
Guidelines for the Specification of Managed Object Behaviors with TIMS 1

Guidelines for the Specification of Managed
Object Behaviors with TIMS

Sandro Mazziotta, Dominique Sidou

Institut Eurecom, 2229 rte des Cretes, BP.193, 06904 Sophia Antipolis CEDEX FRANCE.
email : {mazziott | sidou}@eurecom.fr

1 Introduction

The deficiencies of TMN Information Models in regard to behavior aspects have ju-
stified the need 1/ for better behavior specifications and 2/ for validation frameworks
and tools. In effect, GDMO/ASN.1 standards used to describe Information Models
are not satisfactory because :

• behaviors are given in unstructured prose.

• behaviors are limited within Managed Object Class (MOC) boundaries.

This results as unclear, often ambiguous and incomplete behavior specifications
which might lead to non-interworking TMN-systems components (e.g. managers,
agents). TIMS1 approach tries to define a framework and supporting tools to achieve
better behavior specifications for TMN systems. For that purpose, a Behavior Lan-
guage (BL) and its operational semantic has been designed. They are both the main
consideration of this paper. The initial Static Information Model (GDMO/ASN.1) ex-
tended by BL specifications are then plugged in a tool: the “TIMS toolkit” which pro-
vides a prototype of the TMN system. For more information on the toolkit, the reader
should refer to [1].

The problem of ambiguous formalisation in prose is solved by providing a formal
specification of Managed Objects behaviors. There are currently several formalisms
proposed by the Network Management bodies. Where TIMS approach is particular, is
in the way to solve the second problem (i.e. limitations within MOC boundaries).

This problem is solved through the use of a relationship model. That means that
with such model there exist relationships access facilities for a given Managed Ob-
ject. The specifier should not consider its TMN system (to be emulated) as a tree
(MIB) but he should rather consider a graph where there exist two kinds of nodes,
Managed Objects and Relationship Objects. Rather than proposing a notation for re-
lationship modelling, it has been decided to support the General Relationship Model
(GRM).

The main objective of TIMS is to provide a rapid prototype of the TMN system.
The chosen approach of the project is to simulate the system thanks to executable be-
haviors of object reacting to pertinent test-cases.

1. This work was done in the context of the TIMS project. TIMS stands for TMN-based Informa
tion Model Simulator. This project is a collaboration between Eur ecom Institute and Swiss Te
lecom PTT. It issupported by Swiss Telecom PTT, project F E-288.

Sandro Mazziotta, Dominique Sidou2

Another interesting feature of the BL is the use of assertions (pre and post-condi-
tions). This provides a simple and efficient way to ensure the correctness of the exe-
cutions. Assertions contribute to better specification. That is why they are clearly se-
parated from the pure simulation aspects.

This paper explains precisely how to specify behaviors with BL. The envisionned
result is to provide to the reader guidelines for the specification of Managed Objects
behaviors with TIMS. The next section of the paper presents the TIMS behavior for-
malisation concepts. First, TIMS behaviors are explained. Then, combined with sim-
ple examples, the BL and its operational semantic are explained. Rather than enume-
rating the different features, a tutorial approach is adopted.

2 TIMS Behavior Formalisation Concepts

2.1 Specifying Simple Behaviors

Basically a behavior can be viewed as a piece of code that is executed when a given
message is received by the system. A message is any operation that occurs at an inter-
face of an object. For the following of the explanation this particular message is iden-
tified as the trigger. In the piece of code describing a behavior new messages can be
sent to the system which can be in their turn triggers for other defined behaviors.

All behaviors that will be presented in this section are first presented in informal
prose. Then, the second step is to translate this prose to a pseudo formal notation ba-
sed on relationships where the participating roles are identified. The last step that will
be presented in section is to translate behaviors from the pseudo formal notation to
BL executable behaviors. A trivial example of behavior is: simple-beh is “If object A
receives operation Op, then operation Op’ is executed on object B”.

In order to support behavior simple-beh, one needs to define a relationship class
“Rel” with two roles “r1” and “r2” that participate in this relationship following Fi-
gure 1. For that purpose, the prose should be decomposed in two parts, the test part
and the effect part. There is an implicit causality relationship between the test part and
the effect part. This causality is reflected in TIMS BL by expressing the test and effect
parts in two different clauses: the guard and the body. The test condition that enables
the execution of the effect part is put in the guard clause while the effect part in put in
the body part.

Following the previous conventions behavior can be now expressed:

<LABEL : “beh-simple”,
 GUARD : “object A receives operation Op”,
 BODY : “operation Op’ is executed on object B”>

If the relationship model is applied, the behavior becomes:

<LABEL : “beh-simple”,
 REL : “Rel”,
 GUARD : “role r1 receives operation Op”,
 BODY : “operation Op’ is executed on role r2”>

Guidelines for the Specification of Managed Object Behaviors with TIMS 3

A more formal notation of behavior other-simple-beh is:

<LABEL : “other-simple-beh”,
REL : “Rel”,
GUARD : “role r1 reaches state S”,
BODY : “operation Op’ is executed on role r2”>

2.2 Specifying Behaviors with Assertions

An interesting feature of the BL is to provide a way to verify the correctness of be-
havior executions. This is done thanks to assertions checked before (pre) and after
(post) the execution of the behavior bodies. Note that assertions are totally indepen-
dent of the notion of guard since when an assertion is not met (evaluate to false), the
execution is stopped and an exception is raised. When a guard is met, this enables
the execution of the behavior.

