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Abstract

This paper studies the mapping between continuous and discrete distances. The continu-

ous distance considered is the widely used Euclidean distance whereas we consider as discrete

distance the chamfer distance based on 3� 3 masks.

A theoretical characterisation of topological errors which arise during the approximation of

Euclidean distances by discrete ones is presented. Optimal chamfer distance coe�cients are

characterised with respect to the topological ordering they induce rather than the approxima-

tion of Euclidean distance values. We conclude the theoretical part by presenting a global

upper bound for a topologically-correct distance mapping, irrespective of the chamfer distance

coe�cients, and identify the smallest coe�cients associated with this bound.

We use these results to solve a problem which is a representative of most of problems in image

processing, namely the Euclidean-nearest neighbour problem. This problem is formulated as a

discrete optimisation problem and solved accordingly using algorithmic graph theory and integer

arithmetic.
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1 Introduction

The main motivation of this work is to analyse the mapping between continuous and discrete
distances on the unit square grid. For a given pixel on the grid, a neighbourhood of that pixel is
de�ned by a distance metric. The local neighbours of a pixel are contained within a mask centred
at that pixel. The most commonly used is the 3 � 3 mask, where the neighbours are typically
de�ned by the City-Block distance (4-neighbours) or the Chessboard distance (8-neighbours) [11].
Local distances within the mask form the basis for the computation of global distances on the grid.
Chamfer distance and was �rst introduced by Hilditch [7, 8] and studied by Borgefors in [1] and [2]
for the approximation of Euclidean distances on the grid.

While studying in depth the calculation of Euclidean distance values using discrete distance
functions (Section 2), we will derive results concerning the decomposition of integer values which
can then form the basis for the development of optimal algorithms for the solution of typical
problems encountered in image processing (see e.g., [9]). In Section 3, we propose to apply
theoretical results derived in this paper and tools issued from graph theory to solve exactly and
optimally the Euclidean-nearest neighbour problem (i.e., where continuous distances values are
required) using integer arithmetic. Solutions of the nearest neighbour problem have applications
for the computation of di�erent structures in image processing (e.g., distance maps and Voronoi
diagrams). The idea behind the proposed solution therefore de�nes a new context in which these
problems can be solved.

2 Topological Errors

We consider throughout these pages that the continuous distance used is the Euclidean distance dE
de�ned as dE(p; q) =

q
(xp � xq)2 + (yp � yq)2, where p = (xp; yp) and q = (xq; yq). We introduce

the notation for some standard functions. dxe is the smallest integer greater or equal to than
x 2 IR and bxc is greatest integer smaller or equal to than x 2 IR. Then, round(x) = bxc if
bxc � x � bxc+ 1

2 . Otherwise, round(x) = dxe.
In approximating the Euclidean distance, the chamfer distance is used since it allows for algo-

rithms to operate in integer arithmetic. We will consider chamfer distances in relation to 3 � 3
masks. We de�ne a as the length of the unit horizontal/vertical move (a-move) on the grid, and b
as the length of the unit diagonal move (b-move) on the grid. Parameters a and b are referred to
as distance transform (DT) coe�cients. The chamfer distance can be computed as the length of a
shortest path on the grid. Given two points p and q, the chamfer distance da;b between p and q is
calculated as follows.

da;b(p; q) = kaa+ kbb (1)

where ka and kb represent the number of a- and b-moves on the shortest path from p to q on the
grid. The conditions on a and b for da;b to be a distance are given in (2) below (see [10] and [14]
for more details). Such conditions allow da;b to satisfy the three common metric properties.

0 < a < b < 2a (2)

The number of a- and b-moves (ka; kb) on the shortest path from p to q can also be used to compute
the Euclidean distance between p and q.

dE(p; q) =
q
(ka + kb)2 + k2b (3)
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Without loss of generality, we restrict this study to values of DT coe�cients such that a and b are
relatively prime (i.e., the Greater Common Divisor of a and b, gcd(a; b), is such that gcd(a; b) = 1).
This corresponds to normalising the a and b coe�cients to their minimal con�guration.

Although di�erent studies establish particular values of DT coe�cients as optimal (e.g., a = 3,
b = 4), optimality generally refers to a criterion in relation to a minimum error in the approxi-
mation of Euclidean distance values via chamfer distance computation (see e.g., [2, 14, 15]). In
contrast, Forchhammer [5, 6] introduced the concept of topological inconsistencies induced by dis-
crete distances when used as an approximation of the Euclidean distance. The inconsistency arises
because of the di�erence in ordering of the two distance measures as will be described next. He
derived values of DT coe�cients a and b which are empirically shown to be optimal with regard to
this criterion. The results were based on the use of look-up tables and an investigation of a limited
number of values of the parameters under study.

In this section, we propose an analytical (and therefore, complete) characterisation of the op-
timal values of a and b with respect to the topological criterion. Essentially, the ordering of the
discrete distance does not match the ordering of the Euclidean distance. Consider the following
example (see Figure 1). Let the DT coe�cients be a = 2, b = 3, and consider the three integer
points (pixels), p = (0; 0), q = (10; 1) and r = (9; 4). The shortest path on the grid from p to
q is given by ka = 9 and kb = 1 and that from p to r is given by ka = 5 and kb = 4. Using
Equations (1) and (3), we have da;b(p; q) = 21, dE(p; q) =

p
101, da;b(p; r) = 22 and dE(p; r) =

p
97.

