
UNIVERSITE DE NICE-SOPHIA ANTIPOLIS - UFR Sciences
Ecole Doctorale STIC - Sciences et Technologies de l’Information et de la Communication

THESE

pour obtenir le titre de

Docteur en Sciences
de l’UNIVERSITE de Nice-Sophia Antipolis

Discipline: Informatique

présentée et soutenue par

Raphael CHAND

Large scale diffusion of information in
Publish/Subscribe systems

These dirigée par Ernst BIERSACK
co-dirigée par Pascal FELBER

soutenue le 22 Septembre 2005

Jury:

Prof. Roberto BALDONI, rapporteur

Prof. Pierre SENS, rapporteur

Prof. Michel RIVEILL, examinateur

Prof. Pascal FELBER, examinateur

Prof. Ernst BIERSACK, examinateur

2

Acknowledgements

I would like to thank my advisor Prof. Pascal Felber for his invaluable help and advice. He trusted
me, supported me, and encouraged me throughout my PhD studies. He taught me a great deal of
knowledge and skills in various areas of research, from programming to the art of writing scientific
articles. Thanks to him, I developped a real taste for research.

I am also thankful to Prof. Refik Molva for his constant support throughout my studies at Institut
Eurecom, Prof. Ernst Biersack who enabled me to do this PhD, and Institut Eurecom for providing
me with excellent working conditions.

Furthermore, I am grateful to Prof. Pierre Sens, Prof. Roberto Baldoni and Prof. Michel Riveill,
who kindly accepted to be part of the jury.

Last but not least, I would like to thank Carlinha for bearing me and for her infinite patience,
all my friends and, of course, my family for her constant support.

3

4

Contents

1 Introduction 13
1.1 Publish/Subscribe systems . 14
1.2 Focus and contribution of the thesis . 14

2 The Publish/Subscribe paradigm 17
2.1 Introduction . 17
2.2 Definition . 17

2.2.1 Elements of a Publish/Subscribe system . 17
2.2.2 Dissemination of information in Publish/Subscribe systems 18
2.2.3 Decoupling between producers and consumers 19

2.3 Subscription models . 20
2.3.1 Introduction . 20
2.3.2 Topic-based subscription models . 20
2.3.3 Content-based subscription models . 21
2.3.4 Type-based subscription models . 21

2.4 Architectural models . 22
2.4.1 Centralized infrastructures . 22
2.4.2 Multicast based approaches . 22
2.4.3 Overlay Network of Content Routers . 22
2.4.4 Peer-to-peer Overlay Networks . 23

2.5 Content routing in a Publish/Subscribe system . 24
2.5.1 Event filtering . 24
2.5.2 Content routing . 24
2.5.3 Subscription management . 26

2.6 Formalization of a Publish/Subscribe system . 28
2.6.1 Definitions and notations . 29
2.6.2 Correctness criteria and reliability in a Publish/Subscribe system 29

2.7 Challenges of Publish/Subscribe systems . 30
2.8 Survey of existing Publish/Subscribe systems . 32

2.8.1 Topic-based systems . 32
2.8.2 Content-based systems . 32
2.8.3 Type-based systems . 34

2.9 Concluding remarks . 34

I The XNet XML Content-based Routing System 35

3 XNet: Overview 36
3.1 Motivations . 36
3.2 System model . 36

3.2.1 Architecture . 36
3.2.2 Data models . 37

5

3.3 The Filtering Engine: XTrie . 40
3.3.1 Overview . 40
3.3.2 Trie structure . 40
3.3.3 Matching algorithm . 42

4 Content routing with XRoute 43
4.1 Principles . 43

4.1.1 Overview . 43
4.1.2 The routing algorithm . 43
4.1.3 The subscription advertisement algorithm . 44
4.1.4 Subscription Aggregation . 44
4.1.5 Impact on the routing process . 45

4.2 XRoute: routing table update algorithm . 45
4.2.1 Data formats . 45
4.2.2 Representation and Substitution . 46
4.2.3 Properties of the representation and substitution relations 48
4.2.4 Correctness of subscription advertisement . 50
4.2.5 RTU protocol description . 51
4.2.6 Extension to the case of multiple producers 65

5 Efficient subscription management with XSearch 69
5.1 Motivations . 69
5.2 Problem Statement . 69
5.3 Data models . 70

5.3.1 Definitions and Notations . 70
5.3.2 Factorization Trees . 70

5.4 The Search Algorithm . 71
5.5 Considerations . 72

5.5.1 Complexity . 72
5.5.2 Correctness . 73

5.6 Proofs . 73
5.6.1 Definitions and notations . 73
5.6.2 XSearch⊇ proof . 74
5.6.3 Completeness . 76

5.7 Extension to handle value constraints in tree patterns 77
5.7.1 Factorization tree . 78
5.7.2 Algorithms . 78

6 Reliability and performance evaluation 80
6.1 Reliability in XNet . 80

6.1.1 Motivations . 80
6.1.2 The Crash/Recover Scheme . 80
6.1.3 The Crash/Failover Scheme . 84
6.1.4 Masking Failures with Redundant Paths . 85
6.1.5 Other issues . 86

6.2 Performance evaluation . 89
6.2.1 Overview . 89
6.2.2 Parameters of the data used in the experiments 89
6.2.3 Efficiency of the XRoute protocol . 90
6.2.4 Efficiency of the XSearch algorithm . 94
6.2.5 Large scale experimental deployment on the PlanetLab testbed 99

6

Related Work 106
6.3 Content routing in most popular Publish/Subscribe systems 106

6.3.1 Gryphon . 106
6.3.2 Siena . 106
6.3.3 Jedi . 106
6.3.4 Rebeca . 107
6.3.5 Onyx . 107

6.4 Other works . 107
6.4.1 Content routing . 107
6.4.2 Containment relationships . 108

II Semantic P2P Overlays for Publish/Subscribe Networks 109

7 A P2P approach to Publish/Subscribe 110
7.1 Introduction . 110

7.1.1 Motivations . 110
7.1.2 Objectives . 110
7.1.3 Overview . 110

7.2 The Routing Process . 111
7.2.1 Protocol . 111
7.2.2 Accuracy . 111
7.2.3 Interest-driven Peers Organization . 112

7.3 Organizing Peers according to Containment . 112
7.3.1 Overview . 112
7.3.2 Network Description . 112
7.3.3 Impact on the routing process . 113
7.3.4 Maintaining the containment hierarchy tree 114
7.3.5 Scalability issues . 118

7.4 Organizing Peers according to Similarity . 119
7.4.1 Overview . 119
7.4.2 Network description . 119
7.4.3 Consequences . 120
7.4.4 Peers management . 120

7.5 Conclusion . 122

8 Similarity-based proximity metric for XML documents 123
8.1 Introduction . 123

8.1.1 Motivations . 123
8.1.2 Overview . 123

8.2 Document synopsis . 124
8.3 Correlations in DTD . 125
8.4 Subscription expansion . 126

8.4.1 Overview . 126
8.4.2 Definitions . 127
8.4.3 Building subscriptions expansions . 128

8.5 Similarity function: principle . 130
8.5.1 Principle . 130
8.5.2 Examples . 131

8.6 Conclusion . 132

7

9 Experimental evaluation 133
9.1 Performance of the P2P semantic overlay . 133

9.1.1 Experimental setup . 133
9.1.2 Containment metric . 134
9.1.3 Similarity metric . 138

Related Work 142

10 Conclusions 145
10.1 Contributions . 145
10.2 Discussions and future directions . 146

A Extension of the RTU algorithm to the case of multiple producers 157

B Extension of the Crash/Recover algorithm to the case of multiple producers 159

8

List of Figures

2.1 High level view of a pub/sub system. 17
2.2 Example of content routing vs. IP routing . 18
2.3 Space decoupling in pub/sub systems . 19
2.4 Time decoupling in pub/sub systems . 19
2.5 Synchronization decoupling in pub/sub systems . 19
2.6 The data flooding approach . 25
2.7 The subscription flooding approach . 26
2.8 Analogy between subscription containment and IP subnets covering 27
2.9 The containment relationship defines a partial order 27
2.10 Principle of subscription aggregation . 27
2.11 Formalization of a pub/sub system . 28

3.1 Sample SOAP message . 37
3.2 Tree representation of a XML document . 38
3.3 Sample XPath expressions. 39
3.4 SOAP message and tree representation of an XPath expression 40
3.5 Xtrie example . 41

4.1 Example of event routing and subscription advertisement in XNet 44
4.2 Example of the representation operation . 47
4.3 Example of a substitution tree . 48
4.4 Example of the substitution operation . 48
4.5 Correctness of subscription advertisement in XNet 51
4.6 Modifying relations on substitution trees . 53
4.7 Complete example of the RTU algorithm for a subscription registration 54
4.8 Subscription cancellation: problem statement . 56
4.9 Subscription cancellation: key concept . 57
4.10 Complete example of the RTU algorithm for a subscription cancellation 63
4.11 Sample network topology with multiple producers, and registration of subscription S2 64
4.12 Registration of subscriptions S2 and S3 . 66
4.13 Cancellation of subscriptions S0 and S3 . 67

5.1 Factorization tree example . 71
5.2 Two XSearch⊇ example runs. 72
5.3 An XSearch⊆ example run. 74
5.4 A pathological case where XSearch is incomplete. 76
5.5 Example of a factorization tree extended to support element values 77

6.1 Format of the recovery database . 82
6.2 Illustration of the Crash/Recover scheme . 83
6.3 Illustration of the Crash/Failover scheme . 85
6.4 Illustration of the Redundant/Paths strategy . 86
6.5 Format of the recovery database, extended to support multiple producers 87

9

6.6 Illustration of the Crash/Failover scheme extended to multiple producers 88
6.7 Illustration of the Redundant Paths strategy extended to multiple producers 88
6.8 Simulated network topology . 91
6.9 Ratio of the average routing table sizes in the XNet and the Simple system. 92
6.10 Maximum document throughput in the XNet and the Simple system. 94
6.11 Routing delay in the XNet and the Simple system. 94
6.12 Average search time for the XSearch algorithm. 95
6.13 Average search time for the Linear algorithm. 95
6.14 Average search time of XSearch for different values of p// and pλ 96
6.15 Average search time of XSearch wrt. p// and pλ . 96
6.16 Average delay for subscriptions handling. 98
6.17 Distribution of registration delays. 98
6.18 Topology of the experimental Planetlab testbed . 100
6.19 Routing/subscription delay. 101
6.20 Recovery delays for routers 2 and 19 after crashes of various durations. 103
6.21 New network topologies for scenarios 1 (plain arrows) and 2 (dashed arrows). 104
6.22 Update time for scenarios 1 and 2. 104

7.1 Containment hierarchy tree example . 113
7.2 Example of a join in the containment hierarchy tree topology 117

8.1 Example Documents, Skeleton Tree, Document Synopsis and Compressed Document
Synopsis. 124

8.2 Simple DTD and graphical representation of a subscription 127
8.3 Subscription expansion example . 127

9.1 False positive ratio for networks of different sizes and small documents (22 tag pairs). 134
9.2 False positive ratio for networks of different sizes and large documents (108 tag pairs). 134
9.3 Average peer’s degree (leaves excluded) . 135
9.4 Maximum degree reached (root node excluded) . 135
9.5 Average fraction of peers involved in a join process 136
9.6 Average fraction of peers involved in a full leave process for children of departing peer

to re-join the network. 136
9.7 Precision loss due to the basic leave mechanism . 137
9.8 False positives and false negatives ratios for networks of different sizes and connectiv-

ities, for documents of size 22. 139
9.9 False positives and false negatives ratios for networks of different sizes and connectiv-

ities and for documents of size 58. 139
9.10 False positives and false negatives ratios for networks of different sizes and for different

values of ρ, for documents of size 22. 140
9.11 False positives and false negatives ratios for networks of different sizes and for different

values of ρ, for documents of size 58. 140
9.12 Mean value and standard deviation of the peers degree. 141

10

List of Tables

2.1 Formal notations in a Publish/Subscribe system. 29

6.1 Parameters of XPath subscriptions. 90
6.2 Parameters of XML documents. 90
6.3 Parameter values of XPath subscriptions. 90
6.4 Parameter values of XML documents. 91
6.5 Mean value and standard deviation of the routing table sizes in the XNet and the

Simple systems. 92
6.6 Parameter values of XPath subscriptions. 95
6.7 Average search time of XSearch in ms. 96
6.8 Space requirements of the XSearch algorithm . 97
6.9 Overlay statistics. 100
6.10 Parameters of the experiments. 101
6.11 Recovery delay as function of the consumer population and the crash duration. . . . 103

9.1 Parameter values of XPath subscriptions. 133
9.2 Parameter values of XML documents. 134
9.3 Experimental parameters for organization based on similarity 138
9.4 Average value µ, maximum value θ and standard deviation of the peers degree. . . . 141

11

12

Chapter 1

Introduction

“The Internet has transformed and revolutionized the communications world like nothing before it.
Although previous technologies allowed the transmission of information between locations, the In-
ternet took the best features of the diversity of communications technologies out there and combined
them into a unique and synergistic whole. It can not only broadcast and disseminate information
world-wide, but it can allow people working together at a distance to collaborate and interact in real
time” [1]. Possibilities are increasing even more with the widespread diffusion of high-bandwidth
links and the development of new mobile communication systems such as next generation mobile
phones, wireless laptops or personal digital assistants.

Most current large-scale computer systems are based on synchronous client/server communica-
tions (,e.g., CORBA [63], [77]). In the client/server paradigm, clients send requests to servers.
Servers reply to clients’ requests. Most importantly, the communication between a client and a
server is synchronous in that a client is blocked from the time it has issued a request until it has
received the corresponding reply.

RPC (remote procedure call) [65, 79] and more recently object-oriented successors like RMI
(remote method invocation) [78] or Microsoft DCOM [76, 90] are the most common techniques for
constructing distributed applications, due to their simplicity and ease of use. Both are based on the
synchronous client-server model and extend the notion of local procedure calling so that a remote
procedure call is almost identical.

The major drawbacks of RPC-like platforms, and more generally of the client/server model, are
twofold. First, the client must address its request to a particular server. Second, the server must
process the request and send the reply to the client, which is blocked until it receives it. Hence,
the components of the system are tightly coupled, in the sense that a piece of information must
be addressed to a specific destination. Also, multiple demands from a client must be executed
either sequentially, or in error-prone multi-threaded requests. In addition to that, the Internet has
considerably changed the scale of distributed systems. Distributed systems now involve a great
number of participants (like hundreds of thousands), which may be widely dispersed geographically
and with different resources (wired, wireless) and behaviors.

For those reasons, many applications cannot be built with the classical abstractions on which
distributed systems have been built until now, since they lead to rigid and static applications and
make the development of dynamic large scale applications cumbersome.

Several solutions are proposed, that are more appropriate for the diffusion of information in
large-scale distributed systems. Some are based on network-level technologies such as IP multicast.
Multicast is an important service for improving the efficiency and robustness of distributed systems
and applications. However, there are several issues that have limited the commercial deployment of
IP multicast since its introduction [52]. Some of these issues include: group management, distributed
multicast address allocation, flow control and security, and support for network management. For
those reasons, solutions based on IP multicast often yield to static and cumbersome applications.
More recently, other solutions were proposed, that are based on peer-to-peer overlay network infras-
tructures [113, 126, 104] or epidemic multicast algorithms [56].

13

A new communication paradigm called publish/subscribe (pub/sub) has been proposed recently
and has received increasing attention. It addresses many issues raised by current distributed appli-
cations. Most importantly, it is claimed to provide the loosely coupled form of interaction required
in large scale dynamic distributed systems.

1.1 Publish/Subscribe systems

In pub/sub systems, there are no clients or servers, but rather consumers and producers. Producers
produce pieces of information, called events, which are consumed by consumers. Consumers have
the ability to express their interest in an event, or a pattern of events, and are subsequently notified
of any event, generated by a producer, which matches their registered interest. Hence, in a publ/sub
system, the receivers of information, the consumers, are not directly targeted by a sender, i.e. a
producer, but are rather indirectly addressed according to the interests that they registered and the
content of events. The notification service realizes the interaction between producers and consumers
and handles the dissemination of information from producers to consumers. A Producer publishes
an event to the notification service without addressing it to any particular consumer. The event is
then propagated to all consumers that registered interest in that given event, in an asynchronous
manner, that is, allowing the consumers not to be blocked waiting for events to arrive but instead
to perform concurrent operations.

The publ/sub paradigm offers numerous advantages over RPC-based distributed middleware: due
to its asynchronous nature, the system is potentially more scalable and can work in “disconnected”
mode (e.g., for mobile users and wireless devices). Independence of application-level interfaces
permit integration of heterogeneous components from different sources. Indirect addressing makes it
possible for the infrastructure to implement reliability, load balancing, fault-tolerance, persistence,
or transactional semantics. Besides, by simplifying business integration and making the system
potentially cheaper to operate, faster, and less prone to errors, the pub/sub paradigm is also a
cost-effective solution for the industry. Most importantly, the strength of the pub/sub paradigm
lies in the full decoupling in time, space and synchronization that it realizes between consumers and
consumers.

1.2 Focus and contribution of the thesis

In this thesis, we focus on the achievement of large scale diffusion of information in pub/sub systems.
The sub/sub paradigm has become a hot research topic in the last few years, because the strong
decoupling that it offers between the different participants makes it well adapted to large scale
distributed information systems.

This thesis focuses on the study, the design and the implementation of pub/sub systems that
achieve scalable and efficient diffusion of information. The contributions of this thesis can be divided
in three major parts.

The XNet XML Content Network. We present the architecture of the XNet XML content
network that we designed to implement efficient and reliable distribution of structured XML content
to very large populations of consumers. For that purpose, our system integrates several novel
technologies: the routing protocol, XRoute, makes extensive use of subscription aggregation to limit
the size of routing tables while ensuring perfect routing (i.e., minimizing inter-router traffic). The
filtering engine, XTrie, uses a sophisticated algorithm to match incoming XML documents against
large populations of tree-structured subscriptions, while the XSearch subscription management
algorithm enables the system to efficiently manage large and highly dynamic consumer populations.
Finally, our XNet system integrates reliability mechanisms to guarantee that its state is consistent
with the consumer population and implements several approaches to fault-tolerance to recover from
various types of router and link failures. We have performed an extensive performance evaluation

14

of our system. We have analyzed its efficiency by means of simulations in various settings and, to
experiment with the conditions of the real Internet, we have performed a large scale deployment
in the PlanetLab testbed. Experimental results demonstrate that XNet does not only offer very
good performance and scalability under normal operation, but can also quickly recover from system
failures.

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks. The second contribu-
tion of this thesis was motivated by some of the limitations of traditional pub/sub systems based
on server overlays. First, they are usually based on a fixed infrastructure of reliable brokers which
cannot easily be modified or extended as the population of the producers and consumers evolves.
Furthermore, the challenging task of routing the messages based on their content remains a com-
plex and time-consuming operation and often provides results that are just barely better than a
simple broadcast. Consequently, we present a novel approach to content routing that was designed
to specifically address these issues. The producers and consumers are organized in a peer-to-peer
network that self-adapts upon peer arrival, departure, or failure. Most importantly, our pub/sub sys-
tem features an extremely simple routing protocol that requires almost no resources and no routing
state to be maintained at the peers. The price to pay for this simplicity is that routing may not be
perfectly accurate in the sense that some peers may receive some messages that do not match their
interests (false positives), or fail to receive relevant messages (false negatives). However, by organiz-
ing the peers in “semantic communities”, i.e., by organizing them according to their interests with
adequate proximity metrics, we can minimize the routing inaccuracy. We propose a containment-
based proximity metric that allows to build a bandwidth-efficient network topology that produces
no false negatives and very few false positives. We have also developed a proximity metric based on
subscription similarities that yields a more solid graph structure with negligible false negatives and
very few false positives. Experimental results demonstrate that the routing process is indeed very
accurate and highly efficient, and that our system features excellent scalability to large consumer
populations, both, in terms of routing and peer management overhead.

Similarity-based Proximity Metric for XML Documents and XPath Subscriptions. Fi-
nally, we present the proximity metric based on subscription similarities that we developed to orga-
nize the peers in the aforementioned system in an efficient graph structure. The metric evaluates the
proximity between two given subscriptions in terms of filtering, i.e., it evaluates the error that would
be induced by filtering XML documents against the other subscription instead of the original. Our
proximity metric can operate in various conditions, that is, it adapts to the amount of knowledge
that we have about the data. More precisely, if the type of the data or a history of previous docu-
ments is known, the proximity metric exploits this knowledge to improve accuracy. In particular, a
major innovation is that if the type of the data is known, then the proximity metric makes use of
the correlations between elements that are defined in it, so as to improve correctness. Performance
evaluation shows that the proximity obtained by our metric between subscriptions is highly accu-
rate, in that it helps minimizing the filtering error, and consistent, in that it corresponds indeed to
the observed filtering error. Also, note that although used in the context of pub/sub systems, and
designed for XML documents and XPath subscriptions, our proximity metric can be easily extended
to other tree-structured languages, and can be used to address different data management problems.

15

16

Chapter 2

The Publish/Subscribe paradigm

2.1 Introduction

In this chapter, we describe the Publish/Subscribe (pub/sub) communication paradigm. A formal
definition of a pub/sub system is given. We describe and explain the role of each of its components,
and various aspects of a pub/sub system. In particular, the subscription model that is used to
specify the subscribers’ interest with regards to the information that transits in the system is of
great importance, since it offers various degrees of expressiveness and highly influences the system
overall. Also, the architectural model on which the system is implemented has great consequences
on the scalability and the dynamicity that are allowed in a wide scale distributed environment. We
then explain in more details the main functionalities of a pub/sub system, which enable it to achieve
wide-scale dissemination of information. This allows us to isolate the issues that are raised and the
challenges that remain in pub/sub systems. In the final part of the chapter, we survey the most
representative existing pub/sub systems.

C1

C2

.

.

.

Cn

P1

.

.

.

notification service

P2

Pm

R1 R1

Rp

. . .

register(S1)

notify(e)

publish(e)

Producers Consumers

cancel(S2)

Routers

Figure 2.1: High level view of a pub/sub system.

2.2 Definition

2.2.1 Elements of a Publish/Subscribe system

A pub/sub system consists of three major components:

• The producers, also called publishers, are the producers of information in the system. They
produce pieces of information that are called events and which are published to the notification
service.

17

• The consumers, also called subscribers, are consumers of information. They express their
interest in an event or a pattern of events by issuing one or more subscriptions that they
register to the notification service. Each subscription represents a set of events in which the
consumer is interested. When a consumer is not interested anymore in that set of events, it
cancels the corresponding subscription by the notification service.

• The notification service is the main dedicated middleware infrastructure. It realizes the in-
terface between consumers and producers. It processes events published by the producers
and subscription registrations and cancellations issued by the consumers. Most importantly,
it achieves the dissemination of information by routing events published from the publishers
towards the consumers interested in those events, by issuing them notifications.

Those concepts are illustrated in figure 2.1.

2.2.2 Dissemination of information in Publish/Subscribe systems

Symbol = FOO
Price < 10

Tom

 Tom

Symbol = FOO
Price = 20

Symbol = FOO
Price > 10

Symbol = FOO
Price = 20

Symbol = FOO

Symbol = FOO
Price = 10

Figure 2.2: Example of content routing vs. IP routing. Consumers’ interests are shown next to them. In
IP routing, the message addressed to “Tom” is directly routed to him, independently of his interests and
the message’s content (shown in dashed lines). In content routing, a message is routed according to its
content and the interests specified by the consumers (shown in plain lines).

The main specificity of the pub/sub paradigm resides in the way the information is disseminated
from the source to the destination(s). Unlike most other existing systems(e.g., those based on IP
routing), receivers in a pub/sub system are not directly targeted by a sender but are rather indirectly
addressed according to the content of events and the interests they registered. A producer publishes
an event to the notification service without addressing it to any particular receiver. The notification
service then examines the content 1 of the event to send a notification to all (in the ideal case) the
consumers that are interested in receiving it. Those are the consumers that specified an interest for
that event by registering an appropriate subscription. This concept is called content routing and is
illustrated in Figure 2.2.

This form of communication allows the different participants in the system to be totally decoupled
from each others.

1the term content is used here by opposition to a destination address. It can refer to the simple specification of a
topic in the event or to its whole content.

18

2.2.3 Decoupling between producers and consumers

notification service

notify(e)

publish(e)

Producers Consumers

notify(e)

notify(e)

Figure 2.3: Space decoupling: producers and con-
sumers do not know each others.

notification service

notify(e)

publish(e)

Producer Consumer

notification service

Producer Consumer

T
im

e

Figure 2.4: Time decoupling: producers and con-
sumers do not participate in the interaction at the
same time.

notification service

publish(e)

Producer Consumer

notify(e)

Figure 2.5: Synchronization decoupling: producers
publish and do something else, consumers may be
doing something else when being notified.

The notification service provides the interaction between producers and consumers. It enables
producers and consumers to act independently of each others, or in other words, it decouples them.
In [55], the authors classified the various forms of decoupling achieved by a pub/sub system along
three dimensions as follows:

• Space decoupling: The participants in the system are unaware of each others. Producers publish
events directly to the notification service, without addressing them to particular consumers.
Producers generally do not even detain any kind of information on the population of consumers
(their identity or numbers). Similarly, consumers are unaware of the population of producers
in the system (although producers may have the ability to advertise the nature of their events).
This form of decoupling is illustrated in figure 2.3.

• Time decoupling: The participants do not need to be connected to the notification service at
the same time during an interaction: the producer may publish an event while the consumer
is disconnected, and conversely, the consumer may receive a notification for an event while the
producer that published it is disconnected. This form of decoupling is illustrated in figure 2.4.

• Synchronization decoupling: Communication between producers and consumers is performed
in an asynchronous manner. Unlike in the client/server model (where the client is usually
the consumer of information), consumers in a pub/sub system are not blocked while waiting
for information. This is due to the fact that in the client/server model, a client is waiting for
information at a specific time. In a pub/sub system, consumers may be notified for information
at any time, while performing other concurrent activities. Similarly, producers are not blocked
while producing and publishing events. This final form of decoupling is illustrated in figure 2.5.

The strong decoupling that a pub/sub system offers between producers and consumers of infor-
mation makes it well adapted to distributed systems that are intrinsically asynchronous (such as
mobile environments [70]), and offers higher chances to scale to large populations of participants.

19

2.3 Subscription models

2.3.1 Introduction

In a pub/sub system, consumers express their interests in particular events by issuing subscriptions
and registering them by the notification service. A subscription S is a filter on the set of all possible
events. It represents the set of events in which the consumer – that registered the subscription – is
interested. We say that such an event matches subscription S.

As a consequence, the subscription language that is used to express the consumers’ interests
is extremely important. Different subscription languages allow the consumers different degrees of
expressiveness to specify their interests. Of course, the subscription language depends greatly on the
data format that is used to produce events. For example, if events are simple flat structures, there
is no point in using a structured subscription language.

Also, when an event e is published, the notification service is to deliver a notification to all (in
the ideal case) the consumers that have a matching subscription. Hence, the notification service
has to determine, in some way, the set of subscriptions that event e matches. Consequently, the
subscription language also greatly influences the behavior of the system in terms of performance and
scalability.

There are many different subscription languages available to express a consumer’s interests. They
are commonly classified as belonging to one of the three following major subscription models:

• The topic-based subscription model

• The content-based subscription model

• The type-based subscription model

2.3.2 Topic-based subscription models

In a topic-based subscription model, events are grouped in topics (or subjects). That is, each event
belongs to one or more topics. A subscription reduces to the specification of a topic. The consumer
that registered the subscription wishes to receive all the events that belong to that topic. Most
earliest pub/sub systems are based on the topic-based subscription model. Examples of such systems
are TIB/RV [86], Vitria’s Publish-Subscribe architecture [110], iBus [6], SCRIBE [33], Bayeux [127]
and the CORBA Notification Service [64].

Topics are very similar to the notion of groups as defined in group communication [53]. This
is not surprising since the first systems to offer pub/sub interaction were actually extensions of
group communication toolkits [20, 47], and the subscription scheme was thus inherently based on
groups [19]. Consequently, registering a topic T can be viewed as becoming member of a group T ,
and publishing an event e that belongs to topic T is similar to broadcasting the event to all the
members of group T .

A topic corresponds to a logical event channel between a possible producer and all interested
consumers. In other words, there exists a static association between a channel and all the corre-
sponding consumers. Hence, the notification service does not have to compute the set of interested
consumers when an event is published. Also, because of that equivalence between topics and groups
in group communications, implementations of topic-based pub/sub systems can be done quite easily
and efficiently, most notably by exploiting the large amount of research done in the multicast area
and the existing network-level multicast implementations (though IP-multicast has seen a rather
limited commercial deployment since its introduction [52]).

On the other hand, the topic-based subscription model suffers from one major drawback, namely
the lack of expressiveness that it offers to the system’s consumers. This is quite obvious, since a topic
is a “rough” filter, in the sense that events that belong to that topic are in most cases different from
each others. When registering that topic, a consumer has no choice but to receive all the events that
belong to the topic. To address this problem, several solutions have been proposed, most notably the

20

organization of topics into hierarchies, according to containment relationships (such a hierarchical
organization is used by Usenet News). A registration made to a topic in the hierarchy implies the
registration to all subtopics. Such a hierarchical organization can be found in Usenet News [105, 2],
for example, where articles are organized into newsgroups, which are themselves logically organized
into hierarchies of subjects. Also, most systems allow the use of convenience operators, such as
wildcards, first introduced in TIB/RV [86] and which enable the registration to several topics with
one single subscription. However, those improvements do not solve fundamentally the issue of lack of
expressiveness. Worst, they may lead to an inefficient use of bandwidth, and to an increasingly high
number of topics, which may turn out to be unpractical and unscalable, since current network-level
multicast implementations like IP-multicast do not handle well dynamic group management.

2.3.3 Content-based subscription models

The content-based model is the most general subscription model and has gained a lot of attention
from the research community. The main reason for this is that it offers much higher expressiveness to
the consumers in the system than the topic-based model. Most recent pub/sub systems employ the
content-based model. Examples of such systems are: Gryphon [14], Siena [28], Elvin [107], Jedi [44],
LeSubscribe [98], Ready [66], Hermes [96].

In the content-based model, events are not classified according to pre-defined external criterion
(such as topics), but according to the properties of the events themselves. Consumers express their
interest by specifying conditions over the content of the events. Such conditions may be constraints
on the values of some of the attributes contained in the events, or constraints on the structure of
the events (provided that they have one). Value constraints are generally expressed in the form of
name-value pairs and with common comparison operators (=,6=,<, ≤, >, ≥). Constraints on the
structure come in different forms, often depending on the format used to produce events. Also,
constraints can be logically combined with some operators (and, or). In most existing pub/sub
systems, such as Siena [28], events come in the form of a collection of attribute-value pairs. A
subscription is composed of conjunctions over the values of attributes in the events. Only recently
have some systems used some subscription languages that include both constraints on values and on
structures.

Although obviously more expressive than the topic-based model, the content-based subscription
model adds significant complexity to the routing operation performed by the notification service.
Indeed, unlike in the topic-based model, there is no static association between the topic of an
event and the set of interested consumers, in the content-base model. Rather, each time an event
is published, the notification service has to examine the content of the event to determine which
consumers are interested in it. Nevertheless, the content-based model still represents the most viable
option in large-scale distributed systems, where information frequently comes in complex forms and
most often cannot be classified in topics. Also, the high expressive power that it offers makes up in
most cases for the added complexity.

2.3.4 Type-based subscription models

Type-based pub/sub was first proposed in [99] and fully developed in [89]. The observation that
topics usually regroup events that present commonalities not only in content, but also in structure,
led to the idea of replacing the topic-based subscription model by a scheme that filters events
according to their type. In other terms, the notion of event kind is directly matched with that of
event type. This enables a closer integration of the language and the middleware. Moreover, type
safety can be ensured at compile-time by parameterizing the resulting abstraction interface by the
type of the corresponding events.

The type-based subscription model uses concepts from object-oriented programming: events are
declared as objects belonging to a particular type, which can thus encapsulate member attribute as
well as methods. The type-based model can then lead to a natural description of the content-based

21

model through public members of the considered event type, while ensuring the encapsulation of
these events.

2.4 Architectural models

The notification service realizes the interaction between consumers and producers, enabling them to
be asynchronously decoupled. In this section, we focus on the various architectural models around
which a notification service can be built, how its various components are structured and how they
communicate with each other.

2.4.1 Centralized infrastructures

The centralized architecture is the simplest one. As its name suggests, this approach implements the
notification service as a single component, called a router (or broker, or server). This component is
responsible for performing all the tasks of the notification service. This approach has the merit to
be quite simple to realize, since there is no need to implement any form of communication protocol.
Only the interface between the consumers and the producers has to be implemented. However, for
scalability reasons, it is not suitable for large scale distributed systems and may only be viable in
local networks or in environments with a very limited number of consumers and producers. The
most notable pub/sub system implemented around the centralized infrastructure is the Elvin content
based routing system [107]. The authors mention a distributed extension of Elvin, but do not discuss
how they plan to achieve distributed content routing.

2.4.2 Multicast based approaches

Because of the equivalence between topics and groups in group communications, applying multicas-
ting to a topic based pub/sub system is straightforward. For that reason, most early –topic-based–
pub/sub systems relied on a network-level multicast protocol such as IP-multicast, as the communi-
cation layer for the notification service (brokers are not even needed). In addition to that, a network
level multicast protocol has the advantage of providing efficient dissemination of information in
terms of latency and throughput. On the other hand, the implementation of a large scale pub/sub
system using existing multicast is strongly limited by the rather limited commercial deployment
of network-level multicast protocols. Besides, if there is not much commonality in the interests of
the consumers, using multicast requires to setup large numbers of groups, which can lead to scal-
ability problems. Otherwise, using too few groups yields to inefficient use of network bandwidth
and requires consumers to filter out potentially large amounts of unwanted data, which is strongly
undesirable for consumers with limited resources (such as mobile devices).

Finally, although straightforward in the case of topic-based pub/sub systems, applying multicas-
ting to content-based pub/sub systems is not trivial at all. This is due to the fact that multicast
services do not consider the content or structure of the information in the multicast process. Thus,
consumers’ interests cannot be directly mapped to multicast groups. One way to address that issue
consists in using the concept of multiple layers in the same multicast group (as commonly proposed
for video streaming, for example), but this solution requires the data to be highly structured and
typically the structuring is such that the recipient cannot receive any arbitrary layers it chooses to.
In [108], the authors propose another approach, termed Content-Based Multicast (CBM), which ba-
sically performs content filtering at the interior nodes of an IP-multicast tree. This solution enables
to take into account the structure and semantics of the information while reducing network band-
width usage and delays experienced by consumers. The authors propose algorithms for determining
the optimal placement of a given number of content routers in the IP-multicast tree, with respect
to two criteria: minimizing total network bandwidth utilization and minimizing mean information
delivery delay.

22

2.4.3 Overlay Network of Content Routers

In this approach, the notification service is composed of a collection of routers organized in an overlay
network. An overlay network is a virtual network of nodes and logical links that is built on top of
an existing network with the purpose to implement a network service that is not available in the
existing network, that is, in this case, the pub/sub functionalities of the notification service. Most
often, wide scale systems are implemented on top of the Internet and routers communicate using the
underlying transport protocol TCP/IP.

The tasks performed by the notification service are distributed amongst the set of routers, each of
which only knows and communicates with a limited set of neighbor routers. Also, a given router may
have some consumers and producers connected to it as well. Consequently, this approach achieves
high degrees of scalability, because even if the size of the system grows, the number of neighbors
for each router remains bounded which ensures that each router manages a bounded number of
concurrent connections and data structures, and that the workload is evenly distributed amongst
the routers in the system.

For those reasons, most actual pub/sub systems structure their notification service as an overlay
network of content routers. Examples of such systems are TIB/RV [86], Jedi [44], Gryphon [14], or
Siena [28].

The topology around which the routers are organized is a graph in the most general case, but
in most current systems(Jedi [44], Gryphon [14], or Siena [28]) the routers are organized in tree
structures, where consumers access the system at the leaves and producers at the root. The main
advantage of that topology is that it offers major simplifications by enabling a one way propagation
of events (from roots to leaves) and consumers’ subscriptions (from leaves to roots).

Systems architectured around an overlay network of routers are perfectly suitable for large-scale
distributed environments. However, implementing and deploying such systems is significantly more
difficult than with the two previous approaches. Indeed, complex routing and subscription manage-
ment protocols must be implemented on each router to ensure proper dissemination of information
from producers to consumers. Also, those protocols, often implemented at the application level, are
inherently slower than one implemented at the network level, even with the high power of modern
devices and networks. This may adversely impact performance in terms of delays and throughput.

Finally, one other major limitation of systems built as an overlay network of routers resides in
the infrastructure itself. Indeed, building and maintaining the topology is often a complex operation
which consumes a lot of resources. Also, the system usually relies on a fixed infrastructure of
reliable brokers, or assume that a spanning tree of reliable brokers is known beforehand. This
approach clearly limits the scalability of the system in the presence of large and dynamic consumer
populations.

2.4.4 Peer-to-peer Overlay Networks

A peer-to-peer(P2P) network is a network that relies on computing power at the edges of a connection
rather than in the network itself. A pure P2P network does not have the notion of clients or servers,
but only equal peer nodes that simultaneously function as both clients and servers. Most of the
times, a peer can only communicate with its neighbors, and with further peers through multiple
hops.

This model has been used extensively for implementing file sharing applications. Examples of
popular applications are Napster [84], Gnutella [61], or Freenet [41], I2P [71], GNUnet [60, 16, 17],
which have anonymity features built in, or very recently Pastis [73], a decentralized multi-writer
P2P file system.

Besides popular file-sharing applications, the P2P paradigm is appropriate for building any kind
of large-scale distributed systems/applications. Indeed, P2P networks are completely decentralized
and self-organizing, allowing the system to re-structure the network when a node joins or leaves.
Most importantly, by using the resources of all participants, the system offers high scalability to
large populations.

23

A popular class of p2p systems are “structured” P2P networks. These systems implement the
services of a Distributed Hash Table and offer fast and scalable resource look-up/routing. Examples
of such systems are Pastry [104], Chord [113], Tapestry [126],I3 [112], CAN [101] or TOPLUS [59].

Because of their self-organization and scalability properties, implementing pub/sub over P2P
networks has become a hot research topic in the recent years. Several proposals have been made
to implement the pub/sub interface over P2P overlays. We cite Bayeux [127] and Scribe [33] for
topic-based systems and Hermes [96], Reach [91], Homed [40] and daMulticast [9] for content-based
systems. Finally, in [114] and [116], the authors use the Chord [113] structured P2P network to
implement a content-based pub/sub system.

2.5 Content routing in a Publish/Subscribe system

In section 2.2.2, we defined the concept of content routing, namely: the process of disseminating a
given event, according to its content, to the consumers that are interested in it. In other words, the
process of routing an event according to its content and the subscriptions registered by the consumers.
In this section, we explain the basic mechanisms that must be implemented in a notification service
to achieve content routing.

2.5.1 Event filtering

A consumer Ci that is interested in receiving a particular event e must first register a subscription Si

such that e matches Si. Hence, in order to deliver an event e to interested consumers, the notification
service must identify the subscriptions registered by the consumers, that event e matches. This
process is called event filtering. It is basically an extension to the case of multiple subscriptions
of the notion of event matching that we defined in section 2.3.1. The notion of event filtering is
formally defined as follows: given a set of subscriptions {S1 · · ·Sn} and an event e, identify the set
of subscriptions that event e matches.

Event filtering is a central and challenging problem. Indeed, a system that uses an inefficient
filtering algorithm has little chances to scale to large-scale systems that comprise large consumer
populations (and hence subscriptions). Also, in a typical pub/sub system, a high rate of event
publication is expected. Then, the system must perform event filtering at a high rate. Obviously,
the trivial solution that consists in applying sequential operations of matching tests is not viable.

Besides, the event filtering operation greatly depends on the subscription language that is used to
express the consumers’ interests. In the case of the topic-based pub/sub systems, event filtering boils
down to identifying the subscriptions that belong to the topic specified in the event. As for content-
based subscription models, the majority of existing pub/sub systems(Gryphon [14], Siena [28] and
Elvin [107]), use “flat patterns” subscriptions, in the form of a set of attributes and simple arithmetic
or boolean comparisons on the values of these attributes. There has been various works on the
filtering of data using such “flat patterns”, including research on rule/trigger processing systems [69,
68] and pub/sub systems [4, 57, 85].

However, since XML(eXtensible Markup Language) [119] emerged as a standard for information
exchange on the Internet, there has been also an increased interest in using more expressive sub-
scription languages that exploit both the structure and the content of published XML documents,
such as the XPath language [118]. In this context, a large number of XML filtering approaches have
been recently developed [7, 83, 35, 48, 62, 67, 75].

2.5.2 Content routing

In centralized systems, event filtering is sufficient to achieve content routing. Indeed, all consumers
and producers are connected to one single entity, which knows all the subscriptions registered by the
consumers. Hence, once event filtering has been performed, routing the event reduces to forwarding
it to the consumers that registered the identified subscriptions.

24

However, in distributed systems, event filtering is not enough and routing strategies must be
developed to achieve content routing. In a distributed system, the notification service consists of a
set of nodes called routers, or brokers. A given router has a certain number of neighbor routers and
may have some consumers and producers connected to it as well. To achieve content routing, each
router knows a certain number (maybe zero) of the subscriptions registered by the consumers. This
data is stored in some form in a routing table. When the router receives an event, it uses its routing
table to determine to whom it must forward the event, according to its content.

A first routing strategy is the “data flooding approach”. It consists in having a router only know
about the subscriptions of the consumers connected to it, if any. When an event e is published, it
is broadcast to all brokers. Then, the routers that have local consumers filter the event and deliver
it to the consumers that are interested in it. This strategy has the advantages to be simple and
optimal in terms of space requirements. On the other hand, it is not efficient in terms of usage of
network bandwidth and routers’ resources, as each router in the system processes every event, even
if no or few consumers are interested in it. This strategy is illustrated in figure 2.6.