A third trivial example based on exemple on the figure called simple-with-assert
is: “If object A receives operation Op, verify that object A reaches state S , then ope-
ration Op’ is executed on object B, verify that now object B reaches state S’”. It is ad-
ded on the pseudo-formal notation, two new clauses a pre-condition and a post-condi-
tion. A pseudo formal notation of behavior simple-with-assert is:

<LABEL : “simple-with-assert”,
REL : “Rel”,
GUARD : “role r1 receives operation Op”,
PRE : “role r1 reaches state S”,
BODY : “operation Op’ is executed on role r2”,
POST : “role r2 reaches state S’”>

The guard, the pre and post-condition are boolean expression. There is no limita-
tion on the condition to check and the number of conditions...

2.3 Execution Model

An other trivial example of behavior
is: other-simple-beh is “if object A rea-
ches state S, then operation Op’ is exe-
cuted on object B”. The same method is
applied on the behavior other-simple-
beh. The difference between these two
behaviors lies only in the test condition.
In the second case, only the effect on
object A is used as trigger for the beha-
vior. The original cause is out of scope.
That means in other words that it is not
important to know the trigger that made
the object A to become in the state S.

A

B

Effect
Test

RI1

Binding

Op

Op’

A

B

Op

Op’

r1

r2

Figure 1: simple behavior

Sandro Mazziotta, Dominique Sidou4

The Behavior Propagation Engine (BPE) algorithm defines the operational sematics
of BL. BPE defines the execution model which is the purpose of this section. For each
message incoming to the system, behaviors are considered for evaluation. Depending
on their guard, some behaviors are fetched (selected) and are executed. Because a be-
havior body can send in its turn other messages, new behaviors may be executed. This
results as a propagation of behaviors which terminates when the process saturates,
i.e. at a new steady state of the system where no more behavior can be fetched. Fi-
gure 2 gives a schema of the BPE algoritm in action.

Figure 2: BPE Algorithm in action

An incoming message is send to the Fetch-Behavior algoritm. This produces two
behaviors execution contexts (bec). A bec is composed of a message (trigger), a rela-
tionship instance, a role and the behavior fetched itself (the behavior contains all the
info necessary to execute each behavior i.e. guard, pre, body and post).

2.4 Nondeterminism in Behaviors Specification

Nondeterminism is an inherent property of Distributed and Reactive Systems (TMN-
systems are perfect examples). This reflects simply the fact that when several messa-
ges are enabled to occur they may execute concurrently (concurrency), sequentially in
an arbitrary order (unordering), one may be chosen arbitrarily (choice), or through
any other combination of these alternatives. Since real world distributed systems fea-
ture nondeterminism, any faithful specification should also.

Figure 3: two cases of Nondeterminism

msg

Fetch-Behavior

<label, scope, guard, exec-trig

pre, body, post>

msg 1, .. , msg N

msg, ri, role, <bfeats>

<label, scope, guard, exec-trig

pre, body, post>

msg 1, .. , msg N

msg, ri, role, <bfeats>

Effect
Test

RI1

Binding

A

B

Op

r1

r2

RI1

A

B

Op

r1

r2

Beh1Beh2

r1

r2

C

RI2Beh1
Beh2

• several behaviors are spe-
cified for a given object
fullfilling a given role in
the scope of a given relati-
onship.

• a message is executed on
an object that is participa-
ting in two (or n) differents
roles in the context of diffe-
rent relationships.

Guidelines for the Specification of Managed Object Behaviors with TIMS 5

In TIMS BL, nondeterminism may occur when for a given message, several beha-
viors can be fetched and executed. As in Disco[2], there is no need for explict con-
struct in the language (like the || of LOTOS) to specify concurency.

Summary

A MO behavior corresponds to the execution of a piece of code (body clause) when it
receives a message at one of its interfaces, if the guard (when clause) is evaluated to
true (i.e. enables the execution). The body of a behavior is an imperative~/ procedural
piece of Scheme[3] code. There is no a priori structure imposed on it. Since usual pro-
gramming features (i.e. control flow structures, variable notation, ...) are required, the
use of an existing and well-known programming language, Scheme reveals to be a re-
asonable choice. A MO behavior can either be defined in the context of a relationship
(behavior associated to a role) or it can be defined associated to a message (i.e classi-
cal CMIS operation or GRM abstract operation). This definition is done in the (scope
clause). The execution of the body is immediately preceded and followed by a pre-
condition (pre clause) and a post-condition (post clause), respectively.

3 Conclusion

TIMS provides an environment for the rapid-protoping of distributed and reactive
systems. The approach is based on a Behavior Language doted with an operational se-
mantics. This results as executable specifications that can be exercised in a simulation
environment. The paper has presented the salient features of the Behavior Language :
(i) the use of relationships according to the GRM enables to organise a behavior spe-
cification into clear, and manageable pieces. (ii) specification aspects (guard, pre,
post) are clearly separated from emulation aspects (body) thanks to well identified be-
havior clauses.

References

1. Sandro Mazziotta and Dominique Sidou. “A Scheme-based Toolkit for the Fast Prototyping of
TMN Systems.” Seventh International Workshop on Distributed Systems: Operations & Manage-
ment. October 1996, L’Aquila , ITALY.

2. Hannu-Matti Jarvinen and Reino Kurki-Suonio. “DisCo Specification Language: Marriage of

Action and Objects.” Proc. of 11th International Conference on Distributed Computing Systems.

May 1991,Arlington, Texas, USA.

3. W. Clinger and J. Rees. “Revised4 Report on the Algorithmic Language Scheme.”ACM Lisp

Pointers, 1991.

