq|It,R) is in the means of the Gaussians. In effect, R-norm and G-norm are

very different. R-norm measures the amounts of intra- and inter-class variabilities

between two images while G-norm measures a sort of distance between the query

image and the data used to train the universal model U .

We will now show with two arguments that, from a theoretical point of view,

G-norm is superior to R-norm. The first argument holds for any relational approach.

The validity of the second one is limited to the Gaussian classifier and, incidentally,

to the BIC which is directly derived from this classifier.

8.3.1 First argument

If T is the set of all possible template images, then It is defined as T − {It}. We

now rewrite P (Iq|It,R) as follows:

P (Iq|It,R) =
P (Iq, It,R)

P (It,R)

=
P (Iq, It,R) + P (Iq, It,R) + P (Iq, It,R)

P (It,R)

=
P (Iq, It,R) + P (Iq, It)

P (It,R)

= P (Iq|It,R)
P (It,R)

P (It,R)
+ P (Iq|It)

P (It)

P (It,R)
(8.13)

Hence P (Iq|It,R) takes into account P (Iq|It,R), the normalization score of R-norm,

and an additional term P (Iq|It). Note that in the special case where Iq = It, i.e.

when no variability is observed between the template and query images, P (Iq|It,R)
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is maximum (c.f. equation 8.8) which intuitively is not satisfying as we would like the

normalization score to be as small as possible in such a case. One can say, loosely

speaking, that the negation on R impacts the covariance matrix of the Gaussian

while the negation on It impacts its mean. Thus, the additional term in G-norm

prevents this unwanted effect (c.f. equation 8.12). This first argument favors the

choice of G-norm over R-norm.

8.3.2 Second argument

Until now, we have always assumed a shared model R of anti-relationship. As R is

supposed to model all the possible transformations between face images of different

persons, it should be described with a very large number of parameters and, for

a robust estimation, these parameters should be estimated with a large amount of

training data.

However, when comparing It and Iq one does not need to know the whole dis-

tribution of the difference between images that belong to two arbitrary persons.

Instead, as we have access to the identity of the client C to be verified, we could

concentrate on the distribution of the difference between It and all the images that

do not belong to C. This would require an Rt, i.e. a specific anti-relationship model,

for each template image It. Intuitively, using an Rt should yield a better perfor-

mance than a R as we would then focus on the region of interest of the distribution.

T Q

It

Rt

R

Figure 8.1: Modeling R and Rt.

Let IC denote the random variable which describes the emission of the query

images Iq that do not belong to C. Theoretically, there is one such distribution for

each client C and its parameters should be estimated with all the available images

that do not belong to C. However, in practice, this distribution will be estimated

on an independent training set that contains none of the template images of the

evaluation set. Note that, even if this training set contained one or a few images

from C, their influence would be negligible compared to all the other images. Hence,
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for all clients, it is reasonable to assume a shared random variable denoted I.

If I is assumed normally distributed with mean µ and covariance Σ (assuming

that we use the same data to train this distribution as in 8.2.2), then I − It is also

normally distributed with mean µ − It and covariance Σ. Hence we obtain:

P (Iq|It,Rt) =
exp

{

−1
2 [(Iq − It) − (µ − It)]

T Σ−1 [(Iq − It) − (µ − It)]
}

(2π)N/2|Σ|1/2

=
1

(2π)N/2|Σ|1/2
exp

{

−1

2
(Iq − µ)T Σ−1(Iq − µ)

}

= P (Iq|It,R) = P (Iq|U) (8.14)

This means that, for the Gaussian classifier, it is equivalent to model the impostor

distribution U (G-norm) and the relationship between images of different persons

(R-norm) in the case where we make use of a template dependent relationship Rt.

Keeping in mind that P (Iq|It, Rt) should yield a better performance than P (Iq|It,R),

G-norm should theoretically outperform R-norm, at least for a given complexity of

the impostor model (number of features for BIC, number of Gpm for PMLT).

Note that this argument is not exact but only approximate for PMLT which does

not work directly on difference images.

8.4 An Experimental Comparison

The focus of this section will not be on the comparison of the BIC and PMLT but on

the comparison of the two approaches to modeling wrongful claims. For both BIC

and PMLT, we make use of the best client distributions we trained in section 6.6.1.

For BIC, this corresponds to a model with 50 features and for PMLT to a model

with a maximum of 16 Gpm. We first describe how to train our models of wrongful

claims R and U . We then carry out two sets of experiments in matched conditions

on the FERET database and then in mismatched conditions on the ARDB and PIE

databases.

8.4.1 Training R and U

R and U were trained on the same data used to train R. We remind that it consists

of 695 persons, with two images per person extracted from the FAFB set, which

makes a total of 1,390 images.

The impostor model for R-norm is trained in a similar manner to the client

model, except that we use pairs of images that belong to different persons to model
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the inter-class variability. However, it is not necessary to consider all possible pairs

of images to learn λR which would be very computationally intensive. In our experi-

ments, for each of the 1,390 images, we chose randomly an image which corresponded

to another person. We also tried more than one image to increase the number of

pairs of images but this lead to a very significant increase of the computational cost

but had no significant impact on the performance.

Training the impostor model for G-norm is very simple in the case of BIC as the

only difference with the modeling of the client distribution is that we have to estimate

the eigenvectors and eigenvalues of the matrix Σ, which is the correlation matrix of

all images. Thus, we obtain the PCA eigenvalues and eigenvectors. As for PMLT, it

is a little bit more complicated. If we draw a parallel between the simple Gaussian

classifier and the PMLT and if we assume a unimodal distribution, then to estimate

the impostor distribution, we should learn the transformation between an “average”

image and all other images. This “average” image is trained as described in section

7.2.1. Note that, as we just have to train one centroid, there is no problem of data

scarcity and we can thus use a simple ML training. Once the centroid is obtained,

we learn the transformation between all 1,390 images and this average template.