Symbol = FOO
Price = 10

Symbol = FOO
Price < 10

Symbol = FOO
Price > 10

Symbol = FOO

Symbol = FOO
Price = 20

Figure 2.6: In the data flooding approach, all routers process an event.

Another strategy is the “subscription flooding approach”. Each router that manages some local
consumers advertises their subscriptions to all other routers. Hence, each router knows all the
subscriptions registered by all the consumers. When an event is received at a given router, it is
filtered and forwarded to the neighbor routers that have at least one matching subscription. The
“subscription flooding approach” is optimal in terms of network bandwidth usage, since an event is
only forwarded to the neighbor routers that have matching subscriptions. On the other hand, since
each router has to store, and filter events against a large number of subscriptions, this approach
is clearly inefficient in terms of space and processor usage. The “subscription flooding approach is
illustrated in figure 2.7.

Both the data flooding and subscription flooding approaches perform poorly, either in terms of
bandwidth, space or processor usage, and have little chances to scale to large consumer populations.
Hence, other approaches have been developed to realize a compromise between data and subscrip-
tion flooding. They are based on more elaborate routing strategies and subscription advertisement
schemes. Most of these approaches consist in having a given router only know about a subset of the
subscriptions registered by the consumers, and only advertise that restricted set of subscriptions to
its neighbor routers. The challenge then consists in optimizing routing accuracy. Routing accuracy

25

Symbol = FOO
Price = 10

Symbol = FOO
Price < 10

Symbol = FOO
Price > 10

Symbol = FOO

Symbol = FOO
Price = 20

Router A Router B

Consumer A

Figure 2.7: The subscription flooding approach. Router A knows all the subscriptions registered by the
consumers. It prevented necessary propagation of the event to router B.

can be defined in terms of the number of irrelevant events received by a router or a consumer, those
events are called false positives, and the number of events that failed to be delivered to a router or a
consumer that was interested in it. Those are termed false negatives. Optimizing routing accuracy
consists in minimizing the number of false positives and/or false negatives.

2.5.3 Subscription management

Systems based on more complex routing strategies than the “data flooding” or the “subscription
flooding” approaches implement elaborate subscription management techniques. The first aspect
of subscription management is the subscription advertisement scheme. Subscription advertisement
can be defined as the way the routers in the system learn about the subscriptions registered by the
consumers. More precisely, considering a given router R, the subscription advertisement scheme
defines which subscriptions should be advertised and to which neighbor routers they should be
advertised. For example, the subscription flooding approach is based on a subscription advertisement
scheme where all subscriptions stored at a router are advertised to all neighbor routers.

The other aspect of subscription management is the way subscriptions are managed locally at
a given router. Especially, reducing the number of subscriptions stored at a given router and the
number of subscriptions advertised to other routers is desirable since it reduces space requirements,
usage of network bandwidth, and speeds up event filtering. To achieve this, some key techniques
have been developed, such as subscription containment and subscription aggregation.

Subscription containment. Subscription containment 2 is defined as follows: we say that sub-
scription S1 contains another subscription S2 (written S1 ⊇ S2) if and only if any event e that
matches S2 also matches S1. Conversely, we say that S2 is contained by S1 and we write S2 ⊆ S1.

This concept is illustrated in Figures 2.8 and 2.9. Note that the containment relationship is
transitive and defines a partial order. Also, note the analogy between subscription containment and
the covering of IP subnets.

Subscription containment has been well studied in the context of Siena [28] for attribute/value-
based subscriptions. It is a key technique to reduce the number of subscriptions stored at the

2The term covering is also commonly used in the literature

26

Symbol = FOO
Symbol = FOO

Price > 10

128.178.192/24128.178/16 128.178.192.112

Symbol = FOO

Price > 10
Volume > 1000

Figure 2.8: Analogy between subscription containment and IP subnets covering

Price > 10

Symbol = FOO

Price > 10

Symbol = FOO

Symbol = FOO

Volume > 1000

128.178/16

128.178.192/24 128.178.62/24

128.178.192.32 128.178.192.112

Figure 2.9: There are no relationships between Price > 10 and Symbol = LU : the containment relationship
defines a partial order.

routers and in certain cases the number of subscriptions advertised to other routers (depending
on the advertisement scheme). This technique is based on the following observation, illustrated in
figure 2.10: if S1 contains S2, then at router A, it is sufficient to filter events against S1. Indeed, if
an event e matches S1, then it is useless to test it against S2, since e has to be forwarded to router
B anyways. Now if e does not match S1, then because S1 contains S2, e does not match S2 either
((A⇒ B)⇔ (B ⇒ A)). Hence, it is again useless to test e against S2. As a consequence, router A
needs only to know subscription S1.

Symbol = FOO
Price = 10

Router A Router B

Symbol = FOO

S1

S2

Forward iff
matches S1

Figure 2.10: Thanks to subscription containment, router A needs only to know about S1

In addition to that, subscription containment enables to reduce the number of subscriptions
advertised in the system. Indeed, when a router advertises the set of its subscriptions to other routers,
it only needs to send containing subscriptions, that is, the subscriptions that are not contained by
another subscription.

This technique enables to reduce significantly the number of subscriptions advertised in the
system and stored in each router, as in practice, many consumers have similar interests. However,
it may introduce routing inaccuracy in the presence of subscription cancellation. This issue will be
developed in greater details in the next chapter.

Subscription aggregation. Subscription aggregation is another key technique that enables to re-
duce even more the number of subscriptions stored and advertised in the system. Also, this technique
enables to cope with the case where there are no containment relationships between subscriptions.
Subscription aggregation can be defined as follows: consider two subscriptions S1 and S2 such that
there are no containment relationships between each others. It is possible to build another subscrip-

27

tion Sa, called the aggregated subscription, that contains both S1 and S2. 3 The definition can be
trivially extended to the case of multiple subscriptions. We say that aggregation is perfect if any
event that matches the aggregated subscription matches at least one of the original subscriptions.
Aggregation is imperfect if there exists an event that matches the aggregated subscription but none
of the original subscriptions. For example, if S1 = “price < 11” and S2 = “price > 11”, a possible
aggregated subscription is Sa = “price 6= 11”, and aggregation is perfect. Now if S1 = “price < 10”
and S2 = “price = 11”, then a possible aggregated subscription is Sa = “price ≤ 11” and aggre-
gation is imperfect, since an event with a price between 10 and 11 (boundaries excluded) does not
match either S1 or S2.

Similarly to subscription containment, subscription aggregation enables to reduce the number of
subscriptions stored and advertised in the system, by advertising the aggregated subscription instead
of the original ones. However, imperfect aggregation introduces routing inaccuracy in the system
in terms of false positives (an out-of-interest event that is received). Then, a key challenge is to
build the aggregated subscription so as to minimize the number of false positives forwarded to each
router. Intuitively, the “tightest” the aggregated subscription Sa contains the original subscriptions,
the less the loss in routing accuracy. In [34], the authors address that issue in the case of XML events
and subscriptions built using the XPath language. Given a set S of subscriptions, they propose an
algorithm that enables to compute an aggregated subscription Sa so as to minimize the induced
routing inaccuracy. They also extend that notion to the case of a set of aggregated subscriptions
that satisfies a given space constraint.

2.6 Formalization of a Publish/Subscribe system

In this section, we give a simple modelization of a pub/sub system. We provide some formal def-
initions and notations that will be used throughout the rest of the thesis. Also, we give several
definitions and criteria to analyze and evaluate the behavior of a pub/sub system in terms of cor-
rectness and reliability.

notification service

register(S9)

notify(e)

publish(e)

producer

consumers

P1

P2

C4

C2C1 C3

C5

C7
C8 C6

C9

cancel(S8)

Rk Ri

inner routers

producer
node

consumer node

R1

R2

R3

R4

R5

Figure 2.11: Formalization of a pub/sub system

3In the case where a subscription contains the other, then the aggregated subscription is the one that contains the
other

28

2.6.1 Definitions and notations

A Pub/Sub system can be formalized as in Figure 2.11. The notification service is composed of
a collection of interconnected routers. The routers where some producers are connected are called
producer nodes, while the routers where some consumers are connected are referred to as consumer
nodes. The other routers are termed inner routers or routing nodes. A producer publishes events at
its producer nodes. A consumer node issues notifications to consumers to notify them of events of
interest. Consumers issue registrations to register subscriptions or cancellations to cancel previously
registered subscriptions. Routers are connected with their neighbor routers via interfaces or links.
A router R1 that sends an event to a neighbor router R2 is said to be the upstream router for router
R2. Conversely, R2 is said to be a downstream router for router R1. We similarly define the notions
of upstream and downstream interfaces. Note that these notions are local to a particular spanning
tree of an event.

In the case of a peer-to-peer overlay network, all the peers in the system are routers. Most
often, they are also producers and consumers at the same time. In the case where events are XML
documents, we will interchangeably use the term documents. Also, when subscriptions are expressed
with a tree structured language such as XPath, we will interchangeably use the term tree patterns.
Finally, we defined a notification as the result of a consumer node notifying a consumer of an
event of interest. Although formally different than the event itself, the two terms are often used
interchangeably in the literature.

The notations that we defined are summarized in Table 2.1.

Name Generic notation Alternate names
Router Ri Node, Broker

Consumer Ci Subscriber
Producer Pi Publisher

Peer Pi

Event e Publication, Notification, Document
Subscription Si Interest, Tree Patterns

Consumer node Ci

Interface I Link
Upstream interface Iup

Downstream interface Idown

Neighbor
Contains ⊇ Covers

Is Contained ⊆ Is Covered

Table 2.1: Formal notations in a Publish/Subscribe system.

2.6.2 Correctness criteria and reliability in a Publish/Subscribe system

In this section, we provide some definitions and criteria to model the behavior of a pub/sub system.

Perfect Routing. We say that routing is perfect if and only if all the consumers interested in an
event, and only those, receive it. In our model of a Pub/Sub system, it follows that consumer nodes
filter out irrelevant events, and hence consumers never receive out-of-interest events. Thus we need
a definition of perfect routing adapted to our model, as follows: routing is perfect if and only if all
the consumer nodes that have consumers interested in an event, and only those, receive it. We then
define the notion of “bandwidth-efficient” perfect routing as follows: an event is propagated to a
link if and only if it leads to at least one consumer interested in the event. An equivalent definition
is: an event is received by a router if and only if it is interested in it, in the sense that there is
a matching subscription in its routing table. This latter definition of “bandwidth-efficient” perfect
routing suits to all Pub/Sub models. In the rest of the thesis, and unless otherwise specified, we
will only consider the definition of “bandwidth-efficient” perfect routing. For example, routing in
Figure 2.6 is perfect but not bandwidth-efficient. In Figure 2.7, it is “bandwidth-efficient” perfect.

29

Routing Accuracy, false positives, false negatives. If routing is not perfect, then there may
be some routers not interested in the event that received it, termed the false positives, or some
routers interested in the event that did not receive it, termed the false negatives. Routing accuracy
is defined in terms of false positives and false negatives. The less the number of false positives and
false negatives, the more accurate routing is. Perfect routing and routing accuracy directly depends
on the correctness of subscription advertisement.

Correctness of subscription advertisement. As previously mentioned, subscription advertise-
ment is the way subscriptions are advertised by a router to some of its neighbor routers. We say
that subscription advertisement is correct if it yields to perfect routing. More formally, consider a
router R. We say that subscription advertisement is correct at router R if and only if its routing
table is sufficient for the neighbors for which it routes events. That is, if one such neighbor holds
a matching subscription for a given event, then R also holds a matching subscription (maybe not
the same). Conversely, if no neighbors hold a subscription that matches a given event, then neither
does R. It is then trivial to see that if subscription advertisement is correct, then routing is perfect.
For example, the subscription flooding subscription advertisement scheme is correct. However, it is
obviously not optimal in terms of storage and hence routing speed, and in terms of bandwidth usage.

Consistency. We say that the system’s state is consistent (with the consumer population) if
subscription advertisement is correct at all the routers and corresponds to the actual consumer pop-
ulation at the considered time , except the advertisements that are being propagated and processed
by the system at that time. In other terms, the system’s state is consistent if the producers-to-
consumers routing paths are correct and reflect all the subscriptions registered by the consumers.

Fault-tolerance and recovery delay. Fault-tolerance is the ability of the system to recover from
system failures. System recovery and component recovery must not be confused. A component, such
as a link or a router, recovers when it becomes operational once again after a crash. In contrast, the
system has recovered when it operates “normally” once again. This usually requires a delay after
the last down component recovered, during which the system is updated and takes necessary actions
to cope with the failures that have just occurred. This delay is referred to as the recovery delay. In
contrast, the downtime or crash duration is the delay between the time the first component crashed
and the last one recovered.

Reliable delivery. Delivery is reliable if consumers receive all the events they are interested in in
spite of routers failures, including during the downtime duration, but false positives may be delivered.

Reliable subscription advertisement. Subscription advertisement is reliable if the system’s
state is consistent in spite of failures. In other words, subscription advertisement is reliable if it
preserves correct producers-to-consumers routing paths that reflect all the subscriptions registered
by the consumers despite failures. The downtime duration is not taken into account in our definition
of reliable subscription advertisement. Indeed, it is often hard and burdensome to maintain a
consistent state during the period of the outage. Rather, after the downtime period, the system
necessitates a recovery delay to update its state. After that recovery delay, the system’s state must
be consistent with the consumer population. Also, the registration of new consumer subscriptions
must be handled during the outage. When the system has recovered, its state must be consistent
with the actual consumer population, and not the one before failures occurred.

2.7 Challenges of Publish/Subscribe systems

In this section, we identify the issues that are raised in large-scale distributed pub/sub systems, and
the challenges that need to be addressed.

30

Scalability. The main challenge of actual pub/sub systems is their scalability, that is, their ability
to achieve gracefully and efficiently the dissemination of information in large scale environments. In
such conditions, one can expect a large and dynamic population of consumers, a high number of
registered subscriptions and a high rate of events publications as well. Elaborate routing strategies
and subscription management algorithms must be used to ensure that the system scales to large
and dynamic consumer populations. Moreover, efficient filtering algorithms must be implemented
to maintain good performance in the presence of high rates of events publication and to ensure the
scalability of the system in terms of registered subscriptions. In addition, the minimization of routing
tables sizes is crucial for the ability of the system to scale to large number of registered subscriptions.
Indeed, not only does it save storage space, and hence enable to handle more subscriptions, but most
importantly, it enhances content routing by speeding up event filtering. Finally, the architecture
of the overlay must be designed carefully, since it has a great impact on the overall efficiency of
the system, in terms of consumers’ experienced latency, throughput (in terms of processing events’
publication), and its scalability.

Reliability. Another major challenge of pub/sub systems is their reliability and their ability to
cope with failures in the system. In particular, it is highly desirable to ensure the correctness of
subscription advertisement, so that the system state is consistent with the consumer population
at all times. In other words, the routers’ routing tables must be accurate so that they reflect
the actual consumer population. Otherwise, as previously mentioned, routing will not be accurate
and the system will probably deliver out-of-interest events (false positives) or worse, fail to deliver
events of interests (false negatives). Besides, in most large scale pub/sub systems (most of them are
implemented on top of the internet), the overlay is not reliable. A router may fail at any time, and
may or may not recover. It is highly desirable that the system handles those failures so that when it
has recovered, the system’s state is consistent once again with the actual consumer population. Also,
it should recover gracefully, with minimum impact and maximum transparency for the consumers
and producers for the duration of the outage. Finally, a desirable but often secondary goal is to
maintain reliable delivery of events for the duration of the outage.

Security issues. A large scale distributed pub/sub system raises several security issues, such as
access control (who is authorized to publish events or register subscriptions) and data encryption
(only selected consumers can decode data). For that purpose, one can use the large amount of
research work that has been done in the context of secure systems. However, there is a major issue
in pub/sub systems, which is that the infrastructure that composes the notification service can gen-
erally not be trusted (especially for systems that are implemented on top of the Internet). In that
case, events must be encrypted so that they can not be decoded by the infrastructure. Similarly,
subscriptions registered by consumers must be encrypted so that the other parties (the infrastruc-
ture and the other consumers) can not decode them. As a consequence, several new challenges have
been raised. One is to implement an event filtering algorithm that is capable of operating with
both encrypted events and encrypted subscriptions. Another is to implement subscription manage-
ment algorithms that can operate with encrypted subscriptions. This is especially challenging when
subscription aggregation techniques are used. Security issues are not explicitly addressed in this
thesis.

Expressiveness. The subscription language enables the consumers to express their interests in
particular events. Therefore, to allow consumers to register diverse and flexible interests, it is
highly desirable that the subscription language be as expressive as possible. On the other hand,
more complex subscription languages means more complex filtering and subscription management
algorithms. Therefore, the subscription language greatly influences the behavior of the system
in terms of performance and scalability. The challenge is then to allow the consumers as much
expressiveness as possible while maintaining good performance and scalability.

31

Most early and actual pub/sub systems such as Gryphon [14], Siena [28] and Elvin [107], use
“flat-patterns” subscriptions in the form of attribute/value pairs. While better than topic-based
models, those subscription language lack expressiveness especially by not taking into account the
structure of information. Besides, the recent emergence of XML as a standard for information
exchange on the Internet has led to an increased interest in using more expressive subscription
languages. While XML filtering has aroused significant interest in the database community, XML-
based pub/sub systems are yet to be deployed on an Internet-scale. In this thesis, we specifically
deal with the XML language and the XPath [118] subscription language.

2.8 Survey of existing Publish/Subscribe systems

In this section, we survey the most popular existing pub/sub systems. We only focus on their most
basic description and relevant features. Other aspects, such as routing, subscription management or
reliability issues will be addressed in the related work section of the next chapters.

2.8.1 Topic-based systems

TIB/RV. TIB/RV [86] is one of the earliest commercial pub/sub systems and is widely used
as a messaging middleware in enterprises. TIB/RV is a topic-based pub/sub system based on a
distributed architecture. An installation of TIB/RV (a RV program) resides on each host on the
network. It allows programs to send messages in a reliable, certified and transactional manner,
depending on the requirements. Messaging can be delivered in point-to-point or pub/sub, syn-
chronously or asynchronously, locally delivered or sent via WAN or the Internet. There are two
main components in TIB/RV that enable to achieve dissemination of information: RV Daemons and
RV Routing Daemons. A RV Daemon is a background process that sits in between the RV program
and the network. It is responsible for the delivery and the acquisition of messages in a local level (a
LAN) , either in point-to-point or according to the pub/sub paradigm. A RV Routing Daemon is an
entity that represents a LAN. RV Routing Daemons are responsible for disseminating information
at wide-area level.

Scribe. Scribe [33] is a research system designed at Microsoft Research that implements a topic-
based system following a different approach than TIB/RV. Rather than implementing its own in-
frastructure, Scribe is built on top of Pastry [104]. Pastry is a generic peer-to-peer object location
and routing substrate overlayed on the Internet. It allows to perform efficient large-scale routing
of messages. Each node in Pastry is assigned a unique identifier in the network, called a nodeID.
Messages can be routed to a specific node simply by specifying its identifier. Scribe is actually a
pub/sub interface over Pastry. Dissemination of information is achieved by levering Pastry’s direct
routing capabilities: events are first routed to a rendezvous node before being multicasted from that
node. It supports large numbers of topics, with a potentially large number of subscribers per topic.

Bayeux. Bayeux [127] is another topic based system built on top of an overlay network infras-
tructure, namely: Tapestry [126]. Tapestry is a wide-area location and routing architecture used in
the OceanStore [74] globally distributed storage system. Bayeux leverages Tapestry direct routing
capabilities, by routing events to rendezvous nodes and multicasting them from those nodes. Bayeux
supports an arbitrary large number of topics while tolerating routers or links failures. Also, Bayeux
includes some mechanisms for efficient load-balancing and bandwidth consumption.

2.8.2 Content-based systems

Elvin. Elvin [107] is a content-based pub/sub system developed at the Distributed Systems Tech-
nology Center (DSTC). Elvin is architectured around a single server that filters and forwards pro-
ducer messages directly to consumers. Hence, it is more suitable to local networks than large-scale

32

distributed systems. The authors mention a distributed extension of Elvin, but the routing algo-
rithms are not described. The subscription language in Elvin is quite expressive. Events are sets
of named and typed elements. A subscription is a declarative boolean expression over the com-
ponents of events. By issuing a subscription, a consumer can declare its interest in a number of
events characterized by some common property. There exists an interesting concept in Elvin called
quenching [106]. It allows producers to detect if there are no consumers that are interested in the
events that they publish, in which case they stop publishing them. However, the authors do not
describe how this concept is achieved in their system.

Jedi. Jedi [44, 22, 21, 45, 43] is content-based pub/sub system that uses a network of event servers
organized in an overlay. The servers are organized in an arbitrary tree. Subscriptions are propagated
upward the tree, and messages are propagated both upward and downward to the children that have
matching subscriptions. The expressiveness of their data/filter model is rather limited because events
come in the form of ordered sets of strings, and subscriptions are filters based only on equality and
prefix tests on a message’s strings.

Gryphon. IBM Gryphon [18, 87, 88, 72, 15, 5, 14] is a content-based pub/sub system that was
developed at the IBM Watson research center. Gryphon uses a set of networked brokers to distribute
events from producers to consumers. It uses a distributed filtering algorithm based on parallel
search trees to efficiently determine where to route the messages. Gryphon was designed for widely
distributed and high-volume environments, that is, distributed across countries or continents, and
with large numbers of events and consumers. Gryphon is a real implemented system, and represents
the reference framework for all the research in content-based dissemination of information carried
out at IBM Watson.

Siena. Siena [23, 24, 25, 26, 29, 31, 103, 32, 27, 109] is another important contribution to the
research in content-based pub/sub system. Siena also uses a network of event servers for content-
based event distribution. The system was designed to provide efficient and scalable event routing over
a wide-area network. Servers are organized in tree structures which leaves are the consumers’ access
points and roots are producers’. Siena implements a subscription advertisement scheme so that each
server only holds a subset of the subscriptions that correspond to the subscriptions advertised by
its neighbor servers or consumers. Also, Siena makes use of the containment relationships to reduce
routing table sizes and subscription advertisements in the system. However, it is not clear how
routing accuracy is preserved in the presence of subscription cancellation. Also, the expressiveness
of its subscription language is rather limited, since events are attribute-value pairs and subscriptions
are conjunctions over the values of attributes.

Rebecca. Rebeca [81, 58, 102] is a prototype notification service that incorporates several routing
strategies. Also, advertisements are supported and other routing algorithms can be included in the
system. The topology is that of a tree of brokers with a single root called the “root router”. The
Rebeca project was designed to provide a new and powerful event-based architecture for electronic
business applications. Two example applications are currently implemented, a stock trading platform
and an infrastructure for self-actualizing web-pages.

Onyx. Onyx [123] is an ongoing research project that aims at implementing a large-scale dissemina-
tion system that delivers XML messages based on user specifications for filtering and transformation.
The system offers good expressiveness of their data/filter model since messages are XML documents
and subscriptions are specified using a subset of the XQuery [121] language. Onyx leverages the
YFilter [49, 50] technology for content-driven routing. Also, the authors address the issue of how to
perform incremental message transformation in the course of routing. Several other challenges, such
as routing table construction and query population partitioning are addressed.

33

2.8.3 Type-based systems

Hermes. Hermes [95, 93, 94] is a distributed event based middleware platform proposed recently
by Bacon and Pietzuch. Hermes follows a type- and attribute-based pub/sub model that places
particular emphasis on programming language integration by supporting type-checking of event
data and event type inheritance. It is implemented on top of a peer-to-peer overlay network to
implement content-based event delivery and handle dynamic, large-scale environments. Hermes also
encompasses other functions such as security and fault-tolerance.

2.9 Concluding remarks

Pub/Sub has become a hot research topic in the recent years. It has inspired several research areas
such as databases, distributed systems, data engineering or security. In this chapter, we tried to give
a broad overview of pub/sub systems, spanning different aspects such as the subscription languages
or the achitectural models. We also explained in a general manner how dissemination of information
can be achieved in a pub/sub system. Finally, we surveyed the most popular and relevant systems
that implement pub/sub. Note that we did not aim at giving a complete, formal specification of
pub/sub systems, but rather to offer a general and clear understanding of their major features and
properties. Formal specifications and models of pub/sub systems have been presented in [81], [117],
or [13]. In the next chapter, we proceed to present the XNet content-based routing system that we
designed for efficient dissemination of XML content in a large-scale environment.

34

Part I

The XNet XML Content-based
Routing System

35

Chapter 3

XNet: Overview

3.1 Motivations

In this chapter, we present the architecture of the XNet XML content network, that we designed to
implement efficient and reliable distribution of structured XML content to very large populations
of consumers.

For that purpose, our system integrates several novel technologies. The routing protocol, XRoute [37],
makes extensive use of subscription aggregation to limit the sizes of routing tables while ensuring
perfect routing (i.e., minimizing inter-router traffic). The filtering engine, XTrie [35], uses a sophis-
ticated algorithm to match incoming XML documents against large populations of tree-structured
subscriptions, while the XSearch subscription management algorithm [100] enables the system to
efficiently manage large and highly dynamic consumer populations. Finally, our XNet system is
reliable in the sense that its state is consistent with the consumer population, and integrates several
approaches to fault-tolerance to recover from various types of router and link failures [39].

We have analyzed the efficiency of our techniques with various simulations. In addition to that,
to assess the performance of our system in realistic settings and to show that it is perfectly suitable
for large-scale distributed environments, we have performed a large scale experimental deployment
of our system in the PlanetLab [97] testbed.

The rest of this chapter is organized around the different technologies integrated in our system.
We first discuss the model around which our system is organized in section 3.2. We then present
the filtering, the routing and the subscription management algorithms, in the rest of this chapter
and the next two chapters, respectively. We then focus on the reliability aspects in our system in
chapter 6 before presenting results from experimental evaluation and a short survey of the related
work.

3.2 System model

3.2.1 Architecture

XNet is implemented as an overlay network of routing brokers. Events are propagated through the
nodes of the network, according to the messages’ content and the subscriptions registered by the
consumers. Each node of the overlay network acts as a content-based router. Each data consumer
and producer is connected to some node at the edge of the network; we call such nodes consumer
and producer nodes. To simplify the presentation, we assume that consumer and producer nodes are
distinct, i.e., one cannot directly connect both a producer and a consumer to the same router node.
The other nodes, that have no consumer or producer, are called routing nodes or inner nodes.

We assume that all routers know their neighbors, as well as the best paths that lead to each
producer. This latter point can be easily achieved by having each producer create a spanning tree by
broadcasting some kind of “announcement” message. We also assume that the number and location

36

of the producer nodes is known. In contrast, the consumer population can be highly dynamic and
does not need to be known a priori.

Each routing node has a set of links, or interfaces, that connect the node to its direct neighbors.
We assume that there exists exactly one interface per neighbor (we ignore redundant links connecting
two neighbors). Nodes communicate using reliable point-to-point communication and are equipped
with failure detectors that eventually detect the failure of their communication links and neighbors
but may make mistakes. As will become clear later, if a node incorrectly suspects its upstream
neighbor to have failed, it might take unnecessary recovery actions that, although time consuming,
do not adversely affect the consistency of the global state of the system. We assume a crash-recover
model with transient link and router failures (although the duration of failures is unbounded). For
a given producer, we will generally denote by Iup, or upstream interfaces, the interfaces along the
path up to the producer, and Idown, or downstream interfaces, the other interfaces (along the paths
to the consumers). In general, we will discuss the properties and behavior of our protocol in the
case of a single producer. The case of multiple producers will be addressed in a separate section.

The actual consumers are connected to consumer nodes via links that are not part of the overlay
network, and therefore not associated with any of the node’s interface. Furthermore, to simplify the
presentation of the protocol, we assume that consumer nodes are edge routers with a single interface
that connects them to the overlay network (this property can always be satisfied by introducing
virtual consumer nodes at the edges of the overlay). Consumers register and cancel subscriptions via
their consumer nodes. A consumer cannot cancel a subscription that it did not previously register
(the consumer node will filter out such requests).

3.2.2 Data models

XNet was designed to deal with XML data, the de facto interchange language on the Internet.
Producers can define custom data types and generate arbitrary semi-structured events, as long
as they are well-formed XML documents. Consumer interests are expressed using a subscription
language. Subscriptions allow to specify predicates on the set of valid events for a given consumer.
XNet uses a significant subset of the standard XPath [118] language to specify complex subscriptions
adapted to the semi-structured nature of events.

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://.../soap/envelope/"

SOAP-ENV:encodingStyle="http://.../soap/encoding/">

<SOAP-ENV:Header>

<t:Transaction

xmlns:t="some-URI"

SOAP-ENV:mustUnderstand="1">

5

</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">

<Symbol>DEF</Symbol>

</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 3.1: Sample SOAP message (corresponds to example 5 of [120]).

XML

The Extensible Markup Language (XML) [119] is emerging as the universal format for exchanging
structured data over the Internet and increasing amounts of data are made available in XML format.
Because of its simple structure, XML is easy to interpret and process by applications. By being

37

vendor- and platform-neutral, as well as agnostic about how content appears, XML makes it simple
to integrate existing applications and to represent data in various human-readable formats.

Technically, XML is a meta-language: it permits the creation of markup languages customized
to the needs of a particular application. XML defines an unambiguous mechanism for constraining
structure in a stream of information. XML documents can optionally include a type definition (DTD
or XML schema), which defines the document structure by describing its legal building blocks. An
XML document is valid if it adheres to all the rules of its type definition, and well-formed if it is
correctly structured. Validity is a semantic constraint and is not necessary for content-based filtering
and routing of XML documents.

t:Transaction

SOAP-ENV:Header@xmlns:SOAP-ENV @SOAP-ENV:encodingStyle

"5"@SOAP-ENV:mustUnderstand

"1"

@xmlns:t

"some-URI"

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePrice

Symbol

"DEF""some-URI"

@xmlns:m

"http://.../soap/envelope/" "http://.../soap/encoding/"

Figure 3.2: Tree representation of the XML document of Figure 3.1.

Figure 3.1 shows a sample XML document that represents a SOAP request asking the current
value of the stock of a company. The document structure is specified by the means of start and end
tags (tags are enclosed between < and >, and end tags start with /). Start tags contain an optional
list of attributes, which are essentially key-value pairs. Text data can be enclosed between tag pairs,
as between the t:Transaction and Symbol tags in Figure 3.1. We will refer to this text as the tag’s
value or content.

XML documents have a hierarchical structure. Figure 3.2 shows a tree-based representation of
the XML document of Figure 3.1. Attributes are represented as children of their associated tag, and
values as children of their associated attribute or tag. Attribute names are prefixed by the symbol
@ and values are represented within quotation marks.

Roughly speaking, we can distinguish between structural elements—tags and attributes—and
the actual data values associated to these elements. Connections between structural elements are
represented using plain lines, and between elements and values by dashed lines. Intuitively, the type
of an XML document is defined by its tags and attributes, while the data associated to its tags and
attributes define its value.1 By disconnecting the dashed lines from the tree representation of an
XML document, we obtain its type. Two SOAP request asking the value of different stocks would
have the same type, but different values.

XPath

The structured, extensible nature of XML allows for a powerful combination of type-based and value-
based content filtering. To that end, XML filters should be able to express constraints on both the
type and the value of data. Several XML query and addressing languages can be used for specifying
such filters. However, because of its simplicity and good standardization, the W3C XPath [118]
addressing language—or a subset thereof—is most widely used for that purpose.

1Formally, the type an an XML document is specified by the associated DTD or schema.

38

XPath treats XML documents as a tree of nodes and offers an expressive way to specify and select
parts of this tree. An XPath expression contains one or more location steps, separated by slashes (/).
Each location step has an axis name, a node-test, and zero or more predicates (specified between
brackets). The XPath axis designates a part of the document, defined from the perspective of the
“context node”; the node test specifies the type and expanded-name of the nodes selected by the
location step; predicates use arbitrary expressions to further refine the set of nodes selected by the
location step. Predicates are generally specified as constraints on the presence of structural elements,
or on the values of XML documents using basic comparison operators (=, <, ≤, >, ≥). XPath also
allows the use of wildcard (*) and ancestor/descendant (//) operators, which respectively match
exactly one and an arbitrarily long sequence of element names at a location step . The evaluation
of an XPath expression yields an object whose type can be a node-set, a boolean, a number, or a
string. When used to describe subscriptions, an XML document matches an XPath expression when
the result is a non-empty node-set.

(i): //m:GetLastTradePrice/Symbol

(ii): //m:GetLastTradePrice/Symbol[text()="DEF"]

(iii): /SOAP-ENV:Envelope/SOAP-ENV:Body/*//Symbol[text()="DEF"]

(iv): //t:Transaction/@SOAP-ENV:mustUnderstand

(v): //t:Transaction[@SOAP-ENV:mustUnderstand=1]

(vi): //Stock/Symbol[text()="GHI"]

(vii): //Stock/Price[text()>15]

(viii): //Stock[Symbol/text()="GHI"][Price/text()>15]

Figure 3.3: Sample XPath expressions.

Some sample XPath expressions are shown in Figure 3.3. XPath expression (i) designates docu-
ments that have two consecutive nodes GetLastTradePrice and Symbol at any level in the document
(the initial // specifies that any number of nodes can appear before the first element). XPath expres-
sion (ii) additionally constraints the value of the Symbol node to be equal to "DEF" (text() selects
the text node below the context node). Both expressions match the XML document of Figure 3.2
and return the Symbol node. XPath expression (iii) designates SOAP messages that have a Symbol
node with value "DEF" at least two levels deep inside the message’s body (below the Body node).
Note that this expression does not start by // and thus specifies an absolute path from the root of
the XML document. It matches the XML documents of Figure 3.2 and 3.4(a).

Attributes are specified in XPath expressions in a very similar way to tag nodes, but are pre-
fixed with @. XPath expression (iv) designates documents that have a Transaction node with a
mustUnderstand attribute, and XPath expression (v) further mandates this attribute to have the
value "1".

XPath can be used to express more complex filters where structural constraints are not limited
to single paths. Consider a filter that selects SOAP messages with quotes for symbol "GHI" that
have a price higher than "15". The first constraint can be expressed with XPath expression (vi)
of Figure 3.3, and the second one with expression (vii). A simple conjunction of these two XPath
expression is not sufficient, however, to obtain the desired filter: the document of Figure 3.4 (a) does
contain both expressions (matching paths are highlighted), but the price that matches the second
expression is not that of symbol "GHI". The correct filter must further constrain the matching Symbol
and Price nodes to share the same Stock parent node. Such structural constraints are achieved
using tree-structured expressions, which are expressed in XPath by defining multiple predicates on
the same node. XPath expression (viii) is one possible embodiment of the desired filter. A tree
representation of that expression is shown in Figure 3.4 (b). Note that it does not match the XML
document of Figure 3.4 (a).

Subscription containment

We recall the definition of subscription containment: We say that a subscription S1 contains or
covers another subscription S2, denoted by S1 ⊇ S2, iff any event matching S2 also matches S1,

39

SOAP-ENV:Envelope

SOAP-ENV:Body

m:GetLastTradePriceResponse

Stock Stock

PriceSymbol PriceSymbol

"11.5""GHI""34.1""DEF"

(a)

Stock

PriceSymbol

//

="GHI" >"15"

(b)
Figure 3.4: (a) SOAP message with multiple response values (b) Tree representation for XPath expression
(viii) of Figure 3.3

i.e., matches(S2) ⇒ matches(S1). The covering relationship defines a partial order on the set of all
subscriptions.

3.3 The Filtering Engine: XTrie

XNet uses the filtering engine XTrie for efficient matching of events against large number of sub-
scriptions. The XTrie implementation is based on a previous work done by C.-Y. Chan, P.A. Felber,
M. Garofalakis, and R. Rastogi [35]. For that reason, we will only give in this section an overview of
the algorithm and the data structures. A detailed study can be found in the aforementioned papers.

3.3.1 Overview

XTrie is a novel index structure that supports the efficient filtering of XML documents based on
XPath expressions. The XTrie index structure offers several novel features that make it especially
attractive for Web Services with strong scalability and performance requirements. First, XTrie
is designed to support effective filtering based on complex, tree-structured XPath expressions (as
opposed to simple, single-path specifications). Second, the XTrie structure and algorithms are
designed to support both ordered and unordered matching of XML data. Third, by indexing on
sequences of elements organized in a trie structure and using a sophisticated matching algorithm,
XTrie is able to both reduce the number of unnecessary index probes as well as avoid redundant
matchings, thereby providing extremely efficient filtering.

3.3.2 Trie structure

An exhaustive description of the XTrie algorithms can be found in [35]. Informally, it works as
follows. XPath expressions are first normalized. During this phase, attributes and values used
for equality comparisons are treated as regular nodes, with the exception that the former are pre-
fixed by @ and the latter are represented within quotation marks. Values used for comparisons
other that equality are discarded. For instance, XPath expression (viii) of Figure 3.3 becomes
//Stock[Symbol/"GHI"][Price].

Normalized expressions are then decomposed into substrings. A substring is a non-empty se-
quence of elements that are separated by the parent/child operator (/), optionally prefixed by an
ancestor/descendant operator (//) and wildcards (*). The decomposition of an XPath expression
into substrings is generally not unique. For instance, { //Stock, Symbol, "GHI", Price } and {
//Stock/symbol/"GHI", //Stock/Price } are two valid decompositions of XPath expression (viii).

40

Price

1 GHI

Stock

SymbolSymbol

DEF

DEF

m:GetLastTradePrice
Symbol

t:TransactionSOAP-ENV:Envelope

SOAP-ENV:Body @SOAP-ENV:mustUnderstand

0 0

0

0 0

01

2

3 4 5

6 7

8

9- - - - -

-

-- - -

- -

α β

(a)

Parent Rel Num
Row Level Rank Child Next

1 0 [2,∞] 1 0 0 //m:GetLastTradePrice/Symbol

2 0 [3,∞] 1 0 0 //m:GetLastTradePrice/Symbol/DEF

3 0 [2, 2] 1 1 0 SOAP-ENV:Envelope/SOAP-ENV:Body

4 3 [3,∞] 1 0 0 *//Symbol/DEF

5 0 [2,∞] 1 0 0 //t:Transaction/@SOAP-ENV:mustUnderstand

6 0 [3,∞] 1 0 0 //t:Transaction/@SOAP-ENV:mustUnderstand/1

7 0 [3,∞] 1 0 10 //Stock/Symbol/GHI

8 0 [2,∞] 1 0 11 //Stock/Price

9 0 [1,∞] 1 2 0 //Stock

10 9 [3, 3] 1 0 0 //Stock/Symbol/GHI

11 9 [2, 2] 2 0 0 //Stock/Price

(b)

Figure 3.5: XTrie example for XPath expressions of Figure 3.3. (a) Trie. (b) Auxiliary table.

XTrie probes its data structures only when a substring is completely matched. Thus, longer
substrings reduce the number of costly probes and improve performance. We therefore use a decom-
position, called “simple decomposition”, which creates the minimal number of longest substrings
necessary for covering the XPath expression. In addition, to ensure correctness of the matching
algorithm, the simple decomposition creates additional substrings at branching nodes when re-
quired. The simple decomposition of XPath expression (viii) is { //Stock, //Stock/symbol/"GHI",
//Stock/Price }, where the first substring is required for correctness. The substrings of the simple
decomposition can be organized into a unique rooted tree, called the substring tree, where a sub-
string s is the parent of a substring t if (1) s is a prefix of t or (2) the last node of s is the parent of
the first node of t.

The substrings obtained from XPath expressions are then organized in a sophisticated trie struc-
ture and an auxiliary table. The trie allows for space-efficient indexing and time-efficient retrieval of
XPath expressions, while the table stores additional information used for detecting valid matches.
Figure 3.5 shows the trie and auxiliary table for the XPath expressions of Figure 3.3.

The auxiliary table contains one row for each substring of each indexed XPath expression (sub-
strings are shown on the right of the table, next to their associated row). The rows are physically
clustered such that all the substrings of a given XPath expression are stored consecutively. The
rows are also logically partitioned into blocks containing identical substrings. This partitioning is
achieved by chaining rows in a linked list using the “Next” pointer. Each row contains a pointer
(“Parent Row”) that holds the index of the row of its parent in the substring tree, or 0 for the
root substring. “Rel Level” specifies the minimum and maximum depths at which a given substring
must appear in the XML document, respective to its parent. For instance, for a range of [2, 2], the
last element of a given substring must occur exactly 2 levels deeper than the last element of its
parent. Finally, the “Rank” value indicate the position of a substring respective to its siblings, and
the “Num Child” specifies the number of children substrings. Although not shown in the picture,
predicates that were discarded when normalizing the XPath expressions are attached to the row of
the associated substrings.

41

The trie is a rooted tree constructed from the set of distinct substrings in all XPath expressions,
where each edge is labeled with some element name. We call label of a node the concatenation of all
the edge labels on the path from the root to the node. Each substring has one node in the trie, whose
label corresponds to the sequence of elements in the substring. As the trie factorizes substrings with
common prefixes, its size remains generally small. Each node n has two special pointers, denoted
α(n) and β(n), respectively shown on the right and left parts of the trie nodes. If the label of n is
associated with some substring, then α(n) points to the first row of the linked list associated with
that substring. Otherwise, the pointer is null. β(n) points to the internal node in the trie whose
label is the longest proper suffix of the label of n.

3.3.3 Matching algorithm

Informally, the matching algorithm works as follows: the XML document is first parsed using a SAX
parser. This parser makes a single pass on the XML document and reports occurrences of XML
elements (start tags, text, etc.) to the application using an event-driven API. SAX does not construct
an in-memory representation of the document, making it an ideal candidate for streaming data. The
algorithm then tries to map sequences of start tags, attributes, and text value to paths in the trie by
following the edges. For each entire substring found, i.e., when reaching a node n such that α(n) 6= 0,
the auxiliary table is used to verify positional constraints with respect to previously-matched parent
and sibling substrings, as well as the associated predicates, of all the rows in the linked list rooted at
α(n). The same procedure is repeated for the nodes pointed to by β(n). Information about partially-
matches XPath expressions is kept at runtime in a data structure that stores the occurrence, depth,
and scope of substrings previously encountered. When encountering end tags, runtime information
is updated and substring matches that go “out of scope” are invalidated. An XPath expression is
completely matched when all its substrings have been encountered and the associated constraints
are validated.

