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Abstract. This paper presents a new approach to universal noiseless com-
pression based on error correcting codes. The scheme is based on the con-
catenation of the Burrows-Wheeler block sorting transform (BWT) with the
syndrome former of a Low-Density Parity-Check (LDPC) code. The proposed
scheme has linear encoding and decoding times and uses a new closed-loop
iterative doping algorithm that works in conjunction with belief-propagation
decoding. Unlike the leading data compression methods our method is resilient
against errors, and lends itself to joint source-channel encoding/decoding; fur-
thermore it offers very competitive data compression performance.

1. Introduction

Lossless data compression algorithms find numerous applications in information
technology. To name some of the major ones:

• packing utilities (such as gzip) in operating systems such as Windows,
Linux and Unix;

• modem standards such as V.32bis and V.42bis;
• fax standards such as CCITT;
• the back-end of lossy compression algorithms such as JPEG and MPEG;
• compression of headers of TCP/IP packets in wireless networks.

Indeed, the field of lossless data compression has achieved a state of maturity,
with algorithms that admit fast (linear-complexity) implementations and achieve
asymptotically the fundamental information theoretic limits.

However, emerging high-speed wireless data transmission systems send their
payloads uncompressed. The main reasons for the failure of the state-of-the-art in
wireless data networks to take into account source redundancy in those applications
are:

• Lack of resilience of data compressors to transmission errors.

1991 Mathematics Subject Classification. Primary 68P30, 94A29; Secondary 94A45, 62B10.
Key words and phrases. Noiseless Data Compression, Universal algorithms, Error Correcting

Codes, Source Coding, Sources with Memory, Block Sorting Transform.

c©0000 (copyright holder)

1



2 GIUSEPPE CAIRE, SHLOMO SHAMAI, AND SERGIO VERDÚ

• Packetized transmission/recording often means that the compression out-
put length is only relevant up to an integer multiple of a given packet
length.

• The regime for which the algorithms exhibit efficient performance requires
much longer packet lengths than those typically used in modern high-speed
wireless applications.

We propose a new approach to lossless data compression based on error cor-
recting codes and the block-sorting transform. This approach turns out to be quite
competitive with existing algorithms even in the purely lossless data compression
setting, particularly for relatively short lengths (of the order of kilobits) of interest
in packet wireless transmission.

Section 2 explains the role of linear channel codes in noiseless and almost-
noiseless source coding. Section 3 shows how to use LDPC codes and the belief
propagation algorithm for compressing and decompressing binary and nonbinary
sources. Important gains in performance are possible by devising schemes that
take into account that, unlike the noisy channel setting, here the encoder has ac-
cess to all the information available to the decoder. Section 4 shows several ways to
capitalize on this possibility and in particular it describes our closed-loop iterative
doping scheme. The challenge of how to adapt the schemes for memoryless com-
pression to general sources with memory is addressed in Section 6. This is solved
by the dovetailing of the Block Sorting transform with LDPC encoding and the
belief-propagation algorithm. Section 7 describes how to make the overall scheme
universal and shows some experimental comparisons with state-of-the-art data com-
pression algorithms.

2. Linear Channel Codes in Data Compression

The Shannon-MacMillan theorem [Sha48, McM53] states that for stationary
ergodic sources and all δ > 0 there exist fixed-length n-to-m compression codes of
any rate m/n exceeding the entropy rate plus δ with vanishing block error prob-
ability as the blocklength goes to infinity. While almost-lossless fixed-length data
compression occupies a prominent place in information theory it has had no impact
in the development of data compression algorithms. However, linear error correc-
tion codes for additive-noise discrete memoryless channels can be used as the basis
for almost-lossless data compressors for memoryless sources because of the following
analogy.

A linear fixed-length data compressor is characterized by an m × n matrix H
which simply maps s, the source n-vector, to the compressed m-vector1 Hs. The
maximum-likelihood decoder selects gH(Hs), the most likely source vector u that
satisfies Hu = Hs. Note that the encoder can recognize if the source vector will be
decompressed successfully by simply checking whether gH(Hs) = s. If this is not
the case, it can output an error message, or it can try a different (possibly with
larger m) encoding matrix.

On the other hand, consider an additive-noise2 discrete channel y = x + u
driven by a linear channel code with parity check matrix H. Since every valid
codeword satisfies Hx = 0, it is easy to see that the maximum-likelihood decoder

1The arithmetic is in the finite field on which the source is defined.
2The sum is that of the finite field on which the noise and channel inputs and outputs are

defined.
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Figure 1. Example of linear data compression in GF(27)

selects the codeword y − gH(Hy), i. e. it selects the most likely noise realiza-
tion among those that lead to the same syndrome Hy. Thus, the problems of
almost-noiseless fixed-length data compression and almost noiseless coding of an
additive-noise discrete channel whose noise has the same statistics as the source
are strongly related. Indeed since the maximum-likelihood channel decoder selects
the wrong codeword if and only if gH(Hu) 6= u, the block error rate achieved
by the corresponding maximum-likelihood decoders are identical. This strongly
suggests using the parity-check matrix of a channel code as the source encoding
matrix. One of the (neglected) consequences of this powerful equivalence relates
to the construction of optimum n-to-m source codes, which are well-known to be
those that assign a unique codeword to each of the n-sequences with the largest
probabilities. For memoryless sources, this can be accomplished for certain (m,n)
by using the parity-check matrix of perfect codes3. To see this (in the binary case)
note that using the parity-check matrix of a perfect linear code of radius e, all the
sourcewords with weight 0, 1, . . . , e are mapped to distinct codewords. Otherwise,
when the code is used for the binary channel there would be different error patterns
of weight less than or equal e leading to the same syndrome. For example, in the
binary case, we can obtain optimum 7-to-3 and 23-to-11 source codes by using the
Hamming and Golay codes respectively. Figure 2 compares the probability that an
optimal (Hamming) 7-to-3 source code is successful for a Bernoulli source with bias
p with the probability that a Huffman (minimum average length) code operating
on 7-tuples outputs a string with no more than 3 bits.

