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Département Communications Multimédias
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Abstract

The work presented in this paper aims at reducing the semantic gap between

low level video features and semantic video contents. The proposed method for

finding associations between segmented frame region characteristics relies on the

strength of Latent Semantic Analysis (LSA). Our previous experiments [1], using

color histograms and Gabor features, have rapidly shown the potential of this ap-

proach but also uncovered some of its limitation. The use of structural information

is necessary, yet rarely employed for such a task. In this paper we address two

important issues. The first is to verify that using structural information does in-

deed improve information retrieval performances, while the second concerns the

manner in which this additional information is integrated within the framework.

Here, we propose two methods using the structural information contained in object

parts topological arrangement. The first adds structural constraints indirectly to the

LSA during the preprocessing of the video, while the other includes the structure

directly within the LSA. Finally, our retrieval results demonstrate that when the

structure is added directly to the LSA the performance gain of combining visual

(low level) and structural information is convincing.
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1 Introduction

Multimedia digital documents are readily available, either through the Internet, private

archives or digital video broadcast. Traditional text based methodologies for annota-

tion and retrieval have shown their limit and need to be enhanced with content based

analysis tools. Research aimed at providing such tools have been very active over re-

cent years [2]. Whereas most of these approaches focus on frame or shot retrieval, we

propose a framework for effective retrieval of semantic video objects. By video object

we mean a semantically meaningful spatio-temporal entity in a video.

Most traditional retrieval methods fail to overcome two well known problems called

synonymy and polysemy, as they exist in natural language. Synonymy causes different

words describing the same object, whereas polysemy allows a word to refer to more

than one object. Latent Semantic Analysis (LSA) provides a way to weaken those two

problems [3]. LSA has been primarily used in the field of natural language understand-

ing, but has recently been applied to domains such as source code analysis or computer

vision. Latent Semantic Analysis has also provided very promising results in finding

the semantic meaning of multimedia documents [1, 4, 5]. LSA is based on a Singular

Value Decomposition (SVD) on a word by context matrix, containing the frequencies

of occurrence of words in each context. One of the limitations of the LSA is that it does

not take into account word order, which means it completely lacks the syntax of words.

The analysis of text, using syntactical structure combined with LSA already has been

studied [6, 7] and has shown improved results. For our object retrieval task, the LSA

is computed over a visual dictionary where region characteristics, either structurally

enhanced or not, correspond to words.

The most common representation of visual content in retrieval system relies on

global low level features such as color histograms, texture descriptors or feature points,

to name only a few [8, 9, 10, 11]. These techniques in their basic form are not suited

for object representation as they capture information from the entire image, merging

characteristics of both the object and its surrounding, in other word the object descrip-

tion and its surrounding environment become merged. A solution is to segment the



image in regions with homogeneous properties and use a set of low level features of

each region as global representation. In such a situation, an object is then referred

to as a set of regions within the entire set composing the image. Despite the obvi-

ous improvement over the global approach, region based methods still lack important

characteristics in order to uniquely define objects. Indeed it is possible to find sets of

regions with similar low level features yet depicting very different content. The use

of relational constraints, imposed by the region adjacency of the image itself, provides

a richer and more discriminative representation of video object. There has only been

limited publications employing attributed relational graph to describe and index into

large collection of visual data [12, 13, 14, 15] due to the increased computational com-

plexity introduced by such approaches. Here we will show that it is possible to achieve

significant performance improvement using structural constraints without increasing

computational complexity.

This paper is organized as follows. The concept of adding structure to LSA and a

short theoretical background on the algorithms used, are presented in Section 2. Section

3 provides the experimental results looking at several different aspects of the object

retrieval task. Then it focuses on a larger scale evaluation on Video-TREC news video

sequences. The conclusion and future directions are discussed in Section 4.

2 Enhancing Latent Semantic Analysis with Structural

Information

As opposed to text documents there is no predefined dictionary for multimedia data.

It is therefore necessary to create one to analyze the content of multimedia documents

using the concept of Latent Semantic Analysis [3]. Here, we propose three distinct

approaches for the construction of visual dictionaries. In the non-structural approach,

each frame region of the video is assigned to a class based on its properties. This

class corresponds to a ”visual” word and the set of all classes is our visual dictionary.