We have implemented several variants of the matching algorithms optimized for different types
of XPath expressions: single-branch expressions, tree-structured expressions, and ordered tree-
structured expressions (branch ordering must be preserved). The details of these variants are found
in [35]. Also, the performance of the XTrie algorithm is discussed later in the thesis.

42

Chapter 4

Content routing with XRoute

4.1 Principles

4.1.1 Overview

In this chapter, we explain how content routing is achieved in our system with the XRoute routing
protocol.

Our routing protocol has been designed to achieve several goals. First, it should lead to perfect
routing of data in the network, i.e., an event is forwarded to a link only if it leads to an interested
consumer. Second, routing should ideally be optimal, i.e., the link cost of routing an event should be
no more than that of sending the event along a multicast tree spanning all the consumers interested
in the event.

Third, the protocol should take advantage of subscription aggregation to minimize space and pro-
cessing requirements at the nodes. Informally, subscription aggregation is a mechanism that enables
us to reduce the size of the routing tables by detecting and eliminating subscription redundancies;
it is a key technique to scale to very large populations of consumers in a pub/sub system.

Finally, the protocol should be efficient and allow consumers to register and cancel subscriptions
at any time. In particular, canceling a subscription should leave the system in the same state as if
the subscription were not registered in the first place.

XRoute is an application-layer routing protocol: it allows the system to achieve the routing
of events from the producer to the consumers, based on the events’ content and the subscriptions
registered by the consumers. For that purpose, XRoute integrates a routing algorithm to route
events in a distributed manner and a subscription management protocol to maintain routing tables
consistent with the consumers population. The routing algorithm consists for the most part in
event filtering and forwarding and relies on the XTrie algorithm for the former. The subscription
management protocol is itself composed of a subscription advertisement scheme and a routing table
update algorithm.

4.1.2 The routing algorithm

Routing works in a distributed manner. Each node N in the network contains in its routing table
a set of entries that represent the subscriptions that its neighbor nodes are interested in. For each
subscription S, node N maintains some information in its routing Table in the form “if match S,
send to N1, N2, . . .”. When a node is a consumer node, it knows the consumers which are interested
in receiving events matching S.

The process starts when a producer publishes an event at its producer node. Routing then
proceeds in a distributed manner as indicated in Algorithm 1. The process ends when all consumer
nodes that are interested in that event have received it.

Example 1. Consider the network in Figure 4.1(a), with two publisher nodes P1 and P2, and three
consumer nodes C1, C2, and C3. The other nodes N1, N2, N3, N4, and N5 are internal nodes.

43

Algorithm 1 Routing algorithm at node N

1: when receive event e from N ′ via interface Iup

2: Run XTrie algorithm to identify subscriptions in routing table that e matches
3: Forward e to all downstream interfaces that have a matching subscription.
4: end when

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S S

e1

S N4

S N3

S N1 , N2

S N3

S C3S C2

e1

e1

e1

e1

e1

e1

(a)

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S1

Adv(S2)

Adv(S1)

Adv(S1)

S1

Adv(S1)

Adv(S1)

Adv(S2)

S1 S1

S1

S1

(b)
Figure 4.1: (a) A sample pub/sub network. Consumers (producers) are represented by white (black) circles.
Subscriptions are represented underneath the consumers that registered them, and routing table entries are
listed next to the node they are associated with. (b) Subscription advertisements are propagated upward
from the consumers to the publishers. They may be transformed along the propagation paths due to
aggregation (here, we have S1 ⊇ S2).

Nodes C2 and C3 have consumers interested in receiving events matching subscription S. Suppose
that e1, an event matching subscription S, is published at node P1. Event e1 will follow the path
highlighted by the arrows.

4.1.3 The subscription advertisement algorithm

As previously mentioned, subscription advertisement is the mechanism that enables a router to learn
about the subscriptions in which its neighbors are interested. Subscription advertisement in XNet
works as follows.

When some consumer registers or cancels a subscription, it builds an advertisement corresponding
to that subscription and sends it to its consumer node. Subscription advertisement then proceeds
recursively as shown in Algorithm 2 and illustrated in Figure 4.1(b). The algorithm works by
propagating advertisements recursively across the overlay, from the consumers toward the producers,
following the best path, and updating routing tables along the way. Note that subscriptions may be
transformed along the propagation path due to aggregation, i.e., a subscription received as part of
an incoming advertisement may be different from the subscription carried by the resulting outgoing
advertisement. The algorithm ends when the publisher node has been reached. When a subscription
should be registered by multiple producers, the advertisements are sent along the paths to each of
the producers. That issue is handled in a separate section.

4.1.4 Subscription Aggregation

Subscription aggregation is a key technique that allows us to minimize the size of the routing tables
by eliminating redundancies between subscriptions, and hence to speed the routing process. The

44

Algorithm 2 Sketch of the advertisement protocol at node N
1: when receive adv(S) from N ′ via interface Idown

2: update routing table
3: generate outgoing advertisement adv(S′)
4: send adv(S′) via Iup upward to the producer
5: end when

notion of subscription aggregation based on subscription containment was explained in Section 2.5.3.
We recall its principle with the example illustrated in Figure 4.1(b): when an event e arrives at node
N3, it is only necessary to test e against S1, because, by definition, any event matching S2 also
matches S1, and any event that does not match S1 does not match S2 either. Hence, N3 only
needs to keep information about subscription S1 in its routing table. Also, S2 does not need to be
propagated upstream from N1 to N3.

We distinguish between two forms of subscription aggregation. If S1 and S2 are registered through
the same interface Ik (e.g., at Node N3 in Figure 4.1(b)), we say that S2 is represented by S1 at
interface Ik. If they are not registered through the same interface, we say that S2 is substituted by
S1 (e.g., at Node N1 in Figure 4.1(b)). In both situations, only S1 is advertised upstream.

4.1.5 Impact on the routing process

When a consumer registers or cancels a subscription, the nodes of the overlay update their routing
table accordingly by exchanging some pieces of information that represent the registration or can-
cellation of the consumer. The process starts at the consumer node and terminates at the producer
node(s), following the shortest paths. As a consequence, messages published by the producers follow
the reverse paths of the subscriptions, along a multicast tree spanning all interested consumers.
Thus, routing is optimal. Also, there cannot be cycles because each node always receives events
through its Iup interface located on the best path from the producer to the node, and never prop-
agates them along that path. In the next section, we present the routing table update algorithm
(RTU) that enables to update a router’s routing table consequently to a received advertisement, and
that makes use of subscription aggregation to minimize the size of the routing table.

4.2 XRoute: routing table update algorithm

We have seen in the previous section that a key requirement for achieving efficient routing with
XRoute is to maintain accurate routing tables. Also, one design goal of XRoute is to minimize
the sizes of the routing tables and to enable subscription cancellation while still ensuring perfect
routing. The last point is especially challenging. In fact, ensuring perfect routing and minimizing
routing tables sizes can be done relatively easily. However, enabling subscription cancellation while
maintaining accurate and small routing tables is a challenging point. This is achieved in XRoute
by the RTU algorithm.

4.2.1 Data formats

We first present the format of the different pieces of data that are used by the RTU algorithm.

Routing Tables

Each node N maintains a routing table that consists of a set of entries. Each entry corresponds to
one distinct subscription (two identical subscriptions share the same entry). We will write entry(S)
to refer to the entry corresponding to subscription S. It maintains information about all the regis-
trations for subscription S that have been received by node N . More precisely, the information in
entry(S) represents N ’s view of its neighbor’s interests in subscription S. Moreover, entry(S) also
contains the information required to implement the aggregation principle introduced in Section 4.1.4.

45

An entry entry(S) in the routing table of node N has the following format:
S ; (T 1

S , · · · , Tn
S) ; RS ; PS

where S is the subscription and n is the number of interfaces of node N . T k
S represents the population

of consumers downstream interface Ik that are interested in events matching S. Each T k
S consists of

a set of two integers that we will refer to as T k
S .x and T k

S .z (to be described shortly). T k
S is defined

by T k
S .x + T k

S .z and is always greater than or equal to 0. It is strictly greater than 0 iff there are
consumers downstream interface Ik interested in receiving events matching S. RS represents the
total number of subscriptions that have been “aggregated” in S, either through representation or
substitution. PS , if non-null, points to another entry in the routing table that S is substituted by.

T k
S .x represents the population of subscriptions S downstream interface Ik, i.e., the number of

consumers interested in receiving events matching S. T k
S .z corresponds to the number of subscrip-

tions that are represented by S at interface Ik. T k
S .z is also equal to the number of subscriptions

that are “aggregated” in S ,either through representation or substitution, at the node downstream
interface Ik (this non-trivial property follows from the RTU algorithm and will be demonstrated
shortly).

Advertisements

As mentioned previously, advertisement messages are exchanged between routers to register or cancel
a particular subscription. From the point of view of node N , receiving an advertisement message
adv(S) from interface Ik means that a change about the population of subscriptions S has occurred
downstream interface Ik. Node N must update its routing table to take this change into account;
in particular, T k

S needs to be updated. N also needs to generate and send an advertisement to the
upstream neighbor node.

An advertisement message adv(S) is a sequence of triples with the following format:
S ; nS ; rS

where S is the subscription advertised, and nS is the number of times S should be registered (nS > 0)
or canceled (nS < 0). rS represents the number of subscriptions, distinct from S, that have been
substituted by S downstream Ik, and that should be registered (rS > 0) or canceled (rS < 0) at
node N . Finally, adv(S) may contain additional triples, with the same format, indicating additional
modifications to perform to the routing tables upstream.

In the case where nS < 0, we distinguish between three different cases according to the value of
|nS |:

• If |nS | =
∑

k T k
S .x, we say that subscription S is being totally cancelled at interface Ik of node

N . Practically, that means that there are no more consumers interested in subscription S
downstream interface Ik.

• If |nS | =
∑

k T k
S .x and ∀j 6= k, T j

S = 0, we say that subscription S is being totally cancelled at
node N . In other words, there are no more consumers interested in subscription S downstream
node N (all interfaces).

• If |nS | <
∑

k T k
S .x, we say that subscription S is being partially cancelled at node N . There

are still some consumers interested in S downstream interface Ik.

4.2.2 Representation and Substitution

Before describing the RTU algorithm, we need to describe more formally the representation and
substitution relations that we introduced in Section 4.1.4, and how they are implemented.

Definition 1 (Representation). Consider entries for subscriptions S1 and S2 at non-consumer
node N such that S1 ⊃ S2, T k

S1
> 0 and T k

S2
> 0, then S2 must be represented by S1 at interface Ik.

This operation consists in modifying their entries as follows:
1. T k

S1
.z ← T k

S1
.z + T k

S2

46

2. RS1 ← RS1 + T k
S2

3. RS2 ← RS2 − T k
S2

.z

4. T k
S2
← 0

Thereafter, we say that S2 is represented by S1 at interface Ik.

The representation operation implements the subscription aggregation mechanism introduced
in Section 4.1.4. Indeed, having both T k

S1
and T k

S2
greater than zero is redundant, because it is

not necessary to test an event against S2 to know if it has to be forwarded down that interface.
Therefore, when S2 has been represented by S1 at interface Ik, T k

S2
becomes null, which is equivalent

to say that no client is interested in receiving events matching S2 downstream interface Ik. If T k
S2

is
null for all k, then entry(S2) can be removed from the routing table.

Note that if some subscriptions were previously represented by S2 at interface Ik, they now
become represented by S1 at Ik. Indeed, T k

S2
represents the sum of the instances of S2 registered at

Ik and all the subscriptions that are represented by S2 at Ik. At the time S2 is represented by S1

at Ik, S1 takes control of all instances of S2 and all the subscriptions that it represents (steps 1 and
2 in Definition 1), and S2 loses control of the subscriptions it used to represent (steps 3 and 4).

The representation relation enables to minimize routing table sizes. Indeed, when subscription
S2 is being represented by subscription S1 at interface Ik, this results in the field T k

S2
being reset.

Consequently, if the other T j
S2

are null, entry for subscription S2, entry(S2), can be deleted. If one
is not null, say T j

S2
, it can be reset by a future subscription representation at interface Ij .

An example is illustrated in figure 4.2

S1 (0,0) (1,0) 1 null
S2 (1,0) (2,3) 3 S1

S1 (0,0) (1,5) 6 null
S2 (1,0) (0,0) 0 S1

Figure 4.2: Example of a representation operation. S2 is being represented by S1 at interface I2. The
updated routing table is shown with a thick frame.

Definition 2 (Substitution). Consider entries for subscriptions S1 and S2 at node N such that:
S1 ⊃ S2, PS1 = null, and PS2 = null. Then S2 must be substituted by S1. This operation consists
in modifying their entries as follows:

1. PS2 ← S1

2. RS1 ← RS1 +
∑

k≤n T k
S2

.x + RS2

Thereafter, we say that S2 has been substituted by S1, and S2 must subsequently be advertised by S1,
i.e., any incoming advertisement (S2;n; r) yields an outgoing advertisement (S1; 0; n+ r). Note that
a subscription may be substituted by only one other subscription.

The signification of a substitution operation can be understood by observing the following sce-
nario. Suppose that the conditions for substituting S2 by S1 are met, but we do not perform the
substitution operation. If an incoming advertisement for S2 (registering nS2 subscriptions) arrives
at node N , the outgoing advertisement sent to the upstream neighbor node N ′ at interface Ij will
be advup(S2). Then, S2 will be represented by S1 at interface Ij of N ′. Thus, by substituting S2

by S1 at node N , we anticipate this representation. The outgoing advertisement is composed of the
triple S1 ; 0 ; nS2 ; it advertises S1 and specifies that S1 is to represent nS2 additional subscriptions
at interface Ij .

Although it adds some complexity to the protocol, the subscription substitution mechanism is
necessary to guarantee perfect routing when canceling a subscription that acts as a substitute for
some other subscriptions. In addition, the substitution mechanism can help save bandwidth by
propagating smaller advertisements.

47

Note that there may be multiple substitution relations between subscriptions. That is, subscrip-
tion S can be substituted by S′, which is in turn substituted by S′′, etc. We call such a sequence a
substitution chain. For any subscription Si, we denote by h(Si) the subscription at the top of the
chain, i.e., the subscription S with PS = null. We denote by tree(S) the set of all the subscrip-
tions Sj that have been substituted, directly or indirectly, by S (including S). Figure 4.3 shows a
subscription tree, where links represent substitutions (the child is substituted by its parent). For
instance, tree(S1) contains all subscriptions, tree(S3) contains S3, S4, and S5, and tree(S5) only
contains S5.

S1

S2 S3

S5S4

S1: /stock
S2: /stock[symbol="BAR"]
S3: /stock[symbol="FOO"]
S4: /stock[symbol="FOO"][price<10]
S5: /stock[symbol="FOO"][volume>1000]

Figure 4.3: The substitution relations apply recursively. Subscriptions can be organized in a tree, where a
link indicates that a child is substituted by its parent.

A substitution operation can only be performed between two subscriptions if none of them has
already been substituted, in other words between two tops of chains. An example is illustrated in
figure 4.4.

S1 (1,0) (0,0) (0,0) 0 null
S3 (0,0) (2,1) (0,0) 8 null

S5 (0,0) (0,0) (5,2) 2 S3

S1 (1,0) (0,0) (0,0) 10 null
S3 (0,0) (2,1) (0,0) 8 S1

S5 (0,0) (0,0) (5,2) 2 S3

Figure 4.4: Example of a substitution operation, applied to subscriptions S1, S3 and S5 of Figure 4.3. S3

is being substituted by S1. Note that S5 was previously substituted by S3. The updated routing table is
shown with a thick frame.

4.2.3 Properties of the representation and substitution relations

We now give several properties of the representation and the substitution operations, which will be
useful throughout the rest of the section.

Consider node N . Let node Ndown be the node downstream interface Ik and Nup be the upstream
neighbor node (upstream interface Iup).

Property 1. When an advertisement for the registration of subscription S arrives from node Ndown

at interface Ik of node N , S cannot be represented by any subscription at that interface.

Proof. Suppose that S can be represented by subscription S′ at interface Ik. That means that we
have T k

S′ > 0, which means that S′ has an entry at node Ndown. But then at that node, subscription
S would have been substituted by S′ and no advertisement for S would have reached node N .

Corollary: It follows from Property 1 that the only case when a subscription S2 can be represented
by another subscription S1 (S1 ⊃ S2) is when T k

S1
= 0 and an advertisement for S1 arrives at interface

Ik. Then T k
S1

becomes strictly positive and S2 is represented by S1 at interface Ik. In other words,
an advertisement for S2 has arrived before the advertisement for S1.

48

Property 2. At node N , T k
S > 0 iff S has not been substituted at the node downstream interface Ik

(Ndown).

Proof. Suppose that, at node Ndown, subscription S has been substituted by another subscription
S′. We suppose that S′ is not substituted (otherwise, the demonstration applies to the root of the
substitution tree to which S belongs). Then, S′ has an entry at node N such that T k

S′ > 0 (because
if S′ is not substituted, advertisements for S′ also yields to outgoing advertisements for S′). Then,
at node N , S must be represented by S′ and consequently we have T k

S = 0.
Similarly, if S has not been substituted at node Ndown, then advertisements for S also yields to

outgoing advertisements for S, and T k
S > 0 at node N .

Property 3. Suppose that S1 is not substituted by another subscription. Then, if S2 is substituted
by S1 at node N , S2 is represented by S1 at the upstream neighbor node Nup, at incoming interface
Ij (toward N).

Proof. Suppose that S2 arrived at node N before S1. Then S2 also has an entry at the upstream node
Nup, because it has not been substituted at node N . Because S1 is not substituted, the outgoing
advertisement advertises S1. When it arrives at node Nup the conditions for representing S2 by S1

are met. Now suppose that S1 arrived first at node N . Then when S2 is substituted by S1, according
to the definition of the substitution relation, the incoming advertisement for S2, (S2;n; r) yields an
outgoing advertisement for S1: (S1; 0; n + r). That means that S1 is to represent n + r instances of
subscription S2 at node Nup.

Corollary: Property 3 is true for any subscription Sj that belongs to the substitution tree
tree(h(Sj)): Sj is represented by h(Sj) at the upstream neighbor node, at incoming interface Ij

(toward N).

Property 4. Consider subscription S. RS represents the number of subscriptions that are repre-
sented by S at all interfaces, plus the number of instances of each of the subscriptions on tree(S),
plus the number of the subscriptions that any of them represent at any interface.

Proof. According to the definition of the representation relation, RS is incremented by T k
S′ when

S′ is being represented by S at interface Ik. Thus RS represents at least the instances of all the
subscriptions that are represented by S at all the interfaces.

Suppose that the height of tree(S) is one. In other words, no subscriptions are substituted by
S. Then the only way to increase RS is by representation relations. Thus RS represents exactly the
instances of all the subscriptions that are represented by S at all the interfaces, and the property is
true (tree(S) comprises S only).

Now suppose that the height of tree(S) is two. In other words, if {Substituted} is the set of all
the subscriptions that are substituted by S, no subscriptions are substituted by a subscription in
{Substituted}. Consider S1 ∈ {Substituted}. Then tree(S1) is of height one, and RS1 is exactly the
number of subscriptions that are represented by S1 at all the interfaces. When S1 was substituted by
S, RS was increased by

∑
k≤n T k

S1
.x+RS1 . Thus in RS are included all the instances of subscription

S1 plus the instances of the subscriptions that are represented by S1 at all the interfaces. This is
true for all the subscriptions in {Substituted}, and the property is true.

Now suppose that the property is true for a height of h (recursive hypothesis). If the height of
tree(S) is h+1, then again let {Substituted} be the set of all the subscriptions that are substituted by
S. We have seen that RS represents at least the instances of all the subscriptions that are represented
by S at all the interfaces. Now for each S1 ∈ {Substituted}, tree(S1) is of height at most h. When S1

is substituted by S, RS is increased by
∑

k≤n T k
S1

.x+RS1 , that is by all the instances of subscription
S1 plus RS1 . Because tree(S1) is of height at most h, according to the recursive assumption, RS1 is
exactly the number of subscriptions that are represented by S1 at all the interfaces, plus the number
of all the subscriptions on tree(S1), plus the number of the subscriptions that any subscription on

49

tree(S1) represents at any interface. Thus the property is true for a height h + 1, and according to
the theorem of recursivity, it is always true.

Property 5. At node N , for any subscription S, the T k
S .z field is equal to the RS field of entry(S)

at node Ndown.

Proof. This property comes from Property 4 and the operation of the routing protocol. Indeed, the
update of the routing table is such that T k

S .z corresponds to the number of subscriptions “aggregated”
in S, either through representation or substitution at node Ndown. Then according to property 4,
RS at node Ndown represents exactly the number of those subscriptions and is hence equal to T k

S .z
at node N .

Corollary: From this property, it follows that part of the subscriptions that are represented by
S at interface Ik of node N are subscriptions Si at node Ndown such that PSi points to S. The other
part consists of subscriptions that are represented by S at all the downstream interfaces of node
Ndown. Recursively we can completely identify them, because there are no representations at client
nodes.

Property 6. When an advertisement for the registration of subscription S2 arrives at node N , if
S2 can be substituted by another subscription S1, then no subscription can be substituted by S2.

Proof. Suppose that a subscription S3 can be substituted by S2. This implies that S3 is not substi-
tuted by a subscription yet. Also this implies that S3 ⊂ S1 (because of the transitivity property of
the containment relation). Then S3 would have been substituted by S1.

4.2.4 Correctness of subscription advertisement

It trivially appears from Algorithm 2 that subscription advertisement is correct when subscriptions
are not aggregated. We now show that subscription aggregation does not affect the correctness of
subscription advertisement.

Consider a node N with upstream neighbor Nup. Suppose that S2 is substituted by S1 in the
routing table of node N (S1 ⊇ S2). Then, because of Property 3, at node Nup, S2 is represented by
S1 at the incoming interface. Now consider an event e that arrives at node Nup. If e matches S1,
then it is forwarded at node N , where we have at least S1 as a matching subscription. Now if e does
not match S1, then because S1 ⊇ S2, it does not match S2 either. Hence, event e is not forwarded
to node N , where there are no matching subscriptions. Hence subscription advertisement is correct
at node Nup. At node N , S2 and S1 have been registered through different interfaces, and both have
an entry in the routing table. Hence, subscription advertisement is correct at node N .

Now suppose that at node N , S2 is represented by S1 at interface Ik. Let Ndown be the neighbor
downstream interface Ik. If S2 has an entry in the routing table of node Ndown, then it is substituted
by S1 and similarly to the previous case, subscription advertisement is correct at node N . If S2 does
not have an entry in the routing table of node Ndown, then subscription advertisement is trivially
correct.

In fact, there necessarily exists a node Nd downstream Ik, where S2 has been substituted by
S1. Nd is the first node where S1 and S2 have been registered through different interfaces. Nd

necessarily exists, because if S2 and S1 were always registered through the same interface, then
they were registered at the same consumer node C, where S2 have been substituted by S1, since
representation relations are not permitted at consumer nodes.

For example, consider the network illustrated in Figure 4.5, which results from the registration
of subscription S2 at node C2, as illustrated in Figure 4.1(b). At node N1, S2 has been substituted
by S1. Consequently, because of Property 3, at node N3, S2 is represented by S1 at the incoming
interface. This results in S2 not having an entry in the routing table of node N3. Similarly, S2 does
not have an entry at nodes N3, N4, P1 and P2. An event e published at P1, and that matches S1 is
forwarded to nodes N4, N3 and N1. Now if e does not match S1, then it does not match S2 either,
and is not forwarded by node P1.

50

N1

P1

P2

C1 C2
C3

N2

N3

N4 N5

S2S1

e

S1 C1
S2 C2

S1 N1

S1 N3

S1 N4

Figure 4.5: Subscription aggregation does not affect perfect routing.

4.2.5 RTU protocol description

We now describe formally the routing table update protocol. Updating the routing table constitutes
the main task of the subscription algorithm. The table must be updated at node N each time an
advertisement for a subscription S arrives from an interface Ik, i.e., when a change has occurred in
the population of the subscriptions S downstream interface Ik. The routing table at node N must be
updated so that its entries are accurate enough to enable perfect routing. Moreover, the algorithm
must make full use of subscription aggregation at all times. The details of the algorithm are given
in Algorithms 3, 4, 5, and 8, 7 and 6 and described in the rest of this section.

Algorithm 3 — Routing Table Update
1: if PS 6= null then
2: for all S′ ancestor of S in tree(h(S)) do
3: RS′ ← RS′ + nS + rS

4: end for
5: advout ← (h(S); 0; nS + rS)
6: else
7: advout ← (S; nS ; rS)
8: end if
9: T k

S .x← T k
S .x + nS

10: RS ← RS + rS

11: T k
S .z ← T k

S .z + rS

12: Send advout upstream

Dealing with Registrations

We first focus on the case of subscriptions registrations. Consider node N that receives from down-
stream interface Ik a registration advertisement for a subscription S: (S;nS ; rS). The routing table
update consists in updating T k

S and in trying to establish and/or modify some relations (substitu-
tion or representation) between S and the other subscriptions in the routing table of node N . The
process is different according to the value of entry(S) in the routing table.

First case: entry(S) exists and T k
S > 0. Algorithm 3 is executed. Then, some advertisement

for the registration of S has been received earlier at interface Ik. Hence, the possible aggregation
relations (i.e., representation or substitution relations) between S and the other subscriptions have
already been established. Consequently, the process consists in updating T k

S (lines 9 − 11) and in

51

Algorithm 4 — Subscription Representation
1: declare A = 0
2: for all Sj subscriptions that can be represented by S at Ik do

3: declare Tj = T k
Sj

4: Represent Sj by S at Ik

5: if Sj ∈ tree(S) then
6: for all Sk ancestor of Sj in tree(S) do
7: RSk

← RSk
− Tj

8: end for
9: else

10: for all Sk ancestor of Sj in tree(h(Sj)) do
11: RSk

← RSk
− Tj

12: end for
13: if Sj /∈ tree(h(S)) then
14: append (h(Sj); 0;−Tj) to advout

15: A← A + Tj

16: end if
17: for all Sk ancestor of S in tree(h(S)) do
18: RSk

← RSk
+ Tj

19: end for
20: end if
21: if

∑
p≤n T p

Sj
= 0 then

22: remove entry(Sj)
23: for all Sk such that PSk

= Sj do
24: PSk

← PSj

25: end for
26: end if
27: end for
28: for all Sk ancestor of S in tree(h(S)) do
29: RSk

← RSk
+ nS + rS

30: end for
31: T k

S .x← T k
S .x + nS

32: RS ← RS + rS

33: T k
S .z ← T k

S .z + rS

34: if h(S) 6= S then
35: advout ← (h(S); 0; nS + rS + A) [+ appended triples]
36: else
37: advout ← (S; nS ; rS + A) [+ appended triples]
38: end if
39: Send advout upstream

the case where S is substituted by another subscription, the entries of some subscriptions in the
substitution chain to which S belongs (lines 1− 6).

More precisely, the process proceeds as follows. We increment RS and T k
S .z by rS to take

into account the rS additional subscriptions that S represents at interface Ik (lines 10 − 11). We
also increment T k

S .x by the nS additional instances of subscription S that were carried by the
advertisement (line 9). Then, if S has been substituted, we increment the R field of the subscriptions
ancestor of S in tree(h(S)) by nS + rS (lines 2− 4). Indeed, those subscriptions are now substitutes
for nS + rS additional subscriptions.

Finally, we build the outgoing advertisement as the result of the update that has been done, and
send it upstream (lines 5, 7 and 12).

Second case: entry(S) exists and T k
S = 0. Algorithm 4 is executed.

Then, some advertisement for the registration of S has been received earlier, but not through
interface Ik. Consequently, all the possible substitution relations have already been established.
However, there may be some possible representation relations at interface Ik, between S and some
other subscriptions. Moreover, we have seen in Property 1 that S cannot be represented by another
subscription. Hence, we look for all the subscriptions that can be represented by S at interface Ik,
and perform the representation operation (lines 2− 4). This has for consequence that some existing
relations may need to be modified (lines 5−20). This is due to the fact that a subscription can both
have at the same time a substitution relation with another subscription, and multiple representation
relations with other subscriptions.

52

When the necessary modifications have been done, we look for the subscriptions that have just
been represented by S at interface Ik and that have a null entry (as a result of the representation
operation), and we remove them from the routing table (lines 21−22). Consider one such subscription
Sj . Then, the subscriptions that were directly substituted by Sj must now be substituted by another
subscription, since Sj does not exist anymore. PSj is a potential candidate. Indeed, since Sj was
represented by S, we have Sj ⊆ S. Also, since both Sj and S already had an entry in the routing
table, Sj was necessary substituted by another subscription (S is a potential candidate). Hence,
PSj 6= null. Consequently, all the subscriptions that were directly substituted by Sj can now be
substituted by PSj (lines 23− 25).

Finally, we proceed as in the previous case: we update T k
S (lines 31− 33) as well as the entries of

the subscriptions ancestor of S in tree(h(S)) (lines 28−30), and we build the outgoing advertisement
and send it to the upstream interface (lines 34− 39).

We now detail the modifications to some existing relations that were made consequently to the
representation relations that were established between S and the other subscriptions. Consider the
case where a subscription Sj is to be represented by S at interface Ik. There are Tj = T k

Sj
instances

of subscription Sj . We have two cases:
First case: Sj ∈ tree(S). This case is illustrated in Figure 4.6(a). The Tj instances of subscription

Sj are now represented by S at interface Ik. For each subscription Sk ancestor of Sj in tree(S),
the Tj instances of subscription Sj are no longer substituted by Sk. Thus, because of Property 4,
subscription Sk must have its R field decremented by Tj (lines 5− 8).

S

h(S)

Sj

No longer
substitutes
for Tj
instances
of Sj

Remain
substitutes
for Tj
instances
 of Sj

Tj instances
 of Sj are now
represented
by S

(a)

S

h(S)

Sj

No longer
substitutes
for Tj
instances
of Sj

Become
substitutes
for Tj
instances
 of Sj

Tj instances of Sj
are now represented
by S

(b)

S

h(S)

Sj

h(Sj)

Become
substitutes
for Tj
instances
of Sj

No longer
substitutes
for Tj
instances
of Sj

Tj instances of Sj are
 now represented by S

(c)

Figure 4.6: Representation of the possible substitution trees of subscriptions Sj and S. Subscriptions
are represented within boxes. A plain straight arrow originating from subscription A and pointing to
subscription B represents all the subscriptions ancestor of A and descendant of B (A included) in the
substitution tree rooted at B. The curved dashed arrow indicates the new representation relation that
has just been established between subscription Sj and subscription S. The modifications that are induced
subsequently are indicated next to the subscriptions concerned. (a) Sj ∈ tree(S) (b) Sj 6∈ tree(S) and
h(Sj) = h(S) (c) Sj 6∈ tree(S) and h(Sj) 6= h(S)

However, the subscriptions ancestor of S in tree(h(S)) (if any) are still a substitute for the Tj

instances of subscription Sj , and do not need to have their entry modified.
Second case: Sj 6∈ tree(S). This case is illustrated in Figures 4.6(b) and (c). Then the Tj

instances of subscription Sj (that are now represented by S at Ik) also have for substitutes every
subscription ancestor of S in tree(h(S)) (if any). Thus those subscriptions must have their R field
incremented by Tj (lines 17− 19). Also, all subscriptions ancestor of Sj in tree(h(Sj)) (if any) must
have their R field decremented by Tj (lines 10− 12).

Now, consider the additional case where Sj does not belong to tree(h(S)) (h(Sj) 6= h(S)), as
illustrated in Figure 4.6(c). Then, because of Property 3, at the incoming interface of the upstream
neighbor node, the Tj instances of subscription Sj are represented by subscription h(Sj) (note that we

53

necessarily have h(Sj) 6= Sj , otherwise Sj would have been substituted by S). This is incompatible
with the fact that those Tj instances are now represented by S at node N . Thus, we must indicate
that h(Sj) should represent Tj fewer instances of subscription Sj at that node, whereas h(S) should
represent Tj additional instances of Sj . This information is appended to the outgoing advertisement
in the form of two additional triples (h(S); 0; Tj) and (h(Sj); 0;−Tj) (lines 13− 16, 35 and 37).

Algorithm 5 — Subscription Substitution
1: create a null entry(S)
2: if ∃S′, S′ ⊃ S, PS′ = null then
3: substitute S by S′

4: else
5: for all Sk that can be substituted by S do
6: substitute Sk by S
7: end for
8: end if
9: call Algorithm 4: “Subscription Representation”.

Third case: entry(S) does not exist. Algorithm 5 is executed. Then, no advertisement for the
registration of S arrived previously at node N . Hence, we must check for both substitution and
representation relations between S and the other subscriptions in the routing table.

We first create a null entry for subscription S (line 1). Then, we try to substitute S by another
subscription (lines 2−3). If that is possible, then according to property 6, no other subscription can
be substituted by S. Otherwise, we try to substitute other subscriptions by S (lines 5− 7).

Subsequently, we fall in the previous case. Indeed, entry(S) exists, T k
S = 0, and all the possible

substitution relations between S and the other subscriptions have been established (this is necessary
since entry(S) is null for now). We can then execute Algorithm 4 (line 9), to proceed with the
remaining routing table updates.

Additional updates: The incoming advertisement may contain additional triples (S′; 0; U). These
triples are generated by Algorithm 4 (line 14) at the downstream neighbor node and are such that
U < 0 and PS′ = null. We are thus in the case where entry(S′) exists and T k

S′ > 0, and we can
apply Algorithm 3 for each S′.

N1

C1 C2

N3

S1 S2 S3
S2

S1 (1,0) 1 null

S2 (1,0) 0 S1

S3 (1,0) 0 null

S1 (1,1) (0,0) 4 null
S2 (0,0) (3,0) 0 S1

S3 (1,0) (0,0) 0 null

S1 (1,4) 4 null
S3 (1,0) 0 null

S4 1 0

S1 (1,1) (0,0) 1 null
S3 (1,0) (0,0) 0 S

4
S4 (0,0) (1,3) 4 null

S1 (1,1) 1 null
S4 (1,4) 4 null

S2 (3,0) 0 S1
S2 (3,0) 0 S4

S4 (1,0) 3 null

S4 1 0

S4 1 3
S1 0 -3

S4 1 3
S1 0 -3

Figure 4.7: Example of the subscription algorithm. Registered subscriptions are represented below their
corresponding client nodes. Routing tables (shown next to the nodes) are updated as a result of the
registration of subscription S4 (updated tables are shown with a thick frame).

Example 2. Figure 4.7 illustrates the operation of the subscription algorithm on the pub/sub network
of Figure 4.1(a). Four consumers have already registered some subscriptions. A consumer at client
node C2 registers subscription S4, resulting in updates of the routing table at each node on the path

54

from C2 to each publisher. For the sake of clarity, we have only represented inner nodes N1 and N3.
Also, we suppose that S0 ⊇ S2, S1 ⊇ S2, and S4 ⊇ S3, but there are no relationships between S4 and
S1, and between S2 and S3.

At nodes C2, N1, and N3, entry(S4) does not exist. Thus, Algorithm 5 (which in turn calls
Algorithm 4) is called to update the routing table. The following relations are established: At node
C2, S2 is substituted by S4. At node N1, S3 is substituted by S4, S2 is represented by S4 at the
downstream interface to C2, and entry(S2) is removed. At node N3, S3 is represented by S4 at the
downstream interface to N1 and its entry is removed.

Case of consumer nodes

At consumer node, there is only one interface (see 3.2.1. Consumers send registrations and cancella-
tions through that single interface. There cannot be representation relations between the subscrip-
tions in the routing table of a consumer node. Indeed, if that happened, then we would “loose track”
of the subscription represented, and we would not be able to maintain perfect routing in the case of
subscription cancellations. Thus, the update of the routing table at consumer node is exactly the
same as for inner nodes, except that Algorithm 4 is not called at line 3 of Algorithm 5.

Classification and dynamics of registrations

It results from the previous sections that we can classify an incoming advertisement Advin for the
registration of subscription S through interface Ik, and the type of routing table updates that must
be performed in four categories as follows:

• Duplicate registration: This corresponds to the case where entry(S) exists and T k
S > 0. In

other words, subscription S was previously registered through interface Ik. We have seen that
we do not need to compute containment relationships. The routing table at node N simply
consists in updating routing table entries, which is a very fast operation.

• Supplementary registration: This corresponds to the case where entry(S) exists and T k
S = 0.

In other words, subscription S was previously registered by another consumer, but through
a different interface than Ik. We have seen that we may need to perform representation
operations, which requires to determine the subscriptions in the routing table that are contained
by S. As a consequence, the routing table update corresponding to a supplementary registration
is significantly more complicated and costly than that of a duplicate registration.

• New registration: This corresponds to the case where entry(S) does not exists. We have seen
that we need to determine all the possible containment relationships between S and the other
subscriptions in the routing table. Consequently, the routing table update corresponds to a
new registration is the costliest of all three registration types.

• Additional triples : We have seen that if additional triples (S′; 0; U) are contained in advin,
each of them is seen as a duplicate registration.

We now identify the relations between the type of an incoming registration advertisement at node
N , advin, and that of the outgoing registration advertisement advout sent to the upstream node Nup.
Those can be easily derived from the properties enounced in Section 4.2.3 and the operation of the
RTU algorithm.

• If advin is a duplicate registration at node N : Then, advout is necessarily a duplicate registration
for node Nup (whether S is directly advertised or not).

• If advin is a supplementary registration at node N : Then, advout is a duplicate registration at
node Nup.

55

• If advin is a new registration at node N : Then, if S has been substituted by another subscription
at node N , advout is a duplicate registration at node Nup (and h(S) is advertised). Otherwise,
advout is a new registration.

Dealing with Cancellations

We now deal with the case of subscription cancellations.

Problem statement. Consider node N and entry(S) for subscription S its routing table. Let
node Ndown be the node downstream interface Ik and node Nup be the upstream neighbor node.
Let advin(S) = (S ; nS ; rS) be an advertisement for the cancellation of subscription S (nS < 0),
arriving at interface Ik from node Ndown. If |nS | < T k

S .x, then S is being partially cancelled. This
case is completely handled by Algorithm 3, except that nS < 0.

Now if |nS | = T k
S .x, we consider two cases. If T k

S .z = 0, then no subscriptions are represented by
S at interface Ik. This case is also handled by Algorithm 3. Indeed, no subscriptions are affected
by the fact that there are no more subscriptions interested in S downstream interface Ik.

N1

N3

S (1,0) (0,0) 0 null
S1 (0,0) (1,0) 0 S

S (1,1) 0 null

S -1

C1 C2

S1

(a)

N1

C1 C2

N3

S1

S1 (0,0) (1,0) 0 null

e

matches
 S1 ?

S (0,1) 0 null

e

(b)

N1

N3

S1 (0,0) (1,0) 0 null

e

e ?

C1 C2

S1

(c)

Figure 4.8: (a) Subscription S is being totally cancelled at nodes N1 and N3. At node N3, subscription S1 is
represented by S1 (b) There are no more consumers interested in events matching S at node N3. N3 knows
that one subscription is represented by S, but it does not know if event e matches them. Consequently, e
may be forwarded wrongly to node N1 (c) If entry(S) is removed, e is not forwarded to node N1, even if
it matches S1.

Now consider the case where |nS | = T k
S .x and T k

S .z > 0, i.e., some subscriptions are represented
by S at interface Ik, as illustrated in Figure 4.8(a). Now consider an event e that arrives at node N
and that matches S.

If T k
S > 0, e will be forwarded downstream interface Ik. However, there are no more consumers

interested in events matching S downstream Ik, and node N cannot determine whether e matches
any of the subscriptions represented by S at Ik, as illustrated in Figure 4.8(b).

Now if T k
S = 0, then entry(S) is removed form the routing table and e may not be forwarded

downstream, as illustrated in Figure 4.8(c).
Consequently, in both cases, we may have imperfect routing, and in the worst case routing

may degenerate into flooding. Therefore, we need to implement an additional routing table update
operation to deal with this problem. This operation, which we refer to as the cancellation algorithm,
is implemented in Algorithms 8, 7 and 6 and detailed in the rest of this section.

Overview of the cancellation algorithm. As previously mentioned, the cancellation algorithm
handles the case where |nS | = T k

S .x and T k
S .z > 0, i.e., subscription S is being totally cancelled

at interface Ik (or at all interfaces), and some subscriptions are represented by S at interface Ik.
The key concept used by the cancellation algorithm to maintain perfect routing in this case is the
substitution relation.

56

N1

C1 C2

N3

S1S

S (1,0) (0,0) 0 null
S1 (0,0) (1,0) 0 S

S1 (1,0) 0 null

S -1

S1 1
S -1

(a)

N1

C1 C2

N3

S1

S1 (0,0) (1,0) 0 null

S1 (1,0) 0 null

e

forward iff
matches S1

(b)

Figure 4.9: (a) At node N1, subscription S1 is substituted by S. Hence, at the upstream node, it is
represented by it. When subscription S is being totally cancelled at node N1, subscription S1 can be
reinserted in the routing table of node N3 via the outgoing advertisement. (b) At node N3, the subscription
that was represented by S has been reinserted in the routing table and perfect routing maintained.

Consider node N where subscription S is being totally cancelled at interface Ik, and such that
there are some subscriptions represented by S at Ik. We have explained in the previous section
that routing inaccuracy may occur because node N does not know if an incoming event matches the
subscriptions represented by S. The problem would be solved if those subscriptions were reinserted
in node N ’s routing table. This is possible thanks to the substitution relation. Indeed, we have
seen in Section 4.2.4 that if a subscription S1 is represented by subscription S at interface Ik, then
there is a downstream node where S1 is substituted by S. Hence, that node can inform node N
that subscription S1 is the one that is represented by S at interface Ik (property 3). Subsequently,
subscription S1 can be properly “reinserted” in the routing table, and perfect routing maintained,
as illustrated in Figure 4.9.