Unfortunately, the foregoing analogy between linear source codes and linear
parity-check channel codes seems to have been all but neglected in the literature
and we can find few instances in which error correcting codes have been used as
data compressors. Dealing with source sequences known to have a limited Hamming
weight, Weiss [Wei62] noted that since the 2n−k cosets of an e-correcting (n, k)
binary linear code can be represented by their unique codewords having weight
less than or equal to e, the binary input n-string can be encoded with n − k bits

3A perfect code is one where Hamming spheres of a fixed radius around the codewords fill
the complete space of n-tuples without overlap (e.g. [McE02]) .



4 GIUSEPPE CAIRE, SHLOMO SHAMAI, AND SERGIO VERDÚ
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Figure 2. 7-to-3 encoding of a biased coin.

that label the coset it leads. The decompressor is simply the mapping that iden-
tifies each coset with its leader. The fact that this is equivalent to computing the
syndrome that would result if the source sequence were the channel output was ex-
plicitly recognized by Allard and Bridgewater [AB72]. Both [AB72] and Fung et
al [FTS73] remove Weiss’ bounded weight restriction and come up with variable-
to-fixed-length schemes where zeros are appended prior to syndrome formation so
that the resulting syndrome is correctable. Also in the setting of binary memory-
less sources, Ancheta [Anc76] considered fixed-to-fixed linear source codes based
on syndrome formation of a few BCH codes. Since the only sources the approach in
[Wei62, AB72, FTS73, Anc76] was designed to handle were memoryless sources
(essentially biased coins) and since the practical error correcting codes known at
that time did not offer rates close to channel capacity, that line of research rapidly
came to a close with the advent of Lempel-Ziv coding. Also limited to memoryless
binary sources is another, more recent, approach [GFZ02] in which the source is
encoded by a Turbo code whose systematic outputs as well as a portion of the non-
systematic bits are discarded; and decompression is carried out by a Turbo decoder
that uses knowledge of the source bias. Germane to this line of research is the use
of Turbo and LDPC codes [BM01, GFZ01, Mur02, LXG02] for Slepian-Wolf
coding of correlated memoryless sources as specific embodiments of the approach
proposed in [Wyn74].

The restriction for a fixed-length source code to be linear is known not to
incur any loss of asymptotic optimality for memoryless sources. This can be shown
through a standard random coding argument [CK81], which is essentially the same
used in [Eli55] for the optimality of random channel codes. The idea is that,
using random codebooks, the intersection of the coset represented by the syndrome
formed with the source sequence and the set of typical sequences has one and only
one element with high probability as the blocklength goes to infinity. We have
extended this result (without recourse to typicality) to completely general sources
(with memory and nonstationarity):
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Theorem 2.1. [CSV] If the source has sup-entropy rate4 H̄, m
n > H̄ + δ, the

encoding matrix entries are independent, equiprobable on the alphabet, then the av-
erage (over the ensemble of matrices and source realizations) block error probability
→ 0 as n →∞

For general linear codes, syndrome forming (source encoding) has quadratic
complexity in the blocklength and maximum-likelihood decoding has exponential
complexity in the blocklength. These complexities compare unfavorably with the
linear encoding/decoding complexities achieved by Lempel-Ziv coding. To address
that shortcoming we consider a specific class of error-correction codes in the next
section.

3. LDPC Data Compression for Memoryless Sources

By definition, the parity-check matrix H of a low-density parity-check code is
a sparse matrix with a number of nonzero entries growing linearly with the block-
length, and, thus, the linear source compressor that uses H has linear complexity
in the blocklength. Note that this is in contrast to the encoding of LDPC codes for
channel encoding as the multiplication by the generator matrix is far less straight-
forward, requiring the application of the technique in [RU01b] to achieve nearly
linear complexity.

The sparseness of H does not imply that a polynomially-complex maximum-
likelihood decoder exists. For LDPCs the suboptimal iterative technique known as
Belief-Propagation (BP) decoding has proved to yield very good results on a variety
of memoryless channels. The BP decoders used in channel decoding of binary
symmetric channels [Gal63, RU01a] operate with the channel outputs rather than
with the syndrome vector. However, counterparts to those algorithms that give an
approximation to the syndrome-decoding function gH can easily be derived. In
these algorithms, the compressed data is not present at the variable nodes (which
represent the uncompressed bits) but at the check nodes, since in the source-coding
case, each parity-check equation has a value given by the compressed data. For
simplicity and concreteness we specify the algorithm in the binary memoryless
case with nonstationary probabilities (which will be relevant in Section 6). Fix the
realization of the input to the decoder, z. The set of checknodes in which the bitnode
k ∈ {1, . . . n} participates is denoted by Ak ⊂ {1, . . .m}, and the set of bitnodes
which are connected to checknode j ∈ {1, . . . m} is denoted by Bj ⊂ {1, . . . n}.
With the a priori probability that the kth source symbol equal to 1 denoted by pk,
define the a priori source log-ratios

