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Summary

Ultra-wideband (UWB) radio is a new emerging technology which promises to bring a real
revolution in the field of local area wireless communications. UWB is based on a shift
in spectrum management paradigm which consists on allowingusers to transmit over a
shared bandwidth of several GHz rather than allocating private bandwidth to each user. No
significant interference is caused to other UWB users nor to other systems coexisting on the
same frequency bandwidth thanks to the fact that the transmitted power is constrained to
have a very low spectral density.

Given the huge bandwidth used by UWB systems, the latter operates in the low spec-
tral efficiency regime. In our work we investigate the impactof UWB characteristics on
the design of adequate signalling and coding schemes. Motivated by the fact that chan-
nel knowledge is not required to achieve channel capacity for vanishing spectral efficiency,
we consider non-coherent type of detection. We first evaluate the performance of practical
non-coherent schemes using on-off signalling. We then investigate the impact of channel
estimation, made possible by channel stationary, on systemperformance and show at which
extinct practical coherent UWB systems can outperform non-coherent ones.

Later we introduce a multi-carrier UWB signalling scheme which generalizes the con-
cept of on-off signalling to the time-frequency 2-dimentional signalling space. We analyze
the performance of this signalling scheme by deriving lowerand upper bounds on its achiev-
able data rates over the set of all frequency taps correlation profiles.

We then consider UWB on-off signalling in the context of peer-to-peer multiple access
networks. We propose a quantized threshold-based non-coherent receiver whose perfor-
mance is shown to approach the performance of a genie aided receiver.

Finally we propose some practical channel code constructions that are specially de-
signed for non-coherent UWB m-ary PPM systems. The code design uses an exit chart
analysis. Code performance is then measured through simulations.
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Resuḿe

La transmission Ultra large bande (UWB) est une nouvelle technologie qui promet d’engendrer
une relle rvolution dans le domaine des rseaux locaux de communications sans fil. UWB
est base sur un changement de la philosophie de gestion du spectre de frquence radio. La
transmission UWB s’effectue sur une bande de frquence partage de plusieurs GHz contraire-
ment aux systmes de transmission classiques qui utilisent des bandes de frquence troites sur
lesquelles ils bnficient de l’exclusivit du droit de transmission. Ceci est rendu possible grce
a la contrainte, sur la densit spectrale de puissance transmise, impose aux transmissions
UWB et qui implique qu’ils ne gnrent aucune interfrence, de puissance significative, ni aux
autres systmes radio avec lesquels ils coexistent ni aux autres utilisateurs UWB se trouvant
aux alentours.

Etant donne les normes bandes de frquence utilises par la transmission UWB cette
dernire opre dans le rgime de transmission trs faible efficacit spectrale. Dans le cadre
de cette thse on explore l’impact des caractristiques de la transmission UWB sur le design
optimal de certains aspects de sa couche physique. Etant donn que, pour une efficacit spec-
trale gale a zro, la connaissance de la ralisation du canal detransmission n’est pas ncessaire
pour atteindre la capacit on considre dans le cadre de notre tude les schmas de dtection non-
cohrente. On commence par valuer les performances des dtecteurs non-cohrents pratiques
associe a une transmission On-off. Par la suite on analyse l’impact de la connaissance par-
tielle du canal, pouvant tre obtenue grce a la stationnarit du canal, sur les performances du
systme et on montre jusqu’ quel point cela permet d’amliorerles performances par rapport a
celles d’un dtecteur non-cohrent. En suite en introduit un mode de signalisation UWB util-
isant des multi-porteuses qui correspond a une gnralisation du concept de la signalisation
On-off au cas bi-dimensionnel temps-frquence. On analyse les performances de ce systme
en dveloppant des bandes infrieure et suprieure sur les tauxde transmission atteignables.
En suite on s’intresse la transmission UWB On-off dans le contexte d’un rseau d’accs
multiple peer-to-peer. On propose un dtecteur d’nergie a seuil quantifie et on montre qu’il
atteint des performances trs proches d’un rcepteur non-cohrent qui bnficie d’informations
sur les transmissions des interfereurs obtenues grce a un oracle. Finalement nous proposons
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quelques schmas de codage construits spcialement pour la transmission UWB PPM avec
rcepteur non-cohrent. Le design des codes est ralise grce a la technique des exit charts puis
les performances values par des simulations.
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Notations

For the sake of simplicity of the mathematical developments, we will use the same notation
to denote a random variable and its corresponding realization. The differentiation can be
made from the usage context.

z Scalar variable
z Vector variable
Z Matrix variable
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CHAPTER I

Introduction

Ultrawide Bandwidth (UWB) represents a new paradigm in wireless spectrum management
that aims to a better sharing of the latter. The classical approach, based on licensing, con-
sists of assigning and giving the exclusivity of usage of specific spectrum bands to specific
systems or users. The UWB approach allows unlicensed users to transmit over a large band-
width and coexist in licensed bands by making their signalsinvisible and non-intrusive to
other users. UWB signaling is loosely defined as any wirelesstransmission scheme that oc-
cupies a bandwidth of more than 500MHz and or with a fractional bandwidth greater than
0.2. The fractional bandwidth is defined by the expression2(fH − fL)/(fH + fL), fH is
the upper frequency andfL the lower frequency at the -10dB points. Like code division
multiple access (CDMA), the signal is spread in the frequency domain. However, unlike
traditional wireless communication techniques, the most common form of UWB employs
very short pulses (e.g., nanoseconds) instead of continuous wave transmissions. The result
is an ultra wide band, low average power spectral density, signal in the frequency domain.
Short pulse signaling is more known asImpulse Radioand was historically the first form
of UWB signaling to be used. Lately, other UWB signaling schemes were proposed such
as UWB-OFDM. The bandwidths considered for UWB systems are much larger than for
CDMA systems, such as UMTS, which has a 3.84 MHz spread bandwidth. By comparison,
a UWB system operating at 2 GHz would have a bandwidth of at least 400 MHz which
implies a potentially lower spectral efficiency than UMTS insome applications.

The origin of ultra-wideband (UWB) technology stems from work in time-domain elec-
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tromagnetics begun in 1962 to fully describe the transient behavior of a certain class of
microwave networks through their characteristic impulse response [1], [2]. The concept
was indeed quite simple. Instead of characterizing a linear, time-invariant (LTI) system
by the more conventional means of a swept frequency response(i.e., amplitude and phase
measurements versus frequency), an LTI system could alternatively be fully characterized
by its response to an impulsive excitation – the so-called impulse response . However, it
was not until the advent of the sampling oscilloscope and thedevelopment of techniques
for subnanosecond (baseband) pulse generation, to providesuitable approximations to an
impulse excitation, that the impulse response of microwavenetworks could be directly ob-
served and measured. Once impulse measurement techniques were applied to the design of
wideband, radiating antenna elements [3], it quickly became obvious that short pulse radar
and communications systems could be developed with the sameset of tools [6], [9]. While
at the Sperry Research Center, then part of the Sperry Rand Corporation, Ross applied these
techniques to various applications in radar and communications. Intelligible voice signals
were communicated over hundreds of feet without the need forsynchronization and demon-
strated to the government. In the 1970’s efforts turned toward the communication of these
signals [5], [4], [7], [8]. Through the late 1980’s, this technology was alternately referred
to as baseband, carrier-free or impulse the term ”ultra wideband” not being applied until
approximately 1989 by the U.S. Department of Defense. Work in radar continued in the
1990’s with the development of synchronized arrays of shortpulse sources. These systems
were used for intrusion detection applications. Since the beginning of the 90’s the work in
communications was considerably expanded [11], [12], [10].

Interest in (UWB) transmission systems has intensified recently in the scientific, commer-
cial and military sectors following a ruling by the US Federal Communications Commission
(FCC) [13] concerning UWB emission masks. This ruling allows for coexistence with tra-
ditional and protected radio services and enables the potential use of UWB transmission
without allocated spectrum. The restrictions on the emission power spectrum, aim to min-
imize the risk of possible interference with other wirelesssystems with overlapping spec-
trum bandwidth. At the physical layer (PHY) level, UWB communication systems operate
by spreading rather small amounts of average effective isotropic radiated power (EIRP)– al-
ways less than 0.56mW (according to FCC mask)– across a very wide band of frequencies
relative to its central frequency. This quantity is easily calculated from the imposed power
spectral density limit of 75 nW/MHz (-41.3 dBm/MHz) between3.1GHz and 10.6GHz, as
per FCC mask shown in (I). The later is sensibly equal to the power spectral density of
thermal noise, which means that interference from UWB transmitters, to other UWB users
as well as other wireless systems sharing the same bandwidth, resembles thermal noise
and thus do not have any significant impact as stated in [13]:With appropriate technical
standards, UWB devices can operate using spectrum occupiedby existing radio services
without causing interference, thereby permitting scarce spectrum resources to be used more
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Fig. I-1. FCC indoor UWB emission spectrum mask ([13])

efficiently.The later statement may not hold any more if the density of UWBtransmitters,
within a certain area, increases.

The potential classes of UWB devices are many, ranging from imaging systems (ground-
penetrating radar, wall-imaging systems, medical systems, and surveillance systems) to ve-
hicular radar systems, and communications and measurements systems. They all have high
spectrum efficiency potential in common. The technology offers significant potential for the
deployment of short-range communication systems supporting high-rate applications and
lower-rate intelligent devices embedded within a pervasive and personal wireless world.

The FCC-compliant UWB radio systems, using simple modulation and appropriate coding
schemes, can transmit at information rates in excess of 100 Mbits/s over short distances.
Alternatively, UWB radios can trade a reduced information rate for increased link range,
potentially combined with accurate location-tracking capabilities. The two complementary
operating modes are unique to UWB radio systems as they can beimplemented based on
very similar architectures with an unprecedented degree ofscalability. UWB also has ap-
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plications for military operations because it provides lowprobability of detection as well
as anti-jam capabilities. Within the IEEE, two standardization groups have been created
lately. The first one is the Task Group 3a (TG3a) [14] which focuses on the definition of
a PHY alternative to 802.15.3 based on UWB signaling. This newly defined PHY will
respond to consumer demands in the area of multimedia distribution and will work with
an already designed MAC (802.15.3) to provide a unique combination of standard features
and new technology.In parallel a new and complementary to IEEE 802.15.3a was recently
formed within IEEE 802.15.4 (TG4a) [15] to analyze the potential and propose a standard
specifying a low-rate, low power, offering localization capabilities, and low-cost WPAN
technology based on UWB signaling.

UWB technology still faces some major technology challenges. Some of them exist in the
areas of modulation and coding techniques suited for UWB radio systems. Originally, UWB
signaling has been applied for military purposes, where achieving high capacity in terms of
supported number of users was not necessarily a main objective. However, large multi-user
capacity becomes very important in commercial applications. Coding and modulation are
known to be some of the most effective means to improve on a system’s multi-user capacity.
Wide bandwidth provides fine delay resolution, and thus allows UWB systems to resolve
a large number of propagation multi-paths. Therefore, in the case of fast pulse modula-
tion techniques (i.e. PPM), the cost for realizing effective equalizers might be very high,
in terms of both gate count and power consumption. This problem is much less pressing
when using low pulse repetition systems (e.g., as in multiband approach), where the system
complexity is instead challenged by the need for multiple parallel detectors or higher-order
modulations. A particular challenging area at the PHY leveltoday appears to be antenna
design and implementation for UWB radio services. This is more challenging than for
conventional narrowband systems given the large bandwidths, linearity requirements, and
variable conditions of operation. A further aspect not yet fully investigated relates to the
deteriorating effects of in-band interference in UWB receivers that originates from other
radio signals, be they in near- or far- field proximity. This induces the necessity to identify
methods for measuring prevailing noise levels and interference characteristics on the fly to
be able to apply suitable interference rejection schemes. Finally, the use of new and ad-
vanced semi-conductor technologies in UWB system realizations need to be explored, such
as micro-electromechanical systems (MEMS) and silicon on insulator (SOI) techniques as
well as non-linear analog circuit and component design. These techniques could potentially
provide interesting solutions to problems such as excessive clock speed, synchronization
latency, and power consumption.



CHAPTER II

On–off signaling for Non-coherent UWB Systems

A M OTIVATION

Considering transmission in the wide-band regime, with a lack of channel state information
at the receiver, it has been shown that the capacity of the infinite-bandwidth multipath fading
channel is equal to,C∞ = PR

N0 ln 2 bits/s, the capacity of the additive white Gaussian noise
channel with the same bandwidth and average transmitted power constraints. This holds
irrespective of the amount of channel state information available to the receiver. Where
PR is the received signal power in watts, andN0 is the noise power spectral density in
watts/Hz. This well-known result was first proved by Kennedy[29] and Pierce [21] for
Rayleigh statistics, and then generalized by Telatar and Tse [37] to arbitrary fading statistics.
Both results are based on a constructive transmission scheme using frequency-shift keying
which is set to be active at a vanishing duty cycle as the bandwidth goes to infinity. Though
non-coherent detection (i.e energy detection) is optimal in the limit of infinite bandwidth
(i.e. null spectral efficiency) it suffers some sub-optimality in the strictly non-null spectral
efficiency regime. In [28] Verdu considers the trade-off between spectral efficiency and the
minimum signal to noise ratio per bit needed for reliable communications(Eb/N0)min, for
a general non-coherent discrete-time multipath fading channel. He shows that the slope of
the increase of spectral efficiency versus(Eb/N0)min is 0 at the origin which implies that
extremely large bandwidths are needed in order to approach the optimal trade-off point. To
get an idea of the loss incurred, consider a system with a 2GHzbandwidth and data rate
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of 20 Mbit/s (this would correspond to a memoryless transmission strategy for channels
with a 50ns delay-spread) yielding a spectral-efficiency of.01 bits/s/Hz. For a flat-fading
Rayleigh channel, the loss in energy efficiency is on the order of 3dB, which translates into
a factor 2 loss in data rate compared to a system with perfect channel state information at the
receiver. Nevertheless the loss becomes less significant for lower data rates and/or higher
bandwidths. Thenear-optimalityof non-coherent detection in the low spectral efficiency
regime thus motivates our interest in considering non-coherent detection for UWB systems.
This choice is further motivated by the lower complexity of anon-coherent receiver with
respect to coherent one, in particular in the context of UWB signaling. This aspect will be
addressed in more detail later in this chapter.

The main issue that raises then, is the one of finding appropriate signaling strategies for
non-coherent UWB systems. In the literature, this questionhas been raised in some simi-
lar contexts. In [20] Abou-Faycal andal. proved that the optimal input distribution1 for
a discrete-time memoryless Rayleigh-fading channel when channel realization is unknown
to both the transmitter and the receiver, is discrete with a finite number of mass points in-
cluding one located at the origin. They also showed, througha numerical analysis, that
the number of mass points of the optimal input distribution increases for increasing SNR
and that in the low SNR region it has exactly two mass points. Verdu in [28] proved that
this holds in the vanishing spectral efficiency regime for discrete-time memoryless non-
coherent(unknown channel realization to the receiver) frequency-selective channels with
arbitrary statistics. Finding the optimal input distribution, subject to an average transmitted
power constraint, is a very complicated task when considered for a general UWB channel or
even for the more convenient case of Gaussian fading statistics. This issue is still unsolved
even for simpler settings such as discrete frequency selective channels. Thus in our work
we will not tackle directly the original problem but indeed give an insight into it by propos-
ing some particular input distribution that we show to be near-optimal2 in specific spectral
efficiency regimes.

Motivated by the results in [20], [28], and [23] we first consider, in this chapter,On–offsig-
naling, which is a two-mass points distribution including the origin. This signaling scheme
is a generalization ofm-ary Pulse Position Modulationwhich is the most commonly con-
sidered signaling scheme for UWB systems. We analyze the performance of this signal-
ing scheme in terms of ergodic mutual information and consider some related issues such
as practical non-coherent receivers. The use of ergodic mutual information as a relevant
measure of performance will be motivated later by the specificities of UWB channels (see
section (D)).

1in terms of maximizing the average-power constrained capacity
2In the sens of approaching the capacity of the AWGN channel.
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B On–off SIGNALING

The most common UWB transmission scheme is based on transmitting information through
the use of short-term impulses, whose positions are modulated by a binary information
source [16]. This can be seen as a special case ofOn–offsignaling defined as any signaling
scheme whose input distribution is of the following form. Terming uk thekth transmitted
symbol, we have that

uk =

{

1 with probability η
0 with probability (1 − η)

(II-1)

whereuk = 0 corresponds to not transmitting any signal (i.e mass-pointat the origin) while
uk = 1 corresponds to transmitting a pulse whose amplitude is proportional to

√

1/η in
order to maintain a constant average transmitted power for varying transmission probability
η. In [28] Verdu introducesflash signalingwhich is defined as anOn–offsignaling scheme
whose transmission probabilityη is chosen such that the amplitude of the transmitted pulses
does not vanish for vanishing average transmitted power. Inthe following we will not
restrictη to such a constraint.