More formally, let {Si} denote the set of subscriptions that S represents at interface Ik. According
to the corollary of Property 5, those subscriptions are the subscriptions of tree(S) at node Ndown

(i.e., directly or indirectly substituted by S) plus those that are represented by any of them at any
interface (also at node Ndown). To prevent imperfect routing, each subscription Si must be properly
“reinserted” in the routing table of node N . This especially includes the possible substitution
relationships between the subscriptions (which must always be performed).

The cancellation algorithm consists of a set of algorithms, implemented in pseudo-code in Al-
gorithms 8, 7 and 6. It works by recursively reinserting subscriptions in the routing tables of the
encountered routers so as to maintain perfect routing (as previously mentioned). It starts at the
consumer node where the total cancellation of subscription S was originally issued. Indeed, if sub-
scription S is being totally cancelled at a given node N in the system, then there is a unique
consumer node downstream node N , where the last consumer interested in subscription S totally
cancelled it. Since there are no representation relations at consumer nodes, we need a dedicated
algorithm, which is given in Algorithm 6. At each inner node encountered upstream, the cancellation
algorithm then proceeds as indicated in Algorithm 8. It ends when a router is encountered where
entry(S) is such that: |nS | 6= T k

S .x or T k
S .z = 0 (if there is no such router, then the algorithm

proceeds until the producer node), where the cancellation of subscription S further proceeds with
Algorithm 3. Algorithm 7 is a key procedure that is used by both Algorithms 8 and 6.

We now detail the operation of the cancellation algorithm.

Cancellation algorithm at consumer nodes. Consider consumer node C, where the last con-
sumer interested in subscription S totally cancelled it. The cancellation of subscription S is handled
with Algorithm 6.

Since we are at a consumer node, the total cancellation of subscription S necessarily implies the
removal of its entry from the routing table (there is only one interface, see Section 4.2.5). Then, we

57

Algorithm 6 — Cancellation algorithm - consumer nodes
1: if PS 6= null then
2: for all Sk ancestor of S in tree(h(S)) do
3: RSk

← RSk
+ nS

4: end for
5: advout ← (h(S); 0; nS)
6: for all Sk such that PSk

= S do
7: PSk

= PS

8: end for
9: delete entry(S)

10: else
11: call reinsert() (Algorithm 7)
12: end if
13: advout ← (S; nS ; 0) [+ appended triples]
14: Send advout upstream

Algorithm 7 — Reinsert function: reinsert()
1: for all Sj such that PSj

= S do
2: push Sj in Lreinsert

3: PSj
← null

4: end for
5: delete entry(S)
6: for all Sj ∈ Lreinsert do
7: if ∃S′, S′ ⊃ Sj , PS′ = null then
8: substitute Sj by S′

9: end if
10: end for
11: for all Sj ∈ Lreinsert do
12: if PSj

= null then

13: countSj
=

∑
k T k

Sj
.x

14: append (Sj ; countSj
; RSj

) to advout

15: else if PSj
/∈ Lreinsert then

16: countSj
=

∑
k T k

Sj
.x

17: append (PSj
; 0; countSj

+ RSj
) to advout

18: end if
19: end for

58

consider two cases according to the value of PS :
If PS 6= null Then S has been substituted by another subscription. Then, we update the R

field of the subscriptions ancestor of S to take into account the fact that they are no longer a
substitute for |nS | instances of subscription S (lines 2 − 4). Then, the subscriptions substituted
by S can now be substituted by PS (up one level in tree(h(S)) (lines 6 − 8). Subsequently, they
have been properly reinserted in the routing table. Since subscription S is substituted by h(S), the
outgoing advertisement advertises h(S), and mentions that h(S) is to represent |nS | fewer instances
of subscription S (Property 3) (lines 2−5). At the upstream node Nup, that advertisement is handled
with Algorithm 3. We finally delete entry(S) (line 9).

If PS = null Then, S has entry in the routing table of node Nup and will be totally cancelled
at the incoming interface. Also, some subscriptions are represented by S at that interface. At node
Nup, we are then also in the case of application of the cancellation algorithm. We have seen that
to prevent imperfect routing, node Nup needs to know all the subscriptions that S represents at
interface Ik. Because there are no representations at a consumer node, those subscriptions are the
ones at node C that are substituted by S (plus the ones that are substituted by each of them).
Those subscriptions must now be reinserted in the routing table. For that purpose, we proceed as
indicated in Algorithm 7.

We build a list Lreinsert that contains all the subscriptions that are substituted by S, and we
subsequently reset their P field (as if they were no longer substituted), and we delete entry(S) (lines
1−5). We then establish the possible substitution relations between the subscriptions in Lreinsert and
the other subscriptions (lines 6− 10). Once a given subscription Sj ∈ Lreinsert has been substituted,
there are three possible cases:

PSj = null: Sj could not be substituted by any subscription. Then, for the purpose of reinserting
subscription Sj in the routing table of node Nup, we append the triple (Sj ; countSj ;RSj) to the
outgoing advertisement, as if Sj were a newly registered subscription, with countSj instances (lines
13 − 14). Also, Sj is to represent RSj subscriptions at interface Ik of node Nup (see Property 3)
Besides, because Sj was formerly substituted by S, it is currently represented by S at node Nup

(Property 3). Thus, at node Nup, T k
Sj

= 0 or Sj does not have an entry, and we have Sj ⊂ S (since
Sj was previously substituted by S).

PSj 6= null and PSj /∈ Lreinsert: Sj has been substituted by a subscription that does not belong
to Lreinsert. Then, to reinsert all the instances of Sj plus the instances of each subscription that
is substituted by it (no representations at consumer nodes), we append a triple to the outgoing
advertisement, that advertises PSj , and indicating that this latter represent countSj +RSj additional
instances of subscriptions (instances of Sj plus instances of subscriptions substituted by Sj) (lines
16 − 17). Also, because PSj is not one of the subscriptions in Lreinsert, it was not substituted by
S before. Then, because PPSj

is null (a subscription is always substituted by a subscription that is

not already substituted), PSj has an entry at node Nup such that T k
PSj
6= 0.

PSj 6= null and PSj ∈ Lreinsert: This case does not have to be dealt with. Indeed, the changes
made to Sj are taken into account in the first case, via the R field of subscription PPSj

, during the
substitution operation.

Note that it is not possible to have both PSj /∈ Lreinsert and PSj ∈ tree(S). Indeed, substitutions
are always performed at the top of a substitution tree. If Sj has been substituted by a subscription
S′ that was previously in tree(S), then it is necessarily one of the subscriptions in Lreinsert.

Finally, we create the advertisement for the cancellation of subscription S, along with the
appended triples, and send it to the upstream interface (lines 13 − 14 in Algorithm 6). Also,
for a given appended triple (Sj ; countSj ;RSj), we have seen that at node Nup we either have(
T k

Sj
= 0 and Sj ⊆ S

)
or T k

PSj
6= 0. Then, we have the following property: If T k

Sj
= 0, then

Sj ⊆ S.
Subsequently, all the subscriptions that were substituted by S have been reinserted in the routing

table and we had
∑

Sj
countSj + RSj = RS before entry(S) was deleted. Because of Property 5, the

59

former sum is also equal to T k
S .z in the routing table of node Nup. Those subscriptions were appended

to the outgoing advertisement. To prevent imperfect routing at node Nup, all T k
S .z instances must

be “reinserted” in its routing table.
The cancellation algorithm then proceeds at node Nup and its upstream nodes as indicated in

Algorithm 8.

Cancellation algorithm at inner nodes. We now detail the cancellation algorithm in the case
of an inner node. The operation is given in Algorithm 8 and explained as follows.

Consider node N receiving the advertisement for the cancellation of subscription S, advin(S),
from the node downstream interface Ik, Ndown, and such that T k

S .x = |nS | (all instances of S are
to be cancelled at interface Ik) and T k

S .z > 0. Let {L} be the set of the subscriptions appended to
advin(S) (as part of the optional triples appended to an advertisement). Each triple comes in the
form (Sj ;nSj ; rSj). We suppose (recursive assumption) that the instances of the subscriptions in
{L} represent the instances of the subscriptions that are represented by S at interface Ik of node N .
Also, we suppose that for each subscription Sj in {L}, we have the following property: If T k

Sj
= 0,

then Sj ⊆ S. Also we suppose that those subscriptions are such that at node Ndown, their P field is
null.

Consider a given subscription Sj ∈ {L}. Sj cannot be represented at interface Ik, by a subscrip-
tion other than S. Indeed, suppose that Sj can be represented by S′ at Ik. Then S′ has an entry at
node Ndown and Sj ⊆ S′. Then Sj would have been substituted by S′ at node Ndown. This contra-
dicts the recursive assumption. In addition, no subscriptions can be represented by Sj at interface
Ik. Indeed, suppose that S′′ can be represented by Sj at interface Ik. If T k

Sj
6= 0, then the repre-

sentation would have been done already. Now if T k
Sj

= 0, then because of the recursive assumption,
Sj ⊆ S and S′′ would have been represented by S already (S is being cancelled downstream interface
Ik, hence T k

S 6= 0). Consequently, the only possible relations between the subscriptions in {L} are
substitution relations. Also, note that because of the recursive assumption, there are no possible
relations between two subscriptions in {L}. If that were the case, one would be contained by the
other and would have been substituted downstream, which contradicts the recursive assumption.

To cancel subscription S, we must first proceed with the “reinsertions” of each subscription Sj

in {L} that were advertised in the additional triples (Sj ;nSj ; rSj).
If Sj does not have an entry, we create a null entry for it, and make the P field point to S (lines

8 − 11). This is possible because of the recursive assumption (we have Sj ⊆ S if T k
Sj

= 0). Then
for every subscription in {L}, we store those that belong to tree(h(S)) in a list, Lkeep, and remove
them from L (lines 12− 15).

For every subscription Sj in Lkeep, we update its T k
Sj

field (Sj is necessarily substituted by
another subscription) and its R field to take into account the nSj additional instances of Sj and
the rSj additional instances of subscriptions that it must represent (lines 19 − 22). Besides, all
those additional instances of subscriptions now also have for substitutes every subscription ancestor
of Sj in tree(h(Sj)). We then update their R field accordingly (lines 23 − 25). keep is a counter
that represents all the instances of each subscription Sj in Lkeep plus the instances of additional
subscriptions that Sj represents (line 19).

The subscriptions that remain in {L} are the ones that already have an entry and that do not
belong to tree(h(S)). We have seen that there are no possible representation relations between the
subscriptions in {L} and the others. In addition, each subscription Sj already has an entry. Thus
there are no possible substitution relations with Sj . Since Sj /∈ tree(h(S)), the changes induced
by the triple (Sj ;nSj ; rSj) and those induced by the cancellation of subscription S are independent
from each other. Triple (Sj ;nSj ; rSj) can be completely dealt with by Algorithm 3 (lines 24 − 26).
The changes induced are propagated upwards via the unique triple (h(Sj); 0; nSj + rSj) appended
to the outgoing advertisement. The subscription advertised, h(Sj) is not substituted. Thus, at
the upstream node Nup, incoming interface p, it is such that T p

h(Sj)
6= 0. However, nSj + rSj still

60

Algorithm 8 — Cancellation algorithm - inner nodes
1: declare Lkeep

2: declare L
3: declare Lreinsert

4: for all Sj ∈ advin(S) do
5: push Sj in L
6: end for
7: for all Sj ∈ L do
8: if Sj does not have an entry then
9: create a null entry for Sj , entry(Sj)

10: PSj
← S

11: end if
12: if Sj ∈ tree(h(S)) then
13: push Sj in Lkeep

14: remove Sj from L
15: end if
16: end for
17: declare keep = 0
18: for all Sj ∈ Lkeep do
19: keep← keep + nSj

+ rSj

20: T k
Sj

.x← T k
Sj

.x + nSj

21: T k
Sj

.z ← T k
Sj

.z + rSj

22: RSj
← RSj

+ rSj

23: for all Sk ancestor of Sj in tree(h(Sj)) do
24: RSk

← RSk
+ nSj

+ rSj

25: end for
26: end for
27: for all Sj ∈ L do
28: call algorithm 3: “Routing Table Update”
29: end for
30: for all Sk ancestor of S in tree(h(S)) do
31: RSk

← RSk
+ nS − T k

S .z
32: end for
33: if PS 6= null then
34: advout ← (h(S); 0; nS − T k

S .z + keep)

35: if ∀p, T p
S = 0 then

36: for all Sk such that PSk
= S do

37: PSk
= PS

38: end for
39: delete entry(S)
40: else
41: RS ← RS − T k

S .z

42: T k
S ← (0, 0)

43: end if
44: else
45: if ∀p, T p

S = 0 then
46: call reinsert() (see Algorithm 7)
47: advout ← (S; nS ; 0) [+ appended triples]
48: else
49: advout ← (S; nS ;−T k

S .z + keep)

50: RS ← RS − T k
S .z

51: T k
S ← (0, 0)

52: end if
53: end if
54: Send advout upstream

61

represents the instances of subscription Sj that were previously represented by S at interface Ik.
Now, we update the entries of the ancestors of S, if any, in a similar way to that in algorithm 4.

|nS | instances of subscription S have been canceled. Thus those are no longer substituted by the
ancestors of S. Also, T k

S .z subscriptions are no longer represented by S at interface Ik, they are
no longer substituted by its ancestors. Thus we decrement the R field of every ancestor of S by
|nS |+ T k

S .z (lines 27− 29) and decrement that of S by T k
S .z, if its entry does not have to be deleted

(lines 43 and 53).
To further proceed with the cancellation of subscription S, we consider different cases depending

on the value of PS .

1. Case 1: PS is not null

Then, if ∃p 6= k such that T p
S 6= 0, entry(S) does not have to be deleted. As previously

mentioned, we update RS to account for the T k
S .z fewer instances of subscriptions that S

represent (line 41), and we reset T k
S (lines 42).

Now if ∀p, T p
S = 0, then entry(S) has to be deleted. But before doing this, we must take into

account the possible subscriptions that are substituted by S. Because PS is not null, we can
just make the P of those subscriptions point to PS . Then we delete entry(S) (lines 36− 39).

Subscription h(S) has seen its R field decremented by |nS | + T k
S .z and incremented by keep.

T k
S .z represents all the instances of the subscriptions that were represented by S at interface Ik,

and also substituted by h(S) (see Property 4). keep represents the instances of the subscriptions
that were represented by S at interface Ik, and that are still substituted by h(S) (since they
were reinserted in tree(h(S))). Hence, T k

S .z−keep represents the instances of the subscriptions
that are no longer in tree(h(S)). Consequently, the outgoing advertisement advertises h(S),
and mentions that h(S) is to represent nS − T k

S .z + keep fewer instances of subscriptions (line
34). At the upstream node Nup, that advertisement is handled with Algorithm 3.

2. Case 2: PS is null

We consider the two following subcases:

First case: ∃p 6= k such that T p
S 6= 0. Then entry(S) is not deleted. This implies that at node

Nup we are no longer in the case where the cancellation algorithm must be applied. This case is
similar to the previous one (where PS 6= null), except that subscription S is advertised (instead
of h(S)). The advertisement indicates that there are nS fewer instances of subscription S, and
that this latter is to represent −T k

S .z + keep fewer subscriptions (line 49). We then update
entry(S) (line 50− 51).

Second case: ∀p, T p
S = 0 Then, entry(S) is to be deleted, and at node Nup, we will be in the

same situation as node N , where the cancellation algorithm must be applied. This implies that
node Nup must know the subscriptions that S represents at the incoming interface. But because
∀p, T p

S = 0, the only subscriptions that S represented at node N were the ones at interface
Ik. Those were the subscriptions in {L} and they have been reinserted in the routing table of
node N either by Algorithm 3 or as described in Algorithm 8 and the changes to propagate
upstream were appended to the outgoing advertisement. Now the only subscriptions that S
represents at the incoming interface of node Nup are the ones that are substituted by S at node
N . We have seen that there are no possible representation relations between the subscriptions
in {Lkeep} and the others. Hence, we are in a situation similar to the one that we would have
if N were a consumer node. We can then call the reinsert function in Algorithm 7 to reinsert
all the subscriptions that are directly substituted by S and append the result to the outgoing
advertisement (lines 47− 48). As in the case of a consumer node, the triples appended satisfy
the recursive assumption. The other triples appended to the outgoing advertisements were
generated by Algorithm 3. The subscriptions advertised also satisfy the recursive assumption.
Finally, all the triples appended to the outgoing advertisement satisfy the recursive assumption.

62

In particular, they account for the subscriptions that are represented by S at the incoming
interface of node Nup. Then at node Nup, the recursive assumption is true and Algorithm 8 is
called.

Finally, the outgoing advertisement is sent to the upstream interface (line 54).

Recursion termination. The process goes on recursively, until the root node or a node Nfinal is
reached, where entry(S) does not have to be deleted and the cancellation algorithm does not have
to be called. At each encountered router N , the subscriptions that were represented by S have been
reinserted in the routing table and perfect routing maintained.

N1

C1 C2

S1 S2 S3
S2

S1 (1,0) 1 null

S2 (1,0) 0 S1

S3 (1,0) 0 null

S4 -1 0

S1 (1,1) (0,0) 1 null

S3 (1,0) (0,0) 0 S
4

S4 (0,0) (1,3) 4 null

S1 (1,1) 1 null
S4 (1,4) 4 null

S2 (3,0) 0 S4

S4 (1,0) 3 null

S2 3 0

S4 -1 0
S1 0 3

S3 1 0
S1 0 3

N3

S2 (3,0) 0 null

S4 -1 0

S1 (1,1) (0,0) 4 null

S3 (1,0) (0,0) 0 null
S2 (0,0) (3,0) 0 S1

S3 1 0

S1 (1,4) 4 null
S3 (1,0) 0 null

S4 -1 0

Figure 4.10: Example of the cancellation algorithm, where the initial state is equal to the final state of Figure 4.7.

Example 3. Figure 4.10 illustrates the operation of the cancellation algorithm on the pub/sub net-
work of Figure 4.1(a). Four consumers have already registered some subscriptions. The consumer
at client node C0 cancels all instances of subscription S0 that it previously registered. This results
in updates of the routing table at each node on the path from C2 to each publisher. For the sake of
clarity, we have only represented inner nodes N1 and N3. Also, we recall that: S0 ⊇ S2, S1 ⊇ S2,
and S4 ⊇ S3, but there are no relationships between S4 and S1, and between S2 and S3.

At node C2, subscription S2 is reinserted in the routing table. This results in triple (S2; 3 ; 0)
being appended to the outgoing advertisement.

At node N1, S2 is first reinserted in the routing table. It is subsequently substituted by sub-
scription S1. This results in triple (S1; 0; 3) appended to the outgoing advertisement. Then, all the
subscriptions that are substituted by S0 are to be reinserted, only S3 is concerned here . It could not
be substituted, triple (S3; 1; 0) is appended to the outgoing advertisement.

At node N3, triple (S1; 0; 3) is handled by the registration algorithm, which results in the same
triple appended to the outgoing advertisement. Then, S3 is reinserted in the routing table which
results in triple (S3; 1; 0) being appended. As no subscriptions are substituted by S0, the process
stops here and entry(S0) is deleted.

Finally, all the routing tables have been updated. At each routing table, the subscriptions that
were represented by S0 have been reinserted in the routing table to preserve perfect routing.

Dynamics of cancellations

Consider an advertisement for the cancellation of subscription S at node N , arriving through interface
Ik. It results from Section 4.2.5 that we can distinguish between two different cases according to
the value of entry(S) and the type of routing table update that must be applied.

63

• If S is totally cancelled at interface Ik and T k.z 6= 0: then Algorithm 8 is called to update the
routing table.

– If S is totally cancelled at node N :

∗ If S is substituted: we do not have to compute containment relationships. The overall
routing table update is a fast operation.
∗ If S is not substituted: we have to compute a potentially high number of containment

relationships. The overall routing table update is significantly costlier.

– If S is not totally cancelled at node N : then the overall routing table update is a fast
operation.

• If S is partially cancelled at node N : then Algorithm 3 is called to update the routing table
update, as in the case of a duplicate registration. The operation is very fast.

We now identify the implications between the types of routing table updates performed at node
N and the ones that will be performed at the upstream node Nup. Let Advout be the advertisement
sent to Nup as the result of the routing table update at node N .

• If S is totally cancelled at interface Ik and T k.z 6= 0:

– If S is totally cancelled at node N :

∗ If S is substituted: Algorithm 3 is called at node Nup. Advout is seen as a duplicate
registration.
∗ If S is not substituted: Algorithm 8 is called at node Nup. The routing table update

is significantly costlier.

– If S is not totally cancelled at node N : Algorithm 3 is called at node Nup. Advout is seen
as a duplicate registration.

• If S is partially cancelled at node N : Algorithm 3 is called at node Nup. Advout is seen as a
duplicate registration.

C1 C2

P1 P2

N1 N2

I1down

I1up

I2up

I2up
I1up

to P1,P2

to P2

to P1

to P2

to P1,P2

I2down
I1down

I2down

to P1

(a)

C1 C2

S1

S2 1 0

S1 (1,0) 0 null

S2 1 0

S1 0 1

S1 (1,0) 0 null

P1

S1 (1,1) 1 null S1 (1,0) 0 null

P2

S1 (1,1) 1 null

N1

S1 (0,0) (1,0) (0,0) (null,null)

S1 (0,0) (1,0) (1,0) (null,null)
S2 (1,0) (0,0) (0,0) (S1,null)

N2

S2 (1,0) 0 null

S1 (0,0) (1,0) (0,0) (null,null)

S2 1 0 S1 (0,0) (1,0) (0,1) (null,null)
S2 (1,0) (0,0) (0,0) (null,S1)

S1 0 1

=> =>

=>=>

(b)

Figure 4.11: (a) A sample network topology with two consumer nodes and two producer nodes. The best
paths that lead to each producer are indicated with arrows. Each node’s interfaces are indicated next to
them. Although simple, this topology encompasses all the cases that can be encountered with respect to
a network with multiple producers (b) Registration of subscription S2 at node C1.

64

4.2.6 Extension to the case of multiple producers

Overview

In this section, we explain how the case of multiple producers is handled. Generally speaking, the
case of multiple producers is similar to the case of a single one, except that for a given router N ,
there may be several upstream interfaces, each one leading to one or more producers. It is always
possible for each router to maintain a separate routing table for each producer. If the producers
publish events with different formats, in our case XML documents with different DTDs, there is no
other solution than maintaining a different routing table for each producer. Indeed, subscription
aggregation does not apply between subscriptions that correspond to different DTDs. Consequently,
in this section, we will focus on the case where there are multiple producers that publish events
of the same type (DTD). Then, we do not have to maintain a separate routing table. We can use
a single routing table, with only minor modifications to the format of its entries, and to the RTU
algorithm.

Formats

Consider a router N , with n total interfaces. Let p be the number of upstream interfaces, that is, an
interface that leads to one or more producers. An entry for subscription S, entry(S), in the routing
table of node N has the following format:

S ; (T 1
S , · · · , Tn

S) ; (R1
S , · · · , Rp

S) ; (P 1
S , · · ·P p

S)

In other words, the format is the same as in the case of a single producer, except that there are
separate R and P field for each upstream interface.

The format of advertisements is unchanged.

Key concepts

The case of multiple producers is very similar to the case of a single one. In fact, consider an
advertisement for a subscription S that arrives at node N . For node N , there are p upstream
interfaces that lead to different producers. This corresponds to p different spanning trees, each
rooted at a producer node. Node N can process the advertisement as in the case of the previous
section, when considering each upstream interface, one at a time. For each of them, Ig

up, node N
does not consider in the routing table the T g field of the entries, and only considers the Rg and P g

fields. The routing table update is almost similar to the case of a single producer, at the differences
that we will explain shortly. When this has been done, it sends the corresponding advertisement to
interface Ig

up.

RTU protocol

The main changes concern the substitution trees. In the previous case of a single producer, we had
one substitution tree for a given subscription S. Now, considering router N with p upstream inter-
faces, we have p substitution trees for each subscription. We will refer to treeg(S) as the substitution
tree that corresponds to upstream interface Ig

up. Also, hg(S) denotes the root of substitution tree
treeg(S). Recall that a substitution tree is derived only from the R fields of the subscriptions’ entries
(and not a specialized structure).

Consider node N receiving an advertisement for subscription S. The process of updating the
routing table proceeds as in the case of a unique producer. The establishment of possible subscrip-
tions relations and the modification of existing ones proceed as explained in Section 4.2.5 , except
that each different upstream interface Ig

up must be considered independently. In other words, node
N considers each spanning tree independently of the others. A different outgoing advertisement is
sent to each upstream interface Ig

up. We will refer to it as advg
out.

65

Thus, when considering interface Ig
up, for each subscription Sj , only treeg(Sj) must be considered.

Also, all the T g fields of the subscriptions’ entries must be ignored (since we consider the spanning
tree rooted upstream interface Ig

up). Each change that was made to a substitution tree treeg(Sj)
yields to one or more triples appended to advertisement advg

out.
The RTU algorithms are very similar to those introduced in the case of a single producer.

Nevertheless, for completeness, we included their extension to multiple producers in Appendix A, in
Algorithms 28, 30, 27, 31, 29. The cancellation algorithm in the case of consumer nodes is unchanged
(as in Algorithm 6).

C1 C2

S1
S3 1 0

S1 (1,0) 0 null

S3 1 0

P1

S1 (1,1) 1 null

P2

S1 (1,1) 1 null

N1

S1 (0,0) (1,0) (1,0) (null,null)
S2 (1,0) (0,0) (0,0) (S1,null)

N2

S2 (1,0) 0 n

S3 1 0

S1 (0,0) (1,0) (0,1) (null,null)
S2 (1,0) (0,0) (0,0) (null,S1)

S3 1 0

S2

S1 (1,0) 0 S3

S3 (1,0) 1 null

S2 (1,0) (0,0) (0,0) (null,S3)

S3 (0,0) (1,1) (1,2) (null,null)

S3 (1,2) 2 null

S3 (0,0) (1,1) (2,0) (null,null)
S2 (1,0) (0,0) (0,0) (S3,null)

S3 (1,2) 2 null

S3 1 0

=>=>

=>

=>

=>

(a)

C1 C2

S1

S4 1 0

S4 1 1

P1 P2

N1 N2

S2 (1,0) 0 null

S4 1 0

S4 1 1

S2

S1 (1,0) 0 S3

S3 (1,0) 1 null

S2 (1,0) (0,0) (0,0) (null,S3)

S3 (0,0) (1,1) (1,2) (null,null)

S3 (1,2) 2 null

S3 (0,0) (1,1) (2,0) (null,null)
S2 (1,0) (0,0) (0,0) (S3,null)

S3 (1,2) 2 null

S3

S4 1 0

S2 (1,0) 0 S4

S3 (1,0) 1 null

S3 (0,0) (1,1) (1,0) (null,null)
S4 (1,1) (0,0) (1,1) (null,null)

S3 0 -1

S3 (1,1) 1 null

S4 (1,1) 1 null

S4 (1,1) (0,0) (0,1) (null,null)

S3 (0,0) (1,1) (1,1) (null,null)

S3 0 -1

S3 (1,1) 1 null

S4 (1,1) 1 null

=>

=>

=>

=>
=>

(b)

Figure 4.12: (a) Registration of subscription S0 at node C2 (b) Registration of subscription S3 at node C1

Examples

In this section, we illustrate the operation of the RTU algorithm when applied to the network of
Figure 4.11(a). We have two consumer nodes C1 and C2, 4 inner nodes N1, N2, P1 and P2. P1

and P2 are producer nodes. Next to a node’s link, we indicated the interface that connects it to its
neighbor. For example, for node N1, I1

down (I2
down) is the downstream interface from C1(N2). I1

up

(I2
up) is the upstream interface to producer node P1 (P2). Note that I2

down and I2
up are physically the

same interface, but are different interfaces in the routing table of node N1.
Subscription S1 was already registered at consumer node C2. We then consider 3 subscriptions

S2, S3 and S4 such that: S2 ⊆ S1 ⊆ S3 and S1 ⊆ S4. There are no containment relationships
between S3 and S4. We then apply the following scenario sequentially:

• S2 is registered at node C1. The routing table updates are illustrated in Figure 4.11(b)

• S3 is registered at node C2 (Figure 4.12(a)).

• S4 is registered at node C1(Figure 4.12(b)).

• S3 is totally cancelled at node C2(Figure 4.13(a)).

• Finally, S4 is totally cancelled at node C1(Figure 4.13(b)).

The scenarios are illustrated in the associated figure and commented below. In each figure,
registered subscriptions are represented below their corresponding client nodes. Routing tables
(shown next to the nodes) are updated as a result of the registration of a subscription (updated
tables are shown with a thick frame).

When S2 is registered at node C1, at node N1, S2 is substituted by S1 at interface I1
up. It is not

substituted at interface I2
up. Indeed, when considering interface I2

up, node N1 ignores the T 2 fields of
the subscriptions entries. Consequently, entry(S1) does not appear. From the point of view of the

66

spanning tree rooted at P2, there are no consumers downstream N1 interested in S1. At node N2, S2

is substituted by S1 at interface I2
up. At nodes P1 and P2, S2 is represented by S1 at the incoming

interface.

C1 C2

S1

P1 P2

N1 N2

S3 -1 0

S1 (1,0) 0 S3

S3 (1,0) 1 null

S3

S2 (1,0) 0 S
4

S4 (1,0) 1 null

S3 (0,0) (1,1) (1,0) (null,null)
S4 (1,1) (0,0) (1,1) (null,null)

S3 (1,1) 1 null

S4 (1,1) 1 null

S4 (1,1) (0,0) (0,1) (null,null)

S3 (0,0) (1,1) (1,1) (null,null)

S3 (1,1) 1 null

S4 (1,1) 1 null

S4 (1,1) (0,0) (0,2) (null,null)

S1 (0,0) (1,0) (0,0) (null,S4)

S2 S4

S1 (1,0) 0 null

S3 -1 0

S1 1 0

S3 -1 0

S4 0 1

S4 (1,0,2) 2 null

S3 -1 0

S1 1 0

S3 -1 0

S4 0 1

S4 (1,1) (0,0) (2,1) (null,null)

S1 (0,0) (1,0) (0,0) (S4,null)

S4 (1,2) 2 null

=>

=>=>

=>

=>

(a)

C1 C2

S1

P1 P2

N1 N2

S4 -1 0

S2 (1,0) 0 S
4

S4 (1,0) 1 null

S4 (1,1) (0,0) (0,2) (null,null)

S1 (0,0) (1,0) (0,0) (null,S4)

S2 S4

S1 (1,0) 0 null

S4 -1 0

S2 1 0

S4 -1 0

S1 1 1

S4 (1,2) 2 null

S4 -1 0

S2 1 0

S4 -1 0

S1 1 1

S4 (1,1) (0,0) (2,1) (null,null)

S1 (0,0) (1,0) (0,0) (S3,null)

S4 (1,2) 2 null =>=>

=>

=>

=>

S2 (1,0) 0 null

S1 (0,0) (1,0) (1,0) (null,null)
S2 (1,0) (0,0) (0,0) (S1,null)

S1 (1,1) 1 null S1 (1,1) 1 null

S1 (0,0) (1,0) (0,1) (null,null)
S2 (1,0) (0,0) (0,0) (null,S1)

(b)

Figure 4.13: (a) Subscription S0 is being totally cancelled at node C2. To maintain perfect routing,
subscription S1 is reinserted in the routing table of nodes N2 and N1 (b) Subscription S3 is being totally
cancelled at node N1. To maintain perfect routing, subscription S2 is reinserted at nodes N1 and N2, and
subscription S1 is reinserted at nodes P1 and P2. The same system’s state as in Figure 4.11(b) is reached.

When S3 is registered at node C2, S1 is substituted by S3. (recall that subscriptions are not
represented at consumer nodes). At node N2, S1 is subsequently represented by S3 at interface I2

down.
When considering interface I2

up, S2 is then substituted by S3 (since entry(S1) is removed). However,
S2 is not substituted to S3 when considering I1

up. At nodes P2, N1 and P1, S1 is represented by S3

at the incoming interface. At node N1, S2 is also substituted by S3 at interface I1
up.

When S4 is registered at node C1, S2 is substituted by S4. At nodes N1 and N2, S2 is represented
by S4, at the incoming interface. At node N1, when considering interface I1

up, S2 was previously
substituted by S3. Consequently, the outgoing advertisement specifies that S3 should represent one
fewer subscription and S4 an additional one. The same procedure applies for node N2. However, at
node N1, when considering interface I2

up, S2 was not substituted. Thus, tree2(S3) was not modified,
and the outgoing advertisement does not contain any additional triples.

Now consider the case where subscription S3 is totally cancelled at node C2. Since S1 was
substituted by S3, it must be reinserted at node N2. Subsequently, when considering interface I2

up,
it is substituted by S4. This yields to triple (S4 ; 0 ; 1) appended to the outgoing advertisement to
P2. When considering interface I1

up, S1 is not substituted. S1 is then directly advertised via a triple
appended to the outgoing advertisement to N1, so as to be reinserted. The same procedure applies
at node N1.

We finally consider the case where subscription S4 is totally cancelled at node C1. At node N1,
subscription S2 is reinserted in the routing table and S4 removed. Subsequently, when considering
interface I1

up, S2 is substituted by S1. Since the latter was substituted by S4, it has to be reinserted
at node P1. Also, it should represent one additional subscription (since S2 has been substituted
to it). This results in triple (S1 ; 1 ; 1) appended to the outgoing advertisement to P1. Now when
considering interface I2

up, S2 and S1 are not substituted. Hence, S2 is directly advertised in the
outgoing advertisement for N2. At node N2, the process is similar to that of node N1, when interface
I1
up is considered. Finally, the subscriptions have been reinserted as necessary. Unsurprisingly, the

system’s state is then exactly the same as in Figure 4.11(b).

Algorithms

The definitions of the representation and substitution operations are modified as indicated in Defi-
nitions 3 and 4.

67

Definition 3 (Representation). Consider entries for subscriptions S1 and S2 at non-consumer
node N such that S1 ⊃ S2, T k

S1
> 0 and T k

S2
> 0, then S2 must be represented by S1 at interface Ik.

This operation consists in modifying their entries as follows:
1. T k

S1
.z ← T k

S1
.z + T k

S2

2. Rg
S1
← Rg

S1
+ T k

S2
for all upstream interface Ig

up 6= Ik

3. Rg
S2
← Rg

S2
− T k

S2
.z for all upstream interface Ig

up 6= Ik

4. T k
S2
← 0

Thereafter, we say that S2 is represented by S1 at interface Ik.

Definition 4 (Substitution). Consider entries for subscriptions S1 and S2 at node N such that:
S1 ⊃ S2, P g

S1
= null, and P g

S2
= null. Then S2 must be substituted by S1 at upstream interface Ig

up.
This operation consists in modifying their entries as follows:

1. P g
S2
← S1

2. Rg
S1
← Rg

S1
+

∑
k≤n T k

S2
.x + Rg

S2

Thereafter, we say that S2 has been substituted by S1 at upstream interface Ig
up, and S2 must sub-

sequently be advertised by S1 at the node upstream that interface, i.e., any incoming advertisement
(S2;n; r) yields an outgoing advertisement (S1; 0; n + r) towards interface Ig

up. Note that a sub-
scription may be substituted by only one other subscription at a given upstream interface (but may
be substituted by a subscription at one upstream interface and by another subscription at another
upstream interface).

The RTU algorithm extended to the case of multiple producers is described in appendix in
Algorithms 28, 30, 27, 31, 29 (the cancellation algorithm in the case of consumer nodes is identical
to Algorithm 6). Ik is the incoming interface, i.e., where the advertisement comes from. Also, in
the algorithms, each time a specific upstream interface Ig

up is considered, then all the T k fields of
the subscriptions entries are ignored, where Ig

up = Ik. If there is no downstream interface Ik that is
equal to Ig

up, then all fields are considered.

68

Chapter 5

Efficient subscription management
with XSearch

5.1 Motivations

Efficient subscription management is critical for the overall performance of the system and to guar-
antee short registration delays to consumers.

When a consumer registers or cancels a subscription, the nodes of the overlay update their
routing table accordingly by exchanging some pieces of information that represent the registration
or cancellation of the consumer. The process starts at the consumer node and terminates at the
producer node(s), following the shortest paths, and updating the routing tables along the way.

Updating routing table entries is a very fast operation and can be implemented easily using hash
tables. However, the routers in our system do not only store and update subscriptions’ entries,
they also reduce the size of their routing tables as much as possible by using elaborate aggregation
techniques, which are based on the detection and the elimination of subscription redundancies, as
explained in Section 4.1 and 4.2.

Subscription aggregation allows us to dramatically improve the routing efficiency of the system
both in terms of throughput and latency, because the time necessary to filter a message is propor-
tional to the number of entries in the routing tables. On the other hand, aggregation also adds
significant complexity and overhead to the routers, because they need to identify the containment
relationships between incoming subscriptions and all the entries of their routing tables. In fact, the
cost of subscription management in our system mainly results from those extensive covering checks
that have to be performed by the routers when a subscription is registered or canceled.

To determine whether a given tree-structured subscription—also called “tree pattern” henceforth—
contains another subscription, we can use the algorithm proposed in [34], which has a time complexity
of O(|S1|.|S2|), where |S1| and |S2| are the number of nodes of the two subscriptions being compared.
Obviously, when an incoming subscription S must be tested for containment against all the other
subscriptions {Si} in the routing table, iterative execution of the algorithm is clearly inefficient, since
it would run in O(

∑
i≤n |Si|.|S|) time (where |Si| is the number of nodes of subscription Si).

We have therefore designed a novel algorithm, termed XSearch, which efficiently identifies
all the possible containment relationships between a given subscription and a possibly large set of
subscriptions. This algorithm is described in the rest of this section.

5.2 Problem Statement

Consider a tree pattern S and a set R of n tree patterns, R = {s1, · · · , sn}, which we will refer to
as the search set. Our algorithm runs in two different modes according to the relationships that we
want to identify:

• Contained mode identifies the set R⊇ of all the tree patterns in R that are contained by S.

69

• Contain mode identifies the set R⊆ of all the tree patterns in R that contain S.

We refer to XSearch⊇ and XSearch⊆ as the algorithm running in contained and contain mode,
respectively.

5.3 Data models

5.3.1 Definitions and Notations

Let u be a node of a tree pattern S; we denote by label(u) the label of that node and by child(u)
the set of the child nodes of u in S. Recall that the label of node u can either be a wildcard (*), an
ancestor/descendant operator (//), or a tag name. We define a partial ordering � on node labels
such that if x and x′ are tag names, then (1) x � ∗ � // and (2) x � x′ iff x = x′.

We assume that a node u with label // has a unique child u′. This is due to the constraints on
the format of XPath expressions (normalization). However, it is just a structural constraint, and
not a restriction on the expressiveness of subscriptions. Indeed, nodes can have several children with
label //.

5.3.2 Factorization Trees

Algorithm 9 add(s, t, u)
1: if ∃t′ ∈ child(t) such that label(t′) = label(u) and s /∈ sub(t′) then
2: sub(t′) = sub(t′) ∪ s
3: else
4: create t′ ∈ child(t) such that label(t′) = label(u) and sub(t′) = {s}
5: end if
6: for all u′ ∈ child(u) do
7: add(s, t′, u′)
8: end for

Our XSearch algorithm does not operate directly on the set of tree patterns R, but on a
“factorization tree” built from the set R and defined as follows. The factorization tree of R, denoted
T (R), is a tree where each node t has two attributes: a label label(t) similar to that of a node of a
tree pattern, and a set of tree patterns sub(t), which is a subset of R. The root node rT of T (R) has
no label and sub(rT) = R. Initially, T (R) consists of only its root node rT . We incrementally add
each tree pattern s ∈ R to T (R) with the recursive add(s, rT , rs) function shown in Algorithm 9,
where rs is the root node of tree pattern S. The removal of a tree pattern from T (R) is performed
in a similar manner using Algorithm 10. Note that, to keep the presentation simple, we omitted the
special case of the root node of the factorization tree in the addition and removal algorithms. By
construction, sub(t) is a set that contains all the tree patterns in R, that comprise the single-path
structure that starts at node rT and ends at node t in T (R) (rT excluded).

Algorithm 10 remove(s, t)
1: for all t′ ∈ child(t) such that s ∈ sub(t′) do
2: sub(t′) = sub(t′) \ {s}
3: remove(s, t′)
4: if sub(t′) = ∅ then
5: remove t′ from child(t)
6: end if
7: end for

Intuitively, a factorization tree enables us to remove the redundancies between the tree patterns
inR by “factorizing” identical branches. Thus, T (R) is a compact representation of the tree patterns
in R. Figure 5.1 shows an example with six tree patterns and the corresponding factorization tree.
It is important to note that the factorization tree is not unique; depending on the insertion order of
the tree patterns, we can have distinct, equivalent trees. This does not affect the correctness of our
XSearch algorithm, nor its performance.

70

a

c

*

c

a

b

c a

a

b b

c a

//

b

a

b

b a

// a *

c b

c a

b

a b

s1 s2 s3 s4 s5 s6

b

{s1,s3,s4,s6,s7}{s5 }

{s5 } {s1} c{s3,s4,s6,s7}

{s3,s4} {s4 }

{s4}

{s3,s6 } {s6 }

{s2 }

{s2 }

rT

31

2
4 5

6

9

7

12

11

 8

R =

a

s7

b

{s1,s2,s3,s4,s5,s6,s7}

10

Figure 5.1: Six tree patterns and a corresponding factorization tree, where a node is represented by its
label. Each node is associated with a set of tree patterns, shown between brackets.