If q and r are border pixels, the discrete DT will lead to consider q as the nearest border pixel
to p (by the chamfer distance measure) giving an approximate Euclidean distance of

p
101. This

is clearly incorrect since there is a smaller Euclidean distance between p and another border pixel
(namely r) giving a Euclidean distance of

p
97. In other words, since, da;b(p; q) < da;b(p; r) and

dE(p; q) > dE(p; r), the ordering of da;b di�ers from the ordering of dE.

q

p

r

Figure 1: An example of a topological error.

Given a pair of DT coe�cients (a; b), we characterise the con�gurations for which this problem
occurs precisely. First, we introduce how restrictions for the decomposition of a given discrete
distance value D into a- and b-moves can be given by the solution to the Frobenius problem.

Theorem 1 [13]. Given 0 < a < b such that (a; b) 2 IN2 and gcd(a; b) = 1. Consider the equation:
kaa + kbb = D (ka; kb) 2 IN2 If � = (a� 1)(b� 1), then we have the following instances.

(i) If D � �, there is always at least one solution (ka; kb).

(ii) If D = �� 1, there is no solution.

(iii) There is exactly 1
2� values of D that have no solution.

We will use the solution to this classical problem to characterise the topological error introduced
earlier. Two types of errors are distinguished and presented in Sections 2.1 and 2.2, respectively.
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2.1 Type 1 error

Given a pair of DT coe�cients (a; b) and three integer points p, q and r, a Type 1 error occurs
between q and r relative to p if da;b(p; q) = da;b(p; r) and dE(p; q) 6= dE(p; r). More formally, we
make the following de�nition.

De�nition 1 Type 1 error. Given a pair of DT coe�cients (a; b) and a discrete distance value D,
a Type 1 topological error occurs if there exist two integer pairs (ka1; kb1) and (ka2 ; kb2) such that

ka1a+ kb1b = ka2a+ kb2b = D and
q
(ka1 + kb1)

2 + k2b1 6=
q
(ka2 + kb2)

2 + k2b2.

An example for Type 1 error is illustrated in Figure 2 where, (ka1; kb1) represents the shortest path
from p to q, and (ka2 ; kb2) the shortest path from p to r. In this example, the DT coe�cients are
a = 2 and b = 3, and the three integer points are p = (0; 0), q = (3; 0) and r = (2; 2). We obtain
da;b(p; q) = da;b(p; r) = D = 6, since ka1 = 3, kb1 = 0 and ka2 = 3, kb2 = 0. On the other hand, we
have, dE(p; q) = 3 and dE(p; r) =

p
8.

r

p q

Figure 2: The �rst instance of Type 1 topological error for (a; b) = (2; 3).

It is clear that a necessary condition for Type 1 error to occur is that D can be decomposed
in more than one manner. Lemma 1 gives an upper bound on the number of such decompositions,
and Lemma 2 provides an exact upper bound on the number of b-moves (kbmax

) over all possible
decompositions.

Lemma 1 Given a pair of DT coe�cients (a; b) and a discrete distance value D 2 IN, there is at

most

�bDb c+1
a

�
+ 1 con�gurations (ka; kb) such that kaa+ kbb = D with ka � 0 and kb � 0.

Proof:

Clearly, kb can take at most
j
D
b

k
+ 1 values. Now, among these values, only some can satisfy the

equation kaa+kbb = D. Let us assume that (ka; kb) is one such valid pair. Then, D = kaa+kbb =
kaa+ kbb+ ab� ab = (ka + b)a+ (kb � a)b. Then, if kb � a � 0, the con�guration (ka + b; kb� a)
is also valid. Likewise, all con�gurations (ka + ib; kb � ia) with i 2 ZZ such that ka + ib � 0 and

kb � ia � 0 are valid. Clearly, since gcd(a; b) = 1, there is at most

�bDb c+1
a

�
+ 1 such i values.

Therefore, Lemma 1 holds. 2

Lemma 2 Given a pair of DT coe�cients (a; b) and a discrete distance value D, we assume that
the existence condition (i) in Theorem 1 holds. Then, the maximal value kbmax

of kb such that
kaa + kbmax

b = D with ka � 0 and kbmax
� 0 is given by:

kbmax
=

�
D

b

�
�  ((D mod b) mod a) (4)

where  is the implicit integer function such that:
 : f0; 1; � � � ; a� 1g 7! f0; 1; � � � ; a� 1g and  ((x:(2a� b)) mod a) = x.
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Proof:
The existence of a decomposition is given by Theorem 1. The problem of �nding the maximal value
kbmax

of kb such that kaa + kbmax
b = D can be mapped onto the problem of �nding the minimal

positive value k� of k such that

(D mod b+ kb) mod a = 0 (5)

In this case, we have:

kbmax
=

�
D

b

�
� k� (6)

Consider the following implicit integer function  : IN ! IN in its general form.

 (x) =

(
k if (x+ kb) mod a = 0
+1 if 8k � 0 (x+ kb) mod a 6= 0

(7)

Using the above de�nition and modulus arithmetic, one can easily prove the following properties
for  : (i)  (0) = 0, (ii)  (x+ a) =  (x), (iii)  (x+ b) =  (x)� 1, (iv)  (x+ (2a� b)) =  (x) + 1,
(v)  (x) = k ,  (x) = k mod a Hence, from Properties (i) and (ii), we deduce that  is periodic
and, therefore, can be de�ned only for x 2 f0; 1; � � � ; a� 1g.