Thus, training the impostor distribution makes use of 1,390 pairs of images for both

R-norm and G-norm, as was the case for the client distribution.

8.4.2 Experiments in matched conditions

We tested BIC and PMLT on the same data set used to fine tune these systems

in sections 5.7.3 and 5.7.4 respectively. Each image is successively used as a query

and the remaining 999 images are used as templates. Thus the distribution of client

scores was estimated with 1, 000 comparisons and the distribution of impostor scores

with 998, 000 comparisons.

In the first set of experiments, we draw the EER as a function of the complexity

of the model of wrongful claims: number of features for BIC and number of Gpm

for PMLT. The baseline performance of the system without score normalization is

15.5% for BIC and 11.5% for PMLT which is very high considering that we are in

matched conditions. This clearly shows that a system which has a very good perfor-

mance in the identification mode may not achieve a reasonable performance in the

verification mode.

Results are presented on Figure 8.2. Both R-norm and G-norm lead to a large

decrease of the error rate but G-norm outperforms R-norm significantly. Indeed, for

BIC, the best results for R-norm and G-norm are, with a 95% confidence interval,

11.0%± 1.9% and 4.6%± 1.3% respectively. For PMLT, the best results for R-norm
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Figure 8.2: Performance of (a) BIC and (b) PMLT on a subset of the FERET FAFB
set.
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and G-norm are 4.1% ± 1.2% and 1.8% ± 0.8% respectively. Thus, G-norm can be

said to outperform R-norm with more than 95% confidence in both cases.

It is very interesting to notice that, for both BIC and PMLT, G-norm reaches

its best performance with a smaller number of features or Gpm than R-norm. This

is consistent with our analysis in section 8.3.2. Indeed, it is much more efficient to

model a specific relationship Rt than a global relationship R as the second approach

results in the modeling of a lot of wasteful information.

As the EER only represents the performance for a specific threshold θ, we also

considered DET curves. On Figure 8.3 (a), we represent the performance of our

best BIC systems without normalization, with R-norm and with G-norm. This

corresponds to an impostor model with 150 features for R-norm and 50 features for

G-norm. For all miss and false alarm probabilities, R-norm improves over the system

without score normalization and G-norm improves very significantly over R-norm.

On Figure 8.3 (b), we represent the performance of our best PMLT systems. This

corresponds for both R-norm and G-norm to an impostor model with 16 Gpm. For

all miss and false alarm probabilities, R-norm and G-norm greatly improve over the

system without score normalization and G-norm also greatly improves over R-norm,

except for very small miss probabilities. Note however, that there is not enough data

to estimate robustly the error rate of our system for very small miss probabilities. To

clearly show the extent of the improvement, let us consider the false alarm probabil-

ity of the three systems at a fix miss probability of 5%. For the system without score

normalization, the corresponding false alarm probability is between 20% and 40%,

which is useless for most applications of practical value. However, with R-norm it

decreases between 2% and 5% and with G-norm it goes down to 0.1% approximately.

From this first set of experiments we can draw two important conclusions. The

first one is that, as expected, G-norm outperforms R-norm. The second one is that,

even in perfectly matched conditions, score normalization has a very significant

impact on the performance. Indeed for BIC the EER, which was 15.5% without

score normalization could be brought down to 4.6% and for PMLT from 11.5% to

1.8%. The reason for this much improved performance is that, in matched conditions

the normalization score P (Iq|U) indicates whether the neighborhood of Iq is densely

populated with potential impostors.

8.4.3 Experiments in mismatched conditions

In this section, we present results in mismatched conditions on the AR and PIE

databases. For both BIC and PMLT and for the system without score normalization,
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Figure 8.3: DET curves for (a) BIC and (b) PMLT on a subset of the FERET FAFB
set for the system without impostor modeling, with R-norm and with G-norm.
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with R-norm impostor modeling and with G-norm impostor modeling, we used the

best systems that were trained in the previous section.

Experiments on AR

In the following experiments, image 01 which corresponds to the face with neutral

expression was used for the enrollment. Test images consisted of 7 subsets: 02, 03

and 04 which correspond to the three facial expressions, 05, 06 and 07 which corre-

spond to the three illumination conditions and 11 which corresponds to an occlusion

of the lower part of the face with a scarf. Note that, compared to the identification

experiments, we discarded set 08 which corresponds to an occlusion of the upper

part of the face with sunglasses. The reason for discarding this set is the inability

of BIC and PMLT to deal with it and thus, including this set would unfavorably

bias our results. The distributions of client and impostor scores are estimated re-

spectively with 868 and 106, 764 comparisons.

Results are presented on Figure 8.4. For both BIC and PMLT, R-norm has a

smaller impact on the performance than was previously the case in matched condi-

tions. It seems that it can even result in a degradation of the performance for a small

false alarm probability. G-norm results in a large improvement of the performance,

especially for BIC. The EER for BIC and PMLT for the three systems is summarized

in Table 8.4. Thus G-norm can be said to outperform R-norm as expected.