(3.1) Lk = log
1− pk

pk
, k ∈ {1, . . . n },

and the isomorphism φ : GF (2) 7→ {−1, +1}, where φ(0) = +1 and φ(1) = −1. For
each iteration t = 1, 2, . . ., the algorithm computes the value of the bitnodes

x̂k = φ−1


sign



Lk +

∑

j∈Ak

µ
(t)
j→k








by updating the messages sent by the checknodes to their neighboring bitnodes and
by the bitnodes to their neighboring checknodes, denoted respectively by µ

(t)
j→k and

4See [HV93] for the definition of sup-entropy rate.
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by ν
(t)
k→j , according to the message-passing rules

(3.2) ν
(t)
k→j = Lk +

∑

j′∈Ak−{j}
µ

(t−1)
j′→k

and

(3.3) µ
(t)
j→k = 2φ(zj) tanh−1


 ∏

k′∈Bj−{k}
tanh

(
ν

(t)
k′→j

2

)


with the initialization µ
(0)
j→k = 0 for all j ∈ {1, . . . , m}. At each iteration, the

parity-check equations ∑

k∈Bj

x̂k = zk, j = 1, . . . , m

are evaluated. If they are all satisfied, the BP algorithm stops. If after a maximum
number of allowed iterations some parity-check equations are not satisfied, a block-
error is declared.

In the q-ary case, the BP algorithm is more cumbersome since the distributions
are no longer succinctly represented by a scalar. However, a linear-time BP algo-
rithm akin to the one in [DM98] can be given [CSV] Using the FFT in GF(q), the
computational complexity per iteration is O(Eq log q) if E is equal to the number
of nonzero entries in H.

We have shown [CSV] that the same pointwise correspondence between chan-
nel decoding and source decoding stated for the ML decoder in Section 2 holds also
for the BP decoder: the sets of source sequences and noise sequences that lead to
errors of the respective BP decoders are identical. This equivalence has important
consequences in the design of the LDPC matrix for data compression. Consider
an arbitrary LDPC ensemble with BSC-threshold p?. In the standard terminol-
ogy, this means that as the blocklength goes to infinity, the bit error rate achieved
by BP averaged over the ensemble vanishes for every BSC with crossover proba-
bility less than p?, but not higher. Similarly, we can define the Bernoulli-source
threshold of an arbitrary LDPC ensemble for fixed-length data compression, as the
supremum of the source biases for which the bit error rate achieved by BP aver-
aged over the ensemble vanishes as the blocklength goes to infinity. Because of the
equivalence in performance of the corresponding BP decoders, for a given ensemble
the BSC-threshold is equal to the Bernoulli-source threshold. It follows that opti-
mal LDPC ensembles for the BSC yield immediately optimal LDPC ensembles for
source coding of biased coins.

To end this section, we present an alternative to the foregoing approach to
fixed-length data compression based on error correcting codes for an additive-noise
discrete memoryless channel. This alternative approach uses erasure channel cod-
ing/decoding designed for the conventional stationary erasure channel. At the
compressor, first we apply the n-binary string produced by the source to a rate-R
erasure channel encoder. Then, we discard the systematic part and the remaining
n( 1

R − 1) bits are passed through an interleaver; the compressed m-binary string
is given by the uppermost 1 − p fraction of the interleaver outputs. The other
interleaver outputs are also discarded (Figure 3). Thus,

m

n
= (1− p)(

1
R
− 1).
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Figure 3. Data compression with erasure correcting codes.

There is some freedom in the choice of p and R, respecting the constraint:

(1− p)(
1
R
− 1) ≈ H + δ.

or equivalently,

R ≈ 1− p

1− p + H + δ
.

The data decompressor first appends to the compressed sequence a string of
m p

1−p erasures,then it deinterleaves (using the inverse interleaver used at the com-
pressor), it appends n erasures (the missing systematic part), and it feeds the whole
string of m bits and n(( 1

R−1)p+1) erasures (a total of n/R symbols) to the erasure
decoder which takes into account the a priori probabilities of the source as follows:
Now there are n/R variable nodes, which from top to bottom consist of

• n erasures corresponding to bits whose a priori probabilities are equal to
Ps1(1), . . . Psn(1);

• mp/(1−p) erasures corresponding to bits which are approximated as being
equiprobable

• m nonerased bits.

The iterations proceed using the BP algorithm described above once we do the
following preprocessing. For each of the (1/R − 1)n check nodes, we assign a
value to check node i given by the sum of all the information bits contained in the
nonerased subset of variable nodes connected to that check node. Now, discard all
nonerased variable nodes and their connections. All the remaining variable nodes
correspond to erasures; n of them have the a priori probabilities of the source
and their loglikelihood updates proceed exactly as in (3.2). For the mp/(1 − p)
remaining erasure variable nodes, (3.2) also applies but with the first term equal
to 0 (corresponding to 1/2 prior probabilities). The methods in Sections 4,6,7 are
described in the context of the error-correcting approach but apply verbatim to the
erasure-correcting approach.
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4. Decoding at the Encoder

In contrast to channel decoding, in noiseless data compression, the source en-
coder has the same information available to the decoder. Thus, not only it can
check whether the original sourceword will be correctly decompressed but it has
the luxury of running a mirror image of the decoder iterations.

There are several ways in which this capability can be taken advantage of in
order to counter the inherent inefficiencies incurred by the use of LDPC codes and
the suboptimal BP decoder.

First note that the “almost noiseless” fixed-to-fixed compression algorithm can
be easily adapted to zero-error variable-to-fixed or fixed-to-variable operation by
tuning the input/output length in the compression to guarantee decoding success.
For example, it is possible to successively generate parity-check equations until
successful decoding is achieved. To that end, the use of raptor codes [Sho03] is
more natural than LDPC codes as shown in [CSSV].