C CHANNEL M ODEL

We restrict our study to strictly time-limited complex signals, both at the transmitter and
receiver. The time-limited and memoryless assumptions aremade possible due to the vir-
tually unlimited bandwidth of UWB signals. Baseband representation is used for all the
considered signaling models since envisaged realizationswill be passband above 3GHz.

The transmitted pulse, of durationTp, is passed through a linear channel,h(t, u), repre-
senting the response of the channel at timet to an impulse at timeu. We assume that the
impulse response of the channel is of durationTd � Tp. The channel is further assumed to
be a zero-mean process.

The received signal bandwidthW is roughly 1/Tp, in the sense that the majority of the
signal energy is contained in this finite bandwidth. The received signal is given by

r(t) =

∫ Tp

0
x(u)h(t, u)du + z(t) (II-2)

wherez(t) is white complex Gaussian noise with power spectral densityN0. The channel
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is further assumed to satisfy
∫ Td+Tp

0

∫ Tp

0
h2(t, u)dtdu < ∞ (II-3)

which rules out impulsive channels and practically models the bandlimiting nature of analog
transmit and receive chains.

The finite-energy random channel may be decomposed as

h(t, u) =

∞
∑

i=1

∞
∑

j=1

hi,jθj(u)φi(t) (II-4)

wherehi,j are the projections of the channel on the the input and outputeigenspaces,
{θj(u)} is the set of eigenfunctions (forL2(0, Tp)) of the transmit pulse and{φi(t)} is
the set of eigenfunctions (forL2(0, Tp + Td)) of the received signal. Since the input in
equation (II-2) is one-dimensional, the most appropriate choice forp(t) is the one which
maximizes the expected energy of the channel output

p(t) = argmax
f(t)

E

∫ Td+Tp

0

(∫ Tp

0
h(t, u)f(u)du

)2

dt = θ1(t) (II-5)

whereθ1(t) is the eigenfunction corresponding to the maximum eigenvalue,µ1, of the input
cross-correlation function

Ri(u, u′) = E

∫ Ts

0
h(t, u)h(t, u′)dt =

∫ Ts

0
Rh(t, t;u, u′)dt (II-6)

andRh(t, t′;u, u′) = Eh(t, u)h(t′, u′). The use of this input filter is conditioned on the
emmision requirments of UWB systems, and thus it may not be possible to satisfy the
maximal energy solution in practice.

Within the framework of this thesis we do not consider the impact of the shape of input filter
on system performance. Instead of the general time-varyingchannel model, for the rest of
the work we consider a block fading channel model so that the channel impulse response
is time-invariant in any interval of[kTc, (k + 1)Tc), whereTc is thecoherence–timeof the
channel. We denote the channel in any block byhk(t). The received signal is

r(t) =

N
∑

k=0

s(uk)p (t − kTs) ∗ hk(t) + z(t) (II-7)

wherek is the symbol index,Ts the symbol duration,uk is the transmitted symbol at time
k, p(t) and s(uk) are respectively the assigned pulse and amplitude for symbol uk, and
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z(t) is complex white Gaussian noise with power spectral densityN0. p(t) is a unit-energy
pulse of durationTp. This signaling model encompasses modulation schemes suchas on-
off signaling,m-ary PPM, multi-levelm-ary PPM, amplitude, and differential modulation.
Note that ideally the pulsep(t) would be equal toθ1(t) and any other choice will induce a
suboptimality in terms of average received signal to noise ratio. A guard interval of length
Td is left at the end of each symbol (from our memoryless assumption) so thatTs ≥ Tp+Td.
For UWB signalingTs � Tc so that the channel can be assumed to be invariant over each
symbol.

For the rest of the chapter we will use the following equivalent discrete-time channel model.
Through a Karhunen-Loève expansion (see for example [34]), we rewrite the channel model
in (II-7), for each symbolk, as follows

rk,i = hk,i

√

Esλis(uk) + zk,i, i = 1, ...,∞
rk = {rk,1, rk,2, . . . } (II-8)

wherezk,i isNc(0, N0) and{hk,i} are unit variance zero mean independent circularly sym-
metric complex Gaussian variables (i.e. non line-of-sightcommunications). The{λi} are
the solutions to

λiφi(t) =

∫ Td+Tp

0
Ro(t, u)φi(u)du. (II-9)

whereφi(t) and Ro(t, u) are the eigenfunctions and the autocorrelation function ofthe
composite channelhk(t) ∗ p(t), respectively.

hk,i =

∫ Td+Tp

0
hk(t)φi(t)dt (II-10)

Because of the bandlimiting nature of the channels in this study, the channel will be charac-
terized by a finite number,D, of significant eigenvalues in the sense that a certain proportion
of the total channel energy will be contained in theseD components. For rich environments
D will be close to1 + WTd.

Based on measurement campaigns [19] the number of significant eigenvalues can be large
but significantly less than the approximate dimension of thesignal-space1 + WTd [32,
Chapter 8]. For a typical UWB channel, even thoughD is less than1 + WTd it is still
relatively large. As a consequence the total channel received energy

∑D
i=1 λi |hi|2 is a



14 Chapter II. On–off signaling for Non-coherent UWB Systems

quasi-constant quantity irrespective of channel realization {h1, h2, . . . , hD}. This property
of UWB channels has been confirmed through measurements, in the frequency domain,
conducted at Eurecom [19], as well as in other laboratories [25].
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UWB 6GHz
Rayleigh Distibibtion
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Normalyzed Energy in (dB)   

Empirical CDF for UWB 6 GHz

Fig. II-1. CDF of total channel received energy

Figure (II-1) shows the cumulative distribution function of the total received energy over a
UWB channel of2GHz bandwidth in comparison to a flat fading Rayleigh channel with
the same average received energy. The measurements were conducted in a typical office
environment. The CDF corresponding to the UWB channel is very close to a step func-
tion, which proves that the received energy is effectively constant irrespective of channel
realization. The physical explaination for this bahavior comes from the fact that the large
bandwidths considered here (>1GHz) provide a high temporal resolution and enable the
receiver to resolve a large number of paths of the impinging wavefront. Providing that the
channel has a high diversity order (i.e. in rich multipath environments), the total chan-
nel gain is slowly varying compared to its constituent components. It has been shown
[25, 26, 27] through measurements that in indoor environments, the UWB channel can con-
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tain several hundreds of paths of significant strength. We may assume, therefore, that for
all practical purposes, the total received energy should remain almost constant at its average
path strength, irrespective of the particular channel realization. Variations in the received
signal power will typically be caused by shadowing rather than fast fading. We will exploit
this property of UWB channels in some later developments and, without loss of generality,
will assume total channel gain constant and equal to 1. This assumption essentially says
that the received signal energy is not impaired by signal fading due to the rich scattering
environment. For notational convenience, we will assume that the eigenvalues are ordered
by decreasing amplitude. An example of an eigenvalue distribution is shown in Fig. II-2.
This corresponds to an exponentially decaying multipath intensity profile with delay-spread
50ns filtered by a window function of width 1ns, corresponding to a system bandwidth of 1
GHz.
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Fig. II-2. Example Eigenvalue Distribution: Td=50 ns, W=1GHz. Mean value indicated by
a horizontal bar
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D ERGODIC ACHIEVABLE RATES

In this chapter we are interested in characterizing the performance of pure non coherent
detection, in the sense of considering the case where the piecewise constant3 nature of the
channel is not exploited in order to implicitly perform channel estimation. We assume
that the channel realization in every block is independent and identically distributed, so
that E[hk(t)h

∗
l (u)] = Rh(t, u)δk,l, whereRh(t, u) is the auto-correlation function of the

channel response in a particular interval. In practice, this implies that a sufficiently large
number of channel realizations span the codeword length. This can be achieved by first
interleaving the transmitted symbols, using an infinite depth interleaver, before sending
them over the channel. Thus, we can assume that the deinterleaved symbols at the receiver
face independent channel realizations. Generally speaking, this channel model is useful
only as a first approximation for short range communications.

Nevertheless, for UWB signaling with non-coherent detection, this channel model is ad-
equate thanks to the high diversity orderD of UWB channels. As stated in the previous
section, the overall received energy over a typical UWB channel is constant (fig II-1) irre-
spective of particular channel realizations. Thus, in a sense, the channel almost does not
suffer any fading4. Therefore, ergodic mutual information is a significant measure of the
achievable data rates for practical systems due to the fact that the probability of the informa-
tion outage event is vanishing. The information outage event is defined as the probability
of having the instentaneous mutual information, between the transmitted symbol and the
received signal, less than the coding rate. This reasoning will be further strengthened later
in the chapter (see section (E.1)) when the ML detection metric, for the considered channel
model and signaling scheme, is shown to break down to exactlythe received energy within
each symbol time.

In the rest of this section we derive and numerically evaluate the ergodic mutual informa-
tion. The latter is then used to analyze the impact of the mostimportant channel and design
parameters, on the system performance. We also, a posteriori, motivate the use of the con-
sidered channel model by showing that non-coherent UWB signaling achieves exactly the
same data rate as over a non-ergodic UWB channel whose gain5 is assumed to be strictly
constant. The later channel model will be described in more detail further in this section.

For the rest of this section we drop the time indexk for a better clarity of mathematical
expressions. Recalling the notations from the signaling model (II-7), we have thats(0) = 0,

s(1) =
√

Es

η
, andTs = Td + Tp. ThenR is a zero-mean Gaussian vector with covariance

3From our block fading channel model
4From the perspective of a non-coherent detector which captors the received energy over the channel.
5i.e. total received energy over the channel
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matrixE
[

RRT
]

= diag(s(uk)Esλi + N0). It is shown in (Appendix II.0.1) that

I(u; r) =

− 1

Ts
E
Y



η log



η + (1 − η)

√

√

√

√

D
∏

i=1

(

1 +
Esλi

ηN0

)

exp

(

−Y †(diag(
N0η

Esλi
))−1Y

)



 (II-11)

+ (1 − η) log









(1 − η) +
η

√

∏D
i=1

(

1 + Esλi

ηN0

)

exp

(

Y †(diag(
N0η

Esλi
+ 1))−1Y

)

















bits/s

whereY is a zero-mean complex Gaussian vector with covariance matrix I and† stands
for complex conjugate transpose. This is easily computed numerically using the Monte
Carlo method. The transmit probabilityη is optimized as function of system parameters
and average signal to noise ratio (SNR).

Figure (II-3) shows the achieved capacity versus the average SNR for 2 scattering environ-
ment examples. The system bandwidth is taken to be equal to1GHz and channel delay
spreadTd = 25ns. The latter value is obtained from measurements in a typicaloffice en-
vironment using a carrier frequency of5GHz [25]. The mutual information is computed
for both a typical scattering environment and a very rich one6. In the first case the number
of significant dimensions of the received signalD is equal to1 + WTd = 26 while in the
second case it is equal to10. The achieved capacity in the low SNR regime is close to the
wideband capacityC∞ though saturates in the high SNR region due to the limited maxi-
mum transmission rate of the considered signaling scheme7Rmax = 1/Ts. As we can see,
unlike the case of a coherent receiver, increasing the number of dimensions of the received
signal (i.e. diversity) decreases the system performance.

Figure (II-4) shows the achieved capacity versus the average signal to noise ratio SNR for
system bandwidths ranging from500MHz to 7.5GHz. A typical scattering environment
is considered andTd = 25ns. Again, we see that increasing diversity, through an increase
of system bandwidth, degrades the achieved capacity. This behavior can be explained by
a signalover-spreading phenomena; if we noteTp the transmitted pulse duration andTd

the channel delay spread, then the the received signal occupies a signal-space of dimension
of the order of(Td + Tp)/Tp, which means that for increasing bandwidth (i.e. decreasing
Tp) the number of dimensions increases becauseTd + Tp ' Td. This confirms previous
results on the so-called bandwidth-scaled signals, that showed that using spread spectrum

6The eigenvalues profile is assumed to be exponentially decaying, with a smaller decaying factor in the case
of rich scattering environment.λi = βe−αi whereα is the decaying factor andβ a normalization factor. For
the very rich scattering environement, we considered here the limiting case where the eigenvalue profile is flat
(i.e. α = 0)

7due to the use of a guard interval at the end of each symbol
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signaling, such as direct sequence CDMA, leads to a vanishing systems capacity in the limit
of infinite bandwidth ([22], [23], [37]).
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Fig. II-5. Multiband signaling: Capacity versus distance,different bandwidths. Td=25ns

The current regulation on UWB signaling [13] imposes that the bandwidth occupied by a
UWB signal has to be no less than 500MHz. Therefore, the discussion above suggests that
the optimal bandwidth for a typical non-coherent UWB systemshould be 500MHZ. Never-
theless, the regulation also imposes a limit on the power spectral density of allowed UWB
signaling which implies that the total allowed transmit power is proportional to the signal-
ing bandwidth. Combining the two arguments leads to the use of multiband signaling over
bandwidths of 500MHz each. The generalization to the multi-band setting is straight for-
ward; independent data streams are transmitted on each band. Adjacent bands are assumed
to not interfere with each other through the use of band-limiting filtering (see figure II-6).
Figure (II-5) shows the achievable data rates for systems with different numbers of multi-
bands. The results are ploted versus distance8 between the transmitted(On–off signaling)

8rather than versus SNR as done so far
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and the receiver. We assume that the transmitter transmits at the maximum allowed power
Pmax = W ∗ Pd, whereW is the signaling bandwidth in MHz andPd the limit on the al-
lowed transmitted power spectral densityPd = −41.3dBm/Mhz. The transmitted power is
split equally over all the used sub-bands. We use the indoor pathloss model proposed in [18]
where the transmitted signal attenuation as function ofd the distance between the transmit-
ter and the receiver is given by1/

(

105.49d3.1
)

. We can see, on the figure, that multi-band
signaling allows to achieve higher data rates in the short range region(high SNR) while not
bringing any improvement in the long range region(low SNR).

In chapter IV, we will further push the concept of multiband (carrier) signaling by consid-
ering multi-carrierOn–offsignaling.

+
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Filter
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Fig. II-6. Multiband signaling

Figure (II-7) shows the minimum SNR per bitEb/N0 = P/(N0R), required for reliable
communications, versus system’s target data rate. System’s bandwidthW is respectively
taken to be equal to500MHz, 1GHz, and2GHZ. Td = 25ns. We can see that when op-
erating in the low data rate region the penality due to unknown channel, in terms of mini-
mumEb/N0 for reliable communications, between non-coherentOn–offsignaling and the
AWGN channel with the same bandwidth is on the order of 1.2dB.

(

Eb

N0

)

min

= lim
W→+∞

P

N0W log
(

1 + P
WN0

) =
1

ln(2)
(II-12)



22 Chapter II. On–off signaling for Non-coherent UWB Systems

−2 0 2 4 6 8

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Eb/N0 (dB)

bit/s

500MHz
1GHz
2GHz
100MHz

Loss du unknown
channel

Fig. II-7. Data rates versus Eb/N0. Td=25ns, W=500 MHz



D Ergodic achievable rates 23

D.1 Constant received energy UWB channel

In order to further test the assumptions of the adopted channel model, in particular the ergod-
icity of the channel process, we consider here a non-coherent non-ergodic channel model
assuming that the total received energy, over the channel, is strictly constant irrespective of
channel realization, or equivalently.

D
∑

i=1

|hk,i|2 = 1 (II-13)

By non-coherent channel we designate the channel that for each input symboluk outputs
the received energy during a symbol periodTs.

yk =

D
∑

i=1

|rk,i|2

=
D
∑

i=1

∣

∣

∣

∣

∣

√

Esλi

ηN0
hk,iuk + nk,i

∣

∣

∣

∣

∣

2

= µk (II-14)

whereµk is a random variable distributed according to a non-centralchi-square distri-
bution with 2D degrees of freedom and non-centrality parameter

∑D
i=1

Esλi

ηN0
|hk,i|2 uk =

Es

ηN0
uk(from our no fading-channel assumption). This model assumes that, before captur-

ing the received energy, the received signal is first projected over a signal subspace in order
to limit the amount of collected noise. We choose the latter subspace to be the one spanned
by the eigen-functions corresponding to theD most significant eigen-valuesλ1, . . . , λD.

Computing the average mutual information betweenuk andyk, in the case of flat chan-
nel eigenvalues profile, we see that it is exactly equal(numerically) to the one achieved
over the ergodic channel model9. This suggests that the ergodic channel model is capable
of correctly describing the behavior of a UWB channel when using non-coherent type of
detection. This is explained by the fact that dominant contribution in the overall average
mutual information is due to the richness of the scattering rather than the time-variation of
the channel process. In the case of non-flat eigenvalues profile, the achievable data rates
over the constant energy channel are slightly lower. This suboptimality is due to a non-
channel matched energy detection at the receiver. In the following section we analyze more
detail the performance of both matched and non channel-matched energy receivers.