BIC PMLT

no norm 25.5% ± 2.9% 22.7% ± 2.8%
R-norm 23.4% ± 2.8% 19.7% ± 2.6%
G-norm 12.8% ± 2.2% 13.1% ± 2.2%

Table 8.1: EER and its associated 95% confidence interval for BIC and PMLT on
the AR database for the system without impostor modeling, with R-norm and with
G-norm

Experiments on PIE

In the following experiments, we used the image corresponding to an ambient light-

ing as enrollment image and the images corresponding to variations in pose and

in illumination with ambient lighting as query images. Thus, compared to iden-

tification experiments, we discarded those images which correspond to variations

in illumination without ambient lighting. The distributions of client and impostor

scores were estimated respectively with 1, 833 and 122, 811 scores respectively.
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Figure 8.4: DET curves for (a) BIC and (b) PMLT on the AR database for the
system without modeling, with R-norm and with G-norm
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Figure 8.5: DET curves for (a) BIC and (b) PMLT on the PIE database for the
system without impostor modeling, with R-norm and with G-norm.



8.5. Conclusion 169

Results are presented on Figure 8.5. We first notice that for both BIC and

PMLT, R-norm results in a degraded performance compared to the simple system

without impostor modeling especially for BIC. This seems to indicate that, when

facing radically new conditions, R-norm is unable to distinguish between inter- and

intra-class variabilities. Indeed it can so happen that this new condition will have

a greater impact on P (Iq|It,R) than on P (Iq|It,R). On the other hand, G-norm

results in a large decrease of the error rate for all miss and false alarm probabilities.

The EER for BIC and PMLT for the three systems is summarized in Table 8.5.

Thus, we can see that the error rate of the system is approximately divided by a

factor 2 with G-norm.

BIC PMLT

no norm 10.3% ± 1.4% 8.9% ± 1.3%
R-norm 18.5% ± 1.8% 11.1% ± 1.4%
G-norm 5.6% ± 1.1% 4.5% ± 0.9%

Table 8.2: EER and its associated 95% confidence interval for BIC and PMLT on
the PIE database for the system without score impostor modeling, with R-norm and
with G-norm

Finally, we present a last experiment on PIE where we attempt to obtain the

best possible performance by training the client and impostor distributions with

data which exhibits variations in facial expression and pose. We thus added to the

training data the images that correspond to the BE, BF, BD, BG, BC and BH

sets of FERET. Results are presented on Figure 8.6 for the approach without score

normalization and with G-norm only. With a 95% confidence the performance of the

system without score normalization decreases to 6.9% ± 1.2% and the EER of the

system with G-norm goes down to 3.1% ± 0.8%. Note that this later result is very

competitive considering that the system has to deal with both pose and illumination

variations.

8.5 Conclusion

In this chapter, we considered two strategies to score normalization for those ap-

proaches to AFR that attempt to model the relationship between images such as

BIC and the proposed PMLT. The first strategy, which is specific to relational ap-

proaches and which consists in modeling the relationship between face images of

different persons is a direct extension of the work of [MWP98, Mog02]. The second

one, which consists in modeling the impostor distribution, is very general and can

be applied to any face authentication system. These two techniques were first com-
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Figure 8.6: DET curves for PMLT on the PIE database for the system without
impostor modeling and with G-norm. Case where R and U are trained with data
that exhibits some pose variability.
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pared from a theoretical and then from an experimental point of view on both BIC

and PMLT. Both comparisons indicated that the general approach to score normal-

ization results in a better performance, especially in the challenging but realistic

case where there is a mismatch between the training and test conditions.

However, there is still a lot of room for improving our verification system. We es-

pecially expect to decrease the FAR and FRR using score normalization approaches,

which were shown to lead to large improvements of the performance in the field of

automatic speaker recognition [RQD00, ACLT00].

Also this work on verification may be applied to the problem of image quality

checking (c.f. paragraph 2.4). Indeed, the normalization score P (I|U) is a measure

of distance between the image I and all the images that were used to train U . If

P (I|U) is low, this means that I is very different from the training images and that

our system might fail on such an image. This may be due for instance to a mismatch

between the training and test conditions, e.g. because the client provides a profile

view while the system can handle only an in-depth rotation of ±20o. If we rejected

at enrollment or test time the images I such that P (I|U) < θ, where θ is a predefined

threshold, then we could increase the performance of our system.
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9

Conclusion

9.1 Summary and Contributions

After introducing the discipline of biometrics in chapter 2, we briefly reviewed the

literature on AFR in chapter 3. It was shown that many state-of-the-art AFR algo-

rithms focus on the problem of representation, i.e. feature extraction, but that less

attention has been given to the proper derivation and computation of an appropriate

distance between face images. The BIC algorithm introduced by Moghaddam and

Pentland [MP97] is a noticeable exception. Considering its excellent performance

during the FERET evaluation, we chose it as the baseline for our experiments.

The main contribution of this dissertation is the introduction of a novel mea-

sure of “distance” between images. This measure involves the estimation of the set

of possible transformations between face images. The global transformation, which

is assumed too complex for direct modeling, is approximated with a set of local

transformations under a constraint imposing consistency between neighboring local

transformations. The proposed local transformations and neighboring constraints

are embedded within the probabilistic framework of a 2-D HMM in the case of dis-

crete states and of the 2-D SSM in the case of continuous states. This original

approach was coined PMLT for probabilistic mapping with local transformations.

In chapter 4, we introduced the turbo hidden Markov model (T-HMM) and the

turbo state-space model (T-SSM) as efficient approximations of the intractable 2-D
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HMM and 2-D SSM respectively. They consist of a set of inter-connected horizontal

and vertical 1-D Markov chains that communicate through an iterative process. We

attempted to provide efficient approximate answers to the three fundamental prob-

lems of HMM design. We proved some convergence properties for the T-SSM and

observed others for both the T-HMM and the T-SSM. The potential of the T-HMM

and the T-SSM was demonstrated on simple problems which consisted in decoding

a signal embedded in noise. While the work on the T-HMM and the T-SSM was

not the focus of this dissertation, it was necessary to make the face recognition al-

gorithms developed in the course of this thesis tractable.