In general, the encoder can try several parity-check matrices (with equal or
different rates) from a library known at the decoder until success is achieved. A
header identifying the actual matrix sent is part of the compressed sequence.

Symbol Doping, i.e. informing the decoder about sure bits, which are treated by
the decoder as perfectly known (i.e., having infinite reliability) is another strategy
that accelerates convergence and improves the block error probability. It can be
done in open-loop mode 5 where the location of the doped symbols is pre-agreed
or in closed-loop mode depending on the evolution of the algorithm. However, it
would be very costly to need to identify the location of each bit to be doped. A
much better alternative is our Closed-Loop Iterative Doping Algorithm which dopes
the bit that most needs it, i.e. the one with the lowest reliability. The algorithm
generates one doped bit per iteration as follows.

1) Initialization: µ
(0)
j→k = 0 for all j ∈ {1, . . . , m}.

2) Repeat the following steps for t = 1, 2, . . . (iteration count) until successful
decoding is reached:

• For all bitnodes k = 1, . . . , n compute

ν
(t)
k = Lk +

∑

j∈Ak

µ
(t−1)
j→k

and find the node that achieves the lowest reliability:

k̂ = arg min
k=1,...,n

{|ν(t)
k |},

• Least-reliable symbol doping: Feed the symbol xk̂ directly to the decoder
and let

Lk̂ =
{

+∞ if xk̂ = 0
−∞ if xk̂ = 1

• Bitnode update (3.2) and Checknode update (3.3).
Some qualitative properties of the Iterative Doping Algorithm are:
(1) Because of reliability sorting, the position of doped symbols need not be

explicitly communicated to the decoder. Hence, the cost of doping is the
(random) number of iterations necessary to achieve successful decoding.

(2) The algorithm never dopes twice the same symbol.

5Traditional doping (e.g. [tB00]) follows that paradigm.
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Figure 4. Empirical Distribution of the bits generated by the
Closed-Loop Iterative Doping Algorithm.

(3) Doping the symbol with least reliability is an efficient strategy. In practice
this is done only if the reliability is below a certain threshold, in which
case the doped bits (conditioned on the knowledge accumulated up un-
til their reception by the decompressor) are approximately fair coin flips.
Figure 4 contrasts the distribution of the source (a very biased coin) with
the empirical distribution of the bits generated by the Closed-Loop It-
erative Doping Algorithm, which is very close to fair-coin flips. In that
experiment, the empirical entropy of the doped bits is above 0.95 bits
with probability around 0.92. While at the very beginning the lowest-
reliability bit has the same bias as the source, after the first iterations it
quickly drops below the threshold. Figure 5 illustrates the typical evolu-
tion of the average and minimum reliability of the source bits as a function
of the BP iterations.

The closed-loop iterative doping algorithm can either be used in fixed-length
mode with a prefixed number of doping bits or in zero-error variable-length mode,
where the number of doped bits is dictated by the source realization. The mean and
variance of the number of doped symbols can be reduced by using a library of several
parity-check matrices, 6 by applying the above algorithm to each matrix, choosing
the one that achieves successful decoding with the smallest length, and indicating
the label of the best matrix to the decoder. Note that doping need not take place at
every iteration. In fact, a tradeoff exists between decompression time and encoding
efficiency which can be controlled by the doping schedule. Furthermore the doping
schedule can also be “closed-loop”, controlled by the instantaneous values of the
reliabilities computed by the BP algorithm. Although explained in conjunction with
the error-correcting approach, the iterative doping algorithm can also be applied to
the erasure-correcting approach to data compression explained in Section 3. Figure

6Even after the BP algorithm has converged, there exists the (extremely unlikely) possibility
that the chosen codeword is erroneous. In that event the compressor can choose another parity-
check matrix (e.g. the identity) to ensure strictly zero-error decompression.



10 GIUSEPPE CAIRE, SHLOMO SHAMAI, AND SERGIO VERDÚ
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Figure 5. Typical evolution of the minimum and average relia-
bility of the BP decoder.

0.25 0.3 0.35 0.4 0.45 0.5

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Redundancy (R−H)/H

W
E

R

n=500, m=303, IID source

New: LDPC(3,6),c=8,d=50 

Arithmetic Coding

Optimal block coding 

Ideal variable−length coding

Figure 6. Block error rate of 500-to-303 source codes for a biased coin.

6 shows the distribution (complementary cumulative distribution function) of the
achieved compression for several schemes operating on a biased coin for biases p
ranging from 0.11 to 0.08. Since the code rate is R = 303/500, this translates
into normalized redundancies (R − h(p))/h(p) ranging from 0.21 to 0.51, where
h(p) is the binary entropy function. Note that by means of the distribution of
redundancies it is possible to compare fixed-length and variable-length schemes on
an equal footing: for a variable-length scheme the “WER” in Figure 6 is simply
the probability of the set of source realizations that cannot be encoded with the
corresponding redundancy.



NOISELESS DATA COMPRESSION WITH LOW-DENSITY PARITY-CHECK CODES 11

0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Redundancy (R−H)/H

W
E

R

n=2000, m=1103, IID source

Optimal block coding 

New: LDPC−R1/2, c=8, d=80 

New: LDPC R−1/2, c=8, d=100

Ideal variable−length coding

Zero errors
found

Arithmetic coding

Figure 7. Block error rate of 2000-to-1103 source codes for a
biased coin.

The schemes shown in Figure 6 are:
• Optimal block coding: optimal code that assigns a distinct codeword to

the most probable 2303 source realizations.
• “Ideal” variable-length coding (or Information Spectrum (cf. [HV93]):

where the ‘length’ of the codeword assigned to x1, . . . xn is equal to

− log2 PX1,...Xn(x1, . . . , xn).