Algorithm 11 XSearch⊇(t, u)
1: if t is a leaf then
2: XSearch⊇(t, u) = ∅
3: else
4: if label(u) 6= “//′′ then
5: if u is a leaf then

6: XSearch⊇(t, u) =
⋃t′∈child(t)

label(t′)�label(u)
sub(t′)

7: else

8: XSearch⊇(t, u) =
⋃t′∈child(t)

label(t′)�label(u)

⋂
u′∈child(u)XSearch⊇(t′, u′)

9: end if
10: else
11: S0 =XSearch(t, u′)
12: S≥1 =

⋃
t′∈child(t)XSearch(t′, u)

13: XSearch⊇(t, u) = S0 ∪ S≥1

14: end if
15: end if

5.4 The Search Algorithm

We first describe the XSearch algorithm in contained mode. Consider a subscription set R and
a corresponding factorization tree, T (R). Let S be a single tree pattern. The algorithm works
recursively on the nodes of S. When executed with the root nodes of T (R) and S, XSearch⊇(rT , rs)
returns the set R⊇ of all tree patterns that are contained by S.

The search process is described in pseudo-code in Algorithm 11. Intuitively, it tries to locate the
paths in T (R) that are contained by S; the tree patterns that the union of those paths represent
are also contained by S (lines 6 and 8). The process is slightly more complex when encountering an
ancestor/descendant operator (//), because we need to try to map it to paths of length 0 (line 11)
or ≥ 1 (line 12).

To better illustrate the workings of the XSearch⊇ algorithm, consider the example runs shown
in Figure 5.2. Two tree patterns, u and v, are matched against the factorization tree T (R) of
Figure 5.1. The nodes of u, v, and T (R) are numbered in the figures for clarity; we refer to node
number i of u, v, and T (R) by ui, vi, and ti, respectively. The different steps of the algorithm are
detailed in the two execution traces (the ↪→ symbol represents recursive invocations of the algorithm).

The second algorithm, XSearch⊆, is described in Algorithms 12 and 13 and works in a very
similar manner. The major difference is that the algorithm works recursively on the nodes of T (R),

71

a

//

a

* b

a b

vu

1

2 4

3 5

1

2

b 3

XSearch(rT , u1) = XSearch(t3, u2)∩ XSearch(t3, u4)
↪→ XSearch(t3, u2) = XSearch(t4, u3)∪ XSearch(t5, u3)∪
XSearch(t9, u3)

↪→ XSearch(t4, u3) = ∅
↪→ XSearch(t5, u3) = {s3, s6}
↪→ XSearch(t9, u3) = {s4}

↪→ XSearch(t3, u2) = {s3, s6} ∪ {s4} = {s3, s4, s6}
↪→ XSearch(t3, u4) = XSearch(t5, u5)∪ XSearch(t9, u5)

↪→ XSearch(t5, u5) = {s6}
↪→ XSearch(t9, u5) = ∅

↪→ XSearch(t3, u4) = {s6}
Finally: XSearch(rT , u1) = {s3, s4, s6} ∩ {s6} = {s6}

XSearch(rT , v1) = XSearch(t3, v2)
↪→ XSearch(t3, v2) = S0 ∪ S≥1

↪→ S0 = XSearch(t3, v3)
↪→ S≥1 = XSearch(t4, v2)∪ XSearch(t5, v2)∪ XSearch(t9, v2)

↪→ XSearch(t3, v3) = sub(t5) ∪ sub(t9) = {s3, s4, s6, s7}
↪→ XSearch(t4, v2) = ∅
↪→ XSearch(t5, v2) = S′0 ∪ S′≥1

↪→ S′0 = XSearch(t5, v3)
↪→ S′≥1 = XSearch(t6, v2)∪ XSearch(t7, v2)∪

XSearch(t8, v2)
↪→ XSearch(t5, v3) = sub(t6) = {s6}
↪→ XSearch(t6, v2) = ∅
↪→ XSearch(t7, v2) = ∅
↪→ XSearch(t8, v2) = ∅

↪→ S′0 = {s6}
↪→ S′≥1 = ∅

↪→ XSearch(t5, v2) = {s6}
↪→ XSearch(t9, v2) = S′′0 ∪ S′′≥1

↪→ S′′0 = XSearch(t9, v3)
↪→ S′′≥1 = XSearch(t10, v2)

↪→ XSearch(t9, v3) = ∅
↪→ XSearch(t10, v2) = ∅

↪→ S′′0 = ∅
↪→ S′′≥1 = ∅

↪→ XSearch(t9, v2) = ∅
↪→ S0 = {s3, s4, s6, s7}
↪→ S≥1 = {s6}
↪→ XSearch(t3, v2) = {s3, s4, s6, s7} ∪ {s6} = {s3, s4, s6, s7}
Finally: XSearch(rT , v1) = {s3, s4, s6, s7}

Figure 5.2: Two XSearch⊇ example runs.

trying to find paths in S that are contained by the tree patterns in T (R). The recursive function in
Algorithm 12 returns the subscriptions that do not contain S. A subscription t contains S if each
branch of S is contained by some branch of t (line 12). Subscriptions that have longer (line 2) or
incompatible (line 6) paths cannot contain S, whereas shorter paths (line 9) are acceptable. Finally,
when encountering an ancestor/descendant operator (//), we need to try to map it to paths of length
0 (line 16) or ≥ 1 (line 17). Note that we implicitely introduce an artificial root node in the tree-
structured subscriptions (denoted rs for subscription S) in order to simplify the description of the
algorithm. When called with the roots of the factorization tree and a subscription S, Algorithm 13
recusively searches for subscriptions that do not contain S and return the complement set with
respect to R.

We have illustrated the workings of the XSearch⊆ algorithm in Figure 5.3, where tree pattern
u of Figure 5.2 is matched against the factorization tree T (R) of Figure 5.1.

5.5 Considerations

5.5.1 Complexity

Both Algorithms 11 and 12 perform in O(|T (R)| · |s|) time, where |T (R)| is the number of nodes in
the factorization tree and |s| that in the expression being tested. This quadratic time complexity is
due to the fact that each node in T (R) and S is checked at most once. As for the space complexity,
the size of the factorization tree T (R) grows linearly with the number of tree patterns in the search
set R. However, by construction, the factorization tree typically requires much less space than would
be needed to maintain the whole search set R, that is, |T (R)| �

∑
si∈R |si| when |R| grows to large

values (see Section 6.2).

72

Algorithm 12 XSearch⊆(t, u)
1: if u is a leaf then
2: XSearch⊆(t, u) = sub(t)
3: else
4: if label(t) 6= “//′′ then
5: if 6 ∃u′ ∈ child(u), label(u′) � label(t) then
6: XSearch⊆(t, u) = sub(t)
7: else
8: if t is a leaf then
9: XSearch⊆(t, u) = ∅

10: else
11: XSearch⊆(t, u) =

12:
⋂u′∈child(u)

label(u′)�label(t)

⋃
t′∈child(t) XSearch⊆(t′, u′)

13: end if
14: end if
15: else
16: S0 =

⋃
t′∈child(t)XSearch(t′, u)

17: S≥1 =
⋂

u′∈child(u)XSearch(t, u′)

18: XSearch⊆(t, u) = S0 ∩ S≥1

19: end if
20: end if

Algorithm 13 XSearch⊆(rT , rs)
1: XSearch⊆(rT , rs) = sub(rT) \

⋃
t′∈child(t) XSearch⊆(t′, rs)

5.5.2 Correctness

In [80], the authors have shown that the containment problem is coNP-complete. Our XSearch
algorithm (as well as that of [34]) is sound but not complete, i.e., it may fail to detect some con-
tainment relationships in rare pathological cases, but all the relationships that it reports are correct.
Consequently, a router may fail to aggregate some valid subscriptions, but correctness is never vio-
lated. Some pathological cases where XSearch fails to report covering relationships are identified
in the next section.

5.6 Proofs

In this section, we prove that Algorithms 11 returns sets R⊇, except in some rare pathological cases.

5.6.1 Definitions and notations

Let t be a node in T (R). We use the notation rT → t to denote the single path tree pattern that
comprises all the nodes from rT to t in T (R). We say that a subscription Si ∈ R is an extension of
rT → t iff Si comprises the single path tree pattern rT → t, structurally. For example, ’/a/b/c/d’ is
an extension of ’/a/b’. Also, ’/a[./e/f]/b’ is an extension of ’/a/b’.

We then have Property 7:

Property 7. By construction, sub(t) is a set that contains all the tree patterns in R that are
extensions of rT → t.

Consider a subscription Si ∈ R, and a node t ∈ T (R) such that Si ∈ sub(t). Then, t is a node
in Si. We refer to treeSi(t) as the tree pattern that consists of the tree of nodes in subscription Si,
rooted at node t. For example, in figure 5.1, treeS6(t5) = /b[./a]/b. If u is a node in subscription S,
then treeS(u) simply refers to the tree of nodes in S, rooted at node u. Finally, for a given node a
with a child a′, we note /a/tree(a′) to refer to the tree pattern that consists of node a with unique
child a′, and with descendants the tree of nodes rooted at node a′.

We now present Property 8, that concerns the ancestor/descendant operator (//). The property
directly comes from the definition of the // operator, i.e., it matches a path of nodes of any length.

73

XSearch(rT , ru) = {S1 · · ·S7}\(
XSearch(t1, ru)∪ XSearch(t3, ru)∪ XSearch(t11, ru)

)
↪→ XSearch(t1, ru) = S0 ∩ S≥1

↪→ S0 = XSearch(t2, ru) = {S5}
↪→ S≥1 = XSearch(t1, u1)

↪→ XSearch(t1, u1) = S′0 ∩ S′≥1

↪→ S′0 = XSearch(t2, u1) = ∅
↪→ S′≥1 = XSearch(t1, u2)∩ XSearch(t1, u4)

↪→ XSearch(t1, u2) = S′′0 ∩ S′′≥1

↪→ S′′0 = XSearch(t2, u2) = {S5}
↪→ S′′≥1 = XSearch(t1, u3) = {S5}

↪→ XSearch(t1, u2) = {S5}
↪→ XSearch(t1, u4) = S3

0 ∩ S3
≥1

↪→ S3
0 = XSearch(t2, u4) = ∅

↪→ S3
≥1 = XSearch(t1, u5) = {S5}

↪→ XSearch(t1, u4) = ∅
↪→ S′≥1 = ∅

↪→ S1 = ∅
↪→ XSearch(t1, ru) = ∅

↪→ XSearch(t3, ru) = XSearch(t4, u1)∪ XSearch(t5, u1)∪
XSearch(t9, u1)

↪→ XSearch(t4, u1) = {S1}
↪→ XSearch(t5, u1) = XSearch(t6, u4)∪ XSearch(t7, u4)∪

XSearch(t8, u4)

↪→ XSearch(t6, u4) = {S3, S4}
↪→ XSearch(t7, u4) = {S3, S6}
↪→ XSearch(t8, u4) = ∅

↪→ XSearch(t5, u1) = {S3, S4, S6}
↪→ XSearch(t9, u1) = XSearch(t10, u4)

↪→ XSearch(t10, u4) = {S4}
↪→ XSearch(t9, u1) = {S4}

↪→ XSearch(t3, ru) = {S1, S3, S4, S6}
↪→ XSearch(t11, ru) = {S2}
↪→ XSearch(rT , ru) = {S1 · · ·S7} \ {S1, S2, S3, S4, S6}
Finally: XSearch(rT , ru) = {S5, S7}

Figure 5.3: An XSearch⊆ example run.

Property 8. Consider tree patterns tree(x) and tree(u), where label(u) = //. Let u′ be the unique
child of node u (see Section 5.3.1). Then, we have:

tree(x) ⊆ tree(u)⇔

tree(x) ⊆ tree(u′)
or
∃x′ ∈ child(x), tree(x′) ⊆ tree(u)

5.6.2 XSearch⊇ proof

In this section, we prove that XSearch⊇(t, u) returns R⊇, except in some pathological cases. Recall
that given a subscription S, we want to find all subscriptions in R such that they are contained by
S. t is a node in T (R) and u a node in S. We proceed by ascendant recursion on the depth of nodes
in T (R) or nodes in S. The recursive property P is the following:

Recursive property P : Let Si ∈ R be an extension of rT → t. Then:

∃t′ ∈ child(t), such that Si ∈ sub(t′) and treeSi(t′) ⊆ treeS(u)
⇔
Si ∈ XSearch⊇(t, u)

We first prove the recursive property on recursion initiations, that is, when t or u is a leaf node.

If t is a leaf node: Then, t is also a leaf in Si. There are no t′ ∈ child(t) such that treeSi(t′) ⊆
treeS(u). Since XSearch⊇(t, u) = ∅, Property P is satisfied.

If u is a leaf node: Suppose that there exists t′ ∈ child(t) such that Si ∈ sub(t′) and treeSi(t′) ⊆
treeS(u). Then, label(t′) � label(u), and Si ∈ XSearch⊇(t, u) =

⋃t′∈child(t)
label(t′)�label(u) sub(t′).

Now suppose that Si ∈ XSearch⊇(t, u) =
⋃t′∈child(t)

label(t′)�label(u) sub(t′). Then, there exists t′ ∈
child(t) such that label(t′) � label(u) and Si ∈ sub(t′). Then, treeSi(t′) ⊆ treeS(u) (u is a leaf,
hence treeS(u) only consists of node u).

74

Finally, property P is verified.
We now consider the general case. We have to prove property P for a node t in T (R) and u in

S, assuming that it is true for nodes of higher depth in T (R) and S.

General case: label(u) 6= // We first focus on the case where label(u) 6= //.
Assume that there exists t′ ∈ child(t) such that Si ∈ sub(t′) and treeSi(t′) ⊆ treeS(u). Then, we

have label(t′) � label(u). Then, because treeSi(t′) ⊆ treeS(u) and label(u) 6= //, we have:

∀u′ ∈ child(u),∃t′′ ∈ child(t′) such that Si ∈ sub(t′′) and treeSi(t′′) ⊆ treeS(u′)

In other words, each subtree rooted at each child of node u must contain some subtree rooted at
t in Si. The fact that label(u) 6= // is important, because otherwise some child nodes of node t in
Si could be matched by //.

Then, because of the recursive property P, we have:

∀u′ ∈ child(u), Si ∈ XSearch⊇(t′, u′)
⇔
∀u′ ∈ child(u), Si ∈

⋂
u′∈child(u) XSearch⊇(t′, u′)

Finally, we have:

Si ∈
t′∈child(t)⋃

label(t′)�label(u)

⋂
u′∈child(u)

XSearch⊇(t′, u′) = XSearch⊇(t, u)

and the “left to right” implication of Property P is satisfied.
Now assume that:

Si ∈ XSearch⊇(t, u) =
t′∈child(t)⋃

label(t′)�label(u)

⋂
u′∈child(u)

XSearch⊇(t′, u′)

Then, we have:

∃t′ ∈ child(t), such that
label(t′) � label(u) and ∀u′ ∈ child(u), Si ∈ XSearch⊇(t′, u′)

Let us consider such a t′ ∈ child(t), with label(t′) � label(u). Then, because of recursive property
P, we have:

∀u′ ∈ child(u),∃t′′ ∈ child(t′), such that Si ∈ sub(t′′) and treeSi(t′′) ⊆ treeS(u′)

Hence, treeSi(t′) ⊆ treeS(u). Additionally, we trivially have Si ∈ sub(t′) (since Si ∈ sub(t′′)),
and the “right to left” implication of property P is satisfied.

Finally, property P is satisfied.
We now consider the case where label(u) = //.

General case: label(u) = // Then, node u has a unique child u′ (see Section 5.3.1).
Suppose that there exists t′ ∈ child(t) such that Si ∈ sub(t′) and treeSi(t′) ⊆ treeS(u). Then,

because of Property 8, we either have:

• treeSi(t′) ⊆ treeS(u′)

OR

• ∃t′′ ∈ child(t′), treeSi(t′′) ⊆ treeS(u)

75

If treeSi(t′) ⊆ treeS(u′), then because of recursive Property P, Si ∈ XSearch⊇(t, u′).
Now if ∃t′′ ∈ child(t′), treeSi(t′′) ⊆ treeS(u), then because of recursive Property P, Si ∈

XSearch⊇(t′, u). Hence, we have: ∃t′ ∈ child(t) such that Si ∈ XSearch⊇(t′, u), i.e. Si ∈⋃
t′∈child(t) XSearch⊇(t′, u).

Finally, Si ∈ XSearch⊇(t, u′) ∪
(⋃

t′∈child(t) XSearch⊇(t′, u)
)

= XSearch⊇(t, u).
Now assume that Si ∈ XSearch⊇(t, u). Then, we either have:

• Si ∈ XSearch⊇(t, u′)

OR

• Si ∈
⋃

t′∈child(t)XSearch(t′, u)

If Si ∈ XSearch⊇(t, u′), then because of recursive Property P, we have: ∃t′ ∈ child(t) such that
Si ∈ sub(t′) and treeSi(t′) ⊆ treeS(u′). Then, because of Property 8, we have treeSi(t′) ⊆ treeS(u).

Now if Si ∈
⋃

t′∈child(t)XSearch⊇(t′, u), then there exists ′t ∈ child(t) such that Si ∈ XSearch⊇(t′, u).
Because of recursive Property P, for one such t′, we then have:

∃t′′ ∈ child(t′) such that Si ∈ sub(t′′) and treeSi(t′′) ⊆ treeS(u)

Because of Property 8, we then have: treeSi(t′) ⊆ treeS(u).
In either case, the “right to left” implication of Property P is verified.
Finally, property P is verified.
As a consequence, property P is verified at the root nodes of T (R) and u. In other words,

Algorithm 11 identifies all the subscriptions in R that are contained by S, except in some rare
pathological cases that we identify in the next section.

5.6.3 Completeness

b

b *

//

S

d

b //

d d

S'

b

b *

//

d

d

//

p
p0

p1

p1p0

u1

u2

v1

v2

Figure 5.4: A pathological case where XSearch is incomplete.

As previously mentionned, the XSearch algorithm is sound but not complete, i.e., it may fail
to detect some containment relationships in rare pathological cases, but all relationships that it
reports are correct. Those cases were first identified by the authors of [80]. They occur when certain
combinations of wildcards and ancestor/descendant operators appear in the XPath expressions. One
such case is shown in Figure 5.4. Two expressions S and S′ are represented. Note that path p0 (p1)
is obtained when the // in path p is matched by a path of length 0 (≥ 1). We have S ⊆ S′. Indeed,
consider a document D that matches S. If the // of path p in S is matched by a path of length 0 in

76

D, then path p0 is matched (and p1 in S′ is matched by the same path in S). Hence, D matches S′.
Now, if the // of path p in S is matched by any path of length greater than 1 in D, then path p1

in S′ is matched (and p0 in S′ is matched by the same path in S). Hence, D matches S′. Hence, in
any case, a document that matches S also matches S′, i.e., S ⊆ S′. XSearch fails to identify this
containment relationship. This is due to the fact that in the XSearch algorithms, when node v1 in
S′ is matched with a path of length 0, then path p1 in S is found to be contained by the same path
p1 in S′, but path p in S is not contained by path p0 in S′. Hence, solution S0 in the algorithms is
empty (or returns S′ if XSearch⊇ is executed). Now when node v1 in S′ is matched with a path
of length greater than 1 in the algorithms, path p0 in S is contained by the same path in S′, but
path p is not contained by p1 in S′. Hence, solution S≥1 is empty (or returns S′ if XSearch⊇ is
executed). Finally, XSearch does not report that S is contained by S′.

In fact, the failure of XSearch in those rare pathological cases is due to that of the ’left to right’
implication of Property 8. Indeed, in the example we have tree(u1) ⊆ tree(v1) (i.e. S ⊆ S′), but we
have tree(u1) 6⊆ tree(v2) and tree(u2) 6⊆ tree(v1).

5.7 Extension to handle value constraints in tree patterns

The factorization tree data model and the XSearch algorithm operates on tree structured sub-
scriptions, or tree patterns. However, as described in the previous sections, they only consider the
structure of the tree patterns, and not their content. In this section, we describe an extension of our
algorithm that enables us to handle the structure as well as the content, of tree patterns, i.e., the
constraints on element values.

We consider a tree pattern S as a tree of node as described in Section 5.3.1, but in addition to
that, each node u ∈ s may contain one or more predicates on the value of u, and which we will refer
to as Ps(u). Those predicates may be combined together with the logical operators ∧ (and) or ∨
(or).

The XSearch algorithm can be used with only minor modifications to the data models and to
Algorithms 11 and 12.

a

c

*

c

a

b

c a

a

b

b a

a *

c b

c a b

s1 s2 s3 s6

c

rT

R =

a

s7

b

{s1,s2,s3,s4,s5,s6,s7}

value<10 value<20

value=15 value="FOO" value=200

value>100

value="BAR"

value="FOO" value="FOO" value="BAR"

(s1,value="FOO")
(s3, .)
(s6,value="FOO")
(s7,value="BAR")

(s1,value<10)

(s7,value<100)

(s6, .)

(s3, .)

(s3,value=15)

(s3,value="FOO")

(s6,value="BAR")

(s6,value=200)

(s2, .)

(s2,value<20)

Figure 5.5: Six tree patterns and a corresponding factorization tree, where a node is represented by its
label. Each node is associated with a set of tree patterns along with their predicates, shown between
brackets.

77

5.7.1 Factorization tree

The factorization tree T (R) that corresponds to the set of tree patterns R is modified as follows.
For each node t in T (R), sub(t) is no longer a set of tree patterns as described in Section 5.3.1,
but rather a set of pairs in the form

(
Si, PSi(t)

)
. More formally, sub(t) = {(Si, PSi(t))} where each

Si is one of the subscriptions that were in sub(t) in Section 5.3.1. We can also write: sub(t) ={(
Si, PSi(t)

)}
Si comprises rt→t

. The root node is an exception, sub(rT) is still the whole set R.
An example is given in Figure 5.5.

Algorithm 14 XSearch⊇(t, u)
1: if t is a leaf then
2: XSearch⊇(t, u) = ∅
3: else
4: if label(u) 6= “//′′ then
5: if u is a leaf then

6: XSearch⊇(t, u) =
⋃t′∈child(t)

label(t′)�label(u)
{Si ∈ sub(t′), PSi

(t′) � Ps(u)}
7: else
8: XSearch⊇(t, u) =

9:
⋃t′∈child(t)

label(t′)�label(u)

((⋂
u′∈child(u)XSearch⊇(t′, u′)

)
∩ {Si ∈ sub(t′), PSi

(t′) � Ps(u)}
)

10: end if
11: else
12: S0 =XSearch(t, u′)
13: S≥1 =

⋃
t′∈child(t)XSearch(t′, u)

14: XSearch⊇(t, u) = S0 ∪ S≥1

15: end if
16: end if

5.7.2 Algorithms

The extended versions of the XSearch algorithms are presented in Algorithms 14 and 15 and
explained as follows. We extend the � relation to predicates as follows: P1 � P2 ⇔ (n verifies P1 ⇒
n verifies P2).

Algorithm 15 XSearch⊆(t, u)
1: if u is a leaf then
2: XSearch⊆(t, u) = sub(t)
3: else
4: if label(t) 6= “//′′ then
5: if 6 ∃u′ ∈ child(u), label(u′) � label(t) then
6: XSearch⊆(t, u) = sub(t)
7: else
8: if t is a leaf then

9: XSearch⊆(t, u) =
⋂u′∈child(u)

label(u′)�label(t)
{Si ∈ sub(t), Ps(u′) � PSi

(t)}
10: else
11: XSearch⊆(t, u) =

12:
⋂u′∈child(u)

label(u′)�label(t)

((⋃
t′∈child(t) XSearch⊆(t′, u′)

)
∪ {Si ∈ sub(t), Ps(u′) � PSi

(t)}
)

13: end if
14: end if
15: else
16: S0 =

⋃
t′∈child(t)XSearch(t′, u)

17: S≥1 =XSearch(t, u′)
18: XSearch⊆(t, u) = S0 ∩ S≥1

19: end if
20: end if

Algorithm 16 XSearch⊆(rT , rs)
1: XSearch⊆(rT , rs) = sub(t) \

⋃
t′∈child(t) XSearch⊆(t′, rs)

78

XSearch⊇(t, u). The solutions are the same as in Algorithm 11, except that we must check that the
conditions concerning the predicates are verified. That is, for each solution returned by Algorithm 11,
we only keep the subscriptions such that their predicates at node t′ is contained by the predicate of
S at node u, that is: {Si ∈ sub(t′), PSi(t

′) � Ps(u)} (lines 6 and 9 in Algorithm 14).

XSearch⊇(t, u). Similarly, the solutions returned by Algorithm 15 are the same as for Algorithm 12
except that we must include the subscriptions such that their predicates at the given node are
not verified, that is: {Si ∈ sub(t), Ps(u′) � PSi(t)} (lines 9 and 12 in Algorithm 15). Recall that
XSearch⊆ returns the subscriptions that do not contain S.

79

Chapter 6

Reliability and performance evaluation

6.1 Reliability in XNet

6.1.1 Motivations

In this section, we specifically address the issue of reliability in our XNet XML content network.
We have implemented several mechanisms to ensure reliable operation of our XNet system

despite the occurrence of router or link failures. The primary objective of these mechanisms is to
implement reliable subscription advertisement, that is, to maintain a consistent shared state in the
system in spite of transient failures.

A secondary goal is to ensure reliable delivery of producer events; although desirable, this feature
is of lesser importance because undelivered messages have no impact on the consistency of the content
routing system.

The mechanisms described in this section take different approaches to failure recovery and offer
various tradeoffs in terms of cost and benefits. They are also complementary in that they can be
easily combined within the same network. We present two recovery-based approaches to reliability,
which strive to maintain a consistent global state upon failure. We then discuss a third approach,
orthogonal to the other two, which uses redundancy to mask problems and provide continuous service
despite failures.

Note that, given a spanning tree rooted at a producer, the failure of a router directly affects the
neighboring routers downstream from the failed node as they cannot anymore propagate subscription
registrations and cancellations towards the producer at the root of the tree. In contrast, the failure
of a link only affects the router downstream from the failed link; we can therefore consider router
failure as a generalization of link failures, and we will only consider the former type of failures in
the rest of the section.

Also, we only focus on the case of routing node failures that can be dealt with transparently by
the infrastructure. The failure of a producer node will prevent the distribution of events and force
the publisher application to switch over to another node. Similarly, the failure of a consumer node
will affect all the attached consumers and must be handled explicitly by the subscriber application.

6.1.2 The Crash/Recover Scheme

Overview

The Crash/Recover scheme has been designed to cope efficiently and locally with temporary router
or link failures. It relies on the assumption that a faulty link or router will recover after a short time.
The Crash/Recover scheme implements reliable subscription advertisement. During the downtime
period, the producers and consumers can still publish and subscribe to events, i.e., the failure is
transparent. After the faulty router or link recovers, the system must reach the same consistent
state as if no failure had occurred.

80

The Crash/Recover scheme relies upon a few key mechanisms to cope with transient failures.
First, a recovery database is maintained in stable storage on each router. When the router fails,
it can recover its state before the crash. Second, the use of the TCP protocol ensures the reliable
and ordered delivery of subscriptions and documents. Third, a retransmission buffer coupled with
a selective positive acknowledgment scheme is implemented between a router R and its upstream
router U . Its purpose is to save the changes that occurred during the downtime of U so that, when
it recovers, it can catch up and “roll forward” to a consistent state that corresponds to the current
consumer population. Finally, sequence numbers are embedded in all messages to detect duplicates
upon recovery and guarantee routing table consistency.

Algorithm 17 On receiving Adv(sn) from interface i

1: if 0 < sn ≤ hri then {Duplicate advertisement}
2: Send Ack(sn) down interface i
3: else if sn = hri + 1 then {Expected advertisement}
4: hs← hs + 1
5: Update routing table with XRoute and generate Advout(hs)
6: hri ← hri + 1

7: RetrBuf
append←− Advout(hs)

8: Backup log and routing table in recovery database
9: Send Ack(sn) down interface i

10: Send Advout(hs) upstream
11: end if

Algorithm 18 On receiving Ack(sn) from upstream
1: if Advout(sn) is found in RetrBuf then
2: Remove Advout(sn) from log
3: Backup log in recovery database
4: end if

Algorithm 19 On receiving Back from upstream
1: Send RetrBuf upstream

Algorithm

The pseudo-code of the Crash/Recover protocol is given in Algorithms 17, 18, 19, and 20. Consider
router R with n downstream interfaces. Let Di be the router downstream interface i. Each time Di

sends an advertisement to router R, it includes in it a strictly increasing sequence number (unique
between R and Di). Let hri be the highest sequence number received from Di, i.e., R has received
from Di all the advertisements with sequence number sn ≤ hri. Similarly, hs is the highest sequence
number that router R sent to its upstream router. Sequence numbers are used for the positive
acknowledgment mechanism and to filter out duplicate advertisements that may be received after a
link or router failure.

Each router R maintains a log that stores the latest non-acknowledged advertisements sent to its
upstream router, as well as the current values of hs and hr1 · · ·hrn. The log and the routing table of
router R are backed up in a recovery database (see Figure 6.1), which is written atomically to stable
storage as soon as its state is updated (line 8 in Algorithm 17 and line 3 in Algorithm 18).

When router R receives an advertisement Adv(sn) from interface i, it first checks if the advertise-
ment is a duplicate by comparing sn with hri (lines 1 and 3 in Algorithm 17). If that is the case, R
sends an acknowledgment to Di and ignores the advertisement. Otherwise, we have sn = hri +1 and
we process the advertisement (it is trivial to see from the algorithm and the FIFO ordering property
of TCP that we cannot have sn > hri + 1). R updates its routing table, generates an outgoing ad-
vertisement for its upstream router, increments hs and hri, and sends an acknowledgment Di only
after local updates have been saved on stable storage (lines 4–9 in Algorithm 17); this guarantees
that Di will resend its advertisement in case R fails before the recovery database has been updated.

81

Algorithm 20 On recovering from failure
1: Recover routing table and log from recovery database
2: Send RetrBuf upstream
3: Send Back downstream all interfaces

hr1 ... hri ... hrn
hs
Adv(sn1)

Adv(snj)

Adv(snk)

...

Routing table

Log

Retransmission buffer

Recovery database

...

Figure 6.1: Format of the recovery database.

The retransmission buffer is a list of advertisements. Each time router R is about to send an
advertisement Advout(sn) to its upstream router U , it appends Advout(sn) to its retransmission buffer
(line 7 in Algorithm 17). When U has received it and has updated its routing table accordingly,
it sends an acknowledgment for it back to router R (lines 2 or 9 in Algorithm 17), which removes
Advout(sn) from its retransmission buffer (line 2 in Algorithm 18).

If router R crashes, the advertisements that it should have received during the crash duration
are not acknowledged and are thus stacked in its downstream routers’ retransmission buffer. When
R recovers, it first restores its state from the recovery database (line 1 in Algorithm 20). Then, it
sends a Back message to its downstream routers, (line 3 in Algorithm 20) to trigger the delivery of
the advertisements that were stacked in their logs (Algorithm 19). From the point of view of router
R and the routers upstream, everything looks as if R had never failed, except that the “missed”
advertisements are received in bursts. After a certain period of time, which we refer to as the recovery
delay, those routers have updated their routing table and the global system state reflects again the
current consumer population.

The fact that the retransmission buffer is backed up in the recovery database and is retransmitted
upon recovery before sending the Back message (line 2 in Algorithm 20) handles the case when one
of R’s downstream router, Di, fails while R is down. When recovering, Di must first send to
R the advertisements stored in its retransmission buffer before processing those received from its
downstream routers, so as to preserve consistent ordering of the advertisements sent to R.

An example is illustrated in Figures 6.2(a) and (b). Router R receives S1 from router D1. It
updates its routing table, sends an acknowledgement back to D1, sends an outgoing advertisement
for S1 upstream and receives an acknowledgement in response. Then, router R receives adver-
tisement for S2 from D1, updates its routing table and log and immediately crashes (at line 8 of
Algorithm 17). Router R did not receive the advertisements sent by D2 and D3. Consequently, those
advertisements are stacked in the retransmission buffer of the corresponding router. Also, the out-
going advertisement for subscription S2 is stacked in router R’s retransmission buffer. The recovery
phase is illustrated in Figure 6.2(b). When router R recovers, it first restores its routing table and
its log. Then, it immediately re-transmits the advertisements stacked in its retransmission buffer,
here S2. It then sends a Back message to each downstream router which, subsequently, re-transmits
the advertisements stacked in their retransmission buffer. For each of them, at the exception of S2

received from D1, router R updates its routing table and log, sends an acknowledgement downstream
and finally sends the advertisement upstream. As for (1 : S2) received from D1, router R detects
that it is a duplicate (since an an advertisement with that sequence number was previously received
from D1). R just sends an acknowledgement back to D1.

82

D1 D2 D3

1: S1
2: S2

Ack(1: S1)

Ack(1: S1)

2
2
2: S2

1: S1
2: S2

2 0 0
2
2: S2

1: S3

1: S4
2: S5

1: S1

1
1
1: S3

2
2
1: S4
2: S5

1: S4
2: S5

1: S3

R

Algorithm 25 On receiving 1: S1 from D1
Algorithm 25 On receiving 2: S2 from D1
 5: Update routing table with XRoute and generate: 2: S2
 6: hr1 <- hr1+1
 7: RetrBuf <--- 2: S2
 : CRASH

Operation at Router R

tim
e

(a)

R

D1 D2 D32
2

2: S2

1: S3

Ack(1: S3)

Ack(1: S2)

Ack(2: S5)
Ack(1: S4)

1
1

2
2

2 1 2
5
2: S2
3: S4
4: S5
5: S3

1: S4
2: S5

5: S3

3: S4
4: S5

2: S2

Back Back
Back

Algorithm 28 On recovering from failure
 1: Recover routing table and log from recovery database
 2: Send RetrBuf = 2: S2 upstream
 3: Send Back message downstream all interfaces

Operation at Router R

tim
e

Algorithm 25 On receiving 1: S4 from D3
Algorithm 25 On receiving 2: S5 from D3
Algorithm 25 On receiving 1: S3 from D2
Algorithm 25 On receiving 2: S2 from D1
 2: Send Ack(1: S2) to D1

(b)

Figure 6.2: Illustration of the Crash/Recover scheme with a router R and three downstream routers
D1 · · ·D3. Logs are shown in thick frames next to the routers. Each subscription advertised is preceded by
its sequence number. The operations performed at router R are shown in the above box, in chronological
order.
(a) Normal operation (b) Recovery phase

Reliable subscription advertisement

The Crash/Recover scheme implements reliable subscription advertisement. Indeed, in the absence of
failures, the TCP protocol ensures the reliable and ordered delivery of advertisements. Subscription
advertisement is then correct as explained in Section 4.2.4.

Now suppose that router R failed. Upon recovery, router R recovers the routing table that it had
just before the crash occurred. Then, it receives all the advertisements that it should had received
from its downstream neighbors, had it not failed. The advertisements received from a downstream
router are received in the same order as they were received and processed at that downstream
router. Hence, subscription advertisement is correct at router R, once it has received and processed
all the advertisements received from downstream. In addition, upon recovery, and before processing
any advertisements from downstream, router R retransmits all the advertisements that were not
acknowledged by its upstream router Rup (some of them may be duplicates for Rup), in the same
order as it (R) received and processed them. Then, it processes the advertisements received from
downstream as in the case of normal operation. Consequently, subscription advertisement is correct
at router Rup, once the advertisements sent by R have been handled. All the routers upstream Rup

then process them and update their routing tables as if no failure occurred. Finally, after a recovery
delay, that corresponds to the time necessary to handle the buffered advertisements, subscription
advertisement is correct once again, and the system’s state is consistent with the actual consumer
population.

83

6.1.3 The Crash/Failover Scheme

Motivations

The Crash/Recover scheme was based on the assumption that a failed router R will recover after a
reasonably short period of time, during which its downstream routers are buffering advertisements.
However, the downtime duration of router R may be very long, causing buffers to grow huge or
overflow. When R eventually recovers, many advertisements will transit along the paths from R’s
downstream routers to the producer nodes, potentially creating bottlenecks and delaying system
recovery.

The Crash/Failover scheme is based on the principle that the downstream routers of a crashed
router R do not wait for its recovery, but instead reconnect to another router and bring back their
routing tables to a consistent state. Thus we make the assumption that every router R in the network
knows at least one additional router other than its direct neighbors, to which it can connect if its
upstream router fails. This scheme is very similar to primary/backup replication [82] and we will
refer to the additional router as the R’s backup router, denoted by BR. Note that, obviously, BR

cannot be located downstream from R with respect to the producer as we must maintain a valid
spanning tree after reconnection.

Protocol

The Crash/Failover protocol relies on the fact that every router R has a precise summary of all
the subscriptions that its downstream neighbors are interested in. It can thus register/cancel any
of these subscriptions at any time by sending an advertisement to its upstream router U , which see
the advertisement as if it were the result of a consumer registering/canceling the subscription.

Consider a router R, its upstream router U linked to R via interface I, the set of R’s down-
stream routers {Di}i≤n and their respective backup routers {BDi}. When a downstream router Di

detects that its upstream router R has failed and is unlikely to recover soon (e.g., after a reasonably
long timeout), it switches over to its backup router BDi as new upstream router and registers all
the subscriptions stored in its routing table, as if they had just originated from “real” consumers.
Note that there are typically far less subscriptions than consumers downstream from Di because of
subscription aggregation. In fact, only the subscriptions that have not been substituted need to be
registered. Consider for example an entry for subscription S in Di’s routing table, entry(S), and its
T field at interface IR, T IR

(IR is the upstream interface at node Di towards node R). Then, the
advertisement sent to backup router BDi is: (S ; nS ; rS), where nS = T I .x and rS = RS . This
advertisement accounts for all instances of subscription S, plus all instances of the subscriptions
that are aggregated in S either through representation or substitution operations (see definition of
R field in Property 4). At node BDi , those rS instances of subscriptions will be represented by S at
the incoming interface (as seen in Property 5 and the RTU algorithms).

Once every router Di has reconnected to BDi , U can cancel all the subscriptions that were
registered through interface I from its routing table to reestablish perfect routing on the path from
the producer to U . Note that each subscription must be “totally cancelled”. As we have seen
in Section 4.2.5 and Algorithm 8, this may require that some subscriptions be reinserted in the
routing tables of the upstream nodes. However, the present case is simpler. Indeed, consider a given
subscription S that was previously registered at interface I. Since router R has crashed, from the
point of view of router U , there are no more consumers interested in subscription S downstream
interface I. Also, there are no more consumers interested in the subscriptions that were represented
by S at interface I. Hence, those subscriptions do not have to be reinserted at node U or at the nodes
upstream. At node U , only the subscriptions that are substituted to S may have to be reinserted (we
have identified the cases in which this has to be done in Section 4.2.5 and Algorithm 8). Consequently,
node U proceeds as if it received advertisement (S ; nS ; 0) from node R, where nS = −T I

S .x.

84

Reliable subscription advertisement

Clearly, after the recovery procedure has completed, the system state is again consistent with the
consumer population. Indeed, router U , and all further upstream routers, have cancelled all the
subscriptions that were advertised by router R. In addition, each downstream router Di have
registered all the subscriptions that have not been substituted to its backup router BDi . From the
point of view of that router, those registrations are seen as “usual” registrations, i.e., as the result of
a consumer registration. At router BDi , once those registrations have been processed, subscription
advertisement is then correct, as explained in Section 4.2.4.

Note that, if Di has incorrectly suspected R to have failed (e.g., because of a link failure) and
has switched over to BDi , R will cancel all the subscriptions that were registered by Di. Although
resource consuming, this does not affect the correctness of subscription advertisement.

S1,S2U

AS3

S2S1
D2D1

S3

S1 S2

U

AS3

S3

Can(S1)
Can(S2)

S2

S1

D2

D1

Reg(S2)

Reg(S1)

BD2

BD1R

Figure 6.3: Recovering from the crash of router R with the Crash/Failover scheme.

Example 4. Figure 6.3 illustrates a simple Crash/Failover scenario (the subscriptions that each
node is interested in are represented next to the interface they came from; the state before the failure
is represented on the left and recovery phase on the right). Routers D1 and D2 are interested in
subscriptions S1 and S2 respectively, while router A is interested in S3. When R crashes, routers
D1 and D2 connect to their backup router BD1 and BD2 and register their subscription S1 and S2

(“Reg” messages). Thereafter, U can remove all subscriptions previously registered by R from its
routing table and propagate the changes upstream (“Can” messages).

Combining the two recovery protocols

The Crash/Failover protocol can be advantageously combined with the Crash/Recover protocol to
deal with temporary link of node failures. If the failure duration reaches a predefined threshold,
then the affected routers will switch over to a backup. The subscriptions received from downstream
routers are buffered and processed after completion of the reconnection phase. Note that, in the case
of simultaneous failures, it might not be possible to use the Crash/Failover protocol (e.g., because
backup routers have also failed) and the system has to wait for some of the crashed routers to recover.

6.1.4 Masking Failures with Redundant Paths

The Crash/Recover and the Crash/Failover schemes suffer from two major drawbacks. First, the
service is interrupted for the duration of the failure or until the overlay network has reconfigured.
Second, they generate upon recovery an upstream traffic of advertisements that can be important,
with each advertisement involving routing table updates at the traversed routers. To alleviate these
drawbacks, we can combine these schemes with a masking strategy based on Redundant Paths, which
improves availability by providing uninterrupted service despite failures. In particular, events can
be delivered reliably and timely even though some of the routers fail.

The Redundant Paths strategy is based on the same principle as active replication [82]. It makes
the assumption that each router R has at least one alternate route to the producer. The routing

85

information that corresponds to router R is replicated in the routing tables of the alternate routes.
The implementation of the Redundant Paths strategy does not require other modifications to the
XRoute protocol than sending advertisements to all upstream routers (rather than a single one).

S2

To producer

C

A1

B2

R

B1
R1

R1

S1

S2

S2

S2

S2

S2
S1

S1

(a)

S1

To producer

e

e
e

C

A1

B2

R

B1 S1

S1

S1

S1

e

e

(b)

Figure 6.4: (a) routing tables replication with the Redundant Paths strategy (b) guarantee of event delivery
with the Redundant Paths strategy.