In the case where we indirectly add structure, the clustering process which builds the

different classes (words) takes structural constraints into account. Finally, in the third



case where structure is added directly to the LSA, pairs of adjacent regions classes (as

in the non-structural approach) are used to define words of the structural dictionary.

We shall now detail the steps leading to three different dictionary constructions.

2.1 Video preprocessing

We consider a video V as a finite set of frames {F1, . . . ,Fn}, where the preprocess-

ing is performed on key-frames representing the video content. This implies that the

video is segmented into shots where the most representative frame is selected [16, 17].

Key-frames of the video V are segmented in regions Ri using the method proposed by

Felzenszwalb and Huttenlocher in [18]. This algorithm was selected for its perceived

computation requirement and segmentation quality ratio. Each segmented region Ri

is characterized by its attributes, feature vectors that contain visual information about

the region such as color, texture, size or spatial information. For this paper, the fea-

ture vector is limited to a 64 bin HSV color histogram and 24 Gabor energies of the

corresponding region. Other attributes could indeed lead to better results, however for

the scope of this paper we are mainly interested in identifying whether structural con-

straints provide performance improvements. The described method is applied to each

feature, then similarity scores are merged to obtain a single value as explained in sec-

tion (2.4). The methodology presented here may be extended to deal any number of

low-level features with very little efforts.

2.2 Building the basic visual dictionary

The structure-less dictionary is constructed by grouping regions with similar feature

vectors together as illustrated in figure (1). There are many ways to do so [19]. Here

the k-means clustering algorithm [19] is employed with the Euclidean distance as sim-

ilarity measure. As a result each region Ri is mapped to a cluster Cl (or class), repre-

sented by its cluster centroid. Thanks to the k-means clustering parameter k controlling

the number of clusters, the dictionary size may be adjusted to our needs. In this case,

each cluster represents a word for the LSA.



Figure 1: Building the basic dictionary.

2.3 Incorporating structural information

In an attempt to increase the influence of local visual information, we propose to in-

clude for each region its surrounding content. For this purpose a neighborhood graph is

constructed from the segmented regions for each frame. Nodes in the graph represent

segmented regions and are attributed with a vector H. Vertices between two nodes of

the graph correspond to neighbor regions. We propose to define two types of neighbor-

hood: the first obtained from adjacent neighbors, the second obtained from k-nearest

neighbors. Adjacent neighbors is the natural way to create a neighborhood, two regions

are said adjacent neighbors if they have at least one common boundary. However ad-

jacent neighbors are somewhat sensitive to segmentation fluctuation. From one frame

to another similar objects may have different adjacent regions due to illumination or

segmentation initialization changes. In order to reduce the effect of this issue on the

structural representation, we also use k-nearest neighbors defined as follows; A region

Ri is a neighbor of R j only if the distance between the barycenter of Ri and R j is among

the k smallest. This kind of neighborhood is more robust to the segmentation [13], but

is only optimal for rather circular regions. Indeed, in the case of region with com-

plex shapes using the barycenter may lead to the creation of a graph edge between two

regions which are not visually really neighbors.

A segmented frame can therefore be represented as a graph G = (V,E) consisting

of a set of vertices V = {v1,v2, . . . ,vn} and edges E = {e1,e2, . . . ,em}, where the ver-

tices represent the cluster number labeled regions and the edges the connectivity of

the regions. For the discussion below, we also introduce φQ
i =

{

h|(i,h) ∈ EQ
}

which

denotes all the nodes connected to a given node i in a graph Q. As an illustration,



Figure 2(b) shows a frame containing an object segmented into regions with is corre-

sponding relational graph based on adjacent neighbors, overlaid.

(a) (b)

Figure 2: (a) The shark object and (b) its corresponding graph of adjacent regions.

2.3.1 Indirectly adding structure when building the dictionary

A first approach to add structural information when using LSA is to include the struc-

tural constraints within the clustering process itself. Here we are interested in clustering

regions according to their attributes as well as the attributes of the neighbor regions. To

this end, we used a clustering algorithm similar to k-medoid with a specific distance

function D(RQ
i ,RD

j ), equation (1). This distance function between regions RQ
i of graph

Q and RD
j of graph D take the local structure into account.