• Arithmetic Coding: Nonuniversal, source exactly known.
• New code: with a library of 8 (3,6) regular LDPCs, and 50 closed-loop

iterative doped bits.
Figure 7 shows the results of an analogous experiment with a longer blocklength

and a library of 8 rate-1
2 irregular LDPCs drawn at random from the ensemble

designed for the BSC in [Urb02]. We show the effect of varying the number of bits
allocated to doping from 80 to 100. At the point marked at 10−6 no errors were
detected in 10,000 trials.

The main benefit accrued by the new scheme over arithmetic coding is much
higher resilience to errors at the cost of a small decrease in performance efficiency.
Figure 8 illustrates the very different resilience of arithmetic coding and the new
scheme against channel erasures. It should be noted that in neither case we take
any countermeasures against the channel erasures. In [CSV04], we report on
source/channel schemes derived from the basic scheme of this paper which exhibit
much more robustness against channel noise. A source block of 3000 biased coin
flips is compressed into a block of 1500 syndrome bits, 200 doping bits and 3 bits
identifying the LDPC. The syndrome bits are decompressed by the conventional
BP algorithm with the only difference that a subset of the check nodes are now
missing due to the channel erasures. As we vary the coin bias from 0.1 to 0.08,
we observe an ‘error floor’ in Figure 8 which is dominated by the fact that the
203 doping and code library bits are sent completely unprotected. The abscissa in
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0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Redundancy = 1 − H/R/(1−e)

W
E

R

n=3000,e=0.001,IID source

Arithmetic Coding 

New: LDPC R−1/2,c=8,d=200 

Figure 8. Block error rate of a 3000-to-1703 source code and
arithmetic coding for a biased coin and a channel with erasure
probability equal to e = 0.001

Figure 8 is a normalized measure of the distance from the fundamental limit that
would be achievable for asymptotically long blocklengths, namely h(p)

1−e where e is
the channel erasure probability.

5. Non-binary Sources: Multilevel Compression Codes

In this section we propose an approach based on multilevel coding and multi-
stage successive decoding to handle q-ary sources, where q = 2L. In the realm of
channel coding, multilevel coding and successive decoding is a well-known technique
to construct efficient codes for high-order modulations, see for example [WFH99]
and more recently [CS02] with application to LDPC-coded modulation.

Although as we mentioned in previous sections, both the encoders and decoders
can be generalized to the nonbinary case, there are at least two obstacles for the
practical application of our method to general q-ary sources:

(1) The design of q-ary LDPC ensembles for an arbitrary q-ary additive noise
channel y = x + z, where addition is in GF(q), or in the ring Zq, and z
obeys an arbitrary q distribution is still not mature even in the simplest
case where z is i.i.d. See [DM98, SF02].

(2) The FFT-based q-ary BP decoder mentioned in Section 3 has linear com-
plexity in the source blocklength, but grows as O(q log q) with the alpha-
bet size.

By restricting the source alphabet to have cardinality equal to a power of two (e.g.,
q = 27 in ASCII), we are able to use efficiently standard LDPC binary codes and
achieve an overall complexity O(n log q).

For the sake of simplicity, we outline the proposed multilevel approach to data
compression for an i.i.d. source in the non-universal setting (i.e., assuming that the
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source statistics is perfectly known to both the encoder and decoder). The methods
in Sections 4,6,7 apply to this multilevel approach also.

Let X be an i.i.d. source ∼ PX , defined over an alphabet X of cardinal-
ity 2L. Define an arbitrary one-to-one binary labeling of the source alphabet
µ : X → GF(2)L, such that µ(x) = (b1, . . . , bL) is the binary label correspond-
ing to x, for all x ∈ X . The mapping µ and the source probability assignment
PX induce a probability assignment PB1,...,BL

(b1, . . . , bL) over GF(2L) such that
PB1,...,BL

(µ(x)) = PX(x). Without loss of generality, consider the binary random
variables B` in the natural order ` = 1, . . . , L. We have

H(X) = H(B1, . . . , BL)

=
L∑

`=1

H(B`|B1, . . . , B`−1)(5.1)

From the above decomposition, we see that each level ` can be thought as a binary
piecewise i.i.d. source having up to 2`−1 segments and entropy H(B`|B1, . . . , B`−1).
Each segment corresponds to a different value of the conditioning variables (B1, . . . , B`−1).
The conditional probability of B` = 1 given (B1, . . . , B`−1) = (b1, . . . , b`−1) is given
by
(5.2)

p`(b1, . . . , b`−1)
∆=

∑
(b`+1,...,bL)∈{0,1}L−` PB1,...,BL(b1, . . . , b`−1, 1, b`+1, . . . , bL)∑

(b`,...,bL)∈{0,1}L−`+1 PB1,...,BL(b1, . . . , bL)

Therefore, the foregoing discussion on the compression of binary piecewise i.i.d.
sources can be applied to each level `. The only difference is that now the segments
for the binary source at level ` are defined by the realizations of the previous levels
1, . . . , `− 1, i.e., encoding and decoding must be performed in a successive fashion.

The multilevel coding algorithm is briefly summarized as follows: we assume
that the source distribution PX is known, therefore, also the conditional marginal
probabilities p`(b1, . . . , b`−1) defined in (5.2) and the corresponding `-level entropies
H`

∆= H(B`|B1, . . . , B`−1) are known. Then, we select L LDPC ensembles such that
the `-th ensemble has rate R` larger than, but close to, H`. In practice, we can
optimize each `-th LDPC ensemble for a BSC with parameter p` = h−1(H`). For
each `-th ensemble, we construct c parity-check matrices {H`,i : i = 1, . . . , c}.