In chapter 5, we specialized our framework to the problem of face identification

in the case of elastic facial distortions (due, for instance, to facial expressions) us-

ing discrete grid transformations. We described the components of our HMM-based

transformation model and explained how to perform the matching with this model

and how to train it. The performance of this probabilistic mapping with local grid

transformations (PMLGT) was evaluated on a large dataset including 4 databases

(FERET, AR, PIE and Yale B). It was shown that for a face identification task

PMLGT outperforms BIC for an imprecise segmentation of the face, for variations

in facial expression or pose and for an occlusion of the lower part of the face. How-

ever, the results for illumination variations were not as clear.

Therefore, in chapter 6 we enriched our HMM-based model with continuous

feature transformations to model illumination variations. We detailed our novel

HMM-based transformation model and explained how to deal with both discrete

and continuous states. Two sets of evaluations were carried out. We first measured

the effect of the log transform on the identification rate and it was shown that it had

a very positive impact on the performance for illumination variations but relatively

little influence on other variabilities. We then evaluated our probabilistic mapping

with local grid and feature transformations (PMLGFT) and it was shown that an

additional gain in performance could be obtained for extreme illumination condi-

tions, such as a face illuminated by a flash without ambient lighting.

Once a proper measure of distance had been defined, we turned in chapter 7 to

the problem of face image clustering. The primary motivation was to partition the

face space to reduce the number of comparisons when a query is made on a database

that contains a large number of templates. We addressed two main issues in this

chapter. We first considered the problem of the update step, which is obvious for

simple metrics such as the Euclidean distance, but which is much more challenging

in the case of a complex measure of distance such as the one induced by our PMLT.

We then addressed the problem of multiple clusters assignment of an image. It was
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shown on the FERET database that we could divide the total number of compar-

isons by a factor 6 or 7 with little degradation of the performance.

Finally, in chapter 8 we focused on the verification problem which requires a

robust confidence measure. Note that this is a topic which has been much studied

in the field of automatic speaker recognition but which has received little attention

in AFR. The issue is the accurate modeling of wrongful claims. For BIC or PMLT

there exists two very distinct ways to model such claims. The first method raises

the following question: “Is the observed difference between the template and query

images more likely to be intra-personal or extra-personal?”. The second approach

attempts to answer this question: “Is the query image more likely to have been

generated by the person under consideration or by one of its potential impostors?”.

Although semantically very close, these two questions lead in effect to two very dif-

ferent classifiers. These two approaches were compared from a theoretical and an

experimental point of view, both in matched and mismatched conditions, and it was

shown that the latter approach significantly outperformed the former one.

This work resulted in the following refereed conference and journal articles:

1. J.-L. Dugelay, J.-C. Junqua, C. Kotropoulos, R. Kuhn, F. Perronnin and I.

Pitas, Recent Advances in Biometric Person Authentication, in Proc. of the

IEEE Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), 2002,

vol. 4, pp. 4060-4063.

2. F. Perronnin and J.-L. Dugelay, Introduction à la Biométrie, in Revue Traite-

ment du Signal, 2002, vol. 19, no. 4, pp. 253-265.

3. F. Perronnin and J.-L. Dugelay, An Introduction to Biometrics and Face Recog-

nition, in Proc. of the workshop on IMAGE: Learning, Understanding, Infor-

mation Retrieval, Medical, 2003.

4. F. Perronnin, J.-L. Dugelay and K. Rose, Iterative Decoding of Two-Dimensional

Hidden Markov Models, in Proc. of the IEEE Int. Conf. on Acoustics Speech

and Signal Processing (ICASSP), 2003, vol. 3, pp. 329–332.

5. F. Perronnin, J.-L. Dugelay and K. Rose, Deformable Face Mapping for Person

Identification, in Proc. of the IEEE Int. Conf. on Image Processing (ICIP),

2003, vol. 1, pp. 661–664.

6. F. Perronnin and J.-L. Dugelay, Discriminative Face Recognition, in Proc.

of the IAPR Int. Conf. on Audio- and Video-Based Person Authentication

(AVBPA), 2003, pp. 446–453.
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7. F. Perronnin, J.-L. Dugelay and K. Rose, A Probabilistic Model of Face Trans-

formation Applied to Person Identification, EURASIP Journal on Applied Sig-

nal Processing (JASP), 2004, vol. 2004, no. 4, pp. 510–521.

8. F. Perronnin and J.-L. Dugelay, A Model of Illumination Variation for Robust

Face Recognition, in Proc. of the workshop on Multimodal User Authentication

(MMUA), 2003, pp. 157–164.

9. F. Perronnin and J.-L. Dugelay, From Turbo Hidden Markov Models to Turbo

State-Space Models, in Proc. of the IEEE Int. Conf. on Acoustics Speech and

Signal Processing (ICASSP), 2004, vol. 3, pp. 29–32.

10. F. Perronnin and J.-L. Dugelay, Robust Score Normalization for Relational

Approaches to Face Authentication, Proc. of the EURASIP European Signal

Processing Conf. (EUSIPCO), 2004.

11. F. Perronnin and J.-L. Dugelay, Un Modèle Probabiliste de Transformation

entre Images Appliqué à la Reconnaissance de Visages, Proc. of Compression

et Représentation des Signaux Audiovisuels (CORESA), 2004.