D(RQ
i ,RD

j ) = L2(Hi,H j)+
1

‖φQ
i ‖

∑
k∈φQ

l

min
l∈φD

j

L2(Hk,Hl) (1)

where L2(Hi,H j) is the Euclidian distance between histograms Hi and H j. In order to

deal with the different connectivity levels of nodes, the node with the least number of

neighbors is φQ
l . This insures that all neighbor from φQ

l can be mapped to nodes of φD
j .

Note that this also allows multiple mappings, which means that several neighbors of

one node i can be mapped to the same neighbor of the node l.

As a result of the clustering described above, we get k clusters, which are built



upon structural constraints and visual features. Each region Ri belongs to one cluster

Cl . Each cluster medoid represents a visual word for the Latent Semantic Analysis.

Indeed, in this case we decided to perform clustering based on medoid element instead

of the mean element. The reason for this choice was dictated by the fact that it is quite

difficult to compute the characteristics of the average element of a cluster.

2.3.2 Adding structural constraints directly to the words of the dictionary

Another alternative to the construction of a visual dictionary containing information

about the structure is proposed: the Relational LSA. Every possible unordered pair of

clusters are considered as a visual wordW , e.g. C3C7 ≡C7C3, as illustrated in figure (3).

Note that for example the cluster pair C1C1 is also a word of the dictionary, since two

neighbor regions can fall into the same cluster Cl despite having segmented them into

different regions before.

Dν = {W1, . . . ,Wν}

(C1C1) 'W1,(C1C2) 'W2, . . . ,(Ck Ck) 'Wν

The size ν of the dictionary Dν is also controlled by the clustering parameter k but this

time indirectly.

ν =
k · (k +1)

2
(2)

To be able to build these pairs of clusters (words), each region is labeled with the

cluster number it belongs to (e.g. C14). If two regions are adjacent, they are linked in

an abstract point of view, which results in a graph Gi as described previously. Every

Graph Gi is described by its adjacency matrix. The matrix is a square matrix (n× n)

with both, rows and columns, representing the vertices from v1 to vn in an ascending

order. The cell (i, j) contains the number of how many times vertex vi is connected to

vertex v j. The matrices are symmetric to theirs diagonals.

The major drawback of this method is the creation of a dictionary with too many

words, i.e. pairs of clusters. For example, let 1,000 be the number of clusters, the



Figure 3: Building the relational dictionary.

Pairs % empty Dictionary size without loss
k-nearest 100 clusters 5050 0.1554 4265
k-nearest 500 clusters 125250 0.7298 33847
k-nearest 1000 clusters 500500 0.8978 51161
adjacent 100 clusters 5050 0.23 3872
adjacent 500 clusters 125250 0.78 26707
adjacent 1000 clusters 500500 0.92 38935

Table 1: Minimum size of structural dictionaries without loss. Given values are
dependent of the video and were computed on Docon’s production donation to the
MPEG-7 dataset.

relational dictionary reaches the size of 500,500 words. However, many words do not

exist as shown in table (1) or are very rare as shown in figure (4). Thus, to keep the

dictionary size low we propose to remove words that occur rarely. Given the desired

number of words ν′, we select pairs that occurs the most until ν′ is reached. By this

way, we expect to keep the most relevant pairs.

In this configuration, the LSA is also used to identify which structural information

should be favored in order to obtain good generalization results. Moreover, we be-

lieve that this should improve the robustness of the method to segmentation differences

among multiple views of the same object (leading to slightly different graphs).



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Frequency

N
um

be
r o

f c
lu

st
er

s

(a) 100 clusters ⇒ dictionary size of 5050
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(b) 1000 clusters ⇒ dictionary size of 500500

Figure 4: Occurrence of cluster couples: A bin represents the number of couples
that occur at least x times. Many couples never occur or very rarely when the number
of clusters is high. Given values are dependent of the video and were computed on
Docon’s production donation to the MPEG-7 dataset.

2.4 Latent Semantic Analysis

The LSA describes the semantic content of a context by mapping words (within this

context) onto a semantic space. Singular Value Decomposition (SVD) is used to create

such a semantic space. A co-occurrence matrix A containing words (rows) and contexts

(columns) is built. The value of a cell ai j of A contains the number of occurrence of the

word i in the context j. Then, SVD is used to decompose the matrix A (of size M×N,

M words and N contexts) into three separate matrices.