9The obtained curves are not shown here because they perfectly overlap and thus are not convenient to draw.
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E PRACTICAL NON-COHERENT DETECTION RECEIVERS

In this section we consider practical non-coherent type of receivers for UWB systems using
m-ary pulse position modulation(PPM).m-ary PPM can be seen as a spacially-designed
channel code forOn–offsignaling, this link will be further detailed further in this section.
The motivation for this interest is two-fold : first, as we sawin the previous section, non-
coherent detection is capable of approaching the performance of coherent detection. The
second motivation comes from system’s complexity considerations. In fact, as seen in the
previous section a UWB channel contains a large number of propagation paths of significant
strength. This property has two implications on the complexity of a coherent Detector. i)
it makes channel estimation very complex due to the large number of parameters to be
estimated. ii) The Rake structure of a typical coherent detector will contain a large number
of fingers. Both those aspects combined to the fact that the received signal needs to be
sampled at a rate of several GHz, prior to entering the receiver, make an optimal coherent
detector very complex and induces that in practice only suboptimal versions of it can be
implemented. In Chapter 2, we will consider practical coherent detectors, in the sense those
which only have access to an imperfect channel estimate. Therefore, we will address the
question of how good this channel estimate needs to be in order to significantly outperform
a non-coherent detector.

The aim of the analysis performed in this section is to derivealternative receivers, to the
coherent receiver, that are more attractive from complexity point of view. We are, in par-
ticular, interested in solutions that can be implemented with analog frontends, and that can
still perform close to the optimal performance. Two different receivers are considered in the
sequel. The first one (see figure (II-9)) is the maximum likelihood non-coherent receiver,
while the second (see figure (II-10)) corresponds to a suboptimal solution.

As stated earlier in this section,m-ary PPM can be seen as a particular implementation
of On–off. Eachm-PPM symbol corresponds to choosing one out ofm symbol times,
constituting a PPM frame, in which to emit the transmit pulsep(t), which is a special case
of On–offwith η = 1/m and exactly one pulse transmitted per frame. In the following we
termw as the transmitted symbol and defineR as the set of observation vectors over all the
slots constituting anm-PPM frame,

R = {r1, r2, . . . , rm} (II-15)

In this case groups ofm symbolsuk, uk+1, . . . , uk+m−1 will be constrained to the form
(0, 0, . . . , 0, 1, 0, . . . , 0). Similarly to (II-11) we compute the ergodic mutual information
between the transmitted symbolw and the observationR. Figure (II-8) compares the
achievable data rates of both signaling strategies. As can be seenm-ary PPM, which is
the practical implementation of asymmetricOn–off, does not suffer any suboptimality a
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part from a saturation in the very high data rate region. Thisis overcome by usingOn–off
signaling, with on probability equal to 1/2, in the high SNR region.
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Fig. II-8. Achievable data rates ofOn–offsignaling versusm-ary PPM. Td=25ns, W=1GHz

In the following we usem-ary PPM as signaling scheme. We obtain sufficient detec-
tion statistics, for each of the considered detection settings, through the derivation of the
maximum-likelihood detection rule for each of them. Given the statistical independence of
channel realizations faced by any two differentm-PPM symbols10 the ML dection metric of
a sequence ofm-PPM symbols(i.e. codeword) is additive over the set symbols constituting
the sequence. Therefore, in the following we concentrate onthe derivation of the symbol
ML detection. Througouth this section, we denoteqk the output of the receiver(i.e. the
decision metric that is fed to the decoder).
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Fig. II-9. Channel matched non-coherent receiver

E.1 Channel-Matched Non-Coherent Receiver

By definition, the ML detection rule can be written as follows

k̂ = argmax
k=1,...,m

Pr (r|w = k) (II-16)

The conditional probability in (II-16) is developed as follows

Pr (r|w = k)
(a)
=

m
∏

j=1

D
∏
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=
∏
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
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
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π (Esλi + N0)
e
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Esλi+N0



 (II-17)

in (a) we use the fact that, conditioned on the transmitted codeword, the observation vector
componentsrj,i j = 1, . . . ,m i = 1, . . . ,D are statistically independent. The maximum
likelihood detection rule can thus be written equivalentlyas follows

10from our ergodic channel model
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k̂ = argmin
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







m
∑

j=1
j 6=k

D
∑

i=1

|rj,i|2
N0

+

D
∑

i=1

|rk,i|2
Esλi + N0









= argmin
k=1,...,m

D
∑

i=1

|rk,i|2
Esλi + N0

−
D
∑

i=1

|rk,i|2
N0

= argmax
k=1,...,m

rkQ
−1r†k (II-18)

with Q = diag(N0

(

1 + N0
Esλi

)

) 11.

Thus the ML detection rule breaks down to a weighted energy detection

argmax
k=1,...,m

D
∑

i=1

|rk,i|2

N0

(

1 + N0
Esλi

) (II-19)

This detector can be implemented using a time-varying filter. This representation is likely
not of practical interest but serves to upper-bound the performance of suboptimal schemes.

E.2 Mismatched Non-Coherent Receiver

r(t)
f(t) ()2

∫ Ts

0

Mismatched energy detector

Fig. II-10. Mismatched non-coherent receiver

We now consider a suboptimal non-coherent receiver that would be of interest either in the
case where the receiver does not have access to channel statistics12and/or is constrained
to the use of single frontend filter for the sake of lower implementation complexity. The
received signal is first filtered by the time-limited unit-energy filter f(t) of durationTf .

11this detector is equivalent to the classical estimator-correlator [34]
12For instance, in case the channel is not second order stationary
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This filtering operation aims to reduce the amount of receiver noise while capturing the
majority of its information bearing part

rf (t) = (r ∗ f)(t) = ((s + z) ∗ f)(t)

= sf (t) + zf (t) (II-20)

Then, its energy is successively captured over the slots, ofdurationTd + Tp each, of the
m-PPM frame.

{

qk =
∫ k(Td+Tp)
(k−1)(Td+Tp) r2

f (t)dt

k = 1, . . . ,m
(II-21)

In the following analysis we will representrf (t) with its equivalent discrete-time represen-
tation

qk =

{

∑D
i=1 λir

2
f,i k = w

∑D
i=1 µir

2
f,i k 6= w

(II-22)

with λi andµi being the solutions to

λiφi(t) =

∫ Td+Tp

0
Rsf +zf

(t, u)φi(u) du (II-23)

µiθi(t) =

∫ Td+Tp

0
Rzf

(t, u)θi(u) du (II-24)

whereRsf +zf
(t, u) andRzf

(t, u) are the autocorrelation functions of the filtered received
signal respectively with and without the presence of a transmitted pulse and{φn,1, . . . , φn,D}
and{θn,1, . . . , θn,D} are the resulting basis functions in the Karhunen-Loève decomposi-
tions. Therf,i are zero mean unit variance random variables resulting fromthe projection
of rf on the basis functions. This representation is not computedby the receiver, it serves
only to derive the performance of the energy detector.

E.3 Achievable data rates

At present we turn to the computation of the achievable data rates ofon–offsignaling when
using the non-coherent receivers previously presented. Wecompute their corresponding
ergodic mutual information. From (E.1) and (E.2) we can write the decision variable for
each of the considered receivers as a quadratic form of a zero-mean unit-variance complex
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Gaussian random vectorU of dimensionD. Moreover, the matrix of the quadratic form is
diagonal.

qk = UAUT (II-25)

such that

• Channel matched detector

A =







diag
(

Esλi

N0

)

for k = w

diag
(

Esλi

Esλi+N0

)

for k 6= w
(II-26)

• Mismatched detector

A =

{

diag (λi) for k = w
diag (µi) for k 6= w

(II-27)

Hence for the two considered receivers, the computation of the average mutual information,
breaks down to the computation of the mutual information between anm-ary PPMu and
an observation vectorq = {q1, . . . , qm} each of its entries is a quadratic form of zero-mean
unit-variance random Gaussian vectorv of dimensionD

{

for k = w qk = vkA1v
T
k

for k 6= w qk = vkA2v
T
k

(II-28)

whereA1 andA2 are diagonal matrices with strictly positive entries. In the following we
assume that the entries ofA1 (respectivelyA2) are distinct.

In the following, we drop the time indexk. Conditioned on the transmitted symbolu, the
probability density function ofqs, for s = 1, . . . ,m, is then written as follows ([35],[36])

Pqs(z|u) = Pr (qs = z|u) =

D
∑

i=1

1

λi









D
∏

j=1
j 6=i

λi

λi − λj









exp

(

− z

λi

)

(II-29)

Where{λ1, . . . , λD} are the eigenvalues ofA1 (resp.A2) if u = w (resp.u 6= w). Thus
the probability density function ofqs is a weighted sum of exponential distributions. Given
that conditioned onu, the variables{qs, s = 1, . . . ,m} are independent, we can write the
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ergodic mutual information between the transmitted symboland received signal as follows

I (u; q1, . . . , qm)

= − 1

m

m
∑

s=1

∫

q1,...,qm

log







1

m






1 +

∑

j 6=s

∏m
k=1 Pq(qk|u = j)

∏m
t=1 Pq(qt|u = s)












Pq(q1) . . . Pq(qm)dq1 . . . dqm(II-30)

The integration operation in equation (II-30) is numerically performed through Monte Carlo
averaging.

E.4 Numerical results

Figure (II-11) shows the achievable data rates of the two considered non-coherent receivers.
The comparison is performed in the case of a typical UWB indoor scattering environ-
ment(i.e. non-flat eigenvalues profile). We can see that the channel matched receiver
achieves the same achievable rates as the non-receiver constrained non coherentOn–off
signaling. This behavior is to be expected since the channel-matched receiver uses the ML
detection metric which is known to be a sufficient statistic.The non-matched receiver suf-
fers a performance degradation on the order of 2dB. In the case of a flat eigenvalue profile,
both receivers perform identically, since the channel isisotropicand thus no channel match-
ing is required.

F APPENDIX

II.0.1 on–off:mutual Information computation

I(u; r) = η

∫

r

Pr(r|u = 1) log(
Pr(r|u = 1)

ηPr(r|u = 1) + (1 − η)Pr(r|u = 0)
)

+ (1 − η)

∫

r

Pr(r|u = 0) log(
Pr(r|u = 0)

ηPr(r|u = 1) + (1 − η)Pr(r|u = 0)
) (II-31)

where

Pr(r|u = 0) =
1

(πN0)D
exp

(

−r (N0I)
−1

r†
)

Pr(r|u = 1) =
1

(π)D
∏D

i=1

(

N0 + λiEs

η

) exp

(

−r

(

diag

(

N0 +
λiEs

η

))−1

r†

)

(II-32)
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Fig. II-11. Comparison of the achievable data rates of the considered practical non-coherent
receivers. A typical (i.e. α = 0.1) scattering environment is considered. Td=25ns,
W=1GHz.
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Performing respectively variable changesy =
√

1
N0

r ands = rdiag
(√

N0 + λiEs

η

)−1
in

the first and second integral of the right-hand side of equation II-31 we obtain the desired
result.



CHAPTER III

UWB On–off Signaling With Imperfect Channel
Estimation

In the previous chapter we analyzed the achievable data rates of non-coherent UWB chan-
nels when usingOn–offsignaling. We showed that this scheme approaches, without reach-
ing, the AWGN capacity in the low data rate region. The observed suboptimality is com-
pliant with, the previously cited, result by Verdu on the slope at the origin of the growth of
spectral efficiency versus(Eb/N0)min. Nevertheless, the suboptimality of non-coherent de-
tection versus coherent detection, shown by verdu in the non-null spectral efficiency regime,
do not consider the cost of channel estimation required to perform coherent detection.

In this chapter we try to bring a better insight onto the question of characterizing the sub-
optimality of non-coherent detection, with respect to coherent detection, for UWB systems.
The analysis is restricted to the case whereOn–offsignaling is used. The results of the previ-
ous chapter suggest this signaling strategy is agoodone, even though not proved to be best,
in the low spectral efficiency region. We address the considered problem, by looking at the
case where the receiver have access to an imperfect channel state information (CSI). Indeed,
we analyze how good the latter needs to be in order to significantly improve the achievable
data rates with respect to those of a fully non-coherent receiver. This analysis will allow to
assess both the performance of practical coherent receivers, since in practice only imperfect
CSI is available to the receiver, and the suboptimality of non-coherent detection.

The effect of channel estimation imperfections on system performance, have been studied



34 Chapter III. UWB On–off Signaling With Imperfect Channel Estimation

for some particular channels and settings. In [39],[41], [42] finite-state channels with im-
perfect CSI at the receiver are considered and the effect of the later on mutual information
analyzed. In [40], Caire and Shamai looked at the impact of some configurations of CSI at
both the transmitter and the receiver on the optimal coding strategies. They consider both
channels with and without state memory, in particular finite-state Markov and Rayleigh
fading channels. Lapidoth and Shamai[38] considered flat fading channels and analyzed
the robustness of the optimality of Gaussian codebooks whenchannel estimation is subject
to imperfections (i.e. partially known channels). Unlike previous works they considered
practical decoding rules rather than implicitly assume theuse of the optimal one. Lately
UWB channels were considered [43] and [44]. In [43], uncodedPPM modulation, over a
discrete frequency selective channel, is analyzed in the case where the receiver has access
to an imperfect genie-aided channel estimation. The authors derived the system’s perfor-
mance, in terms of error probability and achievable data rates under ML decoding. They
also have drawn the implications of the quality of the channel estimate on the optimal num-
ber of channel taps to be estimated when using RAKE type of receivers. In [44], the impact
of imperfect paths amplitudes estimation on the performance of antipodal modulation is
analyzed. The results were obtained for a diversity combining receiver.

In the previous chapter we compared the performance of non-coherent detection (i.e. chan-
nel always unknown) and coherent detection (genie-aided).The first one was shown to
perform very close to the second in low spectral efficiency regime but still suffer a signifi-
cant suboptimality in higer spectral efficiency regime. Here we explore the effect of channel
stationarity, which allows for channel estimation, on closing the gap from the performance
of the genie-aided coherent receiver. In our work we consider a realistic setting, in the sense
that the channel estimate available to the receiver is obtained through the use of training se-
quences. A longer training sequence results in both a betterchannel estimate and a higher
cost in terms of reduction of the useful transmitted symbols. Hence, the considered prob-
lem brakes down to answering the question of how much effort should be put into channel
estimation in order to minimize the detection error probability for a given effective (i.e.
useful) achievable transmission data rate. The analysis isachieved through the derivation of
bounds on the decoding error probability assuming that the systems uses finite length codes
and either an ML receiver or a suboptimal version of it.

A M ODELS

We use the signaling scheme and block fading channel model introduced in chapter (II).
The transmittedOn-off symbols are gathered into codewords of lengthBN before being
transmitted over the channel. The symbols constituting a same codeword are transmitted
in a sequential fashion over the channel.N is being choosed such thatNTs is equal to
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the channel coherence timeTc
1. Therefore, each consecutive block ofN symbols, face the

same channel realization2. B is the number of blocks.

Recalling the notations from the previous chapter, we writethe received signal during the
kth symbol duration of thebth symbol block, as follows

ri,k,b =

√

Esλi

η
hi,buk,b + zi,k,b (III-1)

where againhb = [h1,b, . . . , hD,b] is a zero-mean complex random vector with identity co-
variance matrixanduk,b is thekth transmitted symbol within thebth block. In the following
we termub the vector of transmitted symbols within thebth block. From our model, the
channel random process containsBD degrees (DoF) of freedom over theBN -long block
of symbols. In [50], Verdu and Han show that if, as the codeword length goes to infinity, the
number of degrees of freedom of the channel random process stays finite3 then its capacity
converges to the one of an AWGN channel with the same bandwidth.