12. F. Perronnin, J.-L. Dugelay and K. Rose, A Probabilistic Model of Face Map-

ping with Local Transformations and its Application to Person Recognition,

submitted to the IEEE Trans. on Pattern Analysis and Machine Intelligence

(PAMI).

13. F. Perronnin and J.-L. Dugelay, Clustering Face Images with Application to

Image Retrieval in Large Databases, submitted to the SPIE Conf. on Biometric

Technology for Human Identification.

9.2 Future Work

At the end of chapters 4 to 8, we have tried to outline possibilities for future work.

We now envision other research directions.

One could first try to improve on the proposed measure of distance. We have at-

tempted to explicitly model facial expressions and illumination variations and have

observed that PMLT was relatively robust to other variabilities such as pose or

occlusion of the lower part of the face. However we could try to model explicitly

such variabilities. Let us take the example of the pose. We could decide to model

such variation using grid transformations as was the case for facial expressions. For

instance, we tried to add FERET images which exhibit some pose variation (sets

BC, BD, BE, BF, BG and BH) to the training data. Although this may not be the

optimal way to proceed, we increased the average identification rate on the pose set
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of PIE from 81% (c.f. 6.6.1) to 91%. Note that we could also decide to introduce

new local transformations to model pose variability.

Another approach to improve the accuracy of our measure of similarity would

be to make use of richer statistical tools than the T-HMM or the T-SSM. Indeed,

the choice of the T-HMM and the T-SSM, which are approximations of the simple

first order MMRF with discrete and continuous states respectively, is primarily mo-

tivated by their very low computational complexity. However, we believe that an

improved performance could be obtained if we went beyond the first order statistics

or by dropping the causality assumption. Obviously, the improved accuracy would

be obtained at the expense of an increase of the computational cost.

It would be also of interest to study whether PMLT could work on other face

modalities such as infrared imagery or range (3-D) data.

We believe that PMLT could also be applied to other problems within the field

of facial analysis. Especially, the current framework may be suited to the problem of

facial expressions recognition [FL03]. To sustain this claim, we carried out prelimi-

nary experiments on the AR database which contains 4 facial expressions: neutral,

smile, anger and scream (c.f. Figure D.4). 131 images from 74 persons were used to

train a model for each of the 4 expressions. These models were trained in a similar

manner to the UBM in 8.4.1 up to a maximum of 4 Gpm. No attempt was made

to tune feature extraction or training parameters. Recognition was performed on a

set of 400 images from 50 persons, all different from the training ones. We obtained

a recognition rate of approximately 87%. Although this is far from perfect, these

results are encouraging and we believe that an improved performance could be ob-

tained by tuning parameters and by adding more training data.

Finally, we believe that PMLT could be applied to the retrieval of other types

of images. For instance, within the field of biometrics, we believe that the same

framework could be extended to the problem of automatic fingerprint recognition

[MMJP03]. Indeed, the fingerprint acquisition introduces deformations of the fin-

gerprint image that might change from one acquisition to another as they depend on

the exact contact point but also on the pressure of the finger on the sensing device.

Such elastic deformations may be modeled for instance with grid transformations.
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A

Distance Measures

Let x = [x1, ..., xD]T and y = [y1, ..., yD]T be two D-dimensional vectors. The L1,

L2 and cosine distances are defined as follows:

• L1 (city-block):

dL1
(x, y) =

D
∑

d=1

|xi − yi| (A.1)

• L2 (Euclidean squared):

dL2
(x, y) = ||x − y||2 =

D
∑

d=1

(xi − yi)
2 (A.2)

• cosine:

dcos(x, y) = 1 − xT y

||x||||y|| = 1 −
∑D

d=1 xiyi
√

∑D
d=1 x2

i

∑D
d=1 y2

i

(A.3)

We now consider distances which are specific to eigenfaces. Let λi = σ2
i be the

i-th eigenvalue corresponding to the i-th eigenvector and let u and v be the vectors

defined by ui = xi/σi and vi = yi/σi. Then the Mahalanobis-L1, -L2 and -cosine

distances are defined as follows [BBTD03]:

• Mahalanobis-L1:

dMahL1
(x, y) = dL1

(u, v) (A.4)
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• Mahalanobis-L2:

dMahL2
(x, y) = dL2

(u, v) (A.5)

• Mahalanobis-cosine:

dMahcos(x, y) = dcos(u, v) (A.6)

The “Moon” and “Yambor” distances, are defined as follows:

• Moon:

dMoon(x, y) =
D
∑

d=1

√

λi

λi + α2
xiyi (A.7)

where α is a constant.

• Yambor:

dY am(x, y) =
D
∑

d=1

1√
λi

xiyi (A.8)

We now consider a distance which has been specifically designed for Fisherfaces.

If λi is the i-th eigenvalue corresponding to the i-th eigenvector, then the following

soft distance was suggested [Zha99]:

• soft Fisherfaces distance:

dsoft(x, y) =
D
∑

d=1

λα
i (xi − yi)

2 , α ∈ [0, 1] (A.9)



B

Entropy and Divergence

In this appendix, we briefly review the definition of the entropy, the relative entropy

and the symmetric divergence. We then provide closed form solutions for these three

quantities in the case of Gaussian distributions. Finally, we review a very simple

approach to fuse two probability distributions which makes sense from an informa-

tion theoretical point of view.