An example is illustrated in Figure 6.4(a). Router R has two routes to the producer, via routers
A1 and C, and via routers B1, B2 and C (the remaining part is common to the two routes and is not
shown in the example). When node R receives an advertisement for subscription S2, it updates its
routing table and sends an outgoing advertisement to both upstream interfaces, towards A1 and B1.
Note that S2 has been substituted by S1 which was previously registered at node A1. Subsequently,
S1 is advertised at node C. In contrast, S2 is not aggregated on route B1 − B2 − C and is directly
advertised. Also, the order in which the advertisements from A1 and B2 arrive is not important.
As we have seen in Section 4.2, the result at the node upstream C is the same, that is, S2 being
represented at the incoming interface.

If router R has n alternate routes to the producer, it is resilient to the failure of at least n − 1
upstream routers (in the case of multiple producers, R should have n alternate routes to each
producer, but those routes may share common sub-paths). When some routers on a route fail,
the routers on the other routes are still consistent with the consumer population and R will keep
receiving documents from those routes.

As previously mentioned, it is important to note that the Redundant Paths strategy increases
the availability (liveness) of the system, but does not deal with recovery. It should be combined with
the Crash/Recover or Crash/Failover protocols to ensure consistent recovery from a failure. The
major drawback of the Redundant Paths strategy is that every subscription and event will be sent
over multiple routes and thus increase bandwidth utilization. Further, routers and consumers must
detect and filter out duplicate events.

Figure 6.4(b) shows an example of the event delivery guarantee property of the Redundant Path
strategy. Router R has two routes to the producer: via routers A1 and C, and via routers B1, B2

and C (the remaining part is common to the two routes and is not shown in the example). Router
R is resilient to the failure of router A1, and to the simultaneous failures of routers B1 and B2. In
the example, router B1 crashes and R still receives event e via the route C → A1 → R.

6.1.5 Other issues

Reliability of Published Events

Under normal operation, the reliable delivery of published events is ensured by TCP. Guaranteed
delivery in the case of failures can be implemented in the same manner as subscriptions in the
Crash/Recover scheme, by using acknowledgments in combination with a retransmission buffer and

86

a persistent data storage. However, this approach has a high cost in terms of memory and bandwidth
requirements as the event publishing rate is typically much higher than the subscription registration
rate. Further, events published in content-based networks often need to be delivered timely or not
at all, and buffering them is essentially useless; in such cases, one should use the Redundant Paths
strategy to ensure timely event delivery despite failures. Note again that events do not modify the
shared state of the system and the loss of some of them only affects the quality of service experienced
by the consumers.

Case of multiple producers

We now consider the case of multiple producers. We examine the impact on each recovery strategy,
and the extensions that may have to be implemented.

hr1 ... hri ... hrn
hs1 ... hsh ... hsp

Adv1(sn1)

Adv1(snj)

Adv1(snk1
)

...

Routing table

Log

Retransmission buffer

Recovery database

... ...
Advh(sn1)

Advh(snj)

Advh(snkh
)

...
Advp(sn1)

Advp(snj)

Advp(snkp
)

...
...

...
...

Figure 6.5: Format of the recovery database, extended to support multiple producers

Crash/Recover scheme. The Crash/Recover scheme applies to the case of multiple producers
with only minor modifications. We first need to modify the format of the recovery database to
support multiple producers. Consider router R, with p upstream interfaces, each leading to different
producer(s). The format of the recovery database is illustrated in Figure 6.5.

We now have p “highest sent” fields, each corresponding to a different upstream interface. hsk

is the highest sequence number sent to the router upstream interface Ik
up. The retransmission buffer

now consists of a set of p “single” retransmission buffers, each corresponding to an interface Ik
up. We

will refer to RetrBufk as the retransmission buffer corresponding to interface Ik
up (kth column of

the “single” retransmission buffer).
The Crash/Recover protocol extended to the case of multiple producers is almost identical to

the case of a single producer. We only need to consider that for each upstream interface, there is a
different outgoing advertisement, retransmission buffer and hs field. Nevertheless, for completeness,
we included its pseudo-code in Appendix B, in Algorithms 32, 34, 35 and 33.

Crash/Failover scheme. The Crash/Failover scheme adapts to the case of multiple producers
with only minor modifications. Consider router R with downstream routers {Di} and upstream
routers {Ui}. For each such router Di, R was the path leading to a set of producers {Pk}. For
each such producer Pk, Di must reconnect to a backup router that is not downstream router R with
respect to producer Pk. Hence, each router must know at least p additional routers, but all of them
are not necessarily different. The failover then proceeds as in Section 6.1.3. Each downstream router
Di reconnects to its backup routers and registers again the subscriptions in its routing table that
were not substituted, with respect to interface Ii, which was the upstream interface at Di towards
R (see Section 4.2.6). Note that interface Ii is renumbered when the reconnection has been done.
It then typically becomes the last interface.

As for routers Ui, they cancel the subscriptions that were registered by R, as explained in
Section 6.1.3, and considering each upstream interface, as in Section 4.2.6.

Note that a downstream interface may be an upstream one as well. In other words, an upstream
router Ui may be a downstream router Dk.

87

S1,S2U1

S2S1
D2D1

S1 S2

U1

Can(S1)
Can(S2)

S2S1 D2D1

Reg(S1)

B2
D2

B1
D1

R

S1,S2 U2

To P1 To P3To P2 To P1 To P2

Can1(S1)
Can1(S2)

Can2(S1)
Can2(S2)

U2

To P3

B2
D1

Reg(S1)

To P3To P1, P2

Reg(S2)

B1
D1 B3

D1

To P3To P1 To P2

Figure 6.6: Recovering from the crash of router R with the Crash/Failover scheme.

An example is illustrated in Figure 6.6 When router R fails, downstream routers D1 and D2

connect to their backup routers. D1 connect to router B1
D1

as the backup router leading to producers
P1 and P2 and to router B2

D1
as the router leading to producer P3. Router D2 connect to B1

D2
(B2

D2
,

B3
D2

) as the backup router leading to producer P1 (P2, P3). Routers D1 and D2 then register their
subscription S1 and S2 (“Reg” messages). Thereafter, upstream routers U1 and U2 can remove
all subscriptions previously registered by R from their routing table, considering each upstream
interface, and propagate the changes upstream (“Can” messages).

S2

To P1

C

A1

B2

R

B1
R1

R1

S1

S2

S2

S2

S2

S2
S1

S1

To P2

S1

S1

S1

S1

R2

S1

Figure 6.7: The Redundant Paths strategy in the case of multiple producers.

Redundant Paths scheme. The Redundant Paths scheme easily adapts to the case of multiple
producers. The only issue is that for a given router R, we must make the difference between two
redundant upstream interfaces I1

a and I1
b , that lead to the same producer and two upstream interfaces

I1 and I2 that lead to different producers. I1
a and I1

b are logically considered as the same interface.
When a routing table update is made, the same outgoing advertisement is sent to I1

a and to I1
b ,

for replication purposes. In contrast, the routing table update is different when interface I1 or
I2 is considered and a different outgoing advertisement is sent to each of them, as explained in

88

Section 4.2.6. The purpose is not to replicate routing tables but to propagate consumer membership
changes to each spanning tree(s) that corresponds to interfaces I1 and I2.

An example is illustrated in Figure 6.7. At node R, there are three physical interfaces, R→ A1,
R → B1 and R → R2. However, R → A1 and R → B1 are logically considered as the same
interface (the one that leads to producer P1). Consequently, R updates its routing table and sends
the same outgoing advertisement to A1 and B1, for replication purposes. Note that subscription S1

was ignored since from the point of view of the spanning tree rooted at P1, there are no consumers
interested in S1 downstream router R. As a consequence, S2 is not substituted and is directly
advertised upstream (see Section 4.2.6). In contrast, interface R→ R2 leads to a different producer.
S1 has an entry when considering that interface, and subscription S2 is substituted by it. S1 is
subsequently advertised towards P2.

6.2 Performance evaluation

6.2.1 Overview

A major part of our efforts were devoted to building working prototypes and conducting extensive
experimental evaluation of our XNet XML content routing network and its various components.
The results are presented in this section.

We first assess the performance of the XRoute protocol when deployed on a simulated network.
We have seen in the previous sections that XRoute achieves perfect routing while minimizing rout-
ing tables sizes and enabling subscription cancellation. Our main focus is to show that XRoute
effectively succeeds in minimizing routing tables sizes. Indeed, keeping routing tables small is essen-
tial to implement efficient filtering of messages against large number of subscriptions: as the filtering
speed typically decreases linearly with the number of subscriptions (whether matching subscriptions
sequentially, or using sophisticated algorithms as in [35]), small routing tables can dramatically im-
prove the overall performance of a content network in terms of routing, where filtering plays a major
part. As a consequence, we first analyze the sizes of the routing tables in our system when imposing
different consumer loads. We then study the performance of the simulated network in terms of
routing.

Note that we do not evaluate the performance of the XTrie algorithm here. A complete study
has been done in [35].

We then evaluate experimentally the XSearch algorithm, which plays a major role in the
XNet system by enabling it to handle large and dynamic consumer populations. We then assess
the performance of our XNet system in terms of subscription management, when deployed on a
simulated network.

Finally, we analyze the efficiency of our techniques in a large scale experimental deployment
on the PlanetLab testbed [97]. We show that XNet does not only offer good performance and
scalability with large consumer populations under normal operation, but can also quickly recover
from system failures.

6.2.2 Parameters of the data used in the experiments

In this section, we present the parameters of the data that we used in all the experiments that we
performed.

To evaluate the behavior of our XNet system or to assess the performance of a particular com-
ponent or technique, we had to generate consumer subscriptions and producer events. As previously
mentioned, subscriptions in our system are expressed using the XPath [118] language, and producer
events are XML documents.

To generate a set of XPath expressions, we have developed an XPath generator that takes a
Document Type Descriptor (DTD) as input and creates a set of valid XPath expressions based on
a set of parameters that are described in table 6.1.

89

Parameter Name Description
h maximum depth maximum depth of a leaf in the expression
d ellipsis (//) maximum depth maximum depth that an element

with label // can have
p// ellipsis probability probability that an element has label //
p∗ wildcard (∗) probability probability that an element has label ∗
pλ branching probability probability to have a new child
m minimum depth minimum depth of a leaf in the expression
θS element skew skew of Zipf distribution for element names
x duplicates probability probability to have duplicate expressions.

x = 1 means no duplicates.

Table 6.1: Parameters of XPath subscriptions.

We have used the NITF (News Industry Text Format) DTD [42] to generate our sets of XPath
expressions. The NITF DTD, which was developed as a joint standard by news organizations and
vendors worldwide, is supported by most of the world’s major news agencies and is used in several
commercial applications. It contains 123 elements with 513 attributes (as of version 2.5). Note that
the results of all experiments can easily be generalized to multiple DTDs. Indeed, as DTDs generally
use distinct grammars, an XML document valid for a given DTD is unlikely to match a subscription
for another DTD; thus, using multiple DTD essentially boils down to running separate experiments
with each DTD and combining the results.

To generate XML documents, we used IBM’s XML Generator tool [51], with the parameters
described in table 6.2.

Parameter Name Description
L document length maximum length of XML document
T document size maximum number of tag pairs in document
r r maximum number of repeatitions of children with ∗ or + option

θD element skew skew of Zipf distribution for element names

Table 6.2: Parameters of XML documents.

6.2.3 Efficiency of the XRoute protocol

Simulation Setup

To assess the efficiency of the aggregation techniques used by our XRoute protocol, we have evalu-
ated it on a simulated network. We have generated a network topology using the transit-stub model
of the Georgia Tech Internetwork Topology Models package [125]. The resulting network topology,
shown in Figure 6.8, contains 64 routers. We then added 24 consumers at the edges of the network
and a single producer.

We have simulated consumer load by registering subscriptions at the consumer nodes. The
subscriptions were generated with the values of the parameters as indicated in table 6.3. We have
generated sets of subscriptions of various sizes (from 1000 to 200, 000 subscriptions).

Parameter Value
h 10
d 3

p// 0.1
p∗ 0.1
pλ 0.1
m 3
θS −1
x 0 or 1

N 1000→ 200000 (number of generated subscriptions)

Table 6.3: Parameter values of XPath subscriptions.

90

64

65 66

67

68

69

70

71

72

73

74

75

76

77

78

79
80

81

82

83
84

85

86
87

88

34

33

32

31

30

29

2827

9
26

8
25

7 24
6

23

5
22

4

21

3

20

19

2

18

1

17

0

16

15

14

13

12

11

10

63
62

61

59

60

58

57

56

55

54

53

52

51

49 50

48

4746

45

44

43

42
41

40

39

38

37

36
35

Figure 6.8: Simulated network topology with 64 routers (circles), 24 consumers (boxes), and 1 producer (hexagon).

The events published by the producer are XML NITF documents generated with the values of
the parameters as indicated in table 6.4.

Parameter Value
L 20
T {22, 58, 108} tag pairs
r 3

θD 0 (uniform)

Table 6.4: Parameter values of XML documents.

To handle consumer subscriptions, we implemented two routing protocols in the routers of our
network. First, we implemented a Simple routing protocol that does not use subscription aggrega-
tion, except for suppressing multiple occurrences of a subscription. With that protocol, the size of
the routing table at a node is equal to the number of disctinct subscriptions that consumers regis-
tered downstream. We will refer to this protocol as Simple. Second, our XRoute routing protocol
that makes extensive use of subscription aggregation to minimize the size of the routing tables. Note
that appart from not using subscription aggregation, the Simple protocol works in a similar way as
XRoute (in particular, the subscription advertisement scheme).

To route events efficiently, we implemented the XTrie algorithm in the routers of our network,
as in Section 3.3. Events are routed as explained in Section 4.1.1.

To simulate a population of N registering consumers, we proceeded as follows. We generated a
set of N random subscriptions as described earlier in the section. Note that the set contains possibly
multiple occurences of each subscription. For each subscription in the set, we registered a random
number of occurences (uniformly between 0 and 100) of that subscription at a random consumer
node (uniformly). At that consumer node, the registration was handled using either the Simple
protocol or our XRoute protocol, the information was then propagated in the network and the
routing tables were updated as described in Section 4.2.

We have thus simulated two systems to test the efficiency of the aggregation techniques that our
protocol XRoute uses. The first system is our XNet system in which the routers implement the
XRoute routing protocol. The second system which we will refer to as the Simple system is the
same as XNet but in which the routers implement the Simple protocol instead of XRoute.

91

0

10

20

30

40

50

60

0 50000 100000 150000 200000

8.53

R
at

io
 (

%
)

Consumer load

Average size ratio of XNet vs. Simple

Figure 6.9: Ratio of the average routing table sizes in the XNet and the Simple system.

Consumer Mean µ Variance σ
Population µXNet µSimple σXNet σSimple

1000 34 58 31 74
2000 52 105 44 130
5000 86 225 67 273
10000 120 408 88 496
20000 176 714 122 876
50000 258 1533 162 1899
100000 334 2729 206 3402
200000 415 4862 232 6113

Table 6.5: Mean value and standard deviation of the routing table sizes in the XNet and the Simple systems.

Routing tables sizes

For each system which was imposed a given consumer load, we computed the average size of the
routing tables that we obtained, as well as the standard deviation. We then computed the ratio of
the mean routing table size that we obtained in our XNet system by that obtained in the Simple
system. The evolution of that ratio when varying the consumer load is illustrated in figure 6.9.
Table 6.5 shows the evolution of the mean value µ and standard deviation σ of the routing table
sizes (in number of entries) in each system when varying the consumer load.

Note that the routing tables of the consumer nodes in the network were excluded from the exper-
iments. Indeed, we have seen in Section 4.2.5 that subscription representations are not permitted in
the routing tables of the consumer nodes (but they are substituted). This is required by the XRoute
protocol to maintain perfect routing in case of subscription cancellation. As a consequence, to assess
the efficiency of the aggregation techniques used by XRoute, we excluded the routing tables of
consumer nodes. Their sizes, wether obtained with the XRoute or Simple protocol, are the same,
and are approximately bounded by N

24 (since subscriptions were injected uniformely at random at the
24 consumer nodes). Note that this is an upper bound, since there are typically multiple instances
of the same subscription.

Figure 6.9 and table 6.5 show that our protocol XRoute implemented in our XNet system
reduces the average routing table size significantly when compared to the Simple protocol. For
example, for a consumer population of 200000, our protocol XRoute yields to an average routing
table size of 415 entries, when compared to 4862 for the Simple protocol (12 times larger). Moreover,
the gap between both protocols widens significantly with large number of consumers which shows
that XRoute is more and more efficient in reducing routing table sizes. This is directly due to the
fact that, with an increased number of subscriptions, the protocol is able to find more containment
relationships between them, and hence perform subscription aggregation more efficienctly.

Table 6.5 shows that our protocol XRoute yields to a routing table size variance that remains

92

small even with large consumer populations. The variance of the Simple protocol is several times
larger and the gap between the two protocols gets more and more important with large populations.
As a consequence, XRoute yields to much more homogenous (in size) routing tables, when compared
to the Simple protocol. This can be an issue when provisioning the network in a real system.

As a conclusion, the routing tables are both small and homogeneous in our XNet system, when
compared to a system that would implement the Simple protocol.

Routing efficiency

In this section, we study the performance of our XNet system and that of the Simple system in
terms of routing when varying the number of registered consumers and the sizes of the documents
published by the producer. As both systems implement the XTrie algorithm in their routers,
comparing the two systems will enable us to study the impact of XRoute in routing. All the
algorithms were implemented in C++ and compiled using GNU C++ version 2.96. Performance
experiments were conducted on 1.5 GHz Intel Pentium IV machines with 512 MB of main memory
running Linux 2.4.18.

The protocol of the experiment that we conducted is the following. Consider a document of size
T . We route this document in each system (XNet and Simple) which was previously imposed a
consumer load of N consumers. When the document is routed in a system, it is processed by a certain
number of routers in the network and it (a copy of the event) reaches a certain number of consumer
nodes (recall that both systems implement perfect routing). First, for each router that routed the
event, we measure the process time, that is the time that was required by this router to perform
its routing task. We then compute the maximum value of the process times among those routers.
This measure will be refered to as the maximum process time. Second, for each consumer node that
received the event, we measure the routing delay to that node, that is the time to reach that node,
from the time it was issued by the producer. Not that we did not simulate any link delays in the
network. Hence, the routing delay is entirely due to the process times at the encountered routers.
We then compute the average value of the routing delays of the consumer nodes that received the
event. This measure will be refered to as the average routing delay. We repeat the experiment 100
times (with the same document size T) and we compute the mean values of the maximum process
times and the average routing delays measured consequently. Note that for different documents, the
maximum process time is not necessarily obtained for the same router. This is not a problem, since
from the point of view of a producer, we are interested in a estimation of the maximum process time,
and not in the location of the router. Finally we have an estimation (the mean value) of the max
process time and the average routing delay when routing a document of size T in a system which
was imposed a consumer load of N consumers. From the maximum process time µmax, we then
compute 1000

µmax
, which is the maximum throughput, in documents per second. This figure represents

the maximum rate at which a producer can expect to be allowed to inject documents of size T in a
system that comprises N registered consumers. Similarly, considering a consumer in a system that
comprises N consumers in total, the average routing delay represents the latency that this consumer
can expect to receive a document of interest, of size T . Because of the efficiency of the filtering
algorithm XTrie, we only focused on large consumer populations.

Figure 6.10 shows the evolution of the maximum throughput with the consumer population in
each system, when routing documents comprising 22 (small), 58 (medium) and 108 (large) tag-pairs.
It shows that for documents of same size, the maximum throughput obtained in our XNet system
is much higher than that obtained in the Simple system, whatever the consumer population in a
system. For example, for a consumer population of 200, 000 consumers, XNet enables the producer
to inject documents of size 22 at a maximum rate of 113 documents per second when compared to
a rate of 27 documenets per second in the Simple system, which is more than four times slower.
Moreover, XNet has a very little sensitivity to the consumer population, which shows that it scales
very well to large consumer populations. This is true for all document sizes.

Figure 6.11 shows the evolution of the average routing delay with the consumer population in

93

0

20

40

60

80

100

120

140

160

50000 100000 150000 200000

112.73

26.42M
ax

im
um

 th
ro

ug
hp

ut
 (

do
c/

s)

Consumer load

XNet (small)
XNet (medium)

XNet (large)
Simple (small)

Simple (medium)
Simple (large)

Figure 6.10: Maximum document throughput in the
XNet and the Simple system.

0

50

100

150

200

250

300

350

400

50000 100000 150000 200000

28.52

85.11

A
ve

ra
ge

 d
el

ay
 (

m
s)

Consumer load

XNet (small)
XNet (medium)

XNet (large)
Simple (small)

Simple (medium)
Simple (large)

Figure 6.11: Routing delay in the XNet and the Sim-
ple system.

each system, when routing a document of a given size. As we have seen, the average delay can be
interpreted as the time a consumer can expect to wait before receiving the document which it is
interested in. We can see clearly that for a given document size, the delay obtained in our XNet
system is several times smaller than that obtained in the Simple system, and the gap between the two
curves widens dramatically with the number of consumers. For example, for a consumer population
of 200, 000 consumers, the average routing delay for a document of size 22 would be 28.52ms in
our XNet system when compared to 85.11ms in the Simple system. Moreover XNet is almost not
sensitive to the consumer population. This shows that not only does XNet enable clients to receive
documents in a much smaller delay than the Simple system does, but it also scales extremely well
to large consumer populations, whatever the document size.

As a conclusion, our XNet system is scalable in terms of routing. It enables producers to inject
messages at a high rate in the network and routes the messages to the consumers in a small amount
of time. Those excellent results are due to the efficiency of the XTrie algorithm for one part, and for
the other part to the XRoute protocol, which plays a major role by reducing the sizes of the routing
tables significantly when compared to a protocol that does not perform subscription aggregation.

6.2.4 Efficiency of the XSearch algorithm

In this section, we evaluate the performance of the XSearch algorithm. XSearch plays a major
role in our XNet system by speeding up routing tables updates. More precisely, XSearch efficiently
identifies all the possible containment relationships between a given subscription and a possibly large
set of subscriptions.

Note that although described in the context of content-based routing and XPath, the XSearch
algorithm can be readily applied to similar subscription languages or to address different data man-
agement problems.

Experimental Setup

To evaluate the efficiency of the XSearch, we generated XPath tree patterns with the values of the
parameters indicated in Table 6.6.

All the algorithms were implemented in C++ and compiled using GNU C++ version 2.96.
Experiments were conducted on 1.5 GHz Intel Pentium IV machines with 512 MB of main memory
running Linux 2.4.18.

94

Parameter Value
h 10
d 3

p// 0.0→ 0.20
p∗ 0.1
pλ 0.0→ 0.20
m 3
θS −1
x 1

Table 6.6: Parameter values of XPath subscriptions.

XSearch Efficiency

We evaluated the efficiency of the XSearch algorithm for search sets of different sizes. For this
experiment, we considered search sets with unique subscriptions, that is, a given subscription does
not appear more than once in a set. Indeed, in a given router, XSearch is used to determine
the containment relationships between a given subscription and the subscriptions in the routing
table, which are all unique. Also, in this experiment, we considered tree patterns with parameters
p// = 0.05 and pλ = 0.10.

For each search set, we generated 1, 000 additional subscriptions and, for each of them, we
measured the time necessary to determine the subset of the subscriptions that contain, and are
contained by, that subscription. For comparison purposes, we have also measured the efficiency of
the XSearch algorithm against sequential execution of the containment algorithm of [34], which
we call Linear.

0

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

T
im

e
in

 m
s

Size of search set

Average search time for XSearch⊇
Average search time for XSearch⊆

Figure 6.12: Average search time for the XSearch
algorithm.

0

500

1000

1500

2000

2500

3000

3500

4000

20000 40000 60000 80000 100000

T
im

e
in

 m
s

Size of search set

Average search time for Linear⊇
Average search time for Linear⊆

Figure 6.13: Average search time for the Linear algo-
rithm.

Figure 6.12 shows the average search time of the XSearch algorithm and Figure 6.13 that of
the Linear algorithm. It appears clearly that XSearch is extremely efficient. Even for very large
search sets, we can expect an average search time of less than 50 ms. In comparison, the Linear
algorithm yields to search times that are systematically more than two orders of magnitude higher.
This result is not surprising, as the Linear algorithm needs to evaluate the entire subscription set R
while XSearch only searches through the factorization tree, which is much smaller by construction.

The second variant of the algorithm, XSearch⊆, is significantly less efficient than XSearch⊇
for large consumer populations. This is due to the fact that XSearch⊆ works recursively on the
nodes of T (R), trying to find paths in a given subscription S that are contained by the tree patterns
in T (R). Hence, the number of traversals of the factorization tree is bounded by its size. On the
contrary, XSearch⊇ works recursively on the nodes of S, trying to locate paths in T (R) that are
contained by S. The number of traversals of the factorization tree is bounded by the size of S, which
is most often much smaller than T (R).

95

Size of search set 1,000 2,000 5,000 10,000

XSearch⊇ 0.23 0.45 1.17 2.41

XSearch⊆ 0.28 0.53 1.30 2.57

Table 6.7: Average search time of XSearch in ms.

We have seen in Section 6.2.3 that the sizes of the routing tables rarely exceed 1, 000 entries,
even for very large consumer populations, thanks to subscriptions aggregation. For completeness,
we show in Table 6.7 the absolute average search time of XSearch for search sets of small sizes,
which are most relevant in the context of content-based routing.

0

10

20

30

40

50

60

0 20000 40000 60000 80000 100000

T
im

e
in

 m
s

Size of search set

XSearch⊇ p//=0.05 pλ=0.10
XSearch⊆ p//=0.05 pλ=0.10
XSearch⊇ p//=0.10 pλ=0.10
XSearch⊆ p//=0.10 pλ=0.10
XSearch⊇ p//=0.05 pλ=0.05
XSearch⊆ p//=0.05 pλ=0.05
XSearch⊇ p//=0.10 pλ=0.05
XSearch⊆ p//=0.10 pλ=0.05

Figure 6.14: Average search time for the XSearch
algorithm, for different values of p// and pλ

0

20

40

60

80

100

120

140

0 0.05 0.1 0.15 0.2

T
im

e
in

 m
s

Parameter value

XSearch⊇ pλ=0.10
XSearch⊆ pλ=0.10
XSearch⊇ p//=0.10
XSearch⊆ p//=0.10

Figure 6.15: Evolution of the average search time
of the XSearch algorithm when varying p// and
pλ, for a search set of 100000 patterns.

Influence of patterns parameters

In this experiment, we study the influence of parameters p// and pλ on the efficency of the algorithms.
We proceeded as in the previous experiment but we varied the values of parameters p// and pλ in
the following ranges:

• p// ∈ {0.0; 0.20}

• pλ ∈ {0.0; 0.20}

by steps of 0.05. Results are illustrated in Figures 6.14 and 6.15.
Figure 6.14 shows the evolution of the search time for both algorithms when varying the size of

the search set and for different values of p// and pλ. Figure 6.15 also shows the evolution of the
search time but when varying p// and pλ. The size of the search set was fixed to 100, 000 patterns.
We then fixed pλ to a value of 0.10 and studied the evolution of the search time when varying p//.
We finally fixed p// to a value of 0.05 to study the impact of pλ on the search time.

Influence of p//. We observe that parameter p// has an opposite influence on XSearch⊆ and
XSearch⊇, whatever the value of parameter pλ. Indeed, a higher value of p// reduces the efficiency
of XSearch⊆ whereas it increases that of XSearch⊇. This is directly due to the way the two
algorithms operate when a node with label // is encountered. The explanation is the following.

On the one hand, nodes with label // may be beneficial for both algorithms in that they can re-
duce the number of algorithmic calls or even allow the algorithm to terminate. Indeed, for XSearch⊆,
consider a node u in S and t in T (R), where XSearch⊆(t, u) is called, and such that label(u) 6= //.
If there are more nodes t′ in child(t) with label //, then fewer instances of the algorithm will be

96

called, since only t′ such that label(t′) � label(u) are considered (line 8 in Algorithm 11). Hence,
more nodes with label // in T (R) implies fewer calls of the algorithm. For XSearch⊇, the same
phenomenon occurs when considering nodes in T (R) instead of nodes in S and vice versa.

On the other hand, nodes with label // may adversely impact the efficiency of the algorithms
by increasing the number of algorithmic calls. For XSearch⊆, this happens when a node in S has
label //. Then, XSearch⊆ tries to match it to paths of any length in T (R), until a leaf is found
(in T (R)). Similarly, for XSearch⊇, when a node in T (R) is encountered with label //, XSearch⊇
tries to match it to paths of any length in S, until a leaf is found (in S). As a consequence, a higher
value of p// means a higher probability that a node has label // in S and T (R), and hence more
algorithmic calls.

The major difference between XSearch⊆ and XSearch⊇ is that XSearch⊇ tries to map the
node with label // to paths in T (R) whereas XSearch⊆ tries to map it to paths in s. On average,
an individual tree pattern s is much smaller than T (R), and a leaf is encountered much more rapidly.
As a consequence, XSearch⊇ benefits from a higher value of p// whereas XSearch⊆ suffers from it
(although for higher values it also seems to benefit from it).

Influence of pλ. We first observe that a lower value of pλ is beneficial for both algorithms. This is
directly due to the fact that the more the number of children the nodes have, the more the number
of algorithmic calls. In addition to that, we observe that a lower value of pλ is much more beneficial
for XSearch⊇ than for XSearch⊆. This can be directly explained by the fact that XSearch⊇ works
recursively on the nodes of T (R) whereas XSearch⊆ works recursively on the nodes of s, and T (R)
benefits from the reduction of the number of children in the tree patterns to a much larger extent
than a single tree pattern s does.

|R| 1,000 2,000 5,000 10,000 20,000 50,000 100,000∑
si∈R |si| 7.6 15.8 42.1 88.1 183.3 481.8 998.6

|T (R)| 1.9 3.6 8.2 15.1 28.1 62.1 112.6

Table 6.8: Space requirements for a given subscription population R and its factorization tree T (R), in
thousands of nodes.

Space Efficiency

We have experimentally quantified the space requirements of the factorization tree with subscription
sets of various sizes. For this experiment, p// and pλ had fixed values of 0.05 and 0.1, respectively.
The results in Table 6.8 confirm that the number of nodes in the factorization tree is indeed notably
smaller than the sum of the nodes of the individual subscriptions.

Subscription management

XSearch is a vital component of our XNet system. By efficiently determining the containment
relationships between subscriptions, it enables XNet to handle large and dynamic consumer pop-
ulations. In this section, we specifically evaluate the performance of subscription management in
XNet when deployed on the simulated network of Figure 6.8.

We proceeded as in Section 6.2.3 to simulate a population of N registered consumers. The
parameters of the XPath subscriptions are the same as in table 6.6. The XRoute protocol was used
to handle consumer subscriptions.

Consider a network with N registered consumers. We are interested in the average delay that a
new consumer can expect when registering or cancelling a subscription (a given number of instances
of that subscription) so that the whole system is updated and the consumer can receive (or stop
receiving) the events that it is interested in. In other words, we are studying the delay that a new
consumer can expect when subscribing to the system when N consumers have already registered.

97

10

15

20

25

30

35

40

45

50

55

0 50000 100000 150000 200000

53.16

46.63
A

ve
ra

ge
 d

el
ay

 (
m

s)

Consumer load

Average registration delay
Average cancellation delay

Figure 6.16: Average delay for subscriptions handling.

20

30

40

50

60

70

80

90

100

0 50000 100000 150000 200000

R
at

io
 (

%
)

Consumer load

Registration delay is < 1ms
Registration delay is < 250 ms

Figure 6.17: Distribution of registration delays.

The protocol of the experiment is as follows. Given a prepopulated system with N consumers, we
generated 10, 000 random subscriptions (which may contain duplicates to model distinct consumers
having the same interests) and injected each of them in turn at a consumer node chosen uniformely
at random. After injecting a subscription, we canceled it to maintain a stable consumer population
during the whole experiment. We measured for each registration the time necessary to update all the
routing tables, and we computed the mean value. To study the cost of subscription cancellations,
we proceeded similarly except that, for each of the 10, 000 measurements, we totally canceled a
random subscription (partial cancelations are similar to duplicate registrations). Results are shown
in Figure 6.16. As in Section 6.2.3, we did not include any link delays in this experiment.

Case of registrations. Figure 6.16 shows that the average registration delay increases with the
size of the consumer population, at a decreasing rate. However, even for very large consumer
populations, the average delay for a new registration remains reasonably small (53ms for 200, 000
registered consumers).

To explain this, let us consider the registration of a subscription s. We have seen in section 4.2.5
that supplementary and new registrations imply costly routing table updates, due to the fact that
they require that some containment relationships between subscriptions be established. As a conse-
quence, the higher the number of registered consumers, the larger the routing tables, and thus the
slower the update of the routing tables of the routers which see the registration of s as a supplemen-
tary or a new registration. Hence the registration delay increases with the consumer load.

On the other hand, the higher the number of registered consumers, the more chances that s has
already been registered previously, or has been substituted by another subscription. It then follows
from section 4.2.5 that the higher the number of registered consumers, the higher the number of
routers that see the registration of s as a duplicate registration. The update of the routing table of
such routers is very fast.

As a consequence, by increasing the number of registered consumers, we increase the number
of routers which see a duplicate registration but at the same time we increase substantially the
processing time of the routers for which the registration of s is a supplementary or a new registration.

This behavior is illustrated in figure 6.17, where we plotted the cumulative percentage of the
registrations (out of the 10, 000 registrations) that have a registration delay lower than 1ms and
than 250ms, for a given population size. This can be seen as an estimation of the probability (in
percentage), when registering a subscription, to have a delay smaller than 250ms and 1ms. We can
see that for large consumer populations, it is likely that the registration delay is very low, but there
is also a little chance that it is much higher. For smaller consumer populations, the registration
delay is likely to be around an intermediate value.

Case of cancellations. Figure 6.16 shows that the average cancellation delay increases sharply
at the beginning but then smooths down when we have reached a certain number of registered
consumers. In any cases, the delay remains relatively small even for very large consumer populations

98

(less than 50ms for 200, 000 registered consumers).
To explain this evolution, suppose that we are handling the cancellation of subscription s. We

have seen in Section 4.2.5 that if some subscriptions were aggregated to s at a router, we may need
to “reinsert” them in the routing table, which requires to compute a potentially high number of
containment relationships. Since the chances that subscriptions are aggregated to s increases with
the consumer population, the cancellation delay increases as well.

On the other hand, the chances that s has been substituted by another subscription on a router
(along the way to the producer node) increases with the consumer population. As we have seen
in Section 4.2.5, at the routers upstream the cancellation of subscription s is seen as a duplicate
registration, and the updates are very fast.

Also, the higher the consumer population, the more chances that subscription s has been reg-
istered at several different consumer nodes. Hence, the more the chances that the cancelation of
subscription s is not total at a given router. As we have seen in Section 4.2.5, the routing table
updates are then very fast at the upstream nodes. As a consequence, the average cancelation delay
increases at a rate that shrinks with the consumer population, and remains small even for very large
populations (46ms for 200, 000 consumers).

As a conclusion, our XNet system deployed on a simulated network seems to handle both sub-
scription registrations and cancellations efficiently even for very large consumer populations. The
excellent scalability of the system is mainly due to the efficiency of the XSearch algorithm, which
was specifically designed to handle the most costly operation of routing tables update, that is the
determination of containment relationships between subscriptions.

6.2.5 Large scale experimental deployment on the PlanetLab testbed

To assess the performance of our XNet system in a real distributed environment, we deployed
application-level routers on the PlanetLab global distributed platform [97] to simulate a realistic
content based network overlay at Internet scale.

Experimental setup

Network topology. The network topology consists of 21 machines of the PlanetLab network, an
open distributed platform for developing, deploying, and accessing planetary-scale network services.
PlanetLab was the testbed of choice for us, as it enabled us to experiment with the real conditions
of the Internet, especially its unpredictability. Although we had only 22 nodes in our overlay, results
are representative of larger networks: As a router only knows its direct neighbors, scalability does
not directly depends on the number of routers, but on the consumer population. The machines
used in the experiments were running a customized version of Linux. They all had at least 512 MB
of memory and a 1.2 GHz processor, but they were used concurrently by several users running
similar experiments and their load was very uneven. In practice, as the processing and memory
requirements of XNet are moderate, application-layer routers can be easily deployed on low-end
machines with limited resources. Each of the 21 PlanetLab machine was hosting a router. As
illustrated in Figure 6.18, 12 of the routers are consumer nodes (boxes), 1 is a producer node
(hexagon), and the remaining 9 are routing nodes (circles). The extension of the country where
the machine is located is indicated under the node numbers and the average measured link delays
are indicated next to every link (upstream delay above, downstream delay below). The routers
are organized in a spanning tree rooted at the producer. Each node implements the protocols of
our XNet system, that is: the XRoute routing protocol, the XSearch subscription management
protocol, and the XTrie filtering algorithm.

Overlay statistics. Table 6.9 provides some network statistics about our experimental overlay. All
measures are averages over several runs executed at different times. The link delay was measured

99

52
50

37
39

2
us

3
us

6
ch

122
1248.5

8.8
5
us

4
uk

83
84

10
dk

9
nl

11
pl

16
16

80
8053

53
12
us

13
us

63
55

70
68

14
fr

15
fr

42
44

44
44

8
us

7
us

16
us

17
us

50
50

72
70

18
us

24
14

63
70

75
73

0.4
1.4

19
us

20
us

21
us

64
66

74
64

1
us

Figure 6.18: Experimental network topology.

as the round-trip time to send a packet to a machine and receive a reply over TCP (it does not
include the TCP connection establishment time as we are using persistent connections). Note that
we excluded the link delays between node 3 and node 8 for the computation of the minimal link
delay, as those nodes are located in the same LAN.

Metrics Value
Average link delay 54.135 ms

Standard deviation of link delays 28.18 ms
Maximal link delay 6 → 2: 123.67 ms
Minimal link delay 2 → 5: 8.47 ms

Average minimal routing delay 160.63 ms
Average minimal update delay (consumer → producer) 169.64 ms
Maximal producer throughput (“single-element” docs) 53.13 docs/s

Maximal producer throughput (“normal-size” docs) 30.28 docs/s
Maximal upstream (consumer) throughput 18.56 sub/s

Table 6.9: Overlay statistics.

The average minimal routing delay was computed by injecting at the producer an XML document
with a single “wildcard” element matching all consumer subscriptions. Consequently, the document
was forwarded to all the consumers with minimal process time at the routers. We measured the
delay experienced by each consumer to receive the document and we computed the average over all
consumers and over 1, 000 runs. This measure gives a lower bound on the routing delay.

We computed the average minimal update delay as the time necessary to propagate a “wildcard”
subscription (requiring negligible process time at the routers) from the consumer to the producer.
We computed the average over 100 runs at each consumer and over all consumers. The resulting
value gives a lower bound of the update time of the network when a new consumer subscribes to the
system.

The maximal producer throughput was computed by sending a burst of 1, 000 documents and
measuring the delay between the time the first document was sent until the last document was
received by the last consumer. We ran the test both with minimal “single-element” documents and
with “normal-size” documents containing 22 tag pairs. The first measure corresponds to the maximal
network throughput at the producer, while the second gives an upper bound of the producer rate
with realistic event workloads.

We finally computed the average upstream throughput in the same way as we did for the maximal
producer throughput: for each consumer, we registered 100 “single-element” subscriptions in a burst
and measured the delay until the network has been updated. We then computed the average over
all the consumers. This value gives an upper bound of the consumers’ arrival rate.

100

Parameter Value
h 10
d 3

p// 0.1
p∗ 0.1
pλ 0.1
m 3
θS −1
x 0 or 1
L 20
T {22} tag pairs
r 3

θD 0 (uniform)
Documents arrival rate Poisson with rate λdoc = 1/s
Consumers arrival rate Poisson with rate λsub = 1/s
Consumer population P = 1, 000 to 50, 000

Crash duration D = 1 to 10 min
Faulty router 2 and 19; 8

Backup routers 3; 2 and 7

Table 6.10: Parameters of the experiments.

Parameters of the experiments. The parameters of our experiments are summarized in Ta-
ble 6.10. Consumer subscriptions and producer events were generated as in the previous experiments,
with the indicated parameter values. For the sake of simplicity, we assume that each consumer
registers only one subscription: a consumer with two subscriptions is considered as two distinct
consumers. The parameters λdoc and λsub control the arrival rate of documents and consumers,
respectively. P defines the size of the existing consumer population, i.e., the number of consumers
that are registered in the system when the experiment starts. D controls the duration of a failure
before recovery. Finally, we have simulated the failure of various routing nodes of the network and
experimented with several configurations of backup routers.

Performance Under Normal Operation

We first evaluate the efficiency of our XNet system under normal operation, that is, with no system
failures.

160

180

200

220

240

260

280

300

10000 20000 30000 40000 50000

D
el

ay
(m

s)

Consumer population

Average registration delay
Average cancellation delay

Average routing delay

Figure 6.19: Routing/subscription delay.

Routing delay. We are interested in measuring the average routing delay, that is, the average
time taken by an event to traverse the network and reach all the consumers that are interested
in that event. The protocol of the experiment is the same as in Section 6.2.3: we first populate
the network with random subscriptions injected at arbitrary consumer nodes until the consumer

101

population reaches P . We then inject events at the producer node at rate λdoc. For each event,
we compute the average routing delay (i.e., producer-to-consumer latency) that was experienced by
each consumer node that received the event. Results are average values of 1, 000 runs and are shown
in Figure 6.19. We can see that the routing delay remains small (less than 180 ms) even with large
consumer populations. In fact, the routing delay is very close to the measured minimal routing
delay (Table 6.9), which indicates that the delay is essentially due to the link delays and not the
processing time at the routers. As previously mentionned in Section 6.2.3, the excellent scalability of
the system is mainly due to the high efficiency of the filtering algorithm XTrie, combined with the
efficiency of the aggregation techniques used in XRoute, which enable to minimize routing tables
sizes (and hence the size of the data processed by XTrie).