Now, let k 2 IN and k0 2 IN be such that k 6= k0 and (kb) mod a = (k0b) mod a = �. Then,
9�; 
 2 IN such that kb = �+ �a and k0b = �+ 
a. It follows that,

(kb) mod a = (k0b) mod a , (k � k0)b = (� � 
)a
, (k � k0)b mod a = 0

, (k � k0) mod a = 0 since gcd(a; b) = 1

Equivalently, if (k � k0) mod a 6= 0 , (kb) mod a 6= (k0b) mod a. Therefore, the set f(kb) mod
a; 8k � 0g contains exactly a di�erent values.

From Property (v), we know that  (x) 2 f0; 1; � � � ; a � 1g. Therefore, we can claim that,
8k 2 f0; 1; � � � ; a� 1g; 9x 2 f0; 1; � � � ; a� 1g such that  (x) = k.

Therefore,  is a bijection from f0; 1; � � � ; a�1g to f0; 1; � � � ; a�1g such that  ((k(2a�b)) mod
a) = k. Hence, using Equations (5) and (7), we obtain that k� =  ((D mod b) mod a). Therefore,
combining this result with Equation (6), Lemma 2 holds. 2

 can be easily computed as a one-to-one mapping of the set f0; 1; � � � ; a� 1g onto itself. Thus,
Lemma 2 readily gives an exhaustive list of (ka; kb) pairs for decomposing any discrete distance
value D for any DT coe�cients a and b.

De�nition 2 Given a pair of DT coe�cients (a; b) and a discrete distance value D which can be
decomposed in at least one manner, we de�ne:

- The set � = f(kai ; kbi); i = 0; � � � ; ng as the exhaustive list of all possible decomposition

pairs (i.e., D = kaia + kbib, kai � 0, kbi � 0 8i = 0; � � � ; n with n =
j
kbmax

a

k
). Note that

kbmax
= maxi=0;���;n kbi and, kbi = kbmax

�ia. Therefore, the set � can be fully computed using
Lemma 2.

- Ri(D) as the Euclidean distance associated with the pair (kai ; kbi). From Equation (3), we
have,

Ri(D) =
q
(kai + kbi)

2 + k2bi (8)
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- Rmax(D) (resp. Rmin(D)) as the maximal (resp. minimal) Euclidean distance over all n + 1
possible decompositions.

- l (resp. m) as the index in the set � of the decomposition (kal ; kbl) (resp. (kam; kbm)) leading
to Rmax(D) (resp. Rmin(D)).

We now present a lemma which allows us to calculate the indices m and l (and, therefore, Rmax(D)
and Rmin(D)) directly for any DT coe�cients (a,b) and any discrete distance value D.

Lemma 3 Given a pair of DT coe�cients (a; b) and a discrete distance value D, we assume that
D can be decomposed in at least more than one manner.

Then, the minimal decomposition (kam; kbm) leading to Rmin(D) is given by

m = round

�
D(a� b)

a(b2 � 2:ab+ 2a2)
+
kbmax

a

�
(9)

and the maximal decomposition (kal; kbl) leading to Rmax(D) is given by

l =

(
0 if kbmax

+ (kbmax
mod a) > 2:D(b�a)

b2�2:ab+2a2

n if kbmax
+ (kbmax

mod a) � 2:D(b�a)
b2�2:ab+2a2

(10)

Proof:

Re-arranging D = kaia + kbib, we obtain kai =
D�kbi b

a . Combining this with Equation (8), we
obtain

R2
i (D) =

1

a2

h
k2bi(b

2 � 2:ab+ 2:a2) + 2:kbiD(a� b) +D2
i

(11)

Given i and j in f0; � � � ; ng such that i < j, we have kbi > kbj . Then, Ri(D) > Rj(D) if

kbi + kbj >
2:D(b� a)

b2 � 2:ab+ 2:a2
(12)

Now, if kbi > kbj 8i < j, Equation (12) shows that we have the following pattern:

R0(D) > R1(D) > � � �> Rm(D)(= Rmin(D)) < Rm+1(D) < � � �< Rn(D) (13)

Therefore, m is the �rst integer such that Rm�1(D) > Rm(D) and Rm(D) � Rm+1(D):

kbmax
� (m� 1):a+ kbmax

�m:a > 2:D(b� a)
b2 � 2:ab+ 2:a2

and

kbmax
�m:a+ kbmax

� (m+ 1)a � 2:D(b� a)
b2 � 2:ab+ 2:a2

Therefore,

D(a� b)
a(b2 � 2:ab+ 2a2)

+
kbmax

a
+
1

2
> m � D(a� b)

a(b2 � 2:ab+ 2a2)
+
kbmax

a
� 1

2
:

Hence, Equation (9) holds. It is important to note that m is uniquely de�ned by the above
equation. Using the result in Equation (13), we can also say that the maximum Euclidean distance is
obtained for either extreme of i. Using Lemma 1, we obtain that kb0 = kbmax

and kbn = kbmax
mod a.

Therefore, using the valid inequality given in Equation (12), we can claim that Equation (10)
completely characterises l. Hence, Lemma 3 holds. 2
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Lemma 4 Characterisation of a Type 1 error. Given a pair of DT coe�cients (a; b), a Type 1
error occurs for any discrete distance value D for which Rmax(D) 6= Rmin(D).

Clearly, the �rst instance of D for which Rmax(D) 6= Rmin(D) is D = ab. In this case, kbmax
= a,

n = 1, � = f(0; a); (b; 0)g, (i.e., R0 = a
p
2 and R1 = b). Hence, Rmax(ab) 6= Rmin(ab). Therefore,

we de�ne the following Euclidean distance limit when considering Type 1 errors only.