The entropy of a discrete probability distribution p = {pi} is defined as [CT93]:

H(p) = −
∑

i

pi log pi (B.1)

If q = {qi} is also a discrete probability distribution, then the relative entropy also

referred to as Kullback-Leibler distance or divergence is defined as:

D(p||q) =
∑

i

pi log
pi

qi
(B.2)

For a discrete random variable, the relative entropy is always non-negative and is

equal to zero if and only if p = q. As D(p||q) 6= D(q||p) we introduce the symmetric

divergence:

D(p, q) = D(p||q) + D(q||p) =
∑

i

(pi − qi) log
pi

qi
(B.3)

Note that these formulas can be extended to the continuous case, simply by replacing

sums with integrals. Note however that the properties of the entropy and relative
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entropy are significantly different in the continuous case.

The Gaussian distribution is of particular interest to us. If p and q are Gaussian

with means µp and µq respectively and variances σ2
p and σ2

q respectively then we

have [Per00]:

H(p) =
1

2

[

1 + log(2πσ2
p)
]

(B.4)

D(p||q) =
1

2

[

σ2
p

σ2
q

− 1 + log

(

σ2
q

σ2
p

)

+
(µp − µq)

2

σ2
q

]

(B.5)

D(p, q) =
1

2

[

σ2
p

σ2
q

+
σ2

q

σ2
p

− 2 +

(

1

σ2
p

+
1

σ2
q

)

(µp − µq)
2

]

(B.6)

Now we will consider the following problem. Given two discrete probability

distributions pi and qi, how to “fuse” them into a unique distribution ri. A possible

solution is to choose ri that minimizes D(ri||pi) + D(ri||qi). Adding the Lagrange

multiplier η and using the constraint
∑

i ri = 1, we have to minimize the following

quantity:
∑

i

ri log
ri

pi
+
∑

i

ri log
ri

qi
+ η(1 −

∑

i

ri) (B.7)

Taking the partial derivative with respect to ri and equating to zero we obtain:

log ri =
1

2
log(piqi) +

η

2
− 1 (B.8)

Now summing over i we obtain:

ri =

√
piqi

∑

i

√
piqi

(B.9)



C

Convergence of the T-SSM

We will first show that σγH
i,j

2
and σγV

i,j

2
converge toward zero as the number of it-

erations increases and that σγH
i,j

2
/σγV

i,j

2
converges to one. We will then show that

µγH
i,j − µγV

i,j converges toward zero. In the following derivations, we will use the no-

tation u[n] to denote the n-th value of a sequence u.

If we start with a vertical pass, we have the following set of inequalities:

• from equation 4.43

σγV
i,j

2
[n] ≤ σαV

i,j
2
[n] (C.1)

• from equation 4.30 and 4.33:

σαV
i,j

2
[n] ≤ σbH

i,j
2
[n − 1] (C.2)

• from equation 4.27

σbH
i,j

2
[n − 1] ≤ σγH

i,j

2
[n − 1] (C.3)

• from equation 4.43 (translated to horizontal quantities):

σγH
i,j

2
[n − 1] ≤ σαH

i,j
2
[n − 1] (C.4)

• from equation 4.30 and 4.33 (translated to horizontal quantities):

σαH
i,j

2
[n − 1] ≤ σbV

i,j
2
[n − 1] (C.5)
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• from equation 4.27 (translated to horizontal quantities):

σbV
i,j

2
[n − 1] ≤ σγV

i,j

2
[n − 1] (C.6)

and thus σγV
i,j

2
decreases when the number of iterations n increases. Note that the

same can be said about σγH
i,j

2
, σαV

i,j
2
, σαH

i,j
2
, σbV

i,j
2

and σbH
i,j

2
. All these sequences

are decreasing and have a lower bound since they are positive. Thus they converge

toward a finite value. Moreover from the previous set of inequalities we deduce that

all these sequences converge toward the same limit λi,j . Now, using equation 4.27

we obtain:

λi,j =
λi,jσ

2
i,j

fi,j
2λi,j + σ2

i,j

(C.7)

which implies that λ2
i,jf

2
i,j = 0. If we exclude the pathological case where f 2

i,j = 0,

this is equivalent to λi,j = 0. We conclude that σγH
i,j

2
and σγV

i,j

2
converge toward

0. Moreover, using one more time equations 4.43, 4.30, 4.33 and 4.27, we obtain

respectively: σγH
i,j

2
[n]/σαH

i,j
2
[n] → 1, σαH

i,j
2
[n]/σbV

i,j
2
[n] → 1, and σbV

i,j
2
[n]/σγV

i,j

2
[n] → 1.

Thus we conclude that σγH
i,j

2
/σγV

i,j

2
converges to one.

To show that µγH
i,j − µγV

i,j converges toward zero, we rewrite this difference:

µγH
i,j [n]−µγV

i,j [n] = (µγH
i,j [n]−µαH

i,j [n]) + (µαH
i,j [n]−µbV

i,j [n]) + (µbV
i,j [n]−µγV

i,j [n]) (C.8)

We obtain the following set of limits:

• from equation 4.42 (translated to horizontal quantities) and knowing that

σαH
i,j

2
[n] → 0:

µγH
i,j [n] − µαH

i,j [n] → 0 (C.9)

• from equations 4.29 and 4.32 (translated to horizontal quantities) and knowing

that σbV
i,j

2
[n] → 0:

µbH
i,j [n] − µαV

i,j [n] → 0 (C.10)

• from equation 4.26 (translated to horizontal quantities) and knowing that

σγV
i,j

2
[n] → 0:

µbH
i,j [n] − µαV

i,j [n] → 0 (C.11)

and thus µγH
i,j − µγV

i,j converges toward zero.