Registration and cancellation delays. To assess the performance of subscription management,
we proceeded as in Section 6.2.4: we measured the average delay experienced by a new consumer
registering a subscription, given a preexisting population of a given size. This delay corresponds
to the time necessary to update all the routers that are affected by the subscription. Given a pre-
populated system with P consumers, we generated 1, 000 random subscriptions (which may contain
duplicates to model distinct consumers having the same interests) and injected each of them in turn
at a consumer node chosen uniformly at random, at a rate of λsub. After injecting a subscription, we
canceled it to maintain a stable consumer population during the whole experiment. We measured
for each registration the time necessary to update all the routing tables, and we computed the mean
value. To study the cost of subscription cancellations, we proceeded similarly except that, for each
of the 1, 000 measurements, we canceled a random subscription. Results are shown in Figure 6.19.

We observe that the average delay for registering or canceling a subscription increases with the
size of the consumer population, but at a moderate rate. Even for large consumer populations, the
average delay for a new registration or cancellation remains reasonably small (less than 300 ms).
The measured minimal update delay of 170 ms (Table 6.9) indicates that link delays represent more
than 75% of the overall registration or cancellation delay for the considered consumer population
sizes. We also observe that the slope of the two curves decreases with the consumer population. The
evolutions of the registration and cancellation delays are similar to those obtained in Section 6.2.4,
and can be explained in a similar manner.

Performance of the Crash/Recover Scheme

Under normal operation (with no system failures), we have observed that our XNet system is
efficient and scalable. We now study its behavior when faults occur. We first concentrate on the
Crash/Recover scheme.

Consider a router R that has crashed at time tcrash and recovered at time trecovery. We want
to measure the recovery delay Drecovery until the whole system has recovered. Indeed, during the
downtime of router R, its downstream neighbors buffer the advertisements (consumer registrations
or cancellations) that should be sent to R. Upon recovery, R and its upstream routers must “catch
up” by handling all buffered advertisements. The recovery delay is computed as the delay between
the recovery time of R (trecovery) and the time when the whole system has been updated and reflects
the current consumer population.

The protocol of the experiment is the following: considering the system with a preexisting con-
sumer population P and under a consumer arrival rate of λsub, we kill router Ri at time tcrash and
restart it at trecovery. We then measure the delay Drecovery until the system is up-to-date with no
advertisement in the buffers. We are particularly interested in the ratio between Drecovery and the
crash duration Dcrash = trecovery − tcrash.

We first experimented with the failure of router 2 under various consumer populations and crash
durations. We then repeated the same experiments with the failure of router 19. We chose these
routers to figure out if the level of the router in the tree topology has an impact on the efficiency of
the recovery mechanism.

102

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10000 20000 30000 40000 50000
T

im
e

(m
s)

Consumer population

Recovery delay for router 19 (1 min crash)
Recovery delay for router 19 (5 min crash)

Recovery delay for router 19 (10 min crash)
Recovery delay for router 2 (1 min crash)
Recovery delay for router 2 (5 min crash)

Recovery delay for router 2 (10 min crash)

Figure 6.20: Recovery delays for routers 2 and 19 after crashes of various durations.

Figure 6.20 shows the recovery delays resulting from the crashes of routers 2 and 19, for various
crash durations and consumer populations. Table 6.11 presents the absolute values, in seconds, of
the recovery delay D2 and D19 of routers 2 and 19, respectively, as well as the ratios R2 and R19 of
the recovery delay to the crash duration (Ri = Di

Dcrash
).

A first observation is that, independently of the failing router, the crash duration, or the existing
consumer population, the system is able to recover in a few seconds (typically less than 10 seconds).
We can also note that, unsurprisingly, the recovery delay increases with the crash duration because
the system needs to process more buffered advertisements to catch up; it does not, however, exceeds
3% of the crash duration. The recovery delay also increases with the consumer population. This
is consistent with the observations made in the failure-free experiments. Finally, we observe that
there is no significant difference between the recovery delay for router 2 and that for router 19.
This can be explained by the fact that router 2 is a high level router and must process more
buffered advertisements, but the updates of its routing table are simpler because subscriptions have
likely already been aggregated along the way. Router 19 is a low level router and must process
fewer advertisements, but it systematically needs to perform more costly aggregation operations (its
downstream routers are consumer nodes and hence do not aggregate subscriptions). Therefore, it
appears that the distance of the failing router from the producer node does not have a strong impact
on the recovery efficiency of the system.

Dcrash P 1, 000 2, 000 5, 000 10, 000 20, 000 50, 000
1 min D2 637 514 757 799 913 778

R2 1.06 .85 1.26 1.33 1.52 1.29
5 min D2 3582 3351 3515 4290 5280 8228

R2 1.19 1.11 1.17 1.43 1.76 2.74
10 min D2 7781 8361 9153 10148 9533 11136

R2 1.29 1.39 1.52 1.69 1.59 1.86
1 min D19 305 374 440 530 681 721

R19 0.51 0.62 0.73 0.88 1.13 1.20
5 min D19 2638 2743 3282 3345 3932 5638

R19 0.88 0.91 1.09 1.12 1.31 1.88
10 min D19 4559 6228 5818 7322 8700 11709

R19 0.76 1.03 0.97 1.22 1.45 1.95

Table 6.11: Recovery delay as function of the consumer population and the crash duration.

Performance of the Crash/Failover Scheme

We finally study the overhead induced by the Crash/Failover scheme upon the failure of router 8,
which represents a medium level router in the tree topology. We considered two different scenarios for
the reconnection of the downstream routers 18 and 19 to their backup routers. In the first scenario,

103

the backup router for both routers 18 and 19 is router 3 (i.e., the closest non-failed upstream router).
In the second scenario, router 18 is redirected to router 7 while router 19 is redirected to router 2.
Figure 6.21 shows the new network topologies resulting from both scenarios.

2
us

3
us

6
ch

5
us

4
uk

10
dk

9
nl

11
pl

12
us

13
us

14
fr

15
fr

7
us

16
us

17
us

18
us

19
us

20
us

21
us

1
us

8
us

Figure 6.21: New network topologies for scenarios 1 (plain arrows) and 2 (dashed arrows).

The protocol of the experiment is the same for both scenarios. We first kill router 8 at time
tcrash. We then redirect the downstream routers 18 and 19 to their backup routers, as explained in
section 6.1.3. We measure the time trecover when the whole system has been updated and reflects
the current consumer population. The recovery delay Drecovery is the difference between trecover and
tcrash. For each scenario, we experimented with preexisting consumer population of various sizes.
Also, all the experiments were conducted under a constant consumer arrival rate λsub. Figure 6.22
summarizes the results that we obtained.

0

10

20

30

40

50

60

70

80

10000 20000 30000 40000 50000

D
el

ay
 (

s)

Consumer population

Update delay for scenario 1
Update delay for scenario 2

Figure 6.22: Update time for scenarios 1 and 2.

We observe that the recovery delay for both scenarios remains reasonably small, typically less
than 1 minute. Also, we can see that the delay increases with the consumer population. This is
explained by the fact that the routing tables grow with the consumer population and, during the
recovery phase, a portion of the routing tables of routers 18 and 19 must be registered and a portion
of that of router 8 must be canceled. Finally, we observe that the recovery delay for scenario 1
is significantly higher than that for scenario 2 for most consumer populations. This is due to the
contention on router 3 and its upstream links, which become bottlenecks in scenario 1; in contrast,
the load is split between distinct routers in scenario 2.

104

Discussion

By comparing the results obtained with the Crash/Failover and the Crash/Recover schemes, we can
conclude that the former should be preferred only for small consumer populations and long crash
periods. In systems with large consumer populations, the Crash/Recover scheme is more adequate
provided that the crashed router eventually recovers. We do not discuss the performance of the
Redundant Paths strategy as it does not introduce recovery overhead.

Conclusion

As a conclusion, it appears that our XNet system deployed on the Planetlab platform offers very
good performance and scalability under normal operation. The routing delay remains small whatever
the consumer population, which shows that our system delivers events to all interested consumers
efficiently. Also, the average subscribing delay remains reasonably small even with large consumer
populations, which shows that XNet handles large and dynamic consumer populations efficiently.

In addition, our XNet system implements several fault-tolerance schemes that ensure that the
shared state of the system remains consistent with the actual consumer population. XNet can
quickly recover from router or link failures by using the most appropriate scheme depending on
various factors, such as the expected duration of the outage or application specific availability re-
quirements.

105

Related Work

In this section, we survey the related work. We first present the most popular existing pub/sub
systems that are implemented in overlay networks of distributed brokers. We investigate several
aspects of pub/sub, in particular routing, subscription management, and reliability issues. We then
present other works that do not specifically implement pub/sub, but that relate to the issues that
were addressed in this chapter.

6.3 Content routing in most popular Publish/Subscribe systems

6.3.1 Gryphon

IBM Gryphon [18, 87, 88, 72, 15, 5, 14] uses a distributed filtering algorithm based on parallel
search trees maintained on each of the brokers to efficiently determine where to route the events.
Gryphon implements perfect routing and supports subscription registration and cancellations; in
fact, registering (canceling) a subscription reduces to inserting (removing) it from the search tree
and is thus an efficient operation. However, to maintain and update the parallel search tree, each
broker must have a copy of all the subscriptions in the system. As a consequence, this approach may
not scale well to large and highly dynamic consumer populations. Also, the authors do not discuss
how to update the parallel search trees (and thus ensure reliable delivery) in the case of link failures
or router crashes.

6.3.2 Siena

Siena [23, 24, 25, 26, 29, 31, 103, 32, 27, 109] also uses a network of event servers for content-based
distribution, and their routing protocol is most similar to ours. Each event server maintains a routing
table that holds a subset of the subscriptions, and the associated subscribers and neighbor routers.
Messages are matched against each subscription and forwarded along the paths corresponding to
matching subscriptions. Also, Siena makes use of subscription aggregation to reduce routing table
sizes and subscription advertisements in the system. However, it is not clear wether subscription can-
cellation affects routing accuracy. In addition, we could not determine the space- and time-efficiency
of the protocol, and wheter it can be extended to support more general subscription languages. In a
recent paper [30], the authors of Siena introduce a novel routing scheme for content-based network-
ing based on a combination of broadcast and selective routing. Subscription management is simple
and efficient. The system handles subscription cancellations by having routers periodically request
the routing table of other routers. However, it does not guarantee perfect routing in the sense that
consumers may receive messages that they are not interested in. Also, the authors do not explicitly
address the issue of fault tolerance in the system.

6.3.3 Jedi

Jedi [44, 22, 21, 45, 43] proposes several variations for routing events among its networked event
servers; in particular, with the hierarchical approach, subscriptions are propagated both upward and
downward to the children that have matching subscriptions. Subscription management is simple and
efficient, but this approach may lead to large routing tables at the root and unnecessary propagation

106

of events upward the tree. In a recent work [92], the authors discuss how to adapt the behavior of
a pub/sub system to dynamic topology reconfiguration. Their work is based on an approach which
they term the “strawman approach” [29, 124], and which is similar to the Crash/Failover fault-
tolerance scheme that we implemented in our XNet system. Indeed, the principle is to carry out
the reconfiguration by using exclusively the primitives available in a pub/sub system. In particular,
the reconfiguration triggered by a link removal is dealt with using subscription cancellations (as in
our Crash/Failover scheme). Their approach aims at reducing overhead, notably by minimizing the
repropagation of subscription information, while tolerating frequent reconfigurations.

6.3.4 Rebeca

Rebeca [81] is a prototype notification service that incorporates several routing strategies. Its topol-
ogy is very similar to ours, i.e., a tree of brokers with a single root called the “root router.” Rebeca
also distinguishes between brokers that have local clients and those that do not. The system imple-
ments a self-stabilization algorithm based on subscription leasing. Routing table entries are valid
as long as the lease of the corresponding subscription has not expired. This may lead to consumers
receiving out-of-interest notifications. Also, this approach requires that consumers regularly renew
their leases by resubscribing, making the system potentially unscalable to large consumer popula-
tions.

6.3.5 Onyx

Onyx [123] is is an ongoing research project that aims at implementing a large-scale XML dissem-
ination system. Onyx uses the YFiler [49, 50] technology for content-driven routing. The system
features the interesting concept of message transformation, where a message is transformed (data is
removed or restructured) incrementally in the course of routing according to the users subscriptions
encountered. Also, to boost routing, the profile (s̃ubscriptions) population is partitioned based on
exclusiveness of data interestes. In Onyx, a single YFilter instance is used at each node to imple-
ment the routing table and incremental transformation. The authors do not discuss how subscription
management is implemented efficiently in the system. In particular, they do not discuss the cost of
routing table construction/update, especially in the case of subscription cancelation. Also, it is not
clear whether subscription cancelation has an impact on routing accuracy. Finally, the authors do
not address the issue of reliability in their system.

6.4 Other works

6.4.1 Content routing

In [111], the authors propose an approach for content-based routing of XML data in mesh-based
overlay networks. They introduce a routing protocol that reassembles data streams sent over redun-
dant paths to tolerate some node or link failures. Their approach provides a high level of availability
but it is not clear how reliability is guaranteed during the addition and removal of subscriptions.

In [108], the authors propose to add content-based routers at specific nodes of an IP multicast tree
to reduce network bandwidth usage and delivery delays. They propose algorithms for determining
the optimal placement of a given number of content routers. The routing protocol merely consists of
propagating subscriptions upward the tree, until they reach the producer or are subsumed by other
subscriptions. Subscription cancellation is not supported.

In [11], the authors study the phenomenon of notification loss in pub/sub systems, which is
defined as a notification (event) not being delivered to an interested consumer even though it was
published when the consumer’s subscription was duly registered in the system. The phenomenon
may occur due to the diffusion delay of events and/or the registration delay of consumers subscrip-
tions. The authors study the notification loss phenomenon by presenting a simulation study of a
pub/sub system and an analytical model. The model is based on a formal framework of a distributed

107

computation, which abstracts a pub/sub system through the diffusion and registration delays. In
particular, the authors study the evolution of the notification loss probability (or its complement)
with respect to the registration and the diffusion delays.

6.4.2 Containment relationships

The subscription containment and matching techniques that we implemented in our XNet system
are related to the widely studied problem of pattern and regular expression matching. There exists
several indexing methods to speed up the search of textual data with regular expressions, like the
bit-parallel implementation of NFA [10] and suffix trees [122]. In [36], the authors have addressed the
reverse indexing problem of retrieving all the regular expressions that match a given string. They
propose RE-Tree, an index structure to quickly determine the regular expressions that match a given
input string, by focusing the search on only a small fraction of the expressions in the database.

In [115], Tozawa and Hagiya present a containment checking technique for XML schemas, which
is based on binary decision diagrams. Little work has been done on the problem of containment
checking for tree-structured XPath expressions. In fact, the problem has been shown to be coNP-
complete [80]. A sound but non-complete algorithm has been proposed in [34] to determine whether
a given tree-structured subscription covers another subscription, but it does not address the problem
of covering relationships between large sets of subscriptions.

108

Part II

Semantic P2P Overlays for
Publish/Subscribe Networks

109

Chapter 7

A P2P approach to Publish/Subscribe

After developing XNet, which is based on “traditional” techniques to implement Publish/Subscribe,
we now explore a different and novel approach to building a pub/sub system based on the P2P
paradigm.

7.1 Introduction

7.1.1 Motivations

Most existing pub/sub systems suffer from several drawbacks. They are usually based on a fixed
infrastructure of reliable brokers, which cannot easily be modified or extended as the population of
the producers and consumers evolves. Further, in most traditional pub/sub systems, the routing
process is a complex and time-consuming operation. It often requires the maintenance of potentially
large routing tables on each router and the execution of elaborate filtering algorithms to match each
incoming document against every known subscription. The use of summarization techniques (e.g.,
subscription aggregation [28, 34]) alleviates those issues, but a the cost of significant control message
overhead or a loss of routing accuracy. Finally, in most existing systems, the network topology has
no relationships with the subscriptions registered by the consumers. As a consequence, the process
of routing an event often involves a large number of routers, some of which may have no interests
in the event but only act as forwarders, which may yield to a poor bandwidth usage. In the worst
case, the routing process may be barely more efficient than a broadcast (which benefits from a much
lower processing overhead).

To address these limitations, we have designed a pub/sub system [38] that follows a radically
different approach to content-based networking.

7.1.2 Objectives

Our pub/sub system was designed to achieve several goals. First, the routing process in our system
is extremely simple and has very low resource requirements. Second, by organizing peers based on
their interests, content distribution is highly efficient as compared to broadcast. Finally, instead of
relying on a fixed infrastructure of reliable brokers, our system is organized as a P2P network: join
and leave operations, as well as peer failures, are taken care of at the design level with efficient peers
management algorithms. We present in this chapter two instantiations of our system that use the
same routing protocol but differ by the way peers are organized. Experimental evaluation illustrates
the various trade-offs that they offer in terms of efficiency and accuracy.

7.1.3 Overview

Our system is composed of a collection of peers. Each peer is connected with a set of other peers—
its neighbors—with which it exchanges messages. Each peer in the system is at the same time a

110

producer, a consumer, and a router. As a consumer, a peer registers certain interests that specify
the types of events that it is willing to receive. As a producer, a peer can publish events to the
system. Finally, as routers, peers process events received by some neighbors and forward them to
some other neighbors. In addition, peers implement the peers management algorithms that handle
the joins/leaves or additional/existing peers.

Our pub/sub system implements an extremely simple routing process that requires almost no
routing state to be maintained at the peers. The price to pay for this simplicity is that routing
may not be perfectly accurate, in that there may be false positives and/or false negatives. However,
that inaccuracy can be greatly reduced by carefully organizing the peers in a hierarchy according to
adequate proximity metrics.

We would like to emphasize that we propose a new P2P approach for pub/sub, which relies on
a system model that differs significantly from other P2P applications like file sharing. In particular,
we assume that peers are well behaved and remain online for reasonably long periods of time, and
that rate of message publication is higher than the frequency of peers’ arrivals or departures. Our
system provides mechanisms for organizing communities of peers that wish to exchange information
using the pub/sub paradigm, without reliance on central servers or fixed infrastructures.

We now describe the routing process that is used in our system for the dissemination of infor-
mation.

7.2 The Routing Process

7.2.1 Protocol

The routing protocol in our system is entirely based on the principle that every peer forwards a
message to its neighbors if and only if the message matches its own interests. The routing process
starts when a peer P publishes a message m. We initially make the natural assumption that peers
publish messages that match their own interests (we can easily relax this assumption, as will be
discussed later). Since P is interested in m, it forwards it to all its neighbors. Routing then
proceeds trivially as shown in Algorithm 21.

Algorithm 21 Routing protocol
1: Receive message m for the first time from neighbor n
2: if m matches interests then
3: Forward m to all neighbors (except n)
4: end if

The intuition of the algorithm is to spread messages within a community that shares similar
interests and to stop forwarding them once they reach the community’s boundary. We emphasize
on the fact that the routing protocol is extremely simple and requires almost no resources from the
peers. It consists of a single comparison and message forwarding operation. In addition to that, it
requires no routing state to be maintained in the peers in the system. Each peer is only aware of its
own interests and the identity of its direct neighbors, not their interests.

7.2.2 Accuracy

Clearly, the aforementioned process is not perfectly accurate and may lead to a peer receive a message
that it is not interested in—which we call a false positive— as well as missing a message that matches
its subscriptions—a false negative. In other words, our system may deliver out-of-interest messages
and may fail to deliver messages of interest. This is obviously due to the fact that a peer is not
aware of the interests of its neighbors and forwards messages only based on its own interests. The
challenge is thus to organize the peers so as to maximize routing accuracy. It should be noted that
false positives are usually benign, because peers can easily filter out irrelevant messages, whereas
false negatives can adversely impact application consistency.

111

7.2.3 Interest-driven Peers Organization

Consider two neighbor peers P1 and P2. If P1 and P2 have registered close interests, it means that
they are interested in similar types of messages. That is, if P1 is interested in a message, it is likely
that P2 is also interested in it, and vice versa. It follows that neighbor peers should have close
interests in order to minimize occurrences of false positives and false negatives in our system. In
other words, we must organize peers based on the interests they registered: proximity in terms of
neighborhood should reflect the proximity of the peers’ interests.

To evaluate the proximity between two registered interests I1 and I2, a proximity metric must be
used, that is, a function f(I1, I2) that indicates how similar I1 and I2 are. Unfortunately, defining
a good proximity metric is a challenging problem. It very much depends on the target application,
on the language used to specify interests, and most of all on the messages being distributed in the
system. The problem of interest proximity has been further discussed in [34].

7.3 Organizing Peers according to Containment

7.3.1 Overview

We now describe a hierarchical organization of the peers that yields no false negatives and only
a limited amount of false positives. It uses a proximity metric based on the notion of interest
containment, which we recall in Definition 5. As previously mentioned, the containment relation is
transitive and defines a partial order.

Definition 5 (Containment). Interest I1 contains interest I2, or I1 ⊇ I2 ⇔ (∀ message m, m
matches I2 ⇒ m matches I1)

The relation of interest equivalence1 in defined in a similar manner:

Definition 6 (Equivalence). Interest I1 is equivalent to interest I2, or I1 ∼ I2 ⇔ (I1 ⊇ I2 ∧ I2 ⊇
I1). That is: ∀ message m, m matches I2 ⇔ m matches I1.

The containment-based proximity metric, which we refer to as fc, allows us to compare interests
that share containment relationships and is defined as follows. Consider the set of all registered
interests I = {I1, I2, · · · , In} that contain I. Let {Ii, Ij , · · · , Im} ⊆ I be the longest sequence of
non-equivalent interests such that Ii ⊇ Ij ⊇ · · · ⊇ Im. Then,

fc(I, I ′) =

−∞, if I + I ′;
∞, if I ∼ I ′;
|{Ii, Ij , · · · , Im}|, otherwise.

Intuitively, the objective of this metric is to favor interests that are themselves contained in many
other interests, i.e., that are very specific and selective. Note that this metric is not symmetric.

The containment-based proximity metric can be used with any subscription language, provided
that it defines a containment relationship. Of course, it applies best to subscription languages that
are likely to produce subscriptions with many containment relationships. We wish to emphasize,
however, that our routing protocol can be used with any other proximity metric, as we shall see in
Section 8.

7.3.2 Network Description

Peers are organized in a containment hierarchy tree, based on the proximity metric fc defined earlier.
To simplify, we assume that each peer has expressed its interests by registering exactly one subscrip-
tion (if that is not the case, the peer will appear multiple times in the hierarchy). The containment

1We intentionally do not use the term “equality” because some subscriptions languages allow interests to be formally
different and yet match the same set of messages.

112

hierarchy tree is defined as follows. A peer P that registered subscription S is connected in the tree
to a parent peer Pa that registered subscription Sa if Sa is the subscription in the system closest to
S according to the proximity metric fc. Given the definition of the metric fc, this means that Sa

is the deepest subscription in the tree among those that contain S. When we have more than one
peer to choose from, we select as parent the peer that has the lowest number of children in order to
keep the tree as balanced as possible.

We now consider the special case of peers that have registered equivalent interests in the system.
From definition 6, it follows that if peer P1 and P2 are neighbors, P1 would never deliver false
positives to P2, and vice versa. It is then clear that equivalent peers in the system should always
be neighbors in the topology. As a consequence, in our tree topology, we organize equivalent peers
together in specialized, balanced subtrees with limited degree L that we call equivalence trees. From
the perspective of other peers in the system, an equivalence tree is considered as a single entity
represented by its root node, which is positioned in the containment hierarchy tree using the rules
described above. Non-equivalent children of the peers in an equivalence tree are always connected
at its root.

Given that the containment relation is transitive, a peer contains all its descendants in the
subtree rooted at itself. Since there may not be a peer in the system that contains all the others,
we introduce an artificial node that interconnects all top-level peers and that we refer to as the root
node. This node is purely virtual and is implemented by simply connecting top-level peers with each
other through “sibling” links.

A simple containment hierarchy tree is illustrated in Figure 7.1. The equivalent peers P8, P9 and
P10 are organized in the equivalence tree rooted at P8. Note that both P2 and P4 contain P3, but P2

has a greater depth and is hence a better parent. Similarly, P6 is connected to P5 rather than P1.

m =

Name=A
Vol.<200

Name=A
Price=30
Vol.=100

Name=A
Vol.=150

Price>10

Name=A
Price=20

Name=A
10<Price<30

P4

P5

P6 P7

P1

P2

P3

Pr

P8

P9 P10

m

Name=A

Name=A
Vol.>500

Name=A
Price=30
Volume=100

Name=A
Vol.>500

Name=A
Vol.>500

Figure 7.1: A simple pub/sub system for stock quotes with participants organized in a containment hier-
archy tree. The subscription registered by a peer is represented next to it.

7.3.3 Impact on the routing process

Several properties concerning the routing process derive from the fact that peers are organized in a
containment hierarchy tree. Those are identified and proved in this paragraph.

Property 9. The paths followed by an event (without considering the directions) form a content
distribution tree, i.e., a spanning tree rooted at the root node of the containment tree.

Proof. This property directly comes from the routing process implemented in Algorithm 21. Indeed,
consider a peer P that publishes event e. Since P is interested in e, it forwards it to all its neighbors,

113

including its upstream peer. Because of the containment hierarchy, this latter is also interested in
e and hence forwards it to all its neighbors except P . Recursively, e reaches the root node. Now a
peer that receives e from its upstream neighbor forwards it to its downstream peers if it is interested
in it. Otherwise, it just discards it. Consequently, the paths followed by event e form a spanning
tree, rooted at the root node of the containment tree.

Property 10. The leaves of a content distribution tree are either false positives or peers that are
leaf nodes in the tree hierarchy. The inner nodes of the content distribution tree are all true positives
(peers interested in the message and that received it).

Proof. Consider a peer P that receives event e, such that P is a leaf in the content distribution tree
of event e. Suppose that P is not a leaf in the content hierarchy tree. Then, P was not interested in
e, otherwise it would have forwarded it to its downstream neighbors and would not be a leaf in the
content distribution tree of event e. As a consequence, P is either a leaf in the content distribution
tree, or a false positive. Now suppose that P is not a leaf in the content distribution tree, i.e., an
inner node. Then, it forwarded e to its downstream neighbors. Hence, it was interested in e, and is
a true positive.

Property 11. There are no false negatives in our system.

Proof. Consider event e and a peer P that is interested in it. Because of the containment hierarchy
tree, all ancestors of P in the hierarchy, including the root node, are also interested in e. Now
consider the peer Pe that originally published e. Then if Pe is an ancestor of P , because of the
routing process, e is forwarded to P . Now if Pe is not an ancestor of P , let Pc be the common
ancestor of Pe and P . Because of the containment hierarchy, all ancestors of Pe are interested in
e, and hence, because of the routing process, Pc receives e. Then, as previously explained, e is
forwarded to P .

In addition, the containment hierarchy tree topology enables to minimize the occurrence of false
positives. Indeed, the fact that a peer P has for parent the peer of highest possible depth that
contains it means that a message e has a greater chance of being discarded on the way from the root
node (or the common ancestor of peer P and the peer that originally published e) to P . If event e
traverses all of P ’s ancestors, it means that these peers were interested in the message and there is
a good chance that P is also interested in it.

We wish to point out that false positives can only be avoided by having each peer know about
its neighbors’ interests, which conflicts with our design guidelines.

Finally, routing is efficient in terms of bandwidth usage. Indeed, only the leaves of the spanning
tree followed by a message may be false positives. All other nodes that are involved in the routing
process of event e are interested in it.

A simple example is illustrated in figure 7.1, where peer P5 publishes message m. The path
followed by m is highlighted by the arrows.

7.3.4 Maintaining the containment hierarchy tree

We have implemented several peers management algorithms to maintain the containment hierarchy
tree when peers dynamically join and leave the system. Those algorithms are described in this
section. We would like to point out that these algorithms are executed only when a peer joins or
leaves the system, which we assume to happen at a much lower frequency than the publication of
messages. As previously discussed, the algorithm executed for routing such messages is trivial and
extremely efficient.

114

Algorithm 22 Recursive Join algorithm: On receiving JOIN (Q,SQ, d, s) at peer P
1: if SP ∼ SQ then
2: if P has less than L equivalent children then
3: Send reply JOIN REPLY (P,∼, d + 1) to Q
4: else
5: Choose an equivalent child P∼i , uniformly at random.
6: Send JOIN (Q, SQ, d + 1) to P∼i
7: end if
8: end if
9: if SP ⊃ SQ then

10: Send JOIN REPLY (P,⊃, d + 1, #children) to Q
11: for all Non equivalent child Pi do
12: Send JOIN (Q, SQ, d + 1, #children) to Pi

13: end for
14: end if
15: {FOR REORGANIZATION AND CONNECTION BALANCING PURPOSES}
16: if SP ⊂ SQ then
17: Send reply JOIN REPLY (P,⊂, d + 1, s) to Q
18: end if
19: if there are no relations between SP and SQ then
20: for all non equivalent children Pi do
21: Send JOIN (Q, SQ, d + 1, #children) to Pi

22: end for
23: end if

Algorithm 23 Joining procedure for peer Q
1: {FIRST PHASE: CONNECTION PHASE}
2: if JOIN REPLY (P,∼, dP , s) ∈ {JOIN REPLY }∼ then
3: Send JOIN REQUEST (Q,∼) to P
4: else
5: if {JOIN REPLY }⊃ 6= ∅ then
6: Select JOIN REPLY (P,⊃, dP , s) with maximal dP and minimal s
7: Send JOIN REQUEST (Q) to P
8: else
9: Send JOIN REQUEST (Q) to Root

10: end if
11: end if
12: {SECOND PHASE: REORGANIZATION PHASE}
13: for all JOIN REPLY (P,⊂, dP , s) ∈ {JOIN REPLY }⊂ do
14: if dP ≤ dQ then
15: Send REORG(Q) to P
16: end if
17: end for
18: {THIRD PHASE: CONNECTIONS BALANCING PHASE}
19: Sort {JOIN REPLY (P,⊂, dP = dQ + 1, s)}, by increasing s
20: for all JOIN REPLY (P,⊂, dP , s) ∈ {JOIN REPLY (P,⊂, dP = dQ + 1, s)} do
21: if #children < s then
22: Send REORG(Q) to P
23: end if
24: end for

115

Join algorithm

Let Q be a new peer that wishes to join the system and register subscription SQ. In order to insert
Q in the tree topology, the system is first probed to find adequate containment relationships between
SQ and the other registered subscriptions. For that purpose, Q sends a join message to some node R
whose subscription contains SQ (a matching node can be found by starting from any peer and moving
upward the tree). As Q will be inserted in the subtree rooted at R, one will typically choose R as the
root node of the system, but it may be sometimes desirable to choose another node for offloading the
root. The join message is then propagated recursively downward the subtree and processed at each
encountered peer. The joining algorithm executed at such a peer P , with registered subscription
SP , is described in Algorithm 22 and explained as follows.

If SP ∼ SQ, then P is an equivalent peer. Then, Q must belong to the same equivalent tree as
peer P . If P has less than L equivalent children, it can accept an additional child and hence sends
a JOIN REPLY message to Q, indicating that P is an equivalent peer of depth d + 1 (lines 2− 4).
Note that peers do not know their depth, but learn it when they receive JOIN messages. Now if the
number of equivalent children that P has is above the allowed degree L, then P propagates the JOIN
message downstream, to an equivalent peer chosen uniformly at random, and the same procedure
will apply there (lines 5−6). Choosing the peer uniformly at random allows the equivalent tree to be
balanced. Also, to prevent the root of an equivalence tree to be overloaded, that node has a smaller
degree than the degree L of the equivalence tree. That is, it is allowed to have only a certain number
of equivalent children, smaller than L. Practically, the degree at the roots of equivalence trees is a
certain fraction L

r of the tree’s degree L. Note that a peer that does not have any equivalent children
is considered as the root of an equivalence tree (with only that peer). Also, a peer that has some
equivalent children but whose parent is not an equivalent peer is the root of a “real” equivalence
tree. Hence, only peers that have an equivalent parent have a degree of L, at most. Other peers
always have less than a certain fraction of L, L

r , equivalent children. A peer learnt that its parent is
an equivalent peer when it actually joined the system with the joining procedure (in Algorithm 23,
to be explained shortly).

If SP ⊃ SQ, then P is a potential candidate for being Q’s parent. Hence, it sends a JOIN REPLY
to Q, indicating that it contains it. It also indicates its depth and the number of children that it
currently has, with the #children function (line 10). However, there may be better candidates
downstream. Indeed, recall that according to the containment-based metric, peers have for parent
a peer of highest depth, that contains it. Hence, P propagates the JOIN message to its (non
equivalent) children, indicating in it the number of children that it currently has (lines 11− 13).

Next, we proceed with the reorganization phase, which might lead to moving some existing peers
so as to become Q’s children. Indeed, when Q has connected to a parent in the tree, some other peers
may now be closer to Q than their actual parent in the tree. Hence, if neither SP ∼ SQ or SP ⊃ SQ,
P checks if it is contained by Q. If it is the case, then P might be moved to become Q’s child (lines
18− 20). Hence, P sends a JOIN REPLY message to Q, indicating that it is contained by Q, along
with its depth. P also indicates the number of children that its parent has, for connection balancing
purposes. Indeed, when peer Q receives such a JOIN REPLY (⊂) message from P , it might decide
to move P as one of its child even if P ’s depth remains the same, i.e., even if its position in the
containment hierarchy is not improved. This will enable to unload P ’s parent if this latter has a
large number of children. Hence, amongst the peers whose depth remains unchanged if they become
one of its children, Q first reorganizes the peers whose parent has the largest number of children. It
is important to note that at peer P , the parameter s included in a received JOIN message is always
the number of children of its parent. Indeed, a peer that propagates a JOIN message downstream
always includes the number of children that it currently has, with the #children function (except
in an equivalence tree).

Finally, if there are no relationships between SP and SQ, then it is still possible for its children to
be reorganized (since the containment relationship is not a total order). Consequently, P propagates
the JOIN message to its non equivalent children (lines 21− 25).

116

Peer Q then uses the results of this probing phase to actually join the tree. The procedure is
detailed in Algorithm 23. Peer Q first connects to a parent that is either an equivalent peer, if any
(lines 2− 3), or a peer of highest depth dP and minimal degree s, whose subscription contains Snew

(lines 5 − 7). If Q did not receive any JOIN REPLY messages from peers that contain it, then it
joins at the root of the tree topology (line 9).

Next, Q proceeds to the reorganization phase, which as previously mentioned, might lead to
moving some existing peers so as to become Q’s children. A peer P is reorganized if it is contained
by Q and if its depth is less or equal to that of Q. Hence, Q sends a REORG message to all those
peers (lines 14 − 19). Note that Q’s depth is known from the connection phase, from the dP field
that was included in the JOIN REPLY message.

Finally, Q proceeds with the connections balancing phase (lines 20 − 27). The peers that are
contained by Q, whose parent have the same depth as Q, and such that their parent have a degree
higher than Q’s, are reorganized to be Q children (in a JOIN REPLY (P,⊂, dP , s) message, s is the
number of children of P ’s parent). The peers whose parents have the highest degree are favoured.

P4

P5

P6

P7

P1

P3

P3

Pr

Name=A
Volume<150
Price<50

Q

Name=A
Price=30
Volume=100

Name=A
Volume=150

Name=A
Volume<200

Name=APrice>10

Name=A
10<Price<30

Name=A
Price=20

Figure 7.2: Peer Q has been inserted in the network with P5 as its closest peer. Peer P6 is reorganized as
Q’s child because the latter is a better parent than P5.

Alternate join algorithms

The reorganization phase introduces significant overhead in the system, in particular because it
requires additional propagations of join messages. As a consequence, we have implemented three
different flavors of the join algorithm. The first variant of the algorithm, termed full join, was
presented in Section 7.3.4 and Algorithms 22 and 23. It always performs all possible reorganizations
to obtain the most accurate containment hierarchy tree and minimize the occurrence of false positives,
at the cost of a higher complexity.

The second variant of the algorithm is termed basic join and never performs any reorganizations.
It has the lowest complexity but at the same time produces less accurate containment hierarchies with
poor load-balancing properties. That variant can be trivially derived from Algorithms 22 and 23 by
simply ignoring the reorganization and connections balancing phases. In other words, Algorithm 22
is executed until line 16 and Algorithm 23 until line 11.

Finally, the third variant is termed adaptive periodic join and performs reorganizations peri-
odically or to adapt to a particular situation. Only the recursive join algorithm (probing phase,
Algorithm 22) is modified, the joining procedure remains unchanged (Algorithm 23). It works as
follows. Consider peer P where the recursive joining algorithm is executed.

117

1. If P or its parent have exceeded a given connections limit LAPJ , then the full joining algorithm
is executed.

2. Otherwise, the full joining algorithm is executed with probability γAPJ and the simple joining
algorithm with probability 1− γAPJ . Parameter γAPJ will be referred to as the reorganization
rate.

In other words, the adaptive periodic joining algorithm always reorganizes the peers whose parent
have exceeded the connection limit. The others are reorganized with probability γAPJ . It reaches a
compromise between joining complexity and routing accuracy.

An example of the full join algorithm is illustrated in Figure 7.2.

Leave algorithm

We now describe the process of leaving the network. When peer P with registered subscription SP

wishes to leave the system—or when it fails—each of its children has to be reconnected to another
parent in the tree. If P is part of an equivalence tree, then we simply perform a leaf promotion:
we look for a leaf in the subtree rooted at P and promote it to P ’s position. If P is not part of
an equivalence tree, there is no trivial replacement parent for P ’s children. In fact, since peers are
stateless in the system, the best potential replacement for P known by the peers is P ’s own parent.
Therefore, the leave algorithm simply consists in reconnecting P ’s children to their grand-parent.
It follows that every peer needs to know its grand-parent (or several ancestors for increased fault-
tolerance); this is achieved with trivial modifications to the join algorithm and negligible additional
control traffic. This algorithm, which consists in reconnecting at the parent of the leaving peer, will
be referred to as the basic leave algorithm.

Although extremely simple, the basic leave algorithm may cause the accuracy of the containment
hierarchy tree to degrade over time. This is due to the fact that P ’s parent may not be the closest
peer in the system for P ’s children, although the accuracy of the containment hierarchy tree should
not be significantly affected. In addition, P ’s parent may suffer from the increased number of
connections that it has to manage. The arrival of new peers enables to cope with these issues in
some extent, since the full or the adaptive periodic joining algorithms can enhance the accuracy of
the containment tree and implement connections balancing techniques. However, to maintain an
optimal tree and to handle the case where P ’s parent also fails, it is possible for P ’s children to
look for another replacement parent by executing the join algorithm, typically starting from some
ancestor, at the price of higher overhead. Note that if the containment tree was formerly optimal, a
peer that has rejoined the system can not have a higher depth than before. Hence the other peers
are not susceptible to be reorganized and it is sufficient to use the basic join algorithm. Also, note
that if we wish to maintain an optimal tree, additional peers among P ’s descendants might need to
re-evaluate their position as well if P ’s departure has decreased their depth. We will refer to this
algorithm as the full leave algorithm.

7.3.5 Scalability issues

The instantiation of our system using the containment-based metric organizes peers in tree topolo-
gies. It follows that high-level peers, particularly the root node, receive a high number of messages.
As these peers have very “broad” interests, it is not unnatural that they receive a high percentage of
published messages—they are interested in those messages. They are also more exposed to control
messages from the peer management algorithms, but this traffic can be reduced by confining the
join and reorganization procedures within selected subtrees.

The most serious scalability issue comes from the fact that high-level peers may have a large
number of neighbors to forward messages to (recall that both the routing process and the peers
management algorithms are straightforward and demand very little resources). To address this
problem, we have performed slight modifications to our original protocol to reduce by a great deal

118

the bandwidth utilization at the peers. Informally, to reduce the bandwidth usage of an overloaded
peer P , we form some clusters among P ’s children. Messages are then propagated by P to only one
peer in each cluster (chosen uniformely at random), and are further propagated inside the cluster
with sibling links.

This approach enables to reduce greatly the bandwidth requirements of peers, in particular those
that have a large number of children. However, the limitation of this approach is that it slows down
the propagation of messages in the system. It is therefore desirable to use it only for high-level peers.

The experimental evaluation of the techniques presented in this section can be found in Section 9.1.
We now present an organization of peers based on subscriptions’ similarities.

7.4 Organizing Peers according to Similarity

7.4.1 Overview

Motivations

As previously mentioned, the routing protocol used to disseminate messages does not make specific
assumptions about the proximity metric used to organize the peers in semantic communities. We
now present a generalization of the containment-based proximity designed to alleviate two of its
limitations: (1) its poor applicability to subscription language and/or consumer workloads with
little or no containment relationships, and (2) its tree topologies that may be fragile with dynamic
consumer populations. This generalization is based on the general principle of interest similarity.

Similarity metric

We first define the notion of interest similarity as follows.

Definition 7 (Interest similarity). Consider two interests I1 and I2. Let I be the universe of all
possible interests. We define the similarity between I1 and I2, noted Sim(I1, I2), as a function from
I2 in the interval [0, 1] that returns the probability that a message m matching I1 also matches I2.

We then define our proximity metric based on interest similarity, which we refer to as fs:

Definition 8 (Proximity metric fs). fs : I2 7→ [0, 1] :

fs(I1, I2) =
Sim(I1, I2) + Sim(I2, I1)

2

Note that the proximity metric fs is symmetric, that is, if I1 is close to I2 according to fs, then
I2 is equally close to I1. However, the similarity function is a priori not symmetric.

7.4.2 Network description

We now describe the hierarchical organization of peers based on the proximity metric fs. A peer
P with registered interest I has a set of n neighbors Pi, which are the n peers in the system with
interests closest to I according to fs (in case of equality, the peers with less connections are chosen).
In turn, P is for a certain number of other peers in the system, one of the n best peers according
to fs (such that I is amongst the n interests in the system closest to their subscription according to
fs). P and those peers are thus neighbors.

Note that if the similarity metric is well designed, fs(I1, I2) is maximal if I1 and I2 are equivalent
(ideally, fs(I1, I2) = 1). Hence, as in the tree topology of Section 7.3, equivalent peers are also
neighbors in this organization based on similarity.