De�nition 3 Euclidean distance limit induced by Type 1 error, R1(a; b). Given a pair of DT coef-
�cients (a; b), and D = ab as the minimum discrete distance value for which Rmin(D) 6= Rmax(D),
we de�ne the Euclidean distance limit R1(a; b) for Type 1 errors as follows. R1(a; b) is the max-
imal Euclidean distance value deduced from a discrete distance value (i.e., using Equation (3))
up to which both discrete and continuous distance ordering match. More formally, R1(a; b) is the

maximal Euclidean distance value R such that 9 ka; kb 2 IN such that R =
q
(ka + kb)2 + k2b and

R < Rmax(ab).

In other words, Rmax(ab) can be considered as a strict (i.e., non-feasible) Euclidean distance limit.
In order to obtain a feasible limit, we search D0 the maximal discrete distance value such that
Rmin(D0) < Rmax(ab) and consider R1(a; b) = Rmin(D0). Using the previous study, we can easily
design an algorithm to compute, for any pair of DT coe�cients (a; b), the value of R1(a; b). In
Figure 3, (R1(a; b))

2 is plotted for each pair of valid DT coe�cients such that a � 10.

Figure 3: Euclidean distance limit induced by Type 1 of topological error (R1(a; b))2.

2.2 Type 2 error

Given a pair of DT coe�cients (a; b) and three integer points p, q and r, a Type 2 error occurs
between q and r, relative to p, if da;b(p; q) < da;b(p; r) and dE(p; q) > dE(p; r).

De�nition 4 Type 2 error. Given a pair of DT coe�cients (a; b) and two discrete distance values
D1 and D2, we assume that 9 (ka1; kb1)and (ka2 ; kb2) such that ka1a + kb1b = D1 and ka2a +

kb2b = D2 (see Theorem 1). A Type 2 error occurs if, D1 < D2 and
q
(ka1 + kb1)

2 + k2b1 >q
(ka2 + kb2)

2 + k2b2.
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Figure 4 illustrates an instance of Type 2 error between q and r, relative to p. In this example, the
DT coe�cients are a = 2 and b = 3. We consider p = (0; 0), q = (6; 0) and r = (5; 3). Therefore,
D1 = da;b(p; q) = 12, since ka1 = 6 and kb1 = 0. We also obtain D2 = da;b(p; r) = 13, since
ka2 = 2 and kb2 = 3. On the other hand, we have dE(p; q) =

p
36 and dE(p; r) =

p
34. Therefore,

da;b(p; q) < da;b(p; r) and dE(p; q) > dE(p; r).

r

p q

Figure 4: The �rst instance of Type 2 topological error for (a; b) = (2; 3).

From a geometric viewpoint, given three integer points p, q and r such that D1 = da;b(p; q) <
D2 = da;b(p; r), a Type 2 error occurs between q and r, relative to p, if there exists at least one
integer point (namely, r) included in the area between the discrete disc of radius D1 centred at p
and the Euclidean disc that contains this discrete disc. In Figure 4, this area is illustrated by the
shaded surface. A Type 2 error occurs between q and r, relative to p, since r lies in this shaded
surface.

The geometrical characterisation of Type 2 errors will, therefore, be investigated through the
characterisation of the radius of the smallest Euclidean disc that contains the discrete disc of radius
D for any given values of the DT coe�cients (a; b) and for any discrete distance value D. The
radius of such a Euclidean disc was noted Rmax(D) (see De�nition 2). Therefore, the geometrical
characterisation of Type 2 error can be formally written as follows.

Lemma 5 Given a pair of DT coe�cients (a; b) and a discrete distance value D, a Type 2 error
occurs in the discrete disc of radius D if there exists a discrete distance value D0 > D such that
Rmin(D

0) < Rmax(D).

Using this characterisation, the Euclidean distance limit R2(a; b) induced by Type 2 error can be
de�ned as follows.

De�nition 5 Euclidean distance limit induced by Type 2 error, R2(a; b) Given a pair of DT coe�-
cients (a; b), and D, the minimum discrete distance value for which there exists a discrete distance
value D0 such that Rmin(D

0) < Rmax(D), we de�ne the Euclidean distance limit R2(a; b) for Type 2
errors as follows.
R2(a; b) = Rmin(D

0) where D0 is the smallest discrete distance value such that Rmin(D
0) <

Rmax(D).

In other words, if a Type 2 error occurs for the discrete distance value D (e.g., at point q in
Figure 4, with D = 12), we consider the Euclidean distance limit as the value Rmin(D

0) where D0

is the discrete distance value at the second point for which Type 2 error occurred (e.g., point r in
Figure 4, and D0 = 13). In Figure 5, (R2(a; b))

2 is plotted for each DT coe�cients pair such that
a � 10.

Using the results of Sections 2.1 and 2.2, we can now de�ne a combined Euclidean distance
limit where no topological error of any type can occur.

De�nition 6 Global Euclidean distance limit, R(a; b). Given a pair of DT coe�cients (a; b), we
de�ne the global Euclidean distance limit R(a; b) as the minimum between the distance limits induced
by both Type 1 and 2 errors. Therefore, R(a; b) = min(R1(a; b);R2(a; b)).

9



34

16
17

8

Figure 5: Distance limit induced by Type 2 error.