It should be underlined that the convergence properties that we have just proved

are independent of the initialization of the horizontal and vertical priors.
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Face Databases

D.1 FERET

The Facial Recognition Technology (FERET) database [PMRR00] contains over

14,000 images of size 256 x 384 taken from 1,199 individuals. For each individual,

two frontal views were taken (FA and FB images) and a different facial expression

was requested for the second frontal image. For 200 individuals, a third frontal

image was taken with a different camera and different lighting (FC images) and a

set of images was collected at various aspects ranging from right lo left profile. For

some individuals, a second set of images was taken on a later date (duplicate sets).

D.2 Yale B

The Yale face database B (Yale B) [GBK01] contains 5,850 images of size 640 x 480

taken from 10 subjects. Some variation across pose was obtained by taking pictures

simultaneously with 9 cameras. Pose 0 is frontal, poses 1, 2 , 3 , 4 and 5 are about

12 degrees from the optical axis while poses 6, 7 and 8 are about 24 degrees. To

get wide illumination variations, the database was captured using a purpose-built

illumination rig with 64 strobes. The 64 images of a subject in a particular pose

were acquired in about 2 seconds, so there is only small change in head pose and

facial expression for those 64 images. An additional set of images was captured with

no strobe going off (ambient lighting).
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D.3 PIE

The CMU Pose Illumination Expression (PIE) database [SBB02] contains over 40,000

images of size 640 x 486 taken from 68 individuals. To obtain large variations across

pose, a set of 13 cameras was used. To obtain significant illumination variations,

a flash system similar to the one constructed at the Yale university was used. The

flash system consisted of 21 flashes. Since images were captured with and with-

out background lighting and since one picture was taken with ambient lighting,

21 × 2 + 1 = 43 different illumination conditions were obtained.

D.4 AR

The Alex Mart̀ınez-Robert Benavente (AR) face database [AR] contains over 4,000

images of size 768 x 576 taken from 126 subjects. Images feature frontal view

faces with different facial expressions (neutral, smile, anger, scream), illumination

conditions (left light on, right light on, both lights on) and occlusions (wearing sun

glasses, wearing a scarf). Each person participated in two sessions separated by two

weeks and the same set of pictures were taken in both sessions.
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure D.1: Sample images of the FERET face database: (a) Frontal image, (b)
alternative expression, (c) different camera and lighting, (d)-(g) rotation of the head
to the left of 15o, 25o, 40o and 60o respectively, (h)-(k) rotation of the head to the
right of 15o, 25o, 40o and 60o respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l)

Figure D.2: Sample images of the YALE B face database: (a)-(d) examples of
illumination variations for the frontal pose, (e)-(l) examples of pose variations for
the frontal illumination.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o) (p)

Figure D.3: Sample images of the PIE database: (a)-(e) different illumination condi-
tions with ambient lighting, (f)-(j) different illumination conditions without ambient
lighting and (k)-(p) different poses: (k) and (l) (cameras 05 and 29 respectively) ro-
tation of the head to the left or right of 22o approximately, (m) and (n) (cameras 37
and 11 respectively) rotation of the head to the left or right of 45o approximately,
(o) and (p) (cameras 07 and 09 respectively) rotation of the head up or down of 15o

approximately.
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure D.4: Sample images of the AR face database: (a) neutral expression, (b)
smile, (c) anger, (d) scream, (e) left light on, (f) right light on, (g) both lights on,
(h) wearing sun glasses (i) wearing sun glasses and left light on (j) wearing sun
glasses and right light on, (k) wearing scarf, (l) wearing scarf and left light on (m)
wearing scarf and right light on.
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200 BIBLIOGRAPHY

[PGM+03] P. Phillips, P. Grother, R. Micheals, D. Blackburn, E. Tabassi, and

M. Bone. Face recognition vendor test 2002: evaluation report. Tech-

nical report, 2003.

[Phi98] P. Phillips. Matching pursuit filters applied to face identification.

IEEE Trans. on Image Processing (IP), 7(8):1150–1164, Aug 1998.

[Phi99] P. Phillips. Support vector machines applied to face recognition.

In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural

Information Processing Systems, pages 803–809, 1999.

[PMRR00] P. Phillips, H. Moon, S. Rizvi, and P. Rauss. The FERET evaluation

methodology for face recognition algorithms. IEEE Trans. on Pattern

Analysis and Machine Intelligence (PAMI), 22(10):1090–1104, Oct

2000.

[PMS94] A. Pentland, B. Moghaddam, and T. Starner. View-based and modu-

lar eigenspaces for face recognition. IEEE Conf. on Computer Vision

and Pattern Recognition (CVPR), pages 84–91, June 1994.

[QSS00] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics.

Springer-Verlag, 2000.

[Rab89] L. Rabiner. A tutorial on hidden Markov models and selected appli-

cations. Proc. of the IEEE, 77(2):257–286, Feb 1989.

[Rey95] D. Reynolds. Speaker identification and verification using gaussian

mixture speaker models. Speech Communication, 17:91–108, 1995.

[Rey97] D. Reynolds. Comparison of background normalization methods for

text-independent speaker verification. In Proc. of the ISCA European

Conf. on Speech Communication and Technology (EUROSPEECH),

volume 2, pages 963–966, 1997.

[RH01] D. Reynolds and L. Heck. Speaker verification: from research to

reality. In Proc. of the IEEE Int. Conf. on Acoustics Speech and

Signal Processing (ICASSP): Tutorial, 2001.

[RP96] A. Rosenberg and S. Parthasarathy. Speaker background models for

connected digit password speaker verification. In Proc. of the IEEE

Int. Conf. on Acoustics Speech and Signal Processing (ICASSP), vol-

ume 1, pages 81–84, 1996.