A = USVT (3)

The matrix U is of size M×L, the matrix S is of dimension L×L and the matrix V is

N ×L. U and V are unitary matrices, thus UTU = VTV = IL. S is a diagonal matrix of

size L = min(M,N) with singular values σ1 to σL, where

σ1 ≥ σ2 ≥ . . . ≥ σL S ≈ diag(σ1,σ2, . . . ,σL)

A can be approximated by reducing the size of S to some dimensionality of k×k, where

σ1,σ2, . . . ,σk are the k highest singular values.



Â = UkSkVT
k (4)

By doing a reduction in dimensionality from L to k, the sizes of the matrices U and

V have to be changed to M× k and respectively N × k. Thus, k is the dimension of the

resulting semantic space. To measure the result of the query, the cosine measure (sim)

is used. The query vector q contains the words describing the object, in a particular

frame where it appears.

qTÂ = qTUkSkVT
k = (qTUk)(SkVT

k ) (5)

Let pq = qTUk and pj to be the j-th context (frame) of (SkVT
k )

sim(pj,q) =
pq ·pj

‖pq‖ · ‖pj‖
(6)

The number of singular values kept k drives the LSA performance. On one hand

if too many factors are kept, the noise will remain and the detection of synonyms and

the polysemy of visual terms will fail. On the other hand if too few factors are kept,

important information will be lost degrading performances. Unfortunately no solution

has yet been found and only experiments allow to find the appropriate factor number.

When two dictionaries or more are used, for example one containing color terms

through 64 bins HSV histograms and the other containing texture terms through 24

Gabor energies. The occurrence matrix A is build for each feature type. The LSA is

then computed on each matrix. Similarity measures are finally independently computed

for each feature type and then combined as follows:

sim(q,q′) = wc × simcolor(q,q′)+wt × simtexture(q,q′) (7)

For simplicity wc = wt = 1 knowing that the appropriate selection of weights can be

included in a training algorithm [20] for classification or a relevance feedback loop for

information retrieval.



3 Experimental Results

Our proposed approaches to model a video shot thanks to latent semantic indexing

are evaluated on two different tasks. First the system performance is measured in the

framework of object retrieval on a set of cartoons (approximatively 10 minutes of du-

ration) from the MPEG-7 data set. Then, its is evaluated in the context of Video-TREC

feature extraction on full frames. Indeed, it would be interesting to perform the evalu-

ation of both tasks on the same dataset, and more particularly the Video-TREC one.

However, the ground truth available for Video-TREC does not feature object level

annotations. Therefore, and in order to minimize the annotation effort we opted for

cartoon videos.

3.1 Object retrieval

The object retrieval evaluation is conducted on Docon’s production donation to the

MPEG-7 dataset. Since the temporal segmentation is not available for this sequence,

key-frames are selected every one second. A ground truth has then been manually es-

tablished to measure the performance of the object retrieval task and 7 different objects

were selected and annotated in 950 frames, see figure (5) for an illustration. The query

objects are chosen as diverse as possible; some are rather simple with respect to the

number of regions they consist of, while others are more complex. There are 17 to 108

possible queries per object for an overall total of 350 queries. The chosen granularity

of the segmentation results in an average of about 35 regions per frame. Thus, the

graphs built remain reasonably small (in term of number of nodes per graph), whereas

the number of graphs (one per frame) is quite large.

Once the query is formed, the algorithm starts searching for frames which contain

the query object. The query results are ordered so that the frame which most likely con-

tains the query object (regarding the cosine measure mc) comes first. The performance

of our retrieval system is evaluated using either the standard precision vs. recall values

or the mean average precision value. The mean average precision value for each object

is defined as follows: we take the average precision value obtained after each relevant



Figure 5: The 7 query objects. Girl, Cactus, Turtle, Shark, Dolphin, Dog and Coach

frame has been retrieved and take the mean value, over all frames retrieved. Unless

stated otherwise, plots show performances of the retrieval task for the best number of

factors of the LSA.