R(a; b) represents the maximal achievable Euclidean distance when growing topologically correct
discrete discs. Equivalently, given a pair of DT coe�cients (a; b), for any discrete distance value
D such that Rmax(D) � R(a; b), no topological error (of Type 1 or Type 2) occurs in the discrete
disc of radius D. In Figure 6, (R(a; b))2 is plotted for each DT coe�cients pair such that a � 10.
Note that, for large values of a and b, the limit induced by the Type 2 error dominates.

a=3, b=4

Figure 6: Global Euclidean distance limit for the correctness of the EDT.

2.3 Global Euclidean distance limit and optimal DT coe�cients

Our aim now is to determine, whether an optimal pair exists among all valid pairs of DT coe�cients.
We de�ne optimality here as the smallest integer pair of DT coe�cients which guarantees the
maximum achievable Euclidean distance limit. Using the results plotted in Figure 6, we could say
that, for all pair of DT coe�cients such that a � 10, the pair (3; 4) is a local optimum in the sense
that it is the smallest pair of DT coe�cients that leads to a (local) maximum Euclidean distance
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limit (i.e., R(3; 4) = p17). In order to extend this result to any pair of DT coe�cients, we will use
an analytical approach rather than the geometric approach which was used previously.

As suggested in Lemma 4 and De�nition 3, an analytical Euclidean distance limit induced by
Type 1 errors can be estimated by Rmax(ab). Since this limit increases with the values of (a; b), we
pointed out earlier that Type 2 error dominates for greater values of DT coe�cients. Hence, we
will mainly concentrate on an analytical study of Type 2 errors and �nally combine the result with
those of the previous study of Type 1 errors. The result of this study can be stated as follows.

Theorem 2 Euclidean distance limit and optimal DT coe�cients Considering the chamfer distance
da;b as a discrete distance, the maximal error-free Euclidean distance achievable is

p
17 and the

smallest integer pair of DT coe�cients that achieves this limit is (a; b) = (3; 4).

We introduce the idea behind the proof of Theorem 2. The approach for deriving an analytical
expression of the Euclidean distance limit for Type 2 error (i.e., R2(a; b)) is made by decomposing
the region of the plane (x; y) delimited by the lines y = x and y = 2x, by a line y = �

�x, where (�; �)
is an integer pair that matches the conditions for being a pair of DT coe�cients (see Figure 7).

βy=    xα

x

(α=3, β=4)

(a=5, b=8)

(a=6, b=7)

O

y=xy=2x
y

Figure 7: Representation of the valid pairs of DT coe�cients for the proof of Theorem 2.

For each such pair (�; �), we characterise a Euclidean distance limit in each sub-region of the
plane (x; y) delimited by the lines y = x, y = �

�x and y = 2x. Given a valid pair (�; �), and for any

pair of DT coe�cients (a; b) di�erent from (�; �), two cases are possible, (i): b
a <

�
� or (ii): b

a >
�
� .

Case (i) includes the valid integer points in the sub-region below y = �
�x and above y = x, whereas

Case (ii) includes the valid integer points in the sub-region above y = �
�x and below y = 2x. The

Euclidean distance limit R2(a; b) is to be investigated for the two sub-regions separately and we
will refer to this as Rinf(�; �) and Rsup(�; �) for cases (i) and (ii) respectively.

In the example illustrated in Figure 7, � = 3, � = 4. Then, for instance, R2(6; 7) will include
the Euclidean distance limit Rinf(3; 4), since

7
6 <

4
3 . Similarly, R2(5; 8) will include the Euclidean

distance limit Rsup(3; 4), since
8
5 >

4
3 .

Hence, given a pair of DT coe�cients (a; b), the Euclidean distance limit for Type 2 errors
induced by (a; b) (i.e., R2(a; b)) will result from a combination of all Euclidean distance limits
induced by the pairs (�; �) in the following way.

R2(a; b) = min

0
@ min
f(�;�)= ba< �

�g
(Rinf(�; �)) ; min

f(�;�)= ba> �

�g
(Rsup(�; �))

1
A
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Proof:
Given a pair of DT coe�cients (a; b) and an integer pair (�; �) such that 0 < � < � < 2� and
gcd(�; �) = 1, we consider two cases: (i) b

a <
�
� and, (ii) b

a >
�
� . It will become apparent that the

equality case represents a Type 1 error and, therefore, as noted earlier, will not be studied here.

We now investigate cases (i) and (ii) in order to obtain the Euclidean distance limits induced by
each case (i.e., Rinf(�; �) and Rsup(�; �), respectively).

(i) Characterisation of Rinf(�; �).
Since, b

a < �
� then, �b < �a. Given 
1; 
2 2 IN, we can de�ne the two discrete distances

D1 = �b+ 
1a+ 
2b and D2 = �a+ 
1a + 
2b. In this case, we clearly have D1 < D2. According
to De�nition 4, a Type 2 topological error occurs if

(�+ 
1 + 
2)
2 + (�+ 
2)

2 > (� + 
1 + 
2)
2 + 
22

Re-arranging, we obtain,


2 >
2
1(� � �) + �2 � 2�2

2(2�� �) (14)

Moreover, from De�nition 5, the distance limit induced by the case b
a <

�
� is, therefore,

(Rinf(�; �))
2 = (� + 
1 + 
2)

2 + 
22 (15)

Hence, the �rst instance for which a Type 2 error occurs is characterised by (
�1; 