[RQD00] D. Reynolds, T. Quatieri, and R. Dunn. Speaker verification using

adapted gaussian mixture models. Digital Signal Processing, 10:19–

41, 2000.



BIBLIOGRAPHY 201

[Sam94] F. S. Samaria. Face recognition using hidden Markov models. PhD

thesis, University of Cambridge, Cambridge, UK, 1994.

[San98] A. Sankar. Experiments with a Gaussian merging-splitting algo-

rithm for HMM training for speech recognition. In Proc. of the 1997

DARPA Broadcast News Transcription and Understanding Work-

shop, pages 99–104, 1998.

[San02] C. Sanderson. Automatic Person Verification Using Speech and Face

Information. PhD thesis, Griffith University, School of Microelec-

tronic Engineering, 2002.

[SBB02] T. Sim, S. Baker, and M. Bsat. The CMU pose, illumination, and

expression (PIE) database. In Proc. of the IEEE Int. Conf. on Au-

tomatic Face and Gesture Recognition (AFGR), 2002.

[SIE] Siemens automotive, http://media.siemensauto.com.

[SK03] M. Savvides and V. Kumar. Illumination normalization using loga-

rithm transforms for face authentication. In Proc. of the IAPR Audio-

and Video-Based Biometric Person Authentication (AVBPA), pages

549–556, 2003.

[SK04] M. Sadeghi and J. Kittler. Decision making in the LDA space: gen-

eralized gradient direction metric. In Proc. of the IEEE Int. Conf.

on Automatic Face and Gesture Recognition (AFGR), pages 248–253,

2004.

[SL97] K. Shinoda and C.-H. Lee. Structural MAP speaker adaptation using

hierarchical priors. In Proc. of the IEEE Workshop on Automatic

Speech Recognition and Understanding (ASRU), pages 381–388, 1997.

[SLK99] N. Shazeer, M. Littman, and G. Keim. Solving crossword puzzles as

probabilistic constraint satisfaction. In Proc. of the National Conf.

on Articial Intelligence, pages 156–162, 1999.

[SP02] C. Sanderson and K. Paliwal. Likelihood normalization for face au-

thentication in variable recording conditions. In proc. of the IEEE

Int. Conf. on Image Processing (ICIP), volume 1, pages 301–304,

2002.

[SR03] R. Singh and B. Raj. Tracking noise via dynamical systems with a

continuum of states. In Proc. of the IEEE Int. Conf. on Acoustics

Speech and Signal Processing (ICASSP), volume 1, pages 396–399,

2003.



202 BIBLIOGRAPHY

[SRSC01] D. Sturim, D. Reynolds, E. Singer, and J. Campbell. Speaker in-

dexing in large audio databases using anchor models. In Proc.

of the IEEE Int. Conf. on Acoustics Speech and Signal Processing

(ICASSP), volume 1, pages 429–432, 2001.

[Sto84] T. Stonham. Aspect of Face Processing, chapter Practical Face

Recognition and Verification with WISARD, pages 426–441. Dor-

drecht:Nijhoff, 1984.

[SW96] D. Swets and J. Weng. Using discriminant eigenfeatures for image

retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence

(PAMI), 18(8):831–836, Aug 1996.

[TC01] T. Tokuyasu and P. Chou. Turbo recognition: a statistical approach

to layout analysis. In Proc. of the SPIE Electronic Imaging Conf. on

Document Recognition and Retrieval, volume 4307, pages 123–129,

2001.

[TC02] D. S. Turaga and T. Chen. Face recognition using mixtures of prin-

cipal components. Proc. of the IEEE Int. Conf. on Image Processing

(ICIP), 2:101–104, 2002.

[TKH00] A. H. Sayed T. Kailath and B. Hassibi. Linear estimation. Prentice

Hall, 2000.

[TKP01] A. Tefas, C. Kotropoulos, and I. Pitas. Using support vector machines

to enhance the performance of elastic graph matching for frontal face

recognition. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence (PAMI), 23(7):735–746, July 2001.

[Tok01] T. Tokuyasu. Turbo Recognition: an Approach to Decoding page Lay-

out. PhD thesis, University of California, Berkeley, 2001.

[TP91] M. Turk and A. Pentland. Face recognition using eigenfaces. In

Proc. of the IEEE Conf. on Computer Vision and Pattern Recogni-

tion (CVPR), pages 586–591, 1991.

[TTWF03] Y.-A. Tian, T.-N. Tan, Y.-H. Wang, and Y.-C. Fang. Do singular

values contain adequate information for face recognition? Pattern

Recognition, 36:649–655, 2003.

[Vap95] V. Vapnik. The nature of statistical learning theory. Springer, New

York, 1995.



BIBLIOGRAPHY 203

[VDR99] M. Vissac, J.-L. Dugelay, and K. Rose. A novel indexing approach

for multimedia image databases. In IEEE Workshop on Multimedia

Signal Processing (MMSP), pages 97–102, 1999.

[Way00a] J. Wayman. A definition of ”biometrics”. In J. Wayman, editor,

National Biometric Test Center Collected Works 1997-2000, pages

21–23. Aug 2000.

[Way00b] J. Wayman. Fundamentals of biometric authentication technolo-

gies. In J. Wayman, editor, National Biometric Test Center Collected

Works 1997-2000, pages 1–19. Aug 2000.

[WFKvdM97] L. Wiskott, J. Fellous, N. Krüger, and C. von der Malsburg. Face
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