B SEQUENCE ML DETECTION RULE

In this section we derive the maximum likelihood sequence detection rule for the considered
setting.

argmax
ub; b=1,...,B

Pr
(

{rk,b; k = 1, . . . ,N ; b = 1, . . . , B}|ub; b = 1, . . . , B
)

(III-2)

In the following developments we replace the set of receivedsignal vectors{rk,b; k =
1, . . . , N ; b = 1, . . . , B} with the equivalent set of vectors{y

i,b
; i = 1, . . . ,D; b =

1, . . . , B} for convenience, wherey
i,b

is defined as follows

yT

i,b
=















√

Esλi

η
hi,bu1,b + zi,1,b

√

Esλi

η
hi,bu2,b + zi,2,b

. . .
√

Esλi

η
hi,buN,b + zi,N,b















=

√

Esλi

η
hi,bub + zi,b (III-3)

1To be more preciseN is choosed such thatNTs ≤ Tc < (N + 1)Ts
2From our block fading channel model
3From our model this would corresponds to having an infinite channel coherence-timeTc
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Conditioned on the transmitted codeword (i.e. symbol sequence), vectorsy
i,b

are zero mean
complex Gaussian. Their cross-correlation is given by

Ki(ub) = E
[

yH

i,b
y

i,b
|ub

]

(III-4)

=
Esλi

η
uT

b ub (III-5)

Note that vectors{y
i,b
} are statistically independent for different values of bolock indexb

from our channel model. Moreover, for the same value ofb we have that

E
[

yH

i,b
y

j,b
|ub

]

= 0 for i 6= j (III-6)

Thus the probability distribution of the observation vectors conditioned on{ub} is written
as follows

Pr
(

{y
i,b

; i = 1, . . . ,D; b = 1, . . . , B}|ub; b = 1, . . . , B
)

=

B
∏

b=1

D
∏

i=1

Pr
(

y
i,b
|ub

)

(III-7)

=
B
∏

b=1

D
∏

i=1

1

|det (Ki(ub))|
e
−y

i,b
K

−1
i (ub)y

H
i,b (III-8)

The matrix Esλi

ηN0
uT

b ub + I has two distinct eigenvalues. The first one is1 + Esλi

ηN0
ubu

T
b ,

with multiplicity 1, associated to the eigenvector1‖ub‖
ub. The second eigenvalue is1 with

multiplicity N − 1. Through an eigenvalue decomposition we rewriteKi(ub) as follows

Ki(ub) = N0A
H
i (ub)ΛiAi(ub) (III-9)

whereΛi = diag
(

1 + Esλi

ηN0
ubu

T
b , 1, . . . , 1

)

andAi(ub) a unitary matrix whose first vector

is ub. For i = 1, . . . ,D let vi,b = AH
i (ub)ub.

det (Ki(ub)) = NN
0

(

1 +
Esλi

ηN0
ubu

T
b

)

(III-10)

Considering blockwise constant weight codebooks (i.e. allcodewords containing the same
number ofoneswithin each block4) ubu

T
b is independent ofub. Throughout the rest of

4of sizeN
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the chapter we assume the use of blockwise constant weight codebooks5 so that the terms
|det (Ki(ub))| are independent of codeword blockub.

argmax
ub b=1,...,B

Pr
(

{rk,b k = 1, . . . ,N b = 1, . . . , B}|ub b = 1, . . . , B
)

= argmin
u b=1,...,B

B
∑

b=1

D
∑

i=1

y
i,b

K−1
i (ub)y

H

i,b

= argmin
u b=1,...,B

B
∑

b=1

D
∑

i=1

vi,bΛ
−1
i (ub)v

H
i,b (III-11)

Noting thatvi,bv
H
i,b = y

i,b
yH

i,b
is independent ofub, we rewrite (III-11) as follows

argmax
ub; b=1,...,B

Pr
(

{rk,b k = 1, . . . ,N b = 1, . . . , B}|ub b = 1, . . . , B
)

= argmin
ub b=1,...,B

B
∑

b=1

(

D
∑

i=1

vi,bΛ
−1
i (ub)v

H
i,b −

D
∑

i=1

vi,bv
H
i,b

)

= argmin
ub b=1,...,B

B
∑

b=1

D
∑

i=1

vi,b

(

Λ−1
i − I

)

(ub)v
H
i,b

(a)
= argmax

ub b=1,...,B

B
∑

b=1

D
∑

i=1

αi

∣

∣

∣y
i,b

uT
b

∣

∣

∣

2
(III-12)

Whereαi =

( Esλi
ηN0

ubu
T
b

1+
Esλi
ηN0

ubu
T
b

)

. In (a) we use the fact thatΛ−1
i −I = diag

(

−
Esλi
ηN0

ubu
T
b

1+
Esλi
ηN0

ubu
T
b

, 0, . . . , 0

)

and that 1
‖ub‖

ub is the first eigenvector ofA.

B.1 Training sequence

We consider now the particular case where a fraction of the transmitted symbols, within
each block, is used as a training sequence (i.e. an all 1 sequence).

ub =

[

(

ut
b

)T

(

ud
b

)T

]T

(III-13)

5m-PPM modulation is a particular case of such channel coding strategy
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We similarly decomposey
i,b

as follows

y
i,b

=







(

yt
i,b

)T

(

yd
i,b

)T







T

(III-14)

Thus

∣

∣

∣y
i,b

uT
b

∣

∣

∣

2
=

∣

∣

∣

∣

∣

∣

T
∑

j=1

yi,j,b +

N
∑

j=T+1

uj,byi,j,b

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

T
∑

j=1

yi,j,b

∣

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∣

N
∑

j=T+1

uj,byi,j,b

∣

∣

∣

∣

∣

∣

2

+ 2Re









T
∑

j=1

yi,j,b









N
∑

j=T+1

uj,by
∗
i,j,b







 (III-15)

∣

∣

∣

∑T
j=1 yi,j,b

∣

∣

∣

2
is independent ofub thus

argmax
u

b
; b=1,...,B

Pr
(

{rk,b; k = 1, . . . , N ; b = 1, . . . , B}|ub; b = 1, . . . , B
)

= argmax
(u

b)
d
; b=1,...,B

B
∑

b=1

D
∑

i=1

αi

(

∣

∣

∣yd
i,b

(

ud
b

)T
∣

∣

∣

2

+ 2TRe
(

ĥ∗
i,b

(

yd
i,b

(ub)
T
))

)

(III-16)

whereĥi,b = 1
T

∑T
j=1 yi,j,b. ĥi,b is the channel estimate obtained by the receiver from the

transmitted training sequence. We note that the ML decisionrule when using a training
sequence (III-16) is the sum of the decision metric of the fully non-coherent case (III-12)
and acorrectionterm corresponding to a coherent detection6.

The obtained detection rule (III-16) is different (i.e. contains an additional term) from the
commonly used detection metric for coherent receivers (i.e. RAKE receivers).

argmax
ub; b=1,...,B

Pr
(

{rk,b; k = 1, . . . ,N ; b = 1, . . . , B}|ub; b = 1, . . . , B
)

= argmax
(ub)

d; b=1,...,B

B
∑

b=1

D
∑

i=1

αiRe
(

ĥ∗
i,b

(

yd

i,b
(ub)

T
))

(III-17)

6To be more rigorous, it corresponds to a quasi-coherent detection, since the receiver uses an imperfect
channel estimate
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This means that the latter is suboptimal. Nevertheless one should note that the non-coherent
detection term is non additive unlike the coherent detection one. This means that in prac-
tice the use of the complete ML detection rule will significantly increase the complexity
of trellis-based decoding algorithms, such as the Viterbi [46] and Forward-backward algo-
rithms [47]. In the following we will characterize the performance degradation induced by
not considering the non-coherent energy detection term in (III-16).

C ERROR PROBABILITY UPPER-BOUND

In this section we derive upper bounds on the decoding error probability of the considered
system. The derivation follows standard arguments used to derive random coding bounds
[45],[32]. First a Chernoff bound on the pairwaise error probability is computed then a
union bound is used. The latter, is averaged over all random codebook realizations.

The data is encoded using a randomly generated codebookU = {u(1), u(2), . . . , u(M)} of
cardinalityM and codeword lengthBN . Each codewordu(l) is constituted byB symbol
blocks. We note,u(l)

b , thebth symbol block of codewordu(l). As stated in the previous sec-
tion, we restrict the transmitter to the use of blockwise constant-weight codebooks. Thus,
all codewords blocksu(l)

b contain the same numberηN of ones. The system has the pos-
sibility to use a fraction of thoseones(i.e. transmitted pulses) as a training sequence. Let
ηtN be the length of the training sequence7, 0 ≤ ηt < η. For given transmit probability
η, training sequence proportionηt and codebook lengthBN we can construct orthogonal

codebooks with as many codewords asM =

((

(1 − ηt)N
(η − ηt)N

))B

. Later, the length of the

training sequence will be optimized to minimize the error probability. Note that when using
the exact ML detection rule, one should expect the optimal training sequence length to be
equal to zero since the random coding scheme includes codebooks with arbitrary training
sequence lengths. Of course the latter statement holds onlyassuming that random coding
is capable of achieving(asymptotically in codeword length) the capacity of the considered
channel constrained to the use ofOn-offsignaling. Nevertheless, the optimization ofηtN ,
is definitely of interest when considering the suboptimal MLdetection rule (III-17).

The decoder forms the decision variablesq(l) for all candidate codewords{u(l) l =
1, . . . ,M} and uses the following threshold decoding rule to decide on amessage: ifq(l)
exceeds a certain thresholdρ for exactly one value ofl, say l̂, then it will declare that̂l
was transmitted. Otherwise, it will declare a decoding error. This is the same sub-optimal
decoding scheme considered in [31]. In the followingq(l) will be chosen to be either exact

7We assume thatη andηt are chosen such thatηN andηtN are integers.
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ML decoding metric (III-16) or the suboptimal ML detection metric (III-17). The threshold
detection is commonly used in similar settings to prove coding theorems.

Pe = E
U

[

Pe|U

]

(III-18)

We termc the index of the actually transmitted codeword. Due to the problem symmetry,c
can be arbitrarily chosen without loss of generality. Usinga union bound we upper bound
the probability of error

Pe|U ≤
M
∑

l=1
l 6=c

Pr (q(l) ≥ ρ|U) + Pr (q(c) ≤ ρ|U) (III-19)

We upper bound error probability terms using Chernoff bound. Codewords are indepen-
dent and identically distributed, from our random coding assumption. Therefore (III-19) is
developed as

Pe ≤
M
∑

l=1
l 6=c

E
U

[Pr (q(l) ≥ ρ|U)] + Pr (q(c) ≤ ρ)

= (M − 1)E
U

[Pr (q(l) ≥ ρ|U)] + Pr (q(c) ≤ ρ)

= (M − 1)E
U

[

min
s>0

e−sρE
[

esq(l)|U
]

]

+ min
t>0

etρE
[

e−tq(c)
]

(III-20)

C.1 ML detection metric

q(l) is defined as in (III-16). Nevertheless, for the sake of higher clarity in the mathematical
developments, we will rather use the following equivalent metric

q(l) =
B
∑

b=1

D
∑

i=1

αi

(ηN)2

∣

∣

∣

∣

y
i,b

(

u
(l)
b

)T
∣

∣

∣

∣

2

(III-21)

Note that the later metric is equal to the one in (III-16) up toan additive constant(i.e. inde-
pendent ofu(l)

b ).

Let kb be the number ofcollisionsbetween codewordsu(l)
b andub(c) defined as follows

kb =
(

u
(l)
b

)d
(

(

u
(c)
b

)d
)T

(III-22)
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kb take values between0 and(η − ηt)N . Let σl,b(.) be a permutation of the ordered en-
semble{ηtN + 1, . . . , N} such that the indices of the transmitted pulses within codeword

u
(l)
b , are{σl,b(ηtN + 1), . . . , σl,b(ηtN + k)}. We rewriteq(l) as follows

q(l) =
B
∑

b=1

D
∑

i=1

αi

∣

∣

∣

∣

∣

∣

(

ηt

η
+

k

ηN

)

√

Esλi

η
hi,b +

1

ηN





ηtN
∑

j=1

ni,j,b +

(η−ηt)N
∑

j=1

ni,σl,b(j),b





∣

∣

∣

∣

∣

∣

2

=
B
∑

b=1

D
∑

i=1

αi |ai,k,b|2 (III-23)

whereai,l,b is a zero-mean complex Gaussian random variable with variance
(

ηt

η
+ k

ηN

)

Esλi

η
+

N0
ηN

.

E
[

esq(l)|U
]

=
B
∏

b=1

D
∏

i=1

E
[

esαi|ai,k,b|2|U
]

=
B
∏

b=1

D
∏

i=1

1

1 − sαi

((

ηt

η
+ kb

ηN

)

Esλi

η
+ N0

ηN

) (III-24)

For the sake of feasibility of the analytical minimization of equation (III-37) as function of
s we assume that the channel has a flat eigenvalues profileλi = λ = 1/D i = 1, . . . ,D.
Thus,αi, i = 1, . . . ,D maybe set to1 without modifying the problem. Throughout the
rest of this section we takeαi = 1, i = 1, . . . ,D.

E
[

esq(l)|U
]

=

B
∏

b=1





1

1 − s
((

ηt

η
+ kb

ηN

)

Esλ
η

+ N0
ηN

)





D

=

(η−ηt)N
∏

k=0





1

1 − s
((

ηt

η
+ k

ηN

)

Esλ
η

+ N0
ηN

)





Dmk

(III-25)

wheremk is the multiplicityk in the sequence{k1, . . . , kB}. Similarly we computeetρE
[

e−tq(c)|U
]
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and show that

etρE
[

e−tq(c)|U
]

= etρ





1

1 + t
(

Esλ
η

+ N0
ηN

)





DB

= e
tρ−DB log

�
1+t

�
Esλ

η
+

N0
ηN

��
= ef(s) (III-26)

minimizing etρE
[

e−tq(c)|U
]

as function oft is equivalent to minimizing, as function oft,
f(t). Wheref(t) is defined as follows

f(t) = tρ − DB log

(

1 + t

(

Esλ

η
+

N0

ηN

))

(III-27)

The later minimization yields

min
t>0

etρE
[

e−tq(c)
]

= e
DB− ρ

Esλ
η +

N0
ηN

−DB log
�

DB
ρ

�
Esλ

η
+

N0
ηN

��
(III-28)

Decoding threshold

We choose the decoding thresholdρ to be equal to(1 − ε)DB (Esλ/η + N0/ηN). Such
that0 ≤ ε < 1. The reasoning behind this choice is that asB goes to infinity,q(c) converges
to DB (Esλ/η + N0/ηN). Therefore, asB goes to infinityq(c) can be made larger than
ρ for arbitrarly small values ofε. In our finite block length analysis, we will optimizeε as
function of the codeword lengthBN and other system parameters.

Random coding

As shown earlier in this sectionE
[

es(q(l)−ρ)|U
]

does not depend on the particular choice
of codewordsul and uc but only on the sequence{m0, . . . ,mB}. Indeed, in equation
(III-20) the expectation over the set of codebooks breaks down to an expectation over
{m0, . . . ,mB}. Given that the codebooks are generated randomly,{m0, . . . ,mB} is dis-
tributed according to a multinomial distribution forηN ≤

⌊

N
2

⌋

. Performing a looser mini-
mization overs we obtain

E
U

[

min
s>0

e−sρE
[

esq(l)|U
]

]

≤ min
s>0

E
U

[

e−sρE
[

esq(l)|U
]]

(III-29)
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Indeed, equation (III-20) can be rewritten as follows

Pe ≤ (M − 1)min
s>0

∑

m0,...,mB

(

B
m0, . . . ,mB

)

(η−ηt)N
∏
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(

(
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)k (

1 −
(
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))(η−ηt)N−k
)mk





1
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η

+ N0
ηN

)


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Dmk

+ min
t>0

etρE
[

e−tq(c)
]

(III-30)

Let R be the transmitted data rate.R is written as function of the codebook sizeM as
follows

R =
1

NTs
log2(M) (III-31)

Thus, (III-30) can be rewritten as follows

Pe ≤
(

2BNRTs−1
)




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+ e
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η +

N0
ηN

−DB log
�
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�
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η
+

N0
ηN

��
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The minimization overs will be performed numerically.

Orthogonal codes

Rather than using codebooks generated at random as in section () , in this section we con-
sider orthogonal codebooks. By orthogonal codebook, we term a codebook whose any pair
of codewords has a null number of collisionsmk = 0 for k > 0. For given transmit
probability η, training sequence proportionηt and codebook lengthBN we can construct
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orthogonal codebooks with as many codewords asM =
(

1−ηt

η−ηt

)B

. For orthogonal code-

words the pairwaise error probability is uniform and can be obtained directly from (C.1)
taking mk = 0 for k > 0. Thus, the average error probability achieved by orthogonal
codebooks is

Pe ≤ (M − 1)min
s>0

e−sρ





1

1 − s
((

ηt

η

)

Esλ
η

+ N0
ηN
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
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+ e

DB− ρ

Esλ
η +

N0
ηN

−DB log
�

DB
ρ

�
Esλ

η
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��
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One can expect orthogonal codes to be optimal in the low data rate region (i.e. low SNR
region) since they achieve the lowest average pairwaise error probability among the set of
all possible codebooks and at the same time allow for large enough codebooks to target the
data rates of interest in the considered SNR region.

C.2 Suboptimal ML detection metric

q(l) is defined as in (III-17). We recall the definition ofkb from the previous section (C.1)
and again assume that the channel eigenvalue profile is flat.

q(l) =

B
∑

b=1

2Re









√

Esλ

η
hi,b +

1

ηtN

ηtN
∑

j=1

ni,j,b





∗





kb

(η − ηt)N

√

Esλ

η
hi,b +

1

(η − ηt)N

ηN
∑

j=ηtN+1

ni,j,b







 (III-34)

In the following we note respectivelye1,i,b = 1
ηtN

∑ηtN
j=1 ni,j,b, e2,i,b = 1

(η−ηt)N

∑ηN
j=ηtN+1 ni,σl,b(j),b,

ande3,i,b =
√

Esλ
eta

hi,b. e1,i,b, e2,i,b, ande3,i,b are independent complex Gaussian variables.