�
2), a pair of

positive integers which satisfy the inequality in (14) (i.e., where a Type 2 error occurs) and for
which Rinf(�; �) is minimum. Since Rinf(�; �) > 0, the minimisation of Rinf(�; �) is equivalent
to the minimisation of (Rinf(�; �))2. If we consider the function 	(
1; 
2) = (Rinf(�; �))2 =
(�+
1+
2)

2+
22 , we can re-write the constrained minimisation problem as follows. Given a valid
integer pair (�; �),

min	(
1; 
2)
subject to:

(C1) 
2 >
2
1(���)+�

2�2�2

2(2���)

(C2) 
1 � 0
(C3) 
2 � 0

Now, 	 is a positive convex quadratic function. Therefore, the global (i.e., unconstrained) minimum

of 	 is reached in (
glob1 ; 
glob2 ) such that @	
@
1

(
glob1 ; 
glob2 ) = 0 and @	
@
2

(
glob1 ; 
glob2 ) = 0. Then, 	 is

minimum for (
glob1 ; 
glob2 ) = (��; 0). But, since 
glob1 = �� < 0, the global minimum (
glob1 ; 
glob2 )
does not satisfy constraint (C2). An analysis of the constraints (see Figure 8) shows that two
feasible cases can be considered.

� If �
� <

p
2, constraint (C1) can be removed since, in this case, (
�1; 


�
2) = (0; 0) is fully

characterised by constraints (C2) and (C3), and therefore is the constrained minimum.

� If �
� >

p
2, constraint (C3) becomes redundant. Therefore, in this case, the minimum is

obtained using the equalities corresponding to constraints (C1) and (C2). Therefore, in this

case, 
�1 = 0 and 
�2 is the �rst integer strictly greater than �2�2:�2

2(2:���)

In both cases, Rinf(�; �) =
q
(� + 
�1 + 
�2)

2 + 
�2
2.
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Figure 8: Graphical representation of the constraints (C1), (C2) and (C3). (A) �
� >

p
2. (B)

�
� <
p
2.

(ii) Characterisation of Rsup(�; �).

Let us assume that b
a >

�
� . Following similar analysis to case (i), we have 	(
1; 
2) = (�+
1+


2)
2 + (�+ 
2)

2. Again, we obtain the following minimisation problem. Given a valid integer pair
(�; �),

min	(
1; 
2)
subject to:

(C1) 
1 >
2
2(��2�)+�2�2�2

2(���)

(C2) 
1 � 0
(C3) 
2 � 0

The global minimum of 	 is (
glob1 ; 
glob2 ) = (0;��) and violates (C3). Therefore,

� If �
� <

p
2, the minimum is obtained for 
�2 = 0 and 
�1 is the �rst integer strictly greater

than 2�2��2

2(���) .

� If �
� >
p
2, (
�1; 


�
2) = (0; 0).

In both cases, Rsup(�; �) =
q
(�+ 
�1 + 
�2)

2 + (�+ 
�2)
2.

We can summarise the analytical expressions for the Euclidean distance limits induced by (�; �)
in Table 1 (note that in this case, dxe is the smallest integer strictly greater than x).

Rinf(�; �) =
q
(� + 
�1 + 
�2)

2 + 
�2
2 Rsup(�; �) =

q
(�+ 
�1 + 
�2)

2 + (�+ 
�2)
2

�
� <
p
2 
�1 = 0 ; 
�2 = 0 
�1 =

l
2�2��2

2(���)

m
; 
�2 = 0

�
� >
p
2 
�1 = 0 ; 
�2 =

l
�2�2�2

2(2���)

m

�1 = 0 ; 
�2 = 0

Table 1: Analytical expressions of the distance limits.

Using these results, we can list the values of the limits for the smallest possible values of � and
�. Table 2 summarises the Euclidean distance limit values obtained when comparing b

a with �
� with

the �rst possible values of � and �.
From the previous results, we can deduce that each possible combination of a, b, � and � creates

an increasing sequence when ordered such that �2+ �2 increases (e.g., the expression of Rinf(�; �)
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� � Rinf(�; �) Rsup(�; �)

2 3
p
17

p
8

3 4
p
16

p
34

3 5
p
97

p
18

4 5
p
25

p
80

4 7
p
337

p
32

Table 2: Numerical values Euclidean distance limits deduced from Table 1 for the �rst instances of
(�; �).

when �
� >
p
2 leads to the increasing sequence

p
17,
p
97,
p
337, � � �,

r�
� +

l
�2�2:�2

2(2:���)

m�2
+
l
�2�2:�2

2(2:���)

m2
,

� � �). Therefore, all possible Euclidean distance limits will be obtained as soon as we obtain a limit
value for any range of b

a . Using the two �rst lines in the previous Table, we deduce that, for
3
2 <

b
a < 2, R2(a; b) =

p
8, for b

a = 3
2 , R2(a; b) =

p
34, for 4

3 � b
a <

3
2 , R2(a; b) =

p
17, and for

1 < b
a <

4
3 , R2(a; b) =

p
16.

As pointed out earlier, R1(a; b) increases with the values of the DT coe�cients. Hence, clearly
R(a; b) = R2(a; b) for any pair of DT coe�cients (a; b) 6= (2; 3). Now, R2(2; 3) = Rsup(3; 4) =

p
34,

since 3
2 > 4

3 . From the result of characterisation of Type 1 error, we obtain R1(2; 3) =
p
8.

Therefore, R(2; 3) = min(R1(2; 3);R2(2; 3)) =
p
8.