Let s denote the q-ary source sequence of length n to be compressed and,
for each level `, let b` = (b`,1, . . . , b`,n) denote the binary sequence obtained by
projecting the binary representation of s onto its `-level binary component. For
levels ` = 1, 2, . . . , L, we produce the binary encoded sequences z` successively, by
applying the LDPC compression method described before, based on the library of
parity-check matrices {H`,i : i = 1, . . . , c} and the CLID algorithm. As anticipated
above, the `-th level encoder/decoder depends on the realization of the binary
sequences at levels 1, . . . , `− 1 since it makes use of the conditional statistics of b`

given b1, . . . ,b`−1. This conditioning is incorporated into the BP decoder by using
the sequence of conditional probability log-ratios

Lk = log
1− p`(b1,k, . . . , b`−1,k)

p`(b1,k, . . . , b`−1,k)
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for k = 1, . . . , n. Notice that at each level ` the symbols b1,k, . . . , b`−1,k are known
at the decoder due to successive decoding. In the lossless setting there is no error
propagation between the levels.

In the realm of channel coding, multilevel coding and successive decoding is a
well-known technique to construct efficient codes for high-order modulations, see
for example [WFH99] and more recently [CS02] with application to LDPC-coded
modulation. In the realm of lossy image coding, the multilevel coding idea is
reminiscent of the so-called “bit-plane coding” (e.g., see [TM]), where a sequence
of L-bit integer samples output by some transform coder is partitioned into L
binary sequences called “bit-planes”. Each `-th sequence is formed by the `-th
most significant bits of the original samples, and it is separately compressed by
adaptive arithmetic coding.

The resulting encoded binary sequence corresponding to s is given by the con-
catenation of all syndromes z` and corresponding doping symbols, for ` = 1, . . . , L.
Successive encoding and decoding complexity scales linearly with the number of
levels, i.e., logarithmically with the alphabet size, as anticipated above.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.05
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Entropy (bit/symbol)

H
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gr

am

8−ary IID source, n=10000, H(X) = 1.6445

H(X) 

3−level LDPC 
3−level LDPC (no doping) 

Figure 9. Histogram of compression rates with multilevel scheme.

Figure 9 shows the compression rate histogram achieved by the proposed scheme
for a 8-ary source (L = 3 levels). The source has entropy H(X) = 1.6445, and prob-
ability distribution

PX = [0.5666, 0.2833, 0.0850, 0.0028, 0.0028, 0.0283, 0.0028, 0.0283]

Encoding the 8 letters by the binary representation 000, 001, . . . , 111 (level 1 is the
least-significant bit), we obtain the level entropies H1 = 0.9274,H2 = 0.5233 and
H3 = 0.1938. We chose LDPC ensembles with slightly conservative rates equal to
R1 = 0.95, R2 = 0.55 and R3 = 0.22, and for each ensemble we used 8 independently
generated parity-check matrices. Figure 9 shows the distribution of the achieved
coding rates. The vertical line labelled “3-level LDPC (no doping)” corresponds to
the compression rate of the above scheme due exclusively to the LDPC encoding in
the absence of doping (and thus achieving nonzero block error rate), with the same
LDPC codes used in the histogram shown with doping. Notice that the largest
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contribution to redundancy is due to the conservative choice of the LDPC coding
rates, and the Closed Loop Iterative Doping adds a small variable fraction to the
overall redundancy. Also, notice that thanks to the iterative doping each level
achieves zero decoding error probability. Hence, no catastrophic error propagation
between the levels occurs.

6. Sources with Memory

In Sections 3, 4 and 5 we have limited our discussion to encoding memoryless
nonstationary sources. However we know from Theorem 2.1 that linear codes can
be used to approach the entropy rate of the source even if it has memory. However,
the direct application of a syndrome former to a source with memory faces a serious
hurdle: it is very cumbersome to design an optimum or near-optimum decoder that
takes the source statistics into account. As we saw, it is easy to incorporate the
knowledge about the source marginals in the BP decoding algorithm. However, for
sources with memory the marginals alone do not suffice for efficient data compres-
sion. While the incorporation of Markov structure is in principle possible at the BP
decoder by enlarging the Tanner graph, the complexity grows very rapidly with the
source memory. In addition it would be futile to search for encoders as a function
of the memory structure of the source. We next describe a design approach that
enables the use of the BP (marginal based) decoding algorithm in Section 3 while
taking full advantage of the source memory.

We propose to use a one-to-one transformation, called the block-sorting trans-
form or Burrows-Wheeler transform (BWT) [BW94] which performs the following
operation: after adding a special End-of-file symbol, it generates all cyclic shifts
of the given data string and sorts them lexicographically. The last column of the
resulting matrix is the BWT output from which the original data string can be
recovered.

Note that the BWT performs no compression. Fashionable BWT-based uni-
versal data compression algorithms (e.g. bzip) have been proposed which are quite
competitive with the Lempel-Ziv algorithm. To understand how this is accom-
plished, it is best to consider the statistical properties of the output of the BWT. It
is shown in [EVKV02] that the output of the BWT (as the blocklength grows) is
asymptotically piecewise i.i.d. For stationary ergodic tree sources the length, loca-
tion, and distribution of the i.i.d. segments depend on the statistics of the source.
The universal BWT-based methods for data compression all hinge on the idea of
compression for a memoryless source with an adaptive procedure which learns im-
plicitly the local distribution of the piecewise i.i.d. segments, while forgetting the
effect of distant symbols.