In order to computeE
[

esq(l)|U
]

, we rewriteq(l) as a sum of independent Hermitian quadratic
forms of complex Gaussian vectors which allows us to use Turin’s result on the character-
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istic functions of Hermitian quadratic forms in complex normal variables [48]. Indeed, we
reformulateq(l) as follows

q(l) =

B
∑

b=1

d
∑

i=1

g
i,b

Mi,bg
H

i,b
(III-35)

whereg
i,b

= [e1,i,be2,i,be3,i,b] is a size 3 complex Gaussian vector of zero mean and covari-

ance matrixRi = diag
(

N0
ηtN

, N0
(η−ηt)N

, Esλ
η

)

. While Mi,b is the matrix with real entries

defined as follows

Mi,b =





0 1 ν(kb)
1 0 1

ν(kb) 1 2ν(kb)



 (III-36)

whereν(kb) = kb/((η − ηt)N). Applying Turin’s result [48] we obtain

E
[

esq(l)|U
]

=

B
∏

b=1

D
∏

i=1

E
[

e
sg

i,b
Mi,bg

H
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∏
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D
∏

i=1
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1

|I − sRiMi,b|

)

=

B
∏
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(

1

|I − sRiMi,b|

)D

(III-37)

|I − sRiMi,b| = 1−2ν(kb)
Esλ

η
s−
(

N0

(η − ηt)N

(

Esλ

η
+

N0

ηtN

)

+ ν2(kb)
Esλ

η

N0

ηtN

)

s2

(III-38)

Decoding threshold

Following the same reasoning as in section () we take the decoding threshold to be equal to
(1 − ε)B Es

η
.

ρ = (1 − ε) 0 ≤ ε ≤ 1

= (1 − ε)
Es

η
(III-39)
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Orthogonal codes

For the sake of feasability of mathematical developments, we restrict the system to the use
of orthogonal codebooks defined as in section (). Therefore

E
[

esq(l)
]

=
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1 − 2ν(0)
Esλ

η
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+
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s2

)DB

= e−DB log(f(s)) (III-40)

Thus

min
s>0

e−sρE
[

esq(l)
]

= min
s>0

e−sρ−DB log(f(s))

= emins>0 g(s) (III-41)

Minimizing g(s) as function ofs yields the following expression

argmin
s>0

g(s) = −D
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+
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+
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η
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(III-42)

Similarly we computeE
[

e−tq(c)
]

. The numerical optimization of the decoding error prob-
ability as function of design parameters (i.e.η, ηt, ε) is still in progress and will be presented
later on.

C.3 Pure non-coherent receiver

In this section we look at the performance of the non-coherent receiver introduced in chapter
II. The latter is an energy receiver which does not exploit channel stationarity in order to
implicitly perform a channel estimation. The motivation for analyzing the performance of
this receiver is twofold. i), as seen in the previous chapter, this receiver allows for a low
complexity implementation. ii) We are interested in characterizing the penality, in terms of
minimum achieved codeword error probability for a given transmission rate, endured by the
non-coherent receiver when not exploiting channel stationarity.
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The decision metric of the considered receiver is written asfollows

q(l) =
B
∑

b=1

N
∑

k=1

1

ηN

∥

∥rk,b

∥

∥

2
u

(l)
k,b (III-43)

Note that since the performance comparison with the previously introduced receivers will
be performed in the case of flat channel eigenvalues profile, we considered here the non-
matched energy detector that was shown, in the previous chapter, to perform as good as the
channel-matched receiver in these conditions.

Decoding threshold

Again, following the same reasoning as in section () we take the decoding threshold to be

equal toρ = (1 − ε)BD
(

Esλ
η

+ N0

)

.

Orthogonal codebooks

We restrict our analysis to the case of orthogonal codebooks

E
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e
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(III-44)

Thus

min
s>0

e−sρE
[

esq(l)
]

= e
BDηN− ρηN
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−BDηN log

�
BDN0

ρ

�
(III-45)
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E
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Therefore the codeword probability of error is upper-bounded as follows

Pe ≤ (M − 1)e
BDηN− ρηN

N0
−BDηN log
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etρ
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D ERROR PROBABILITY L OWER-BOUND

In this section we derive a lower bound on the codeword error probability. Combined to
the upper bounds derived in the previous section, this will allow to better assess the perfor-
mance of the considered signaling and detection scheme. Thebound is based on a result
due to Poor and Verdu [49]. In [49] they derive a lower bound onthe probability of error in
generic multi-hypothesis testing problems. The bound holds for finite number of equiprob-
able hypotheses as well as countably many hypotheses with anarbitrary prior distribution.
The bound is summarized in the following result

Theorem 1:SupposeX andY are random variables, withX taking on a finite (or countably
infinite) number of values. The minimum probability of errorε in estimatingX from Y
satisfies the inequality

ε ≥ (1 − α)Pr (P (X|Y ) ≤ α) (III-48)

for eachα ∈ [0, 1], whereP (X|Y ) denotes the posterior probability ofX givenY .
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The bound was shown to be always tighter than both Shannon [51] and Verdu-Han bounds
[50] and shares their advantage over the Fano’s inequality [30] of providing general con-
verses in channel coding. Note that the Shannon bound [51] isa special case of the Verdu-
Poor bound corresponding to the case whereα is forced to the value1/2.

We use theorem (1) to derive a lower bound on the decoding error probability for the sig-
naling scheme and channel used in the previous section.

Pe ≥ max
α∈[0,1]

(1 − α)Pr
(

P (u|{y
i
, i = 1, . . . ,D}) ≤ α

)

(III-49)

whereP (u|{y
i
, i = 1, . . . ,D}) denotes the posterior probability ofu given {y

i
, i =

1, . . . ,D}. We term1(.) the identity function.

Pr
(

P (u|{y
i
, i = 1, . . . ,D}) ≤ α

)

= E
u

E
{y

i
, i=1,...,D}|u

[

1
(

P (u|{y
i
, i = 1, . . . ,D}) ≤ α

)]

(III-50)

Given the problem symmetry8 E
{y

i
, i=1,...,D}|u

[

1(P (u|{y
i
, i = 1, . . . ,D} ≤ α)

]

is inde-

pendent of a particular realization of the transmitted codeword u. Thus, without loss of
generality we rewrite (III-50) as follows

Pr
(

P (u|{y
i
, i = 1, . . . ,D}) ≤ α

)

= E
{y

i
, i=1,...,D}|u=u1

[

1
(

P (u1|{yi
, i = 1, . . . ,D}) ≤ α

)]

(III-51)
The posterior probability of the transmitted symbol sequence given the received signal is
related to the channel transition probability as follows

P (u1|{yi
, i = 1, . . . ,D}) =

P
(

{y
i
, i = 1, . . . ,D}|u = u1

)

P (u1)

P
(

{y
i
, i = 1, . . . ,D}

) (III-52)

Expanding the unconditional probability of observing{y
i
, i = 1, . . . ,D} as follows
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(III-53)

we obtain the following expression for the lower bound onPe

Pe ≥ max
α∈[0,1]

(1−α) E
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(III-54)
8From our codewords constant-energy and equal probability assumptions introduced in the previous section.
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E RESULTS
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Fig. III-1. ML detection rule with orthogonal codebooks: upper bound on BLER versus the
transmission data rate for a fixed block sizeN = 10000 and different number of blocks per
codewordB. SNR=50dB,Td=25ns,Tp=1ns.

In this section we numerically evaluate the error probability expressions derived in the cur-
rent chapter and then analyze the impact of system and designparameters on the behavior of
decoding error probability. In all considered settingsη the asymmetric transmission prob-
ability of On–offsignaling is optimized numerically as function of system parameters. We
first consider the case where orthogonal codebooks are used with the full ML metric. Fig-
ure III-1 shows the minimum codeword error probability versus the transmission data rate.
The block size (i.e. coherence time) is kept constant and equal toN = 10000 which corre-
sponds to a channel coherence-time on the order ofTc = 10000 ∗ Ts = 250µs. Increasing
the number blocks, constituting a codeword, increases the slope of error probability de-
crease, as function of the transmission rate, while not impacting the waterfall point. On
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the other hand, as can be seen on figure III-2, increasing the block sizeN while keeping
the codeword lengthBN increases both the slope of decrease of the error probability and
the waterfall point. IncreasingB augments channel stationarity, and thus help better esti-
mating the channel, and at the same time reduces the channel time diversity. Therefore,
the observed behavior of the error probability, confirms that a UWB channel contains large
enough number of degrees of freedom, and thus is not sensibleto channel time-diversity
degree.
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Fig. III-2. ML detection rule with orthogonal codebooks: upper bound on BLER versus the
transmission data rate for fixed codeword lengthBN = 200000 and different block size
valuesN . SNR=50dB,Td=25ns,Tp=1ns.

Figure III-3 shows the effect of SNR level on the slope of the error probability curve. A
higher SNR increases the slope for a fixed block sizeN . This may be explained by the
fact that a higher SNR helps better estimate the channel and thus takes a bigger advantage
of channel stationarity. Using randomly generated codebooks instead of orthogonal code-
books. Figure III-4 shows that randomly generated codebooks slightly outperforms orthog-
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onal codebooks. This behavior may not hold for higher SNR levels. Note that when using
the ML detection metric, the error probability term (C.1) turns out to be a strictly decreasing
function ofηt. Therefore the optimal transmission strategy consists of not transmitting any
pilot symbols, this is to be expected.
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Fig. III-3. ML detection rule with orthogonal codebooks: upper bound on BLER versus the
transmission data rate for fixed block sizeN = 5000 and number of blocks per codeword
B = 40 and different SNR values.Td=25ns,Tp=1ns.

We again consider orthogonal codebooks. Figure III-5 showsthe lower and upper bounds
previously computed on the codeword error probability of MLnon-coherent receiver. The
obtained upper bound is not tight but still give a good idea ofthe actual error probability
of real system. The figure also shows the comparison between the error probability per-
formance of both the ML non-coherent receiver and the pure non-coherent receiver. The
comparison was drawn in the case of block sizeN equal to 5000 and number pf blocks
per codeword equal to 40. As expected, the ML receiver significantly outperforms the pure
non-coherent receiver given the large coherence time of thechannel which allow for channel
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estimation. Note that the error probability of the pure non-coherent receiver has a slower
convergence as function of the codeword sizeBN .
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Fig. III-5. ML detection rule with orthogonal codebooks: upper and lower bounds on the
BLER versus the transmission data rate for fixed block sizeN = 5000 and number of blocks
per codewordB = 40. The figure also shows the lower bound on the error probability of
the pure non-coherent receiver.Td=25ns,Tp=1ns.



CHAPTER IV

Multi-carrier On–off signaling

In chapter (II) the performance of non-coherentOn–offsignaling, with short impulses, was
analyzed in the ultrawideband regime. The scheme was shown to perform very close to
the wideband capacity, in the low data rate regime, for typical parameter values of UWB
systems. Nevertheless this signaling scheme suffers performance degradation for increasing
bandwidth and in the high data rate regime. This behavior canbe explained by a signal
over-spreading phenomena; TermingTp the transmitted pulse duration andTd the channel
delay spread, the received signal occupies a signal-space of dimension of the order of(Td +
Tp)/Tp, which means that for increasing bandwidth (i.e. decreasing Tp) the number of
dimensions increases becauseTd+Tp ' Td. This confirms previous results on the so-called
bandwidth-scaled signals, that showed that using spread spectrum signaling, such as direct
sequence CDMA, leads to a vanishing systems capacity in the limit of infinite bandwidth
([22], [23], [37]). From the above discussion, it arises that suitable signaling strategies
for ultrawideband systems, in the high data rates region, need to use relatively narrow band
signals (i.e. long duration signals:Tp on the order ofTd) to avoid over-spreading. Therefore,
the previous reasoning suggests the use of multi-carrier signaling.

Lately multi-carrier UWB signaling has gained an increas ofinterest. It is mainly being
explored in the form of classical OFDM signaling over UWB bandwidth associated to co-
herent receivers[57],[59],[61]. The capacity of this scheme as well as the achievable rates
with some practical coding schemes were studied [60],[62],[55]. Other works concentrated
on design and implementation issues such as channel estimation [52], transmit symbols opti-



56 Chapter IV. Multi-carrier On–off signaling

mization [53],[58], power allocation [54], and receiver structures [56]. The main motivation
behind the use of OFDM as a signaling scheme for UWB, is to benefit from the receiver
complexity reduction1 it allows. Multiband OFDM is one of the two last contenders for
the IEEE 802.15.3a physical layer standard[63]. An other multi-carrier signaling scheme
for UWB that has been investigated is impulsive FSK[29],[31]. This strategy was used
to proove that in the limit of infinite bandwidth, channel knowledge at the receiver does
not increase the capacity. In [64], Luo and Medard analyze the performance of impulsive
single-tone and two-tone FSK for bandwidths in-line with those ofUltrawidebandsystems
and show both schemes to achieve data rates of the order of capacity of AWGN channel
with a better performance for two-tone FSK for small bandwidths.

In the following we introduce a family of signaling schemes (figure IV-1) we term OFDM
On–offsignaling. The latter corresponds to the most general way ofusing time-frequency
dimensions. Information is coded simultaneously along time and frequency axes. Using a
grid representation of the time-frequency signal space, each box of the grid is used in an
on-off manner with a vanishingon probability as the total bandwidth goes to infinity. This
scheme encompasses signaling schemes such as impulsive one-tone and multi-tone FSK;
Using appropriate channel codes it can be down-casted into any of these signaling schemes
(see section II for an example). This memoryless transmission strategy resembles OFDM
signaling. Within each sub-band, however, impulsive signaling is still used. We should
emphasize here the difference between the notions ofimpulsive transmission, used in [37]-
[64], andon-offsignaling along time dimension used in the proposed scheme in this work.
In the first case it corresponds to the system switching between active and idle status, the
active periods being known to both the transmitter and receiver. While in the second case
it corresponds to encoding transmitted information along the time-dimension, and thus the
receiver does not know a priori the location, in time, of transmitter active periods.

The remainder of this chapter is organized as follows. We first introduce channel and signal-
ing models. Then upper and lower bounds on the average mutualinformation of introduced
signaling scheme are derived. Finally the achieved data rates are compared to those of
impulsive multi-tone FSK and discussed.

A SYSTEM DESCRIPTION

A general finite-gain continuous-time multipath block-fading channel model is considered.
We again noteTd andTc respectively it’s delay spread and coherence time. Throughout the
chapter we will assume the symbol durationTs to be smaller than channel coherence-time,
so that the latter can be assumed to be constant over each symbol. Whenx(t) is transmitted,

1In particular regarding channel estimation
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Time

Frequency

Ts

L carriers

Fig. IV-1. OFDM-on-offsignaling

the received signal during time interval[nTs + Td, (n + 1)Ts[ is given by

y(t) =

∫ Td

0
hn(u)xn(t − u)du (IV-1)

wherehn(u) is the channel impulse response during thenth symbol time. Parallel inde-
pendent memoryless signal streams are transmitted onL sub-carriers. We denote∆F the
spacing between two adjacent carriers such that the total system bandwidthW is related to
the number of sub-carriers,L as followsL = bW/∆F c. Each subcarrier is modulated with
a data symbolxl,n, wherel represents the subcarrier index number andn the time slot num-
ber. Binary data is encoded using a randomly generated codebookU = {U1,U2, . . . ,UM}
of cardinalityM and codeword lengthN . Each codewordUm is a sequence ofN vectors
Um = {um,1, um,2, . . . , um,N} each of them corresponding to the transmitted symbols on
each of theL sub-carriers during thenth symbol-time (i.e. a box in the time-frequency grid
(IV-1)). um,n = (um,n,1, . . . , um,n,L) with

um,n,l =

{

1 with probability η
0 with probability (1 − η)

(IV-2)

As code lengthN goes to infinity, all the used codewords have the same energy.To satisfy
the power constraint for any finite code lengthN we impose that for any codewordm

N
∑

n=1

L
∑

l=1

um,n,l = ηNL (IV-3)
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which means that each codeword uses exactlyηNl boxes of thetime-frequency grid. Impul-
sive FSK signaling can be obtained from the previous scheme by constraining the codewords
Um to be of the following form (see figure (IV-2))

L
∑

l=1

um,n,l =

{

1 if mod (n, k) = 0
0 otherwise

(IV-4)

Recalling the terminology of impulsive FSK [64],1/k corresponds to the duty cycle.
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Fig. IV-2. Impulsive FSK

In the following we notev the index of the actually transmitted codeword. Its corresponding
transmitted signal is written as follows

x(t) =

N
∑

n=1

xn(t)

=
N−1
∑

n=0

(

L
∑

l=1

uv,n,l

√

Es

ηL
Φl (t − nTs)

)

(IV-5)
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where the transmitted pulseΦ() is given by

Φl(t) =

{

1√
Ts

ej2πflt for t ∈ [o, Ts]

0 elsewhere
(IV-6)

The average symbol transmitted energyEs is given by (the detailed derivation is given in
Appendix A)

PTs

1 +
(

2η
L

)

∑L−1
l=1

∑L
k=l+1 sinc

(

2π(k − l) Ts

Ts−Td

) (IV-7)

Note that for practical system parameters values, the second term of the denominator of
expression IV-7 is negligible with respect to the first term irrespective of the value of the
transmission probabilityη. For example considerTs = 27ns, Td = 25ns, andW =
7.5GHz. Then

(

2

L

) L−1
∑

l=1

L
∑

k=l+1

sinc

(

2π(k − l)
Ts

Ts − Td

)

= 3.4x10−16 � 1 (IV-8)

Substituting the transmitted signalx(t) with it’s expression (IV-5) in (IV-1) we rewrite the
received signal during time-interval[nTs + Td, (n + 1)Ts[ as follows

y(t) =
L
∑

l=1

uv,n,l

√

Es

ηLTs
ej2πflt

(
∫ Td

0
hn(s)e−j2πflsds

)

(IV-9)

where

hn,l =

(
∫ Td

0
hn(s)e−j2πflsds

)

(IV-10)

is the complex phasor representing the amplitude gain and phase shift on thel th carrier,
during the interval[nTs + Td, (n + 1)Ts. In the following hn,l will be assumed to be a
complex circularly symmetric Gaussian zero mean variable,and without loss of generality
of unit variance. At the receiver a guard interval is left at the beginning of each symbol, from
our memoryless assumption2. To guarantee orthogonality of the sub-carriers at reception
we choose the carrier frequencies to befl = f0 + l

Ts−Td
(i.e ∆F = 1

Ts−Td
). Thus the

received signal on thelth Carrier during then th time-slot is

yn,l =
1√

Ts − Td

∫ (n+1)Ts

nTs+Td

y(t)e−j2πfltdt

=

√

Ts − Td

Ts
hl,n

√

Es

ηL
uv,n,l + zn,l (IV-11)

whereh.,l, z.,l are sequences of complex independent Gaussian variables with zero-mean
and unit-variance.