3.1.1 Impact of the number of clusters

To show the impact of the number of clusters chosen during video preprocessing on

performances, we built several dictionaries containing non-structural visual words (as

described in Section 2.2). Figure 6(a) shows for 100, 500, 1000, 2000 and 5000 clusters

the best performances per object and the mean performances over all possible queries.

Figure 6(b) shows the best precision and retrieval curves per number of clusters. They

reveal the importance of the dictionary size on performances. A too small number

of cluster removes differences while a number of cluster too high hides similarities.

Indeed, in extreme cases, all regions are mapped to a single cluster or all regions are
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Figure 6: Impact of the number of clusters on performances. A number of cluster
too small removes differences while a number of cluster too high hides similarities.

mapped to different clusters. However, the range that provides good performances is

large enough between 500 and 2000 clusters, hence the number of cluster can be chosen

empirically after few experiments.

3.1.2 Comparing indirectly added structure with the non-structural approach

In the following experiments, we compare the retrieval results either using a structure-

less dictionary and a dictionary where we added the structural information within the

clustering process as explained in Section 2.3.1. In both methods we use a cluster size

of 528 (which also results in a dictionary size of 528) and we select k (the number of

factors kept in LSA) so that we get best results (in this case k=25). Figure 7 shows the

precision at given recall values for both cases. The curves represent an average over 4

objects. It shows that adding structural information to the clustering does not improve

the non-structural approach, it even is doing slightly worse for recall values above 0.5.

Based on this finding, we will not evaluate this approach further.
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Figure 7: Retrieval performance for 4 objects queries with indirectly added structure
and without.

3.1.3 Impact of LSA and the number of cluster and pairs

As opposed to the basic approach, the proposed Relational LSA approach does not have

a dictionary size equal to the number of clusters (section 2.3.2). Both parameters (num-

ber of clusters and dictionary size) have a different effect on performances (figure 8).

First, a high number of clusters leads to poor performances comparing to a smaller

number of clusters. Statistically pairs occur less often than singletons, thus similar

pairs are more seldom. Secondly, a high number of clusters implies that a high number

of pairs are removed from the dictionary, leading to a higher loss of information. For

now, it is difficult to conclude which of the two effects has the strongest impact on per-

formances. The experiments conducted on the larger Video-TREC dataset will provide

us with an answer.

Figure (9) shows the effect of the number of factors kept for the LSA on retrieval

performance. For this purpose, performances of the system are computed with respect

to different values of the projection size. It is important to notice that even if no method

exists to find the optimal number of factors used for the projection (section (2.4)) we

can approximatively select an empiric value after few experiments since the maximum

is obtained in a stable area.



Girl Cactus Turtle Shark Dolphin Dog Coach all
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 M
ea

n 
P

re
ci

si
on

(a) k-nearest neighbors

Girl Cactus Turtle Shark Dolphin Dog Coach all
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 M
ea

n 
P

re
ci

si
on

(b) adjacent neighbors

Figure 8: Impact of the number of clusters and the dictionary size on retrieval
performances. For cluster sizes of 100, 500 and 1000 we select 100, 500, 1000, 2000
or 5000 words. Approaches using structure requires an initial number of cluster small
enough to avoid hiding similarities.
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Figure 9: Impact of the number of factors of the LSA. Performances are stable at
their maximum when 50% of factors are kept.

3.1.4 Comparing directly structure enhanced words with non-structural words

In this section, the proposed Relational LSA approach is compared to the standard

LSA. For a cluster size of 100, we compare two different ways of defining the visual

words used for LSA. In the non-structural case, each cluster label represents one word,

leading to a dictionary size 100. In the structural case, every possible pair of cluster

label is defining a word (as explained in Section 2.3.2), so that the number of words

in the dictionary is 5050. In this case, the dictionary size can be reduced to 5000
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Figure 10: Retrieval performances of proposed approaches On complex objects
(namely Girl and Coach), methods using structure provide the best performances.

without loss of information by removing non occuring pairs. Figure (10) shows the

results for both approaches upon the two types of neighborhood (adjacent and k-nearest

neighbors). Both methods using structure outperform the basic approach with a major

improvement for a fixed number of clusters (100).