Therefore, the maximal Euclidean distance achievable is maxf(a;b)gR(a; b) =
p
17. Clearly, the

�rst pair (a,b) which realizes this maximum is (a; b) = (3; 4). Hence, Theorem 2 holds. 2

In summary, we have extended the results derived from the study presented in Section 2. The-
orem 2 states that, for any DT coe�cients (a; b) such that 4

3 � b
a < 3

2 , the topological order is

preserved in any discrete disc of radius D such that Rmax(D) <
p
17. In the design of algorithms

which require chamfer distances, it is wise to maintain small values of the discrete distances com-
puted. In this context, the minimum DT coe�cients for achieving the global upper bound of

p
17

is (a; b) = (3; 4). This is emphasised by the fact that the integer pair (a; b) = (3; 4) is established
as a global optimum for the approximation of Euclidean distance values.

3 Nearest Neighbour Problem

In this section, we consider the problem of determining the minimal distance from a grid point to a
given set of grid points. More formally, we can formulate the nearest neighbour problem as follows.

(P): Given a reference integer point o and a set of integer points �, �nd, using integer arithmetic,
a point q 2 � such that dE(o; q) = minp2� dE(o; p).

Problem (P) is �rst reformulated in order to take advantage of the theoretical results presented in
Section 2 and to arrive at the Euclidean distance via integer arithmetic. The idea is to characterise
two discrete distance bounds, D and D0, between which a point q which is the exact solution to
(P), will be located. The objective is to minimise distance comparisons in arriving at the exact
Euclidean Distance. Using this technique, the search for q is done using the discrete distance
da;b(:; :) rather than the continuous one (i.e., dE(:; :)). From this formulation, we derive an exact
algorithm which we express in a pseudo-code. Each step of this algorithm is then described using
a graph-theoretic approach and shown to be optimal for the problem in question.

Problem (P) can be equivalently formulated as follows. Given o and �, let q1 be the point such
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that:
da;b(o; q1) = min

p2�
da;b(o; p)

Following the results derived earlier, q1 can be considered as an approximation of the exact solution
q. Let D = da;b(o; q1), then, the solution of (P) is given by the point q 2 � which is the solution to
the following minimisation problem:

min
p2�

dE(o; p) subject to da;b(o; p) � D 8 p 2 �

Moreover, Rmax(D) gives an upper bound to the distance dE(o; q). Using the previous characteri-
sation of topological errors (Lemmas 4 and 5), we can de�ne another grid point q2 as the solution
to:

Rmin(da;b(o; q2)) = min
p2�

Rmin(da;b(o;p))>Rmax(D)

Rmin(da;b(o; p))

In other words, if we note D0 = dE(o; q2), q2 is the point in � closest to o such that Rmin(D
0) >

Rmax(D). Therefore, the solution q 2 � of (P) is the solution of the following constrained minimi-
sation problem.

min
p2�

dE(o; p) subject to D � da;b(o; p) < D0 8 p 2 �

From this new formulation, we can readily implement the following algorithm for the solution of
Problem (P).

Algorithm 1

1. Grow a discrete disc centred at o, �a;b(o;D), incrementally (D = 1; 2; 3 � � �) until a point q1 2 �
is met.

2. Let D  da;b(o; q1), Rmax Rmax(D) and q  q1

3. Increase the radius of �a;b(o;D) by 1 (D D + 1).

4. If Rmin(D) > Rmax (i.e., D = D0) then stop: q is the solution.

5. If 9p 2 � such that da;b(o; p) = D and dE(o; p) < dE(o; q) then, set q  p.

6. Go to Step 3.

In Step 1, D is obtained as the radius of the smallest discrete disc centred at o and containing
a point q1 2 �. Clearly, q1 is the point of � with the smallest discrete distance to o. In Step 2,
Rmax(D) is stored and q1 is considered as an approximation of the solution q. Then, iteratively
(Step 3 to 6), the lower bound (i.e., D) is increased and the new points reached by � are evaluated
by testing whether they are better solutions than the current best q. If it is the case (Step 5), q is
updated. Note that the evaluation in Step 5 can also be done using integer arithmetic. This can be
carried out by simply using the square of the Euclidean distance or using comparisons on ka and
kb. Finally, Step 4 tests for the upper bound D0 of the search. Clearly, Algorithm 1 results in the
exact solution of the above formulation which is shown to be equivalent to the original formulation
of Problem (P). We can therefore state the following Lemma.

Lemma 6 Given a pair of DT coe�cients (a; b), a reference point o and a set of points �, Algo-
rithm 1 outputs a point q which is the exact solution of Problem (P) : minp2� dE(o; p).
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Proof:
Direct from the above description of Algorithm 1. 2

The algorithm is now presented in a graph theoretic context which allows for optimally per-
forming each step of Algorithm 1. Let V = fp = (xp; yp)=xp 2 fxmin; � � � ; xmaxg and yp 2
fymin; � � � ; ymaxgg, where xmin, xmax, ymin, ymax are such that o 2 V and � � V . Points in V
are mapped onto vertices of the grid graph G = (V;A). An arc (p; q) exists in A between two
vertices (i.e., integer points) p and q if and only if d8(p; q) = 1 (i.e., if p and q are 8-neighbours).
The grid graph G therefore contains all the necessary information about 8-connectivity in V . DT
coe�cients are directly mapped onto arc lengths in G. The length l(p; q) of the arc (p; q) 2 A is
such that l(p; q) = da;b(p; q).