2The guard-interval plays the role of the cyclic prefix in classical OFDM.
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B BOUNDS ON M UTUAL I NFORMATION

In this section we compute the ergodic mutual information ofthe considered channel model
when the input distribution is restricted to the previouslyintroduced OFDM-on-offsignal-
ing, and then compare it the capacity of impulsive 2-toneFSKinput distribution. We assume
that no channel side information is available to the receiver nor the transmitter.

We compute the average mutual information between the transmitted information symbols
over theL carriers, during a single symbol time, and the corresponding received signal.
In the rest of this section time and codeword indexes are dropped in the notation intro-
duced in the previous section for a better clarity of mathematical developments. We denote
u = (u1, . . . , uL) the vector of transmitted symbols (instead ofut,n = (ut,n,1, . . . , ut,n,L) in
the previous notation), andy = (y1, . . . , yL) the vector of received signals on theL carriers.
Though the transmitted symbolsul are uncorrelated, the received signal vectorY has corre-
lated components, because of the correlation of channel frequency samplesh1, h2, . . . , hL.
A correlation channel model is needed for the computation ofthe exact mutual informa-
tion. In the following we do not consider any particular correlation model but upper and
lower bound the actual value of mutual information by its value in the two limiting cases :
no correlation and full correlation (i.e. the channel is frequency flat). The average mutual
information is given by

I(u; y) = H(u) − H(u/y) (IV-12)

where

H(u) =

L
∑

l=1

H (ul |ul−1, . . . , u1 )

(a)
=

L
∑

l=1

H (ul) (IV-13)

(a) follows from the independence oful l = 1, . . . , L.

H(u|y) =

L
∑

l=1

H
(

ul

∣

∣y, ul−1, . . . , u1

)

(b)

≤
L
∑

l=1

H (ul |yl ) (IV-14)



B Bounds on Mutual Information 61

in (b) we use that conditioning reduces entropy. Thus

I(u; y) ≥
L
∑

l=1

(H (ul) − H (ul |yl ))

= L (H (u1) − H (u1 |y1 ))

= L (H (y1) − H (y1 |u1 )) (IV-15)

H (y1 |u1 ) is derived in Appendix B. We now turn to the derivation of the upper bound

I(u; y) = H(y) − H(y|u) (IV-16)

where

H(y|u) =
∑

x

Pr(u = x)H(y|u = x)

=

L
∑

u∈{0,1}L

Pr(u)
(

ln
(

(2πe)L
)

∣

∣

∣
Ry

|u

∣

∣

∣

)

(IV-17)

whereRy
|u

is the autocorrelation matrix of the received vector conditioned on the realiza-

tion of codewordu.

y|u =

√

(Ts − Td) Es

TsηL
[h1u1, . . . , hLuL]T + z (IV-18)

|.| stands for the determinant operator. Letlu be the number of non-zero elements ofu.
Since the determinant is invariant to permutations of rows and columns we hence have that

∣

∣

∣Ry
|u

∣

∣

∣ =

∣

∣

∣

∣

Ry
′

|u

∣

∣

∣

∣

(IV-19)

wherey
′

|u =
[

y
1
, y

2

]T

is a reordered version ofy|u where we have put iny1 the entries

corresponding to the non-zero entries ofu, whiley
2

contains the remaining elements ofy
′

|u.
Thus

Ry
′

|u
=

[

Ry
1

0

0 N0IL−lu

]

(IV-20)

whereIl stands for the identity matrix of sizel. Thus
∣

∣

∣
Ry

|u

∣

∣

∣
=
∣

∣

∣
Ry

1

∣

∣

∣
NL−lu

0 (IV-21)

with Ry
1

= (Ts−Td)Es

TsηL
Rh1

+ N0Ilu. Note thatRh1
is a Hermitian positive semi-definite

matrix whose entries are of modulus less than or equal to one.
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Lemma 2:Let y be a sizel vector of i.i.d complex Gaussian correlated random variables
corrupted by additive white Gaussian noisey = h + z. WhereRz = αIl andh has zero-

mean unit-variance entries. Then
∣

∣

∣
Ry

∣

∣

∣
is minimized forh = hφ whereh is a zero mean

unit variance complex Gaussian variable andφ is any complex deterministic vector with
unit modulus entries.

Note that minimizing the determinant of the autocorrelation function of a Gaussian random
vector is equivalent to minimizing its differential entropy3. Thus the result of lemma 2 is
intuitive in the sense that it says that the uncertainty about a Gaussian random vector is
minimized when the correlation of its entries is maximized.Proof of lemma (2) is given in
Appendix C.

Applying the result of lemma 2 to the right side term of equation (IV-21) we obtain the
following inequality

∣

∣

∣
Ry

|u

∣

∣

∣
≥
∣

∣

∣
Ry

′′

1

∣

∣

∣
NL−lu

0

wherey
′′

1
=
√

(Ts−Td)Es

TsηL
hφ + z. Taking vectorφ to be the all one vectorφ = 1 and

again using the invariance of the determinant operator to permutations of rows and columns
inequality (IV-22) becomes

∣

∣

∣
Ry

|u

∣

∣

∣
≥
∣

∣

∣
Ry

|u,h=h1L

∣

∣

∣
(IV-22)

injecting the obtained inequality in equation (IV-17) we obtain an upper bound on the mu-
tual information between the transmitted symbols and received signal

I(u; y) ≤ H(y) − H
(

y|u,h=h1L

)

(IV-23)

Note that the obtained bounds both the upper and lower one aretight since they are reached
when channel taps correlation corresponds to the two limiting cases of full correlation and
no correlation.

C DISCUSSION

In this section we compare the mutual information of the proposed signaling scheme to the
capacity of impulsive multi-tone FSK ([64]). In particular, the average transmitted power
spectral density is limited and set to be at the same level as the power spectral density of
thermal noise ([13]). Thus the average transmitted power isa linearly increasing function of

3Differential entropy of a random Gaussian vector is a strictly increasing function of the determinant of its
autocorrelation function
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Fig. IV-3. Achievable rates versus distance:Ts = 0.5µs,Td = 30ns,W = 1GHz
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system bandwidth. We numerically evaluate the derived bounds on the capacity of OFDM-
on-off signaling and compare them to the capacity of impulsive FSK([64], [37]). Both the
on-probability η of OFDM-on-off signaling and the activity duty cycle of the impulsive
FSK are optimized as function of system bandwidth and SNR. Note that we restrict our
comparison to 1-tone FSK because, apart from the very high SNR region, it has sensibly
the same capacity as higher order multi-tone FSK. Note that the capacity of S-tone FSK is

upper bounded by

log2

0@0@ S
L

1A1A
Ts

bits/s. This bound expresses the fact that the size of the
modulation is finite. We denote this bound as the bandwidth limited bound. This bound
is tight in the region of very high SNR and takes its maximum value for S = bL/2c.
Moreover, for numerical stability considerations, we considered a looser upper bound on
capacity of OFDM-on-off, where in (IV-23) we upper bound the termH(y) by

∑L
i=1 H(yi).

C.1 S-tone impulsive FSK

In figure B we look at the behavior of the achievable rates, of the two considered systems,
as function of the distance between the transmitter and the receiver. Here we again use
the pathloss model and transmission power(compliant with FCC regulation) introduced in
section (D). We have also plotted on this figure the bandwidth-limited upper bound for
1-tone FSK and S-tone FSk withS = bL/2c. The bandwidth is kept constant. OFDM-
on-offoutperforms 1-tone FSK in particular for short range communications (< 10m). The
gap between the two schemes ranges from 3dB to more than 10dB.Note that at a distance
of about13m between the transmitter and the receiver, the two schemes perform almost
the same which means that for this particular SNR and bandwidth values 1-tone FSK is
optimal and that the codebook that achieves the capacity of OFDM-on-off is the one than
that downcast it to 1-tone FSK.

In the long range communications region (i.e. large values of distanceD) the upper and
lower bound merge. This behavior is due to the fact that channel is difficult to estimate even
with full correlation of channel frequency tones because ofthe low signal to noise ratio
of the received signal. On the other hand, in the short range communications region (i.e.
high SNR) channel is easy to estimate and benefits from the high correlation of channel
frequency tones. Performance of a true channel will lie in between as a function of its
number of degrees of freedom.

In figure C.1, we draw the mutual information versus the bandwidth for a fixed SNR. As can
be seen the growth of capacity versus bandwidth is very slow for both compared schemes.
Both curves have sensibly the same slope for bandwidths larger than1GHz. This behavior
is consistent with the analysis of Verdu in [28] where he showed that the slope of spectral
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efficiency versus the minimum needed SNR per bit for reliablecommunications, is zero at
the origin if no channel state information is available to the receiver.

D CONCLUSION

In the limit of infinite bandwidth and without any CSI at the receiver, impulsive frequency-
shift keying (FSK) achieves the wideband capacity. We introduce a new generalized multi-
carrier signaling scheme and compare it to impulsive singleand multi-tone FSk in terms of
achieved capacity with no CSI at the receiver. We derive tight upper and lower bounds on
the capacity of the proposed signaling scheme over the set ofall possible channel frequency
correlation patterns. We show that the introduced scheme outperforms impulsive multi-
tone FSk for bandwidths inline with those of Ultrawideband systems, and still achieves the
wideband capacity in the limit of infinite bandwidth.
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E APPENDIX

IV.0.1 Average transmitted power

Writing the average transmitted energy during symbol time[nTs, (n + 1)Ts[, we obtain

E

[∫ Ts

0
|x(t)|2dt

]

= E

[

∫ Ts

0

L
∑

l=1

L
∑

k=1

ut,n,lut,n,k

(

Es

ηL

)

Φl(t)Φ
∗
k(t)dt

]

=

∫ Ts

0

L
∑

l=1

L
∑

k=1

E [ut,n,lut,n,k]

(

Es

ηL

)

Φl(t)Φ
∗
k(t)dt

=

L
∑

l=1

E
[

u2
t,n,l

]

(

Es

ηL

)
∫ Ts

0
Φl(t)Φ

∗
l (t)dt

+
L−1
∑

l=1

L
∑

k=l+1

E [ut,n,lut,n,k]

(

Es

ηL

)∫ Ts

0
2Re (Φl(t)Φ

∗
k(t)) dt

= Es +

L−1
∑

l=1

L
∑

k=l+1

(

ηEs

L

)∫ Ts

Ts−Td

2

Ts
cos

(

2π
k − l

Ts − Td

)

dt

= Es +

(

2ηEs

L

) L−1
∑

l=1

L
∑

k=l+1

sinc

(

2π(k − l)
Ts

Ts − Td

)

(IV-24)

Next, relating the average transmitted energy to the average transmitted powerP , we obtain
the following expression forEs

Es =
PTs

1 +
(

2η
L

)

∑L−1
l=1

∑L
k=l+1 sinc

(

2π(k − l) Ts

Ts−Td

) (IV-25)

IV.0.2 Bounds on the mutual information of OFDMon-off signaling

We first computeH

(

√

(Ts−Td)Es

TsηL
hu + z |u

)

H

(
√

(Ts − Td) Es

TsηL
hu + Z |u

)

= E
u

[

H

(
√

(Ts − Td) Es

TsηL
hu + z |u

)]

(IV-26)
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where

y|u =

√

(Ts − Td) Es

TsηL
hu + z ∼ Nc

(

0
−
;N0I +

(Ts − Td)Es

TsηL
uT u

)

(IV-27)

thus

H

(
√

(Ts − Td) Es

TsηL
hu + z |u

)

= E
y|u

[

yH

(

N0I +
(Ts − Td)Es

TsηL
uT u

)−1

y

+ log

(

det

(

π

(

N0I +
(Ts − Td) Es

TsηL
uT u

)))]

The matrixI + Es

ηLN0
uT u has two different eigenvalues: 1 with multiplicityL − 1 and

1 + Es

ηLN0
uuT with multiplicity one. Thus

det

(

I +
(Ts − Td) Es

TsηLN0
uT u

)

= log(1 +
(Ts − Td)Es

TsηLN0
uuT ) (IV-28)

Then using that

E
y|u

[

y

(

N0I +
(Ts − Td) Es

TsηL
uT u

)−1

yH

]

= L (IV-29)

(see [30]) we end up with following expression

H

(
√

(Ts − Td)
Es

TsηL
hu + z |U = u

)

= L log (πeN0) + log

(

1 +
(Ts − Td)Es

TsηLN0
uuT

)

(IV-30)
and finally

H

(
√

(Ts − Td)Es

TsηL
hu + z |u

)

= L log (πeN0) + E
u

[

log

(

1 +
(Ts − Td)Es

TsηLN0
uuT

)]

(e)
= L log (πeN0)

+
L
∑

k=0

(

k
L

)

ηk(1 − η)L−k log

(

1 +
k (Ts − Td) Es

TsηLN0

)
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in (e) we use the equidistribution ofui i = 1, . . . , L. TakingL = 1 in the previous equality
we obtain the expression ofH (y1 |u1 )

H (y1 |u1 ) = log (πeN0) + η log

(

1 +
(Ts − Td)Es

TsηLN0

)

(IV-31)

IV.0.3 Proof of lemma 1

Ry = Rh + αIl (IV-32)

whereRh is a Hermitian positive semi-definite matrix whose entries are of modulus less or
equal to one. Letνl ≥ νl−1 · · · ≥ ν1 ≥ 0 be its ordered eigenvalues. Thus

∣

∣

∣Ry

∣

∣

∣ =

l
∏

i=1

(α + νi) (IV-33)

Moreover the eigenvalues{νi} satisfy the following trace equation
∑l

i=1 νi = trace
(

Rh

)

=

l. Thus minimizing
∣

∣

∣
Ry

∣

∣

∣
is equivalent to minimizing

∏l
i=1 (α + νi) subject to the following

constrains4
{

νl ≥ νl−1 · · · ≥ ν1 ≥ 0
∑l

i=1 νi = l
(IV-34)

we reformulate the minimization problem as follows

argmin
(νl,...,ν1)

νi≥0 ,
Pl

i=1
νi=l

l
∏

i=1

(α + νi) = argmin
(νl,...,ν1)

νi≥0 ,
Pl

i=1
νi=l

l
∑

i=1

log(α + νi) (IV-35)

Considering the following Lagrange multiplier

L
(

λ, ρ, β
)

=
l
∑

i=1

log (α + νi) + ρ

(

l
∑

i=1

νi − l

)

+
l
∑

i=1

βiνi (IV-36)

we show that (see Appendix IV.0.4)

argmin
(νl,...,ν1)

νi≥0 ,
Pl

i=1
νi=l

l
∑

i=1

log(α + νi) = (l, 0, . . . , 0) (IV-37)

4The considered constrains on the eigenvalues{νi} are necessary and sufficient in the sens they are equiva-
lent to the constrains that channel taps{hi} are subject to.
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let hm be the channel vector associated with the solution to the minimization problem. Then
Rhm

is a rank one matrix and thus

Rhm
= v1v

H
2 (IV-38)

sinceRhm
is a hermitian matrix thenv∗2 = v1. Moreoverdiag

(

Rhm

)

= 1l. ThusV 1 has
unit modulus entries.