Now if we consider the best parameters, i.e.: the number of clusters and the dictio-

nary size, for each method, results are slightly different. The mean results on average

over all considered objects (350 queries) show that the basic approach with 2000 words

does better than others. However, a closer look at performances on individual objects,

shows that for complex objects (such as Girl and Coach) the Relational LSA does better

regardless of the type of structure employed. In the contrary, on simple objects (such as

the Shark, Dolphin and Dog) the basic method achieves the best retrieval results. This

finding is rather coherent with our model. Indeed simple objects have very few regions

and thus pairs. The extreme case were the object is composed of one single region only

is a good example of query where neighborhood information is of little or no use. Ad-

ditionally, as the number of object regions increases more pairs are available. In a way,

constraints are relaxed, thus complex objects favor the used of relational information.

3.2 Video-TREC feature extraction

Our system is also evaluated in the context of Video-TREC [2]. One of the task at hand

is to detect the semantic content of video shots. The evaluation requires annotated

data. In June 2003, Video-TREC has launched a collaborative effort to annotate video



sequences in order to build a labeled reference database. The database is composed

of about 63 hours of news videos that are segmented into shots. These shots were

annotated with items in a list of 133 labels which root concepts are the event taking

place, the context of the scene and objects involved. The tool described in [21] was

used for this time-consuming task. For the purpose of this paper, we have selected 10

features among those 133 items to evaluate the performances of proposed approaches:

standing person, basketball, weather news, flower, cityscape and news person. Both

simple and complex semantic features were retained to evaluate our system. We used

28,000 shots for the training set and 18,000 for the test set. For each feature, test shots

are ordered with respect to their detection score value. Next the average precision at

2,000 shots is computed to characterize the performance of the system for each feature.

In [22, 23], we have proposed several approaches to estimate shot semantic features and

compute their detection score. The k-nearest neighbors classifier on LSA features gave

better performances for the semantic classification task than Gaussian mixture models

and neural nets. Strong of this result we employ the k-nearest neighbors classifier to

estimate the semantic content of shots.

Let Ns be the neighborhood of a shot s in the training set L, i.e. the k-nearest

neighbors of s in the training set, and yi ∈ {0,1}l the semantic value of the neighbor i.

The detection score is a vector defined as:

dL(s) = ∑
Ns

sim(s,ni)∗ yni (8)

We experimented several forms of the estimator: we normalized by ∑Ns sim(s,ni) or

used yi ∈ {−1,1}l and equation (8) gave the best performances. Indeed we are com-

puting a detection score to order shots. The lack of normalization favors shots that have

really close neighbors, and thus shots for which the estimation is the most reliable.

Due to computation requirements experiments are not as extensive as on Docon’s

production donation to the MPEG-7 dataset. Moreover the dictionary size is limited to

2,000 words. Figure (11) shows the average precision obtained for each concept. Like

in previous experiments on cartoons, Relational LSA performances decrease when the



number of cluster increase. However this is not the case for the concept weather news

that occurs frequently in the dataset. This suggests that the truncation of the dictionary

as presented in section (2.3.2) has an important impact on performances that is stronger

than the effect of the dictionary size. Therefore, it appears to be better to design the

system with a small number of clusters to limit the side effects of the truncation. The

loss of information during the quantification process is then compensated by the use of

the neighborhood. This is observed on the presented figure since a performance gain is

perceived for many concepts.
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Figure 11: Video-TREC feature detection.

4 Conclusion And Future Work

In this paper we have presented two methods for enhancing a LSA based video object

retrieval system with structural constraints (either direct or indirect) obtained from the

object visual properties. The methods were compared to a similar method [1] which

did not make use of the relational information between adjacent regions. Our results

show the importance of structural constraints for region based object representation.

This is demonstrated in the case where the structure is added directly in building the

words, an approach we refer to as Relational LSA, where substantial performance in-

crease (over 5%) is achieved when a common number of region categories is used.

We have seen that the structure is of main importance when dealing with sophisticated

objects in which case the presented method outperforms the basic approach by 10%.

Further experiments on the task of feature detection on TV news videos have shown



the beneficial influence of the structure upon retrieval accuracy.

In this paper, we have seen how the relational LSA was able to improve perfor-

mances for complex objects. We currently looking at a way to combine several ap-

proaches to obtain the best results regardless of the complexity of the query.
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