Our approach is to let the BWT be the front-end. Then we apply the output of
the BWT to the LDPC parity-check matrix, as explained in Section 3 for memory-
less nonstationary sources.7 The decompressor consists of the BP decoder, making
use of the prior probabilities pi. The locations of the transitions between the seg-
ments exhibit some deviation from there expected values which can be explicitly
communicated to the decoder. Once the string has been decompressed we apply
the inverse BWT to recover the original string. Figure 10 shows a block diagram
of the nonuniversal version of the compression/decompression scheme.

7It is sometimes advantageous to set a threshold Hth reasonably close to 1 bit/symbol and
feed directly to the output the symbols on segments whose entropy exceeds Hth.
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The proof of optimality of the scheme for stationary ergodic sources using
capacity-approaching channel codes uses the tools developed in [EVKV02].

As in the case of memoryless sources, the computational complexities of both
compression and decompression grow linearly with the data size.

Figure 11 shows the results obtained with a 4-state Markov chain with condi-
tional biases equal to (0.1, 0.6, 0.4, 0.9) leading to an entropy rate of 0.5407 bits per
symbol. The coding scheme does not code 350 of the source symbols (correspond-
ing to the segments at the output of the BWT with highest entropy). Varying the
number of symbols allocated to closed-loop iterative doping (which now operates in
fixed-length mode) yields different rate values. Again, the degree of approximation
to the ideal coding curve is rather encouraging.

Our basic scheme can be adapted to Slepian-Wolf coding of correlated station-
ary ergodic sources for which the fundamental limits were proved in [Cov75]. Note
that the constructive approaches for Slepian-Wolf coding proposed so far in the
literature [BM01, GFZ01, Mur02, LXG02] are limited to memoryless sources.
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Suppose that the sources are correlated according to s1 = s2 + u where u is a
Markov process independent of the stationary ergodic process s2. To approach the
point in the Slepian-Wolf-Cover region given by the entropy rate of source 2 and the
conditional entropy rate of source 1 given source 2, we may use the BWT-BP-based
approach explained above to encode and decode source 2, and then run a BP to
recover s1 on a Tanner graph that incorporates not only the parity-check matrix of
the encoder applied to source 1 but the Markov graphical model of u. Note that in
this case, no BWT of source 1 is carried out at the expense of higher complexity
at the decoder.

7. Universal Scheme

No knowledge of the source is required by the BWT. However, we need a
robust LDPC design procedure that yields ensembles of codes that perform close
to capacity for nonstationary memoryless channels. Since the capacity-achieving
distribution is the same (equiprobable) regardless of the noise distribution, Shannon
theory (e.g. [CK81]) guarantees that without knowledge of the channel sequence
at the encoder it is possible to attain the channel capacity (average of the maximal
single-letter mutual informations) with the same random coding construction that
achieves the capacity of the stationary channel.

In our universal implementation, the encoder estimates the piecewise constant
first-order distribution at the output of the BWT, uses it to select a parity-check
matrix rate, and communicates a rough piecewise approximation of the estimated
distributions to the decoder using a number of symbols that is a small fraction
of the total compressed sequence. After each iteration, the BP decoder refines its
estimates of individual probabilities on a segment-by-segment basis by weighing the
impact of each tentative decision with the current reliability information. Naturally,
such procedures are quite easy to adapt to prior knowledge that may exist from
the encoding of the previous data blocks. Moreover, the encoder can monitor the
statistics from block to block. When it sees that there is a large change in statistics
it can alert the decoder to the segments that are most affected, or even back off in
rate.

If the encoder knew that the source is Markov source with S states, then it
could detect the segment transitions (or boundary points) Ti just by looking at
the first M = log2 S columns of the BWT array. In this case, each probability pi

can be estimated by the empirical frequency of ones in the i-th segment. If the
source memory is not known a priori, then all memories M = 0, 1, . . . , up to some
maximum D can be considered, and the corresponding empirical frequencies can be
obtained hierarchically, on a tree. In fact, due to the lexicographic ordering of the
BWT, segments corresponding to states (s, 0) and (s, 1) of a memory M + 1 model
can be merged into state s of a memory M model, and the empirical frequency of
ones in state s segment can be computed recursively by

n1(s) = n1(s0) + n1(s1)
n(s) = n(s0) + n(s1)(7.1)

where n1(s) and n(s) denote the number of ones and the segment length in segment
s (e.g. [BB]).

A coarse description of the segmentation and associated probabilities pi is sup-
plied to the iterative decoder. As outlined above, the decoder may be given the
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option of refining this statistical description iteratively. The discrete set of possible
sources S communicated to the decompressor corresponds to all possible quantized
probabilities and quantized transition points, for all possible source memories. We
denote the quantized parameters of a particular instance of the source model by
θ ∈ S. We wish to encode the transition points and the probabilities pi by using

(7.2) Ln(θ) =
S(θ)

2
log2 n + O(1) bits

where S(θ) is the number of states in the model θ. Apart from the value of the
constant term, this is the best possible redundancy to encode the source model,
according to the minimum description length (MDL) principle [Ris84].