IV.0.4 Solution of the constrained minimization problem

Deriving the Khun-Tuker conditions we obtain







∂L
∂νi

= 1
α+νi

+ ρ + βi

νi ≥ 0 , βi ≥ 0

βiνi = 0 ,
∑l

i=1 νi = l

(IV-39)

We first prove that if one eigenvalueνi is equal to zero then there is exactlyl−1 eigenvalues
equal to zero. Assume thatν1 = 0, thus 1

α
+ ρ + β1 = 0. If we assume that for alli ≥ 2,

νi > 0 we obtain that

νi = −α − 1

ρ
∀i ≥ 2 (IV-40)

Injecting the obtained equalities in the equation
∑l

i=1 νi = l we obtain thatρ = − l−1
(l−1)α+l

for any l ≥ 2. Injecting the latest equality in the equation1
α

+ ρ + β1 = 0 we obtain that
β1 = − l

α((l−1)α+l) < 0 which is a contradiction with the fact thatβ1 is greater or equal to
zero. Thusν2 = 0. Similarly we recursively prove thatν1 = ν2 = · · · = νl−1 = 0 and that
(ν1, . . . , νl) = (0, . . . , 0, l)is the only solution that has at least a zero value and satisfies all
the conditions.

Now we see if there is any solution to the problem such thatνi > 0 for i = 1, . . . , l.
Assume thatνi > 0 for i = 1, . . . , l. This implies thatβi = 0 for i = 1, . . . , l. Thus

1
α+νi

+ ρ = 0 for i = 1, . . . , l. Using the equality
∑l

i=1 νi = l we finally obtain that
ν1 = ν2 = · · · = νl = 1. In conclusion the considered function, subject to the constrains,
admits extremums at exactly 2 points(1, . . . , 1) and(0, . . . , 0, l). Nothing that the function
f(x) defined as

f(x) = x log(1 +
x

α
) x ≥ 0 (IV-41)

is monotonically increasing we prove that the point(ν1, . . . , νl) = (0, . . . , 0, l) corresponds
to the minimum of the considered function and thus solution to the constrained minimization
problem.
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CHAPTER V

Non-Coherent UWB Peer-to-Peer Networks

The networks which will likely employ UWB signaling, for exampleWireless Personal Area
Networks (WPAN)andsensor networks, are characterized by direct links between nodes in
the network without the need for a central access-point. Therefore, those networks are char-
acterized not only by a rich scattering propagation environment but also by requirements
for adhoc and peer-to-peer (P2P) communications. This latter requirement has a significant
impact on systems design, since the signaling schemes must be robust to strong impulsive
interference (from nearby interferers) as shown in Fig. V. Here we show a small network
consisting of 2 transmitter-receiver pairs. The receivingnodes are both far from their respec-
tive transmitters and suffer from strong interference. In contrast to CDMA networks with
a basestation/mobile topology, UWB adhoc networks will likely not benefit significantly
from centralized or distributed power control resulting inextreme near-far interference.

Here we show a small network consisting of 2 transmitter-receiver pairs. The receiving
nodes are both far from their respective transmitters and suffer from strong interference.
In contrast to CDMA networks with a basestation/mobile topology, UWB adhoc networks
will likely not benefit significantly from centralized or distributed power control resulting
in extreme near-far interference. The purpose of this studyis to investigate the suitability
of UWB signaling techniques for such networks, and to determine the achievable rates as a
function of the density of the network, channel bandwidth and propagation characteristics,
and SNR.
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transmitter

receiver

desired signal
interference

U1

U2

Fig. V-1. Peer-to-peer Network

The use ofm-ary PPM can be extented to the case of multiple-access networks. Similar to
direct-sequence spread-spectrum, the data modulation positions are further modulated by an
n-ary sequence (known as atime–hopping sequence) for mitigating inter-user interference
in a multiuser setting [17].

In the literature, the impact of multiple access interference on UWB signaling has been stud-
ied for systems using coherent receivers. Modeling the contribution of the agregate interfer-
ence1to the received signal as a Gaussian process, the performance of multiple access(MA)
UWB systems, in terms of bit error probability, has been studied for different multiple ac-
cess and modulation schemes [17], [76], [67], [68], [69]. Other works, [71], [72], [78], [77],
[74], considered the performance of MA UWB systems, in termsof achievable data rates,
for various multi-user synchronization scenarios. The effect of multiple-access interference
on the spectrum of the received signal has been investigatedin [66] and [75]. Lately, the
validity of the Gaussian opproximation of the interferenceprocess was questioned [79] and
more precise evaluation of the probability of error was performed [65], [70], [73]. Numer-
ous papers tackled the problem of designing multiuser detection schemes for UWB multiple
access systems.

In our work we consider decentralized networks which we assume to be time-synchronized
for simplicity of the analysis.On–offsignaling is used as a combined channel coding and
multiple-access scheme. The impulsive nature ofOn–offsignaling has several advantages.
First, it overcomes the near-far effect in the same maner frequency-hopping radio does. It
also allows, each node, when not transmitting, to sense the channel and receive data from
other nodes. Given the low transmission duty-cycle, ofOn–off signaling, each node can
correctly receive the data adressed to it with high probability without the need for assigning
dedicated slots for reception. Therefore, this signaling scheme allows for a more efficient
duplexing of transmitted and received data which render it adequate for adhoc, sensor and
mesh networks.

1From all the interferers
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Here we characterize the achievable data rates in interference networks. We concentrate on
systems using non-coherent type of receivers. We derive upper and lower bounds on the
achievable data rates. We first consider a genie-aided receiver whose performance stands
for the upper bound. Then we introduce a, threshold based, practical receiver whose per-
formance, as well as the one of a quantized version of it, is analyzed and stand for a lower
bound.

A M ULTIPLE ACCESS CHANNEL MODEL

We consider a general wireless peer-to-peer network using UWB signaling in a multipath
fading environment. We assume that the network contains permanentlyQ transmitters. Let
1 be the index of the desired transmitter2. The considered channel model is a generalization,
to the multiple-access case, of the block fading channel model used in chapter (II). We again
considerOn–offsignaling as introduced in II-1. The received signal duringthekth symbol
duration, is written as follows

r(t) =

Q
∑

q=1

u
(q)
k

√

E
(q)
s

η
p (t − kTs − τq,k) ∗ h

(q)
k (t) + z(t), t ∈ [(k − 1)Ts, kTs]. (V-1)

whereu
(q)
k is the transmitted symbol by userq, h

(q)
k (t) its corresponding channel impulse

response3, τq (resp.E(q)
s = PqTs) its corresponding asynchronous transmission time (resp.

received energy), andz(t) is a complex additive white Gaussian noise with power spectral
densityN0. it is assumed that the different users signals are loosely synchronized in the
network, at least so that the duration of a typical channel impulse response (Td) includes
their asynchronism.

Again, through a karhunen-Loeve expansion we rewrite the channel model in (V-1), for
each symbol timek as the equivalent set of parallel independent channels

rk,i =

√

E
(1)
s λi

η
u

(1)
k h

(1)
i +

Q
∑

q=2

√

E
(q)
s λi

η
u

(q)
k h

(q)
k,i + zk,i, i = 1, . . . ,D (V-2)

when performing the expansion in (V-2), we assume that the channels from all the trans-
mitters to the receiver, have the same output signal-space eigenvalue profile{λ1, . . . , λD}.

2usersq = 2 . . . Q are interferers
3h

(q)
k (t) is the impulse response of the wireless channel linking tranmitterq to the receiver
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For k = 1, . . . , N , let rk = {rk,1, . . . , rk,D}. {h(q)
k,i , i = 1, . . . ,D; q = 1, . . . , Q} and

{zk,i, i = 1, . . . ,D; q = 1, . . . , Q} are independent zero-mean complex Gaussian random
variables, of variance respectively1 andN0.

B GENIE -AIDED RECEIVER - UPPER BOUND

In order to have a first intuition on the impact of the multiuser interference on the achievable
data rates of the pair of user of interest we first look at the simpler configuration depicted in
(V). We constrain the users to the use ofOn–offsignaling transmission strategy. Ignoring
the constraints on data rate from the point-of-view of the receiver 2, we can show that
a decoder using knowledge of codebooks of both the desired signal and the interferer is
governed by the following rate region

R(1) ≤ 1

Ts
I(u

(1)
k ; r

(1)
k , u

(2)
k )

R(1) + R(2) ≤ 1

Ts
I(u

(1)
k , u

(2)
k ; r

(1)
k ) (V-3)

R(1) (resp. R(2)) is the transmission data rate between transmitter 1 (resp.transmitter 2)
and reveiver 1 (resp. receiver 2). This region reflects the influence of the data rate of user
2 on the achievable rate of user 1, when it is considered as “decodable” interference. It is
most meaningful in the case of very strong interference, where we first decode the interferer
(providedR(2) ≤ I(u

(2)
k ; r

(1)
k )), and then decode the desired signal. The rate of the desired

user’s signal is

R(1) ≤ I(u
(1)
k ; r

(1)
k , u

(2)
k )

= I(u
(1)
k ; r

(1)
k |u(2)

k )

= (1 − η)I(u
(1)
k ; r

(1)
k |u(2)

k = 0) + ηI(u
(1)
k ; r

(1)
k |u(2)

k = 1/η) (V-4)

In the case of very strong interference, the second term of the mutual information in (V-
4) will be negligible.We see therefore, that the influence ofthe interference is a reduction
in throughput by a factor1 − η. To achieve this throughput, however, knowledge of the
interfering positions is required.
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We come back now to the general case (V-1). The achievable rates without complete channel
side information at the receiver, of transmitter1, is given byI(u1; {r}). This is difficult to
compute numerically but is upper-bounded as

1

Ts
I(u

(1)
k ; {rk}) ≤ I(u

(1)
k ; {rk}, {u(q)

k , q = 2, . . . , Q})

=
1

Ts
I(u(1); {rk}|{u(q)

k , q = 2, . . . , Q}) (V-5)

This upper-bound is interpreted as a genie-aided receiver who has acces to the symbols of
the interference but not their channels. As a result it cannot strip out the interference but
it knows where it occurs and thus can use this information in the decoding process. This
is also an upper-bound on the achievable rate withOn–offsignaling for the non-coherent
receiver which can decode the interferers with received signal strengh stronger than the
desired signal.

The achievable rates for the genie-aided receiver can be shown to be given by

1

Ts
I(u

(1)
k ; {rk}|{u

(q)
k , q = 2, . . . , Q}) = − 1
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E
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E
y
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
(V-6)

Wherey is a zero mean complex Gaussian vector with variance equal tothe identity matrix.

ak =
∑Q

q=2 u
(q)
k is a random variable that represents the number of active interferes (i.e.

transmitting a pulse) during thekth symbol time. In (V-6), and througouht the rest of this
chapter, we assume that all the interfers have the same received energy per symbol that we
noteE

′

s = E2
s = · · · = EQ

s ; this corresponds to a situation where a perfect power control
is performed. This average mutual information can be efficiently computed numerically.
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In the noise-limited region this achieved by numerical integration and in the interference-
limited region by Monte-Carlo averaging.

C THRESHOLD DETECTION - L OWER BOUND

In the previous section, we upper-bounded the achievable data rate ofI(u
(1)
k ; rk) by the one

of the genie-aided receiver which has access to the transmitted symbols by all interferers. In
practice this could be achieved using a threshold rule on thereceiver output, which is chosen
so that the probability of detecting the presence of strong interference (and thus declaring
an erasure) is very close to 1 when an interferer is transmitting.

In order to obtain a lower bound onI(u
(1)
k ; rk) and at the same time evaluate achievable

rates of simple receivers, we note that

I(u
(1)
k ; rk) ≥ I(u(1); dk) (V-7)

where

dk =





D
∑

i=1

|rk,i|2

N0

(

1 + η∗N0

Esλi

)



 I





D
∑

i=1

|rk,i|2

N0

(

1 + η∗N0

Esλi

) < ξ





= ekI (ek < ξ) (V-8)

with I(.) being the indicator function andξ a threshold to be optimized. The lower bound in
(V-7) is guaranteed by the data-processing inequality [32]. Note that this receiver is equiv-
alent to the ML receiver in absense of interference (II-19).It aims to approach the optimal
performance when the interferers active positions are perfectly known to the receiver (V-6);
The erasor behaves as an interference detector and producesan estimate of interference po-
sitions state information. This estimate is asymptoticalyoptimal for increasing interference
strenghtE

′

s. If interference strengthE
′

s is smaller than/or on the same order of the strength
of the signal of interestEs, the erasure allow controlling interference jams (simultaneous
interference from several interferers).

C.1 Quantized threshold receiver

In practice, and in order to reduce the receiver’s complexity, the received energy,ek, is
quantized when no erasure is declared (see figure C.1). Theg-bits quantizer containsL = 2g
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r ek ok ûk
g-bits Quantizer

Matched

Energy receiver Decoder

Fig. V-2. Quantized threshold receiver block diagramm

quantization levels{l1, . . . , lL−1} in addition to the erasure status termedE = lL. The
quantizer outputok is equal toli, i = 1, . . . , L if the inputek is within the range[tk, tk+1].
Where the quantization thresholdstk are defined such thatt1 = 0 andtL = ξ.
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Fig. V-3. DMC equivalent channel model

From the perspective of the decoder, using the metrics at theoutput of the receiver de-
scribed above, the communication channel relating the transmited data symbolsuk to the
quantizer’s output variablesok is a descrete memoryless channel(DMC) (see figure C.1).

Letting the number of quantization levels grow to infinity, the quantized threshold energy
detector converges to the unquantized threshold receiver introduced in (V-8).
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C.2 Extreme case: 2-level threshold receiver

The other extreme case consist of using a1-bit quantizer

dk = I





D
∑

i=1

|rk,i|2

N0

(

1 + η∗N0

Esλi

) < ξ



 (V-9)

This detector is a then a simple energy detector followed by hard-decision decoding and
would model a minimalistic low-power UWB receiver which does not use an analog-to-
digital converter. it would consist simply of filtering, amplification, and a square-law device
such as aSchottkey diode. in addition, the decoding algorithm would also operate on a
binary alphabet which could potentially reduce implementation complexity.

C.3 Ergodic achievable rates

The lower-bound is the capacity of a binary-input discrete-memoryless channel with transi-
tion probabilities depending onη andξ. Conditioned on the interference level, the detected
energy,ek, is a quadratic form of complex Gaussian random variables

ek =
D
∑

i=1

|rk,i|2

N0

(

1 + η∗N0

Esλi

)

= rkdiag


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1
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(

1 + η∗N0

Esλi

)



 rH
k

= tkΓtHk (V-10)

whereΓ = diag







N0+

�
akE

′
s+ukEs

�
λi

η

N0

�
1+

η∗N0
Esλi

� 




= diag (νi(ak, uk)) andtk a zero-mean random

Gaussian vector such thatE
[

tHk tk = I
]

. Conditioned on the number of active interferers
ak and the transmitted symboluk, the probability density function ofek is then written as
follows ([35],[36])
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Pek
(t|ak, uk) = Pr (ek = t|ak) =
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(V-11)
Therefore, the transition probabilities of the consideredDMC, conditioned on the number
of active interferers, are as follows

Pm|n(ak) = Pr (ok = lm|uk = n, ak) n = 0, 1 ;m = 1, . . . , L − 1
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PE|n(ak) = Pr (tL ≤ ek|uk = n, ak) n = 0, 1
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The average mutual information between the transmitted symbol and decision variable is
then given by

I (uk; ok) =
1

Ts
E
ak
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L
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)
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(V-14)

ak is distributed according to a binomial distribution. The optimization ofη and the quanti-
zation levels,tl l = 1, . . . , L must be done numerically.
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D RESULTS

We numerically evaluate the mutual information expressions derived earlier in this chapter.
We again numerically optimizeη. Figure V-4 shows the mutual information, versus the
SNR, for different values of the number of active interferers. Two settings are considered:
the first one correspond to the case where all the interference signals, received by the user
of interest, have the same SNR level. This can be achieved with optimal power control.
The second correspond to the case where interference signals have a 10 time higher SNR
level. In both settings the achievable data rates are not affected by the presence of number
of interferers as high as 50, for SNR values lower than 70dB. This is explained by the fact
that in this SNR region, the probability of transmissionη in absence of interference is low
enough so that the probability of suffering any interference is almost null.
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s
’ =10E
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Fig. V-4. Achievable data rates of genie-aided receiver. Td=50 ns, W=1GHz. Number of
interferers, from top to bottom: 1,5,10,20,50.