In this context, discrete distance calculations can be performed optimally by the use of well-
known shortest path algorithms. More precisely, Dial's adaptation of the shortest path algorithm
from Moore [3] is used in Step 1. This algorithm solves the classical shortest problem on a graph
�rst solved by Dijkstra [4] with the use of special data structures (buckets). It iteratively computes
the discrete distance label (i.e., length of the shortest path to the root o) of the neighbours of the
vertex which have been found to have the smallest such label. In order to optimise this process, it
groups vertices with the same distance label in the same bucket. Once all neighbours of a vertex
have been updated, the label of the vertex is marked as permanent. Therefore, since we readily
obtain a topological ordering of the vertices, a discrete disc of radius D can simply be characterised
as the set of permanently labelled vertices as soon as the algorithm attempts to update a vertex
such that its new label is strictly greater than D. This algorithm is also known to be optimal in
terms of the search time for the shortest path (see [3] for more details). Therefore, in Step 1, we
obtain the upper bound q1 in an optimal number of integer operations.

According to Lemma 3, Rmin(D) and Rmax(D) can be obtained directly in Steps 2 and 4.
Continuing with Dial's shortest path algorithm, it is straightforward to increase the radius of �
by one. During this operation, only neighbouring vertices of the vertex contained in the current
discrete disc � have to be considered (i.e., vertices in the D-labelled bucket). We can then readily
perform the evaluation described in Step 5 on the newly labelled vertices. It is important to note
that Algorithm 1 can be completely and directly (i.e., without any modi�cation) achieved using
the above graph theoretic approach. In this context, Lemma 6 is therefore still valid. In other
words, the solution found is the exact solution of Problem (P).

We now present an example based on Figure 9. Following Theorem 2, we set a = 3 and b = 4.
The points of � are surrounded by a shaded square. The algorithm goes as follows. A discrete
disc � is �rst grown up to q1 (Step 1). In Figure 9, the points p such that d3�4(o; p) � d3�4(o; q1)
are represented by black dots (�). Therefore (Step 2), we obtain D = d3�4(o; q1) = 47. Rmax can
then be calculated, Rmax = dE(o; q1) =

p
265. Successively (Step 3), D is increased. This leads to

check (Step 5) the points labelled � (D = 48), 2 (D = 49), 
 (D = 50) and � (D = 51), and not
beyond since Rmin(52) =

p
272 > Rmax. Therefore, D

0 = d3�4(o; q2) = 52 (point q2 is not actually
used, but is indicated by a star (�) on Figure 9). For D = 48, p1 is �rst found to be a solution
(dE(o; p1) =

p
250). For D = 49, p2, is found to be closer to o than p1. No other point from � are

to be investigated, therefore, q = p2 is the exact solution with dE(o; q) =
p
245.

In summary, Algorithm 1 results in the exact solution of Problem (P). Given a point o and using
discrete distance calculations, Algorithm 1 solves exactly the problem of minimising the Euclidean
distance between o and a given set of points �. Since the search for the solution is done using discrete
distances, we can use integer arithmetic. Moreover, the optimality of Dial's shortest path algorithm
guarantees the optimality of Algorithm 1. Clearly, the complexity of this algorithm derives directly
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Figure 9: An example application of Algorithm 1.

from that of Dial's shortest path algorithm which is linearly dependent on the number of arcs of
the grid graph. Moreover, as we use the 8-neighbourhood, this number is asymptotically equivalent
to the number of vertices (i.e., m � 8n, where n = jV j and m = jAj indicate the number of
vertices and arcs in G respectively). As noted earlier, since this algorithm performs an ordered
search, the �rst approximation of the solution (namely q1) will be found (Step 1) in a minimum
number of integer operations. Furthermore, the theoretical results in Section 2 guarantee that the
number of points for which the real distance is compared is minimum. Therefore, we can state
that Algorithm 1 solves Problem (P) optimally. Note that Euclidean distance comparisons are
performed on the squares of these distances to maintain integer arithmetic throughout.

4 Conclusion

In this paper, the problem of approximating continuous distances by discrete ones was considered.
We considered the Euclidean distance in the continuous space whereas the chamfer distance based
on 3� 3 masks (i.e., using the DT coe�cients (a; b)) was used in the discrete space. We formally
characterised the topological errors which occur during the mapping of distances from the discrete
to the continuous space. Distance limits up to which these errors are guaranteed not to occur were
derived for any pair of DT coe�cients. Among all DT coe�cients, an optimal integer pair was char-
acterised and shown analytically to correspond to a global optimum. As by-product of this study,
we obtained results which give, without the need of enumeration, all possible decompositions of a
discrete distance value into a combination of moves on a shortest path on the grid (ka,kb). We also
obtained a result which allows for the direct computation of the maximal and minimal Euclidean
distances induced by such decompositions for any discrete distance value. We formalise the results
by obtaining optimal DT coe�cients in terms of the topological ordering they induce on the discrete
grid, in contrast with optimality in terms of the approximation error of continuous distance values.
These results also allow for further understanding of errors made when approximating Euclidean
distances by discrete ones.

As an application, we presented an optimal algorithm for solving the nearest neighbour problem
based on Euclidean distances using integer arithmetic This problem is representative of numerous
problems encountered in the �eld of digital image processing. Finally, we brie
y introduced the
graph-theoretical context which creates a robust context for solving discrete optimisation problems.
Such an approach has been successfully applied (e.g., [9, 12]) and warrants further investigation.
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