A simple heuristic method approaching this lower bound is the following. For
each given memory M , let the exact transition points of the segments identified by
the first M columns of the BWT array be denoted by Ti(M), for i = 1, . . . , 2M − 1.
We can write

Ti(M) = κi

√
n + ζi

where ζi = Ti(θ) modulo
√

n and κi = bTi(M)/
√

nc. Then, we quantize the
remainder ζi by using b1 bits. Hence, the location of the transition point Ti(M)
is known up to a maximum error of

√
n2−b1 . We let T̂i(M) denote the quantized

value corresponding to Ti(M). Notice that after quantization some of the originally
distinct transition points might have been quantized to the same value, i.e., some
segments after quantization have disappeared from the resulting source model. Let
{T̂j(θ) : j = 1, . . . , S(θ) − 1}, denote the set of distinct transition points after
quantization, where S(θ) denotes the number of states in the source model θ. Notice
that, by construction, S(θ) ≤ 2M . Let pj denote the empirical frequency of ones
in the j-th segment identified by the transition points {T̂j(θ)}. We use b2 bits to
encode the log-ratios Lj(θ) = log(1−pj)/pj . The decoder will apply the (quantized)
log-ratio Lj(θ) on the positions of segment j.

Clearly, each κi can be encoded by 1
2 log2 n, therefore the description length

for the model θ is

Ln(θ) = (S(θ)− 1)(
1
2

log2 n + b2) + S(θ)b1

which is compliant with the MDL principle (7.2).
The degrees of freedom available to the encoder are the model to be described

θ ∈ S and the ensemble of LDPC matrices to be chosen. For every matrix the
scheme is the variable-length version explained in Section 6 using the closed-loop
iterative doping algorithm.

We consider a collection of Q LDPC ensembles (defined by the left and right
degree distributions (λq, ρq) for q = 1, . . . , Q) of rates 0 < R1 < . . . < RQ < 1, and,
for each q-th ensemble, a set of c parity-check matrices

(7.3) Hq =
{
Hi,q ∈ {0, 1}mq×n : i = 1, . . . , c

}

such that mq/n = 1 − Rq and each matrix Hi,q is independently and randomly
generated over the ensemble (λq, ρq). Then, in order to encode x, the proposed
scheme finds the model θ ∈ S and the set of parity-check matrices Hq that minimize
the overall output length, i.e., it finds

(7.4) (q̂, θ̂) = arg min
q,θ

{Ln(θ) + Mn(q, θ,x)}
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with Mn(q, θ,x) equal to the output length of the basic LDPC compression scheme
using Hq and θ at the decoder when applied to sourceword x. It then encodes
the source model θ̂ using Ln(θ̂) bits, and the sourceword x with the basic LDPC
compression scheme using the parity-check matrices in Hq̂.

It is problematic to evaluate Mn(q, θ,x), as this would require the application
of the Closed-loop Iterative Doping Algorithm to x, for all parity-check matrices
{Hq : q = 1, . . . , Q} and all models θ ∈ S. However, we make the following
observation. Let Ĥθ(x) be the empirical entropy of x according to the probability
model θ. Then, if Rq > 1 − Ĥθ(x), the number of doping bits d(x) is very large.
On the contrary, if Rq < 1 − Ĥθ(x), d(x) is very small with respect to n. Hence,
we shall use the heuristic approximation:

(7.5) Mn(q, θ,x) = mq(θ)

where
q(θ) = max{1 ≤ q ≤ Q : Rq < 1− Ĥθ(x)}.

In other words, we choose the LDPC ensemble with largest rate not above the nor-
malized information density of the deterministically time-varying BSC determined
by θ with noise realization x.

As explained in [BB], the BWT and the recursive segment determination can
be obtained with complexity linear in n by using suffix-trees methods. This makes
the overall complexity of our algorithm linear with n, although the (constant with
n) complexity due to BP is large with respect to other universal linear complexity
algorithms based on sequential arithmetic coding.

We compare the performance of the proposed data compression algorithm with
the standard compression software gzip (based on the Lempel-Ziv algorithm) and
bzip (based on postprocessing the BWT output using Move-to-Front runlength
coding and adaptive arithmetic coding).

Figure 12 shows the histogram of the normalized output lengths obtained from
2000 independent trials for a four-state binary Markov source with entropy rate
0.4935 bit/symbols, for the new scheme, gzip and bzip, for blocklength n = 10, 000.
We used b2 = 8 quantization bits for the log-ratios, b1 = 3 quantization bits for
the transition points and a collection of LDPC ensembles with rates equally spaced
from 0.005 to 0.0995. For each ensemble, c = 8 parity-check matrices were randomly
generated.

Instead of testing a given source, our last experiment considers an ensemble of
randomly generated binary Markov sources with number of states equally likely to
be 1, 2, 4, 8 and 16 (i.e., with memory equal to 0, 1, 2, 3 and 4). The Markov
source ensemble is obtained by generating independently the memory length, and
then conditional distributions are also generated randomly with a distribution that
puts more weight on values either close to 0 or to 1. The ensemble is restricted to
produce sources with entropy ranging from 0.05 to 0.75 bits per symbol. Figures 13
and 14 examine histograms of the normalized redundancy (difference between the
compression rate and the empirical entropy of the source) for our universal scheme,
gzip and bzip for blocklengths equal to 3,000 and 10,000 respectively. For the
latter case, the memory of the Markov source can be up to 5. For our scheme the
parameters b1 and b2 that govern the quantization coarseness in the description
of the segmentation are adapted using the Minimum Description Length principle
described above.
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tropy = 0.4935 bit/symbol.
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Figure 13. Random ensemble of Markov sources: redundancies
for the new universal compressor, PPM, bzip and gzip with source
blocklength equal to 3,000.

We see that as blocklength increases all schemes tend to become more effi-
cient, but the new scheme (which requires linear compression and decompression
complexity) maintains an edge even with respect to the PPM scheme which re-
quires quadratic computational complexity. The resilience against errors and the
application of this approach to joint source-channel coding are treated in [CSV04].
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