Figure V-5 shows the performance of the proposed practical threshold receiver. The figure
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shows the impact of the number of quantization levels on the performance gap between the
quantized threshold receiver and the genie-aided receiverwhose performance is an upper
bound on the performance of any practical receiver. We can see that surprisingly the two-
level receiver performs significantly close to the performance of the genie aided receiver.
We can also see that adding an extra quantization level brings the performance of the pro-
posed receiver very close to the optimal one which suggests that the later receivers are well
adapted to the considered setting.
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Fig. V-5. Achievable data rates of genie-aided versus quantized threshold receiver. Td=50
ns, W=1GHz, 1 strong interfererE
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s = 10Es
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CHAPTER VI

Code Constructions forOn–off Ultra-wideband
Systems

In considering signaling strategies for Ultra-Wideband (UWB) systems, we evaluated, in
chapters (II) and (III), the achievable rates for non-coherent1 detection of UWBOn–off
signals. Although significant loss in information rates compared to AWGN channel can
be expected due to the extreme bandwidth (even for the low spectral efficiency associated
with proposed UWB regulatory constraints on bandwidth and power), losses with respect to
coherent detection with incomplete side information (i.e.imperfect channel estimation) are
small. The savings in terms of implementation complexity are thus justified from a practical
standpoint.

One particular way of implementingOn–off signaling is the concatenation of a channel
code withm-PPM modulation (hereη = 1/m). This was considered for memoryless
(rapidly-varying) Rayleigh fading channels in [92]. In [93] the design of channel codes for
non-uniform input distributions was considered for memoryless channels.

In this work we consider suitable coding schemes forflash-signalingwith non-coherent de-
tection over a UWB channel. Such a coding scheme needs be a symmetric-input,asymmetric-
output distribution binary code in order to correctly matchthe optimal input distribution for
a given SNR. In the following we make the choice of enforcing the considered code con-

1in the sense that the receiver has no channel side information of the underlying wideband channel process
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structions to be of the form of binary symmetric-output codeconcatenated with anm-ary
Pulse Position Modulation (m-PPM). The motivation for such a design choice is that design-
ing binary codes with an asymmetric-output distribution isnot a simple task. Furthermore,
the use of binary symmetric-output distribution codes allows us to employ powerful opti-
mization methods already developed in different contexts.The remainder of the chapter
is organized as follows. The main goal of this work is to present code constructions for
m-PPM modulation and examine their ability to approach channel capacity over an UWB
channel with no channel state information at receiver side.Section II deals with the underly-
ing system model for transmission and reception as well as the channel model. In section III
we derive and evaluate BICM constrained capacity over UWB channel. Section IV contains
the description of the presented codes as well as their optimization methodology. Finally in
section V we discuss the considered codes performance in terms of decoding convergence
thresholds and bit error rates.

A CHANNEL M ODEL

We consider Non-coherentm-PPM signaling for an Ultrawideband system as a special case
of the previously introduced flash-signaling (VI-1). Eachm-PPM symbol,xk, corresponds
to choosing one out ofm symbol times, constituting a PPM frame, in which to emit the
transmit pulsep(t). x ∈ {1, . . . ,m} is simply the position within the PPM frame where the
pulse is transmitted. We restrict our study to strictly time-limited memoryless real-valued
signals, both at the transmitter and receiver. We consider ablock fading channel model so
that the channel impulse response is time-invariant in any interval of[kTc, (k+1)Tc), where
Tc is thecoherence–timeof the channel. We denote the channel in any block byhk(t) which
is assumed to be a zero-mean process. For simplicity in the analytical developments, we
assume that the channel realization in every block is independent and identically distributed,
so thatE[hk(t)hl(u)] = Rh(t, u)δkl, whereRh(t, u) is the auto-correlation function of the
channel response in a particular interval. The received signal is

r(t) =

N
∑

k=0

√

mEsp (t − (k ∗ m + xk)Ts) ∗ hk(t) + z(t) (VI-1)

wherek is the symbol index,Ts the symbol duration,Es = PTs the transmitted symbol
energy,xk is the transmitted symbol at timek, p(t) is a unit-energy pulse of durationTp,
andz(t) is white Gaussian noise with power spectral densityN0. A guard interval of length
Td is left at the end of each symbol (from our memoryless assumption) so thatTs ≥ Tp+Td,
and the symbol intervalTs � Tc. The received signal bandwidthW is roughly1/Tp, in the
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sense that the majority of the signal energy is contained in this finite bandwidth.

Through a Karhunen-Loève expansion we rewrite the channelmodel in (VI-1), for each slot
n (of durationTs), as the equivalent set of parallel channels

rn,i =
√

mEsλi + zi, i = 1, ...,∞
rn = {rn,1, . . . , rn,D} (VI-2)

wherezi isN (0, N0) and{hi} are unit variance zero mean independent Gaussian variables.
The{λi} are the solution to

λiφi(t) =

∫ Td+Tp

0
Ro(t, u)φi(u)du. (VI-3)

whereφi andRo(t, u) are the eigenfunctions and the autocorrelation function ofthe com-
posite channelhk(t)∗p(t), respectively. Because of the band-limiting nature of the channels
in this study, the channel will be characterized by a finite number,D, of significant eigen-
values which for rich environments will be close to1 + WTd, in the sense that a certain
proportion of the total channel energy will be contained in theseD components. we will
assume that the eigenvalues are ordered by decreasing amplitude.

We noteRn the received signal corresponding to thekth transmitted PPM symbol

Rk = {rm(k−1)+1, . . . , rmk} (VI-4)

B CODING SCHEMES

B.1 BICM

Our reference coding scheme, will be a standard convolutional code used in Bit Interleaved
Coded Modulation (BICM) construction. The encoder is obtained by the serial concate-
nation of a convolutional code and m-ary PPM modulation, through a bit interleaver fig
(VI-1) (the accumulator we can see on the figure will be added later). Here the interleaver
is assumed to be an ideal one (i.e. of infinite depth). The incoming information bits are first
encoded with the convolutional code and passed through a bitinterleaver. The coded bits are
then grouped into sequences ofm bits each and finally mapped onto correspondingm-PPM
symbols and transmitted over the channel. The bit interleaver can be seen as a one-to-one
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correspondenceπ : k −→ (k
′
, i), wherek denotes the time ordering of the coded bitsck,

k
′

denotes the time ordering of the signalsxk
′ , andi indicates the position of the bitck in

the label ofxk
′ .

Capacity

We compute the constrained2 capacity of BICM construction over the considered channel
A. Note that here the capacity by allowing the convolutionalcode in figure (VI-1) to be
replaced by any possible binary code. In the following we drop th time indexk in (VI-4)
for a better clarity of mathematical developments. LettingP (R|z) denote the transition
probability of the transmission channel, the capacity of the considered system, in bits per
second, can be written as follows [96]

Ĉ =
1

mTs






m −

m
∑

i=1

E
b,R






log2







∑

z∈X
P (R|z)

∑

z∈X i
b

P (R|z)


















(VI-5)

whereX i
b denotes the set of codewordsx whoseith label position is equal tob.Due to

the symmetry of m-PPM modulation,̂C is not sensitive to particular choices of the label-
ing function (that maps bit sequences onto m-PPM symbols). ThusĈ can be rewritten as
follows
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1
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(VI-6)

2Constrained to the use ofm-PPM modulation
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the channel transition probability is given by

P (R|z) =
D
∏

i=1

1

mEsλi + N0
e
− |rz,i|2

mEsλi+N0

m
∏

j=1
j 6=z

D
∏

i=1

1

N0
e
− |rj,i|2

N0 (VI-7)

Thus, exploiting symmetry of the channel transition probability and making the assumption
thatm is an even number, we re-writêC as follows

Ĉ =
1

Ts

(

1 − 1

2
E

R|x=1

[

log2

(
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∑m/2
z=1 P (R|z)
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)]

+
1

2
E
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log2
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z=1 P (R|z)

)])

(VI-8)

Using (VI-8) and (VI-7) we can numerically evaluatêC. On the other hand the capacity of
non-coherent UWB channel constrained to the use ofm-PPM (Coded modulation capacity)
is given by

I (x;R) =
1

mTs



log2(m) − E
R|x=1



1 +
m
∑

j=2

P (R|x = j)

P (R|x = 1)







 (VI-9)

B.2 Convolutional Code+Binary Accumulator

In order to obtain a more powerful coding scheme, we explore in this section a new con-
struction figure (VI-1). The construction is obtained by serial concatenation of the previous
encoder and a unit-memory binary accumulator followed by a bit interleaver. The accumu-
lator sums the incoming bitπ(ck) with the previous output bit,dk−1, in order to produce
the new output bitdk. The accumulator is rate one code, thus the overall coding rate of the
proposed scheme is equal to the coding rate of the convolutional codeRc.

Decoding

Decoding is performed in an iterative manner. At each iteration the two decoder blocks
(VI-2) exchange extrinsic information an recompute soft outputs on the coded bits. The
decoding schedule at each decoding iteration is a two-step process: i) first, the inner decoder
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Source

Binary

Inner Code

Code

Encoder

m-PPM

Outer Code

ck π(ck) dk

S-PBinary π π

m-ary

Z−1

Fig. VI-1. Transmitter block diagram.

Inner Decoder
(BCJR)

Outer Decoder
(SISO Module)π−1

π

P (R|x) PI(ck), II ,LI
i

PO(ck), IO,LO
i

Fig. VI-2. Decoder block diagram.

uses the likelihoodsPO(ck), obtained from the outer decoder at the previous iteration,as a
priori probabilities on the coded bitsck in order to marginalize, using the BCJR algorithm,
the likelihoods on the transmitted symbolsPCH (Rn|xn); obtained through the transmission
channel and compute new likelihoods on the coded bitsck. ii) Second, the outer decoder
uses the new likelihoods,PI(ck), computed by the inner decoder in order to produce at its
turn new likelihoods on the coded bitsck. For the first iterationPO(ck) are initialized with
equiprobabilities. At the end of the decoding process, the outer code makes hard decisions
on the information bits.

B.3 m-Ary Accumulator

We now replace the bit accumulator (and the bit interleaver following it) in the previous
scheme by a weighted unit-memory symbol-level accumulatorfig. (VI-3. The incoming
symbol ui is added to the previously transmitted symbolxi−1 multiplied by a factorf .
Note thatui, xi, f , as well as the sum and product operations are defined overGF (q).
Througouth the paperq will be chosen to be equal tom. Again the overall coding rate is
equal to the code rate of the convolutional code, since the symbol accumulator is a rate one
code.
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Source
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m-PPM
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Z−1

m-ary

Inner Code

Encoder

uk) xk

Fig. VI-3. Transmitter block diagram:m-ary Accumulator .

Exit Chart Analysis

Given the code construction, presented in this section, onecan still optimize the perfor-
mance of the code by making adequate choice of the convolutional code component. In
order to perform this optimization over the set of all non-degenerated convolutional codes,
we analyze the behavior of the concatenated code in the limitof infinite block lengths.
The analysis is performed using exit charts of the code components taken separately. The
exit chart of a block code is defined as transfer functionT that gives, for a given extrin-
sic input mutual informationIin, the corresponding output mutual informationIout. Iin

(respectivelyIout) is the mutual information between the likelihood received(respectively
emitted) through the extrinsic channel and its corresponding coded bit. In the following we
noteIIn (respectivelyIO) such a quantity over the directional extrinsic channel from the in-
ner decoder toward the outer decoder (respectively from theouter decoder toward the inner
decoder)

IIn = I
(

ci,LIn
i

)

IO = I
(

ci,LO
i

)

We associate to each decoding block an exit function as follows

Inner decoder: IO = f (IIn,LCH) (VI-10)

Outer decoder: IIn = g (IO) (VI-11)
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Thus the iterative decoding process converges (i.e. achieves error free decoding) if and only
if

x < g (f (x,LCH)) ∀x ∈ [0, 1) (VI-12)

This condition prevents from having any fixed point, other than x = 1, for the function
x 7−→ f (g (x) , LCH). Note that the existence for such a fixed pointx0 would mean that, if
the decoder is initiated at a point lower thanx0, the decoding will stick at this point and thus
do not achieveIo = 1(i.e. do not achieve error free decoding). For the seek of feasibility of
the estimation of functionsf(.) andg(.), we make the assumption that the extrinsic channel
is a Gaussian symmetric channel. Which implies thatPO(ci) = 1

2(−1)ciLO
i andP In(ci) =

1
2(−1)ciLIn

i whereLO
i andLIn

i are Gaussian distributed variables with mean respectively
µO andµIn, and variance respectively2µO and2µIn(from the symmetry assumption).

IO (respectivelyIIn) is linked toµO (respectivelyµIn) through the following bijection re-
lationshipIO = J (µO) (respectivelyIIn = J (µIn)). WhereJ is an invertible function
defined as in [97]. We compute the exit functions through Monte Carlo simulation. For a
given input mutual informationIin we generate iid input log-likelihood ratiosLint

k according
to its corresponding symmetric Gaussian distribution. Then for each of them we compute
the output log-likelihood ratioLout

k using the BCJR algorithm and obtain the output mutual
information as

Iout = 1 − E
Lout

[

h

(

1

1 + eLout

)]

= 1 +
1

log(2)
E

Lout

[

LouteL
out

1 + eLout − log
(

1 + eL
out
)

]

(VI-13)

The code optimization procedure consist on picking, among all rate1/2 convolutional code
generators, the one that achieves, the lowest, necessary transmitted SNR per bit for error
free decoding.

B.4 Extension:IRA Codes With a symbol Accumulator

In this section we introduce an extension to the previous scheme (B.3) through the replace-
ment of the convolutional code by an irregular non-systematic repetition code. This mod-
ification aims to allow more degrees of freedom to the code optimization for a potentially
better matching to the used modulation and channel statistics. The irregular repetition code
is characterized, from its Tanner graph representation (VI-4), by its information bits edge
degree distribution{λi} and grouping factora. Whereλi is defined as the fraction of graph
edges connected to a bit node of degreedi equal toi. We denoted the maximum edge
degree. Thus

∑d
i=2 λi = 1.
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a

a
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d2

d1

π

Fig. VI-4. Irregular repetition Tanner graph.

The overall coding rate, of the concatenated code, is equal to coding rate of the irregular
repetition code and is given by

Rc = a

d
∑

i=2

λi/i (VI-14)

Code Optimization

The degrees of freedom of the considered coding scheme are the information bits degree
distribution{λi} and the grouping factora. Thus, code optimization consist on finding the
combination of{λi} anda that maximizes the code rate for a given SNR under the condi-
tion that the iterative decoding converges and is error free. We use the code optimization
methodology introduced in [94, 95]. The exit function of theaccumulatorf(.) is obtained
using the same method and assumption as in (). Given the relative simplicity of the graph
of a repetition code,g(.) can be analytically derived, using the same method as in [97], and
shown to be written as follows

g(x) =
d
∑

i=1

λiJ
(

(i − 1)J −1
(

1 − J
(

(a − 1)J −1 (1 − x)
)))

(VI-15)

We solve the linear programming problem







maximize Rc = a
∑d

i=2 λi/i subject to
∑d

i=2 λi = 1, λi ≥ 0 ∀i
x < g (f (x,LCH)) ∀x ∈ [0, 1)

(VI-16)
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C OPTIMIZATION RESULTS AND SIMULATIONS

All simulation and code optimization results were obtainedfor a pulse durationTp = 1e−9s
and channel delay spreadTd = 25e − 9s. Figure (C) shows code optimization results for
the IRA type of codes with anm-ary accumulator form-PPM modulation sizes equal to
4, 8, and 16. The maximum bit degreed was taken to be equal to100. The optimized
codes achieves convergence thresholds as close as 0.37 dB from the capacity limit. We note
that the coding rates, corresponding to the distribution with lowest convergence threshold,
have values around .5 which is in-line with the result, on optimal coding rate, from the
capacity analysis of m-PPM. In figure (C) we see a comparison of convergence threshold
of the considered coding schemes, for different modulationsize values. We can see that
the use of them-ary accumulator, instead of the binary one, reduced the distance to the
capacity limit by about 0.5 dB. Figure (C) contains bit errorrates of the considered code
constructions, obtained by simulations for block codes of 10000 bits and using randomly
generated interleavers. We notice a gap, on the order of 1 dB,between the convergence
thresholds obtained by the exit chart analysis and those obtained by simulation. This means
that randomly generated interleavers are suboptimal (for this block size) and thus need to
be optimized. Note also that the use of the Gaussian approximation of the extrinsic channel,
usually lead to slightly too optimistic results [94].

m=4 m=8 m=16

i λi i λi i λi

3 0.1194 3 0.0837 5 0.1370
4 0.5260 4 0.1132 3 0.1662
9 0.2098 6 0.4681 5 0.6013
10 0.1448 7 0.3349 10 0.0955

a 2 3 6
Rate 0.4182 0.5462 0.5746

Eb/N0 9.76 8.06 7.29
(Eb/N0)gap 0.44 0.37 0.41

Fig. VI-5. Decoding Thresholds for IRA with anm-ary Accumulator

D CONCLUSION

We considered coding schemes for non-coherentflash-signalingover Ultra-wideband chan-
nels. Different code constructions were proposed and optimized using an exit chart based
methodology. The performance of proposed codes was then measured using both an exit
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Fig. VI-7. Decoding simulations



D conclusion 95

chart based analysis and Monte Carlo simulations. The optimized were shown to perform
close to information-theoretic limits.
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