This approach effectively organizes the peers in “interest communities,” i.e., groups of peers that
share similar interests. Because of the definition of the similarity function and the proximity metric

119

fs, this organization optimizes routing accuracy by minimizing the number of false positives and
negatives exchanged by neighbor peers. To maintain good connectivity between the communities
and prevent some of them from being closed (because their interests do not compare with the other
communities’ interests), P also chooses r parents at random in the system, in addition to the n peers
selected with fs. Routing proceeds as described in Section 7.2.1.

7.4.3 Consequences

Obviously, if n+ r > 1, the peers are organized in graphs instead of trees. We can also observe that,
if we set n = 1, r = 0 and we define Sim(I1, I2) = 1 if I1 ⊇ I2 and Sim(I1, I2) = 0 otherwise, peers
are organized using a containment-based metric similarly to the topology of Section 7.3.

The organization of peers in graphs rather than trees benefits from several advantages. It has
better connectivity and is hence more resilient to failures and frequent arrivals or departures. Also,
it has better flexibility and offers higher scalability since the traffic load is more evenly distributed
amongst the peers. Finally, this model can be applied to any subscription languages and consumer
workloads even if the subscriptions share little or no containment relationships.

However, one major drawback of this approach is that it does not prevent the occurrences of false
negatives in the system (unless the definition of Sim(I1, I2) is based on containment). This problem
is alleviated by the fact that a peer has several parents in the system and, hence, a message may reach
the peer via multiple paths. Also, we can enhance the routing algorithm to have even better control
on false positives and false negatives. For instance, we can add an indulgence factor γ that allows a
peer to forward a message even if it is not interested in it. This process, which may be performed
only γ times per message, is expected to reduce the false negatives ratio, notably by improving the
“traversal” of messages between communities. Another improvement is to add a random neighbor
forwarding probability ρ, which controls the probability for a peer P to actually forward a message
to its r random neighbors. The base case, ρ = 100%, produces fewer false negatives but more false
positives; lower values of ρ have the opposite effect.

In addition, the total number of neighbors that a peer has to manage is not bounded a priori.
However, we expect that for large enough populations, the number of connections should be fairly
distributed. That is, there is no “best peer for everybody” in the system. Besides, a given peer may
simply decide to refuse additional connections, candidate peers connecting to another, less loaded
peer.

7.4.4 Peers management

We have implemented several peers management algorithms to maintain the hierarchy graph when
peers dynamically join and leave the system. Those algorithms are described in this section. As
previously mentioned, these algorithms are executed only when a peer joins or leaves the system,
which we assume to happen at a much lower frequency than the publication of messages.

Algorithm 24 Joining procedure for peer Q
1: Send JOIN (Q, SQ) to some peer in the system
2: when enough JOIN REPLY (P, fs(SQ, SP), a) have been received or timer expires
3: Build sorted list Lf with n highest

(
P, fs(SQ, SP)

)
4: Send CONNECT to each P ∈ Lf

5: Send CONNECT to r random peers Pi /∈ Lf

6: end when

Join algorithm

Consider a new peer Q that wishes to join the system and register subscription SQ. The principle of
the join algorithm is similar to that of the containment hierarchy tree topology of Section 7.3, and
is described in Algorithms 25 and 24.

120

Algorithm 25 Join algorithm: On receiving JOIN (Q,SQ) at peer P
1: Send JOIN REPLY (P, fs(SQ, SP), a) to Q
2: Forward the JOIN message to all neighbors except the one from which the message was originally received
3: Declare Sfn such that (Pfn , fs(SP , Sfn)) is the last element in Lf

4: if fs(SQ, SP) > fs(SP , Sfn) then
5: Send DISCONNECT to Pfn

6: Send CONNECT to Q
7: Insert

(
Q, fs(SQ, SP)

)
in Lf

8: end if

The system is first probed to find the n best neighbors for Q. Those peers are the n peers with
subscription closest to SQ according to fs. However, unlike the containment metric, the similarity
metric fs is not transitive. In other words, if I1 is close to I2 and I2 is close to I3, I1 may not be close
to I3. Hence, the entire network (or a reasonably large portion of it) must be probed so as to collect
proximity results (lines 1− 2 in Algorithm 25). For that purpose, Q sends a JOIN message to some
peer in the system, which is then broadcast in the system. To avoid loops, a peer ignores additional
instances of the same JOIN messages (at the cost of temporary and negligible state maintenance).

Q then uses the results of this probing phase to actually join the system. When it has received a
sufficient number of JOIN REPLY messages, or after expiration of a timer, it selects the n peers with
the highest proximity results and sends them a CONNECT message (lines 2− 4 in Algorithm 24).
Also, Q sends a CONNECT message to r random peers different than the previous ones (line 5 in
Algorithm 24).

Next, Q proceeds with the reorganization phase, whose principle is the same as in Section 7.3.
Each peer in the system maintains a list Lf of its n best neighbors, sorted according to the proximity
results of their subscriptions with its own: Lf = {(Pfi

, fs(SP , Sfi
))}. The list is built when the peer

originally joins the system (line 3 in Algorithm 24).
When peer Q has joined the system, some other peers may now be closer to Q than one of their

actual neighbors, precisely the one with the smallest proximity result in their n best neighbors list.
Hence, they disconnect from that neighbor, connect to Q instead and update their list (lines 2 − 7
in Algorithm 25).

Reducing probing overhead

As previously mentioned, when a new peer Q joins the system, a large enough portion of the network
must be probed so as to collect proximity results. Hence, subsequently to this probing phase, peer
Q receives a potentially large number of replies. To limit the scope of this problem, we can use a
slightly modified version of the join mechanism. Informally, the principle of the improved scheme is
the following. Consider a peer P that receives a JOIN (Q,SQ) message from neighbor peer P ′, for
the joining of new peer Q. Instead of immediately sending the reply with its proximity results to peer
Q (as in line 1 in Algorithm 25), P waits for a reply from its neighbors (except P ′). After a sufficient
number of replies have been received, or after expiration of a timer, P aggregates the results so as
to select only the n peers (at most) with the n best proximity results, and r other different peers
(at most), chosen uniformely at random. P then sends the results to peer P ′. Consequently, join
replies follow the reverse path of join requests and peer Q only receives a reply from the peer in the
system to which it issued its JOIN request.

Leave algorithm

We now describe the process of leaving the network. When peer P with registered subscription SP

wishes to leave the system—or when it fails—each of its neighbors for which P was either one of the
n best peers in the system (which we refer to as a semantic neighbor) or a random neighbor has to
find another neighbor.

One approach consists in having each of P ’s neighbors rejoin the system with the mechanisms
described above. This approach, which we refer to as the full leave scheme enables to maintain the

121

most accurate topology. However, it introduces significant overhead in the system. Consequently,
we propose an alternate scheme, termed the basic leave mechanism.

The basic leave mechanism works as follows. Let P ′ be one of P ’s neighbors. If P is a random
neighbor for P ′, then P ′ has to find another random neighbor in the system. Then, if P leaves the
system “properly”, P ′ can simply choose one of P ’s semantic neighbors (one of P ’s best neighbors).
As a result, the new random neighbor of P ′ belongs to the same semantic community as the former
one (P). Otherwise, P ′ chooses one of the random neighbors of its neighbors (different from its
current neighbors). Now if P is a semantic neighbor for P ′, P ′ can simply choose one peer amongst
the semantic neighbors of its own semantic neighbors (different from its current neighbors). Indeed,
it is highly unlikely that a better peer is found in a different semantic community.

The basic leave mechanism results in very little overhead in the system, since for each neighbor
P ′ of peer P , only the neighbors of the neighbors of P ′ are involved in the process. Obviously,
this approach may yield to a less accurate network. However, only a high number of consecutive
leaves may significantly degrade the accuracy of the topology. In addition, the joining of new peers
improves the overall accuracy of the system, thanks to the reorganization procedure.

7.5 Conclusion

We have studied a novel approach to pub/sub, based on the P2P paradigm, that specifically address
some of the limitations of existing systems. In particular, our network does not rely on a dedi-
cated network of content routers, nor on complex filtering and forwarding algorithms: it features
an extremely simple routing process that requires almost no resources and no routing state to be
maintained at the peers. The price to pay for this simplicity is that routing may not be perfectly
accurate, in the sense that some peers may receive some messages that do not match their interests
(false positives), or fail to receive relevant messages (false negatives). By organizing the peers ac-
cording to adequate proximity metrics, one can limit the scope of this problem. We have proposed a
containment-based proximity metric that allows us to build a bandwidth-efficient network topology
that produces no false negatives and a minimizes the number of false positives. We have also devel-
oped a proximity metric based on subscription similarities that yields a more solid graph structure
with optimized routing accuracy in terms of false negatives and false positives. The evaluation of
these techniques will be presented in Section 9.1.

122

Chapter 8

Similarity-based proximity metric for
XML documents

The work presented here is part of an effort to determine similarity between XPath subscriptions.
There is room for improvements and refinements, but preliminary evaluation results are very promis-
ing and this work paves the way for future research.

8.1 Introduction

8.1.1 Motivations

In this chapter, we present the proximity metric based on subscriptions similarities that we imple-
mented for XML documents and XPath subscriptions. We used the proximity metric to organize the
peers in the pub/sub system that we presented in Chapter 7 in an efficient graph topology according
to their interests, so as to minimize the occurrences of false positives and false negatives. However,
our proximity metric can be used in different contexts, and to address different data management
problems.

The goal of the proximity metric is to evaluate the proximity between two given XPath expres-
sions in terms of filtering error of XML documents. That is, the error that would be induced when
filtering XML documents against one expression instead of the other. For example, for a given
subscription Si, the proximity metric enables to find in a set of subscriptions the subscription that
is closest to Si, in that filtering XML documents against that subscription instead of Si induces the
minimal error.

8.1.2 Overview

Because of Definitions 7 and 8, to implement the proximity metric fs, we need to implement a
similarity function Sim. Note that the proximity metric is a symmetric function, i.e., fs(S1, S2) =
fs(S2, S1). However, the similarity function is a priori not symmetric. We have implemented a
similarity function for XML documents and XPath subscriptions, which computes the probability
that a message matching a subscription also matches the other. For that purpose, we introduce
the notion of subscription’s expansion, a data structure that is built from a subscription and that
represents the possible constraints on the structures and contents that a document matching that
subscription may contain.

To build the subscriptions expansions, and to compute the similarity between subscriptions, we
need to have some information about the subscriptions and the XML documents. For that purpose,
we suppose that we know either the grammar that is used to express the XPath expressions and
the XML documents, or a history or synopsis of previous documents. The grammar can be either
a Document Type Descriptor, or DTD, or an XML Schema. In our current implementation, only
DTDs are supported. If the grammar is not known, then we may either use a history or a synopsis of

123

previous documents. A history contains entire XML documents that were seen previously, whereas
a synopsis is a compact representation of a history, it “factorizes” documents in a tree structure
annotated with some statistical information about them. We currently only support documents
synopsis, and we used the definition introduced in [34]. However, our function can be trivially
extended to deal with histories of documents. Note that it is often impossible to maintain a history
of documents, due to the large amount of information contained in it. In contrast, a synopsis is
a much more compact, and easy to maintain, data structure. If both the DTD and a documents
synopsis are known, then both can be used for better accuracy. Finally, when the DTD is known,
we exploit the correlations between elements specified in it, when building subscriptions expansions
and computing the similarity between subscriptions.

8.2 Document synopsis

As mentioned above, it is simply impossible to maintain the complete history of documents H (i.e.,
the full set of streaming documents). Instead, we approximate H by a concise structure, which
we refer to as the document synopsis, or simply synopsis. Our synopsis for H, denoted by synH ,
captures path statistics for documents in H, and is built on-line as XML documents stream by. The
document synopsis essentially has the same structure as an XML tree, except for two differences.
First, the root node of synH has the special label “/”. Second, each non-root node t in synH

has a frequency associated with it, which we denote by freq(t). Intuitively, if l1/l2/ · · · /ln is the
sequence of tag names on nodes along the path from the root to t (excluding the label for the root),
then freq(t) represents the number of documents T in H that contain a path with tag sequence
l1/l2/ · · · /ln originating at the root of T . The frequency for the root node of synH is set to N , the
number of documents in H.

a b

x

a

c db c

b

x

a

dc

(b) T2

aa

dc

(a) T1

b

x

a

(c) T3

c

a

db a

d

b

x

a

cb

(d) Skeleton tree for T1

d

b

x

a

db

(e) Document Synopsis

da

/.

dc

c

3

3

2 3 2
2

21

1

3 b

x

a

(f) Compressed Document Synopsis

/.

3

3 3

_ _

_
2.3

1.5

1.5

Figure 8.1: Example Documents, Skeleton Tree, Document Synopsis and Compressed Document Synopsis.

As XML documents stream by, synH is incrementally maintained as follows. For each arriving
document T , we first construct the skeleton tree Ts for document T . In the skeleton tree Ts, each
node has at most one child with a given tag. Ts is built from T by simply coalescing two children of a

124

node in T if they share a common tag. Clearly, by traversing nodes in T in a top-down fashion, and
coalescing child nodes with common tags, we can construct Ts from T in a single pass (using an event-
based XML parser). As an example, Figure 8.1(d) depicts the skeleton tree for the XML-document
tree in Figure 8.1(a).

Next, we use Ts to update the statistics maintained in our document synopsis synH as follows.
For each path in Ts, with tag sequence say l1/l2/ · · · /ln, let t be the last node on the corresponding
(unique) path in synH . We increment freq(t) by 1. Figure 8.1(e) shows the document tree (with
node frequencies) for the XML trees T1, T2, and T3 in Figure 8.1(a) to (c). Note that it is possible to
further compress synH by using techniques similar in spirit to the methods employed by Aboulnaga
et al. [3] for summarizing path trees. The key idea is to merge nodes with the lowest frequencies and
store, with each merged node, the average of the original frequencies for nodes in synH that were
merged. This is illustrated in Figure 8.1(f) for the document tree in Figure 8.1(e), and with the
label “-” used to indicate merge nodes. We currently only support uncompressed synopsis, However,
our proximity metric can be easily extended to work when synH is compressed.

8.3 Correlations in DTD

In a DTD, the correlations between elements come in the form of two different constraints:

1. Constraints on the cardinality of single elements. Those constraints are expressed using regular
expression operators indicated next to an element. The following operators are supported: ?
which means that the considered element may appear zero or one time but not more, ∗ for any
number of instances, + for at least one instance, and nothing (i.e. no operator) for exactly one
instance of the element.

2. Constraints expressed as choices in groups of elements. Those constraints are expressed using
the | (OR) logical operator, and come in the form (a|b), which means that either element a or
b may appear, but not both.

When either element a or element b may appear, but not both, we say that a and b are in
opposition. This happens when a and b are found in a element group separated by the | operator:
(a|b). Note that the definition extends to several different elements: (a1| · · · |an). Then elements
a1 · · · an are in opposition with each other. In addition, an element may be in opposition with itself.
This happens when the regular expression operator appended to an element is either ? or nothing,
for example: a?. Then, element a is in opposition with itself, in the sense that no two elements with
name a may appear simultaneously.

Consequently, we implemented a DTD parser, that parses a DTD, examines the aforementioned
constraints, and produces an understandable data structure. The parsing involves the development
of regular expression operators and the | operator in element groups, according to simple rules, so
as to determine the elements that are in opposition. Those rules are:

• As previously mentioned, if a? or a (with no cardinal) is found, then element a is in opposition
with itself.

• (a#)& is always equivalent to a∗, where # and & are two different regular expression operators.
For example, (a+)? is equivalent to a∗. Element a is then not in opposition with itself.

• (a1|a2)∗ is equivalent to (a1∗, a2∗) (except for the order). Elements a1 and a2 are not in
opposition.

• (a1|a2)? is equivalent to (a1?|a2?) (except for the order). Elements a1 and a2 are in opposition.

• (a1|a2)+ 6= (a1 + |a2+) and 6= (a1+, a2+) as well. In fact, (a1|a2)+ would be equivalent to(
(a1|a2), (a1|a2) ∗

)
but this is prohibited in most DTDs, because this is not a deterministic

125

expression (a given element cannot appear more than once). In any case, elements a1 and a2

are not in opposition.

• (a1|a2). As previously mentioned, elements a1 and a2 are in opposition.

The rules exposed above trivially extend to the case of more than two elements in a group, or in
the case of multiple groups. Also, the notion of elements opposition trivially extends to the case of
multiple elements. Note that the opposition relation is transitive, i.e., if element a1 is in opposition
with a2 and a2 is in opposition with a3, then a1 is in opposition with a3.

Exploiting the correlations between elements specified in a DTD enables to improve the correct-
ness and the accuracy of our proximity metric. To the best of our knowledge, this work is the first
attempt to implement a function that estimates the similarity between tree patterns in terms of
matching documents and that takes into account the correlations between element names specified
in the DTD.

An example of correlations between elements that can be found in a DTD is illustrated in
Figure 8.2(a).

8.4 Subscription expansion

8.4.1 Overview

Consider subscription S. The expansion ES of subscription S is a tree of nodes where each node N
has the following attributes:

• a label label(N), is a valid element name. Hence, label(N) cannot be a wildcard or an ellipsis
as in the case of XPath expressions.

• a probability 0 < PrN ≤ 1.

• a class class(N) ∈ N.

• one or more predicates on the value of element with name label(N).

• a set of correlation groups, each consists of a set of nodes among N ’s children.

ES has an artificial root node termed rES
.

Roughly speaking, ES is a compact representation of all -or some of- the possible documents
that match subscription S. More precisely, it contains the possible constraints on the structure and
the values that documents matching S may have. The label of a node N in ES refers to the name
of an element in a document that match S. Its probability refers to the likeliness that an element
with name label(N) and that verifies the predicates of node N occurs, given that all ancestor nodes
have occurred. Its class identifies the node in S that it refers to: two nodes in ES with the same
parent and the same class do not occur at the same time (at least, this is not explicitly specified by
subscription S). The list of correlations groups determine the children of N that are in opposition
according to the DTD. Each correlations group contains some children that are in opposition with
each others. Of course, if the DTD is not known, then the nodes in ES do not maintain any
correlation groups. Finally, the predicates describe constraints on the element’s values or attributes.
We currently support several common types for elements’ values and attributes, some of which are
char, strings, boolean, date and the usual numerical types int, float, etc. The operators are the
equality (=) and order relation (>), plus the string prefix operator (≺), the string postfix operator
(�), and the substring operator (∈).

The computation of the node probabilities is based on either the knowledge of the DTD, or on a
synopsis of previous documents, or both. Also, note that in the case where a subscription S contains
one or more ancestor/descendant (//) operators, the expansion of S can be infinite if there are
loops in the DTD. In that case, we truncate the expansion to a predefined length or to a minimum
probability τ .

126

media

Book CD

Author Interpreter

DVD

Title ProducerAuthorTitle DirectorActorProducer

LastFirstRoleLastFirst LastFirst InstrumentLastFirst

<!ELEMENT media ((Book,CD,DVD)*) >
<!ELEMENT Book ((Author|Title)+) >
<!ELEMENT Author ((First|Last)+) >
<!ELEMENT CD (Author+,(Producer | Interpreter)?) >
<!ELEMENT Interpreter ((First|Last)+ , Instrument*) >
<!ELEMENT DVD (Title?, Actor+ , (Producer | Director)?) >
<!ELEMENT Actor ((First|Last)+,Role?) >
<!ELEMENT Director ((First|Last)+) >

LastFirst

(a)

media

Book

Author

*

First

*

="Baudelaire" ="Bob"

Last

*

"AB"

1

2 3

(b)

Figure 8.2: (a) A simple DTD that describes media libraries/databases. The DTD is represented as plain
text (as found in a real DTD file), and as a tree below. Note the correlations between elements specified
in the text representation. In particular, both elements “Producer” and “Director” cannot be found under
element “DVD”. Also, both elements “Producer” and “Interpreter” cannot be found under element “CD”
(b) Graphical representation of subscription S, that queries for a book with author’s last name “Baudelaire”
and any media with an element with a value postfix (that starts with) of “AB” and an element with “Bob”
as first name. The wildcards have been numbered for clarity.

media

Book

Author

1

1

CD

Actor

DVD

Author

1/2 1/2

[0]

[0]

[1][1]

[1][1] Director [1]
1 1

First
1

[0]

1/2 1/2

Producer [0]

1

="Baudelaire" ="Bob"

Last First[0] [0]

="Bob"

First [0]

="Bob"

1
Producer [0] Title [0]

1/2 1/2

CGs = {1,4}

1 4

1

"AB" "AB""AB"

Figure 8.3: Expansion ES of subscription S of Figure 8.3. A node is identified by its label. Its probability
is indicated next to the branch linking it to its parent. Its class is indicated in brackets. Its predicates, if
any, are indicated in circles below.

Example 5. An example of the notion of subscription expansion is illustrated in Figure 8.3. The
expansion of subscription S of Figure 8.2(b) is represented. Nodes “CD” and “DVD” below “media”
are the possible occurrences of the first “*” in S, below “media”. They refer to the same node
in S and thus have the same class. In contrast, node Book refers to a different node in S (node
“Book”) and has a different class in ES. Nodes “Actor” and “Director” below “DVD” are the
possible occurrences of the third “*” in S, given that their parent occurred (probability of 1

2). Hence,
pattern /media/CD/Actor has a 1

4 likeliness of occurring in a document that matches S. Similarly,
nodes “Producer” and “Title” below “DVD” are the possible occurrences of the second “*” in S.
In contrast, Node “Producer” below “CD” is the only possible occurrence of the same wildcard in
S. Also, node “Author” is the only possible occurrence of the third “*” in S. This is due to the
correlations between elements defined in the DTD of Figure 8.2(a), and will be explained shortly.

8.4.2 Definitions

In the rest of this section, we use the same notations as in section 5.6.1: rES
→ N denotes the single

path pattern that comprises all the nodes from rES
to N in ES . Similarly, rS → u denotes the single

path pattern from node rS (subscription S’s root node) to node u in subscription S.

127

We say that node N matches node u iff label(N) is equal or less general than label(u). Given the
definition of label(N), it comes that: N matches u iff label(u) is a wildcard (∗) or an ellipsis(//),
or otherwise if label(N) = label(u). Also, we say that rES

→ N matches rS → u iff a document
that would only consist of the tree of element names rES

→ N and that verifies the node predicates,
matches the tree pattern rS → u. We subsequently say that rES

→ N represents a possible occurence
of the single path tree pattern rS → u.

Algorithm 26 Expand recursive function: expand(u, N)
1: if u is not // or ∗ then
2: Create node N1 and insert as N ’s child
3: label(N1)← label(u)
4: prob(N1)← 1
5: Increment highest class at N
6: class(N1)← highest class at N
7: for all ui ∈ children(u) do
8: expand(ui, N1)
9: end for

10: end if
11: if u is ∗ then
12: Increment highest class at N
13: for all possible occurrences ei of node u do
14: Create node Ni and insert as N ’s child
15: label(Ni)← ei

16: class(Ni)← highest class at N
17: Adjust prob(Ni)
18: for all uj ∈ children(u) do
19: expand(ui, Ni)
20: end for
21: if some uj ∈ children(u) could not be expanded then
22: Delete tree(Ni) from ES

23: end if
24: end for
25: end if
26: if u is // then
27: expand(children(u), N)
28: if depth(N) ≥ ∆ or probability(rES

→ N) ≤ τ then
29: return
30: end if
31: for all possible element ei child of N do
32: Create node Ni and insert as N ’s child
33: label(Ni)← ei

34: class(N1)← highest class at N
35: Adjust prob(Ni)
36: expand(u, Ni)
37: if some uj ∈ children(u) could not be expanded then
38: Delete tree(Ni) from ES

39: end if
40: end for
41: end if

8.4.3 Building subscriptions expansions

Expand recursive function

In this paragraph, we describe the expand function which builds the expansion ES of a subscription
S. The expand function works recursively on the nodes of S. For each such node u, the expand
function points to a node N in ES , such that the single-path tree of element names rES

→ N is a
possible occurence of the single-path pattern ru → parent(u), where parent(u) is u’s ancestor in S.
That is, rES

→ N is a possible tree of element names in a document that matches ru → parent(u).
Then, the recursive function expand(u, N) determines the possible trees of element names that start
with rES

→ N and that are possible occurences of the pattern ru → tree(u).
For that purpose, we first have to find the possible occurences of the pattern ru → u given that

rES
→ N is the possible current occurence of ru → parent(u). It is then equivalent to find all the

nodes Ni such that rES
→ N → Ni is a possible occurence of ru → parent(u)→ u.

128

Then, because of the definition of ES , it follows that if label(u) 6= ∗ and label(u) 6= //, then a
single node N1 is built in ES and appended as child of N . It has label label(u) and probability 1
(lines 2 − 4). Indeed, node N1 is the only possible occurrence of node u. Its class is such that no
other children of N have the same class (for that purpose, a counter is maintained and incremented
at node N) (lines 5− 6). Then, rES

→ N → N1 being the current possible occurrence of ru → u, we
proceed recursively to find the possible occurrences of ru → ui for each ui child of u (lines 7− 9).

Now if label(u) = ∗, then a set of nodes {Ni ∈ children(N)} = A with the same class is appended
as N ’s children. Each node Ni corresponds to a possible occurrence of node u (lines 14 − 16). Its
probability is adjusted (line 17) to represent the probability that it occurs, that is, that rES

→ Ni

actually occurs given that rES
→ N has. The determination of the set A and their probabilities is

based on either the knowledge of the DTD and/or a synopsis of previous documents.

1. If the DTD is known, then set A corresponds to the set of the possible children of the element
with name label(N) in the DTD. In other words, all the nodes Ni such that rES

→ N → Ni is
a valid tree of element names.

• If we have no synopsis, the probability is computed as 1 over the number of possible
children. That is, we suppose that the distribution of element names in documents is
uniform.

• Otherwise, we use the synopsis to compute the distribution of the elements based on the
previous documents. This can be done easily by parsing the synopsis against ES . Each
node in the synopsis contains the number of documents that had the single-path tree of
elements ES → N Note that if the synopsis does not contain the pattern ES → N , then
the process will stop here and N will have no children. Indeed, if the synopsis is large
enough, we estimate that no documents can have a pattern equal or longer than ES → N .

2. If the DTD is not known, then we also use the synopsis to determine set A. We proceed as
in the case of the DTD except that the synopsis is parsed recursively against ES . We then
proceed as previously explained for the estimation of the nodes probabilities.

Finally, for all possible occurrences rES
→ N → Ni of ru → u, we proceed recursively to find the

possible occurrences of ru → tree(u) (lines 18−20). Note that, although rES
→ N → Ni is a possible

occurrence of ru → u, it may happen that we cannot find possible occurrences of ru → tree(u) that
start with rES

→ N → Ni. We then delete all the nodes that belong to tree(Ni) (lines 21− 23).
Now if label(u) = //, then we simply proceed according to the definition of the ancestor/descendant

operator //. That is, node u is first mapped with “nothing”. Then, rES
→ N is a possible occurrence

of ru → u, and we then directly proceed recursively with its child to find the possible occurrences
of ru → tree(u) that start with rES

→ N (line 27). Second, node u is mapped with a node with
any label and child u. Then, the procedure is similar to the case where label(u) = ∗: all nodes Ni

such that rES
→ N → Ni is a valid tree of element names are possible occurrences of ru → u (lines

32 − 35). We then proceed recursively to find the possible occurrences of ru → tree(u) (lines 36),
and we remove nodes that yield no solutions (lines 37− 39).

Note that although not described in the algorithm, element values are handled quite easily as
follows: each time a node or a set of nodes that match node u are appended as node N ’s children, we
copy the predicate values of node u at each of those nodes. Also, note that as previously mentioned,
in the case where label(u) = //, ES can be infinite if there are loops in the DTD. To prevent this
from happening, we simply stop the procedure if node N has exceeded a given predefined depth ∆
or if the probability of path rES

→ N is smaller than a predefined minimum probability τ (lines
28− 30).

Determining correlation groups

Finally, if we have knowledge of the DTD, the list of correlations groups for each node N in ES

is built. Note that this phase occurs after ES has been built with the expand function previously

129

described. This is due to the fact that until the whole ES has been built, nodes in ES are not
permanent (since subtrees may be pruned).

For that purpose, we proceed iteratively with each child node Ni of node N . If a correlations
group already exists that contains Ni, we proceed with the next node. Otherwise, we use our DTD
parser to determine the nodes Nj ∈ children(N), that are in opposition with Ni and with each
others. We then append a correlation group that contains those nodes and node Ni, to node N .

Note that the determination of the correlation groups at node N may result in some nodes
being deleted, along with all their descendants. This happens when a node Ni ∈ children(N) has
probability 1 and belongs to a correlation groups. Then, all the other nodes Nj in that correlations
groups must be deleted, along with their descendants. Indeed, node Ni has probability 1, which
means that it must occur. Hence, the other nodes Nj cannot occur and have to be removed from
ES , with their descendants. Note that if some Nj also has probability 1, then the structure rES

→ N
does not yield to a correct occurence and node N itself, with all its descendants, have to be pruned.
Then, if node N have probability 1, then its parent also has to be pruned, and so on (unless
subscription S is invalid, the process stops and does not yield to the deletion of the whole ES).

Also, note that if we do not have knowledge of the DTD, then we have still exploited, to some
extent, the correlations between elements via the synopsis. Indeed, this latter contains structural
information about documents that were seen previously. Those documents are valid documents,
and are conform to the correlations specified in the DTD. Hence, when we built the subscriptions
expansions according to the synopsis, we used the structures encountered in the synopsis to determine
the possible occurences of the nodes in S. Hence, we implicitly exploited some elements correlations.

Example 6. Consider again the example illustrated in Figure 8.3. Node “Producer” below “CD” is
the only possible occurrence of the second “*” in S. Hence, it has probability 1. In addition, elements
“Producer” and “Interpreter” are in opposition in the DTD of Figure 8.2(a). As a consequence, node
“Author” becomes the only possible occurence of the third “*” in S, since “Interpreter” cannot appear
simultaneously with “Producer”. In addition, elements “Producer” and “Director” under “DVD” are
in opposition according to the DTD. Consequently, node “DVD” in ES contains a correlation group
CGs = {1, 4} (indicated next to it in Figure 8.3), that indicates that node number 1 below “DVD”,
i.e. “Producer”, and node number 4, “Director”, are in opposition.

8.5 Similarity function: principle

In this section, we present the similarity function that we implemented for XML documents and
XPath tree patterns. As the details of the complete algorithm are rather intricate, we only explain
in this section the principle of the similarity function in simple terms, and illustrate it with some
examples. This description is sufficient for a global understanding of the similarity function.

8.5.1 Principle

The similarity function Sim(S1, S2) works recursively on the nodes of S2 and the nodes of S1’s
expansion, ES1 . Recall that Sim(S1, S2) returns the probability that a document matching S1 also
matches S2, and is not symmetric.

The principle of the similarity function is pretty similar to that of the containment algorithms
that we presented in Section 5 and the one in [34]. In fact, consider a document D that matches S1.
We want to evaluate the probability that it matches S2. The idea is to use S1’s expansion rather S1.
Indeed, ES1 represents all the possible structures (with the associated contents) that a document
that matches S1 can have, as well as the probabilities of each structure. Hence, the principle is
to find paths in ES1 that are equivalent or contained by a given path in S2. We then say that
the path in ES1 matches the path in S2. We proceed with as many paths in S2 as possible (if the
“entire” tree S2 is found, then S1 ⊆ S2 and Sim(S1, S2) = 1), and when we have several possible
paths in ES1 , they are redundant and we compute the maximum of their probabilities. In contrast,

130

the conjunction of different patterns in S2 is computed as the product of the probabilities of their
respective occurences in ES1 . Hence, we first look for the longest single-path patterns in S2 that
are matched in ES1 . If the remaining parts are not matched, we use a heuristics to estimate the
probability that they are matched. We then compute the probability that the conjunction of those
patterns is matched. Besides, to two different patterns A and B in S2 must correspond two different
matching patterns C and D in ES1 , in the sense that those patterns correspond to different patterns
in S1. Because of the definition of a subscription’s expansion, it is equivalent to say that all nodes
in C and D that have the same ancestor must belong to different classes. In the case where C and
D do not correspond to different patterns in S1, we say that there is a conflict. Indeed, patterns A
and B are in conflict since they are matched with the same pattern in S1, or at least with a common
sub-pattern. Each time a node in C and a node in D have the same ancestor and the same class,
there is a conflict. Intuitively, the higher the number of conflicts, the less S1 is similar to S2. Hence,
each conflict yields to a conflicts penalty in the computation of the similarity between S1 and S2.

8.5.2 Examples

Consider XPath subscription S and its expansion, illustrated in Figures 8.2(b) and 8.3, respectively.
Consider the following patterns:

• S1 = /media/DV D/Actor/F irst[text() � “B”]

• S2 = /media/DV D/Actor/F irst[text() =′′ Charles”]

• S3 = /media[./Book]/CD

• S4 = /media/ ∗ /Author

• S5 = /media/CD/Producer[text() = “AB Productions”]

• S6 = /media[./CD]/DV D

• S7 = /media/DV D[./T itle]/Director

• S8 = /media/DV D[./Producer]/Director

• S9 = /media/DV D[./T itle]/ ∗ /F irst

• S10 = /media/DV D[./Producer]/ ∗ /F irst

The similarity between those subscriptions and subscription S will be computed as follows:
Sim(S1,S) will be computed as 1

4 = 1
2 .12 .1. Indeed, the path /media/DV D/Actor/F irst in ES is

the only one that matches S1 (note that predicate text() =′′ Bob” matches text() �′′ B”). Hence, the
similarity between S1 and S is computed as the probability that pattern /media/DV D/Actor/F irst
in ES occurs, that is, 1

4 .
Sim(S2,S) = 0 = 1

2 .12 .0. Indeed, the whole pattern is matched, but not the predicate at element
“First” (predicate text() =′′ Charles” is not matched by ′′Bob”).

Sim(S3,S) = 1
2 = 1.12 . Patterns /media/Book and /media/CD are matched with the equivalent

patterns /media/Book and /media/CD in ES . Since nodes “Book” and “CD” are in different
classes, each node independently has a probability of 1

2 of occurring. The similarity is computed as
the probability that both patterns occur, that is, the product of their probability.

Sim(S4,S) = 1 = Max(1.1, 1
2 .12). Pattern /media/ ∗ /Author is matched with two possible

redundant patterns in ES , /media/CD/Author and /media/Book/Author. The similarity is com-
puted as the maximum probability of occurrence of any of them.

Sim(S5,S) = 1
2 .1.ε, with 0 < ε � 1. Pattern /media/CD/Producer is matched but not the

predicate at element ′′Producer′′. However, it may be matched, in the sense that a document that

131

matches the predicate ′′ � AB′′ might also match ′′ = ABProductions′′. The probability that this
occurs is estimated with a heuristics as ε.

Sim(S6,S) = 1
2 .12 .γ, with 0 < γ � 1. Here, patterns /media/CD and /media/DV D are

matched with patterns /media/CD and /media/DV D in ES that correspond to the same pattern
in S (/media/∗). Hence, we have a conflict and the similarity is computed as the product of the
probability of occurence of patterns /media/CD and /media/DV D plus a conflict penalty γ.

Sim(S7,S) = 1
2 = 1

2 .(1
2 .12). This case is similar to the computation of Sim(S3,S). Pattern

/media/DV D has a probability of 1
2 of occurring. Nodes Title and Director are in different classes

and each independently has probability 1
2 of occurring. The similarity is computed as the probability

that both patterns occur, i.e., the product of their probability.
The last three subscriptions S8 · · ·S10 illustrate how correlations between elements are taken into

account in the computation of subscriptions similarities.
Sim(S8,S) = 0 = 1

2 .0. Pattern /media/DV D has a probability of 1
2 of occuring, but nodes

“Producer” and “Director” cannot appear simultaneously, as indicated in the correlation groups
CGs of node “DVD”. Hence, the similarity is computed as 0. Note, that S8 is not a valid expression,
in the sense that it matches no documents.

Sim(S9,S) = 1
4 = 1

2 .(1
2 .(1

2 + 1
2)). Pattern /media/DV D has a probability of 1

2 of occurring.
Node “Title” has a probability of 1

2 . The sub-pattern / ∗ /F irst has a probability of 1
2 .1 + 1

2 .1,
since both nodes “Actor” and “Director” match the “*” (and element First below is also matched).
Hence, pattern /media/DV D[./T itle]/ ∗ /F irst has probability 1

2 .(1
2 .1) of occurring.

Sim(S10,S) = 1
8 = 1

2 .(1
2 .12). This case is similar to the previous one, except that nodes “Pro-

ducer” and “Director” are in opposition. Consequently, the “*” in S10 can only be matched by node
“Actor”, since both “Producer” and “Director” may not appear simultaneously. As a result, sub-
pattern /∗/F irst only has a probability of 1

2 of occurring, as opposed to 1 in the previous case. The
similarity is subsequently computed as 1

8 . Consequently, the notion of element correlations improves
correctness, since without considering correlations, Sim(S10, S) would have been computed as equal
to Sim(S9, S), which is not correct.

8.6 Conclusion

The proximity metric presented in this chapter is very general. Although used with XPath expres-
sions and XML documents, it can be used with different tree structured languages. Also, although
used in the context of pub/sub, it can be used to address different data management problems. This
work is still in the development stage, and there is room for improvements and refinements. How-
ever, preliminary results shown in the experimental evaluation of Section 9.1.3 are very promising,
they are of interest in their own right, and can prove useful in other domains.

132

Chapter 9

Experimental evaluation

In this chapter, we present results from experimental evaluation. We first assess the performance of
the pub/sub system that we presented in Chapter 7, when using both the containment and similar-
ity metrics. We then evaluate specifically the proximity metric based on subscriptions similarities
for XML documents and XPath expressions that we presented in Chapter 8. That proximity met-
ric was used in our pub/sub system to efficiently organize peers based on the similarities of their
subscriptions. However, the proximity metric can be used to address different data management
problems. The evaluation that we propose here is “general purpose” and is independent of the
Pub/Sub context. Finally, in this chapter, we also survey related work.

9.1 Performance of the P2P semantic overlay

In this section, we present the simulations that we conducted to test the behavior and the effectiveness
of our pub/sub system. We propose an evaluation of our system when using both the containment
and similarity metrics presented earlier. We are mostly interested in studying the routing process
in the system. Indeed, we have seen that the cost for its extreme simplicity is that it induces a
certain inaccuracy in terms of false positives and negatives but than an efficient topology enables to
minimize their occurrence. We thus aim at quantifying the accuracy of our system experimentally.

In addition, we also analyze the characteristics of the system obtained, especially in terms of
number of connections. Finally, we evaluate the efficiency of peers management algorithms, when
applicable.

To evaluate our system when using the similarity metric, we have implemented a proximity
metric for XML documents and XPath subscriptions as explained in Chapter 8.

9.1.1 Experimental setup

Peers in our system register their interests using the standard XPath language to specify complex,
tree-structured subscriptions. We generated set of various sizes as described in Section 6.2.2, with
the parameters indicated in table 9.1.

Parameter Value
h 10
d 3

p// 0.1
p∗ 0.1
pλ 0.1
m 3
θS −1
x 0 (with duplicates)

N 1000→ 50000 (number of generated subscriptions)

Table 9.1: Parameter values of XPath subscriptions.

133

The events published by the producer are XML NITF documents generated with the values of
the parameters as indicated in table 9.2.

Parameter Value
L 20
T {22, 58, 108} tag pairs
r 3

θD 0 (uniform)

Table 9.2: Parameter values of XML documents.

9.1.2 Containment metric

We first focus on the system when peers are organized in a containment hierarchy according to the
proximity metric fc. To evaluate the efficiency of the system, we proceeded as follows.

We first simulated networks of different sizes, with each version of the join algorithm presented
in section 7.3.4 by sequentially adding peers with randomly-generated subscription. We used a value
of L = 100 for the maximum degree of equivalence trees. Also, for the adaptive periodic joining
algorithm, we used a connections limit of LAPJ = 100 and a reorganization rate of γAPJ of 10%.

Routing efficiency

We first focus on the performance of the system in terms of routing. We have seen that the contain-
ment tree topology enables to suppress all occurrences of false negatives. As a consequence, we aim
at quantifying experimentally the number of false positives generated by the routing process in the
system. For that purpose, we proceeded as follows. In a network of a given size and generated with
a given join algorithm (as previously explained), we routed 1, 000 random documents by injecting
them at the root node.1 For each document, we computed the false positives ratio as the percentage
of peers in the system that received a message that did not match its interests. The results were
obtained by taking the average of 1000 executions and are shown in figure 9.1, for documents of
average size T = 22 and in Figure 9.2 , for documents of size T = 108.

0

5

10

15

20

10000 20000 30000 40000 50000

A
vg

. f
al

se
 p

os
iti

ve
s

ra
tio

 (
%

)

Peers population

Full join
Basic join

Adaptive periodic join

Figure 9.1: False positive ratio for networks of dif-
ferent sizes and small documents (22 tag pairs).

0

5

10

15

20

10000 20000 30000 40000 50000

A
vg

. f
al

se
 p

os
iti

ve
s

ra
tio

 (
%

)

Peers population

Full join
Basic join

Adaptive periodic join

Figure 9.2: False positive ratio for networks of dif-
ferent sizes and large documents (108 tag pairs).

We first observe that the average false positives ratio remains small, typically less than 10% in
most cases. This shows that our system delivers documents to all interested peers with only a very
small fraction of false positives, that is, with good routing accuracy. Moreover, we computed that the

1Note that the number of false positives would not be affected when injecting the messages at another node than
the root.

134

percentage of uninterested peers is 75%, on average and independently of the consumer population.
When related to the false positives ratio, this shows that our system succeeds in delivering documents
to the integrality of a rather small portion of interested consumers while delivering them to only a
small fraction of a large population of uninterested consumers. Also, it illustrates the benefits of our
routing protocol over a broadcast, which would yield false positives ratios of approximately 75%.
In addition, we observe that the average false positives ratio decreases exponentially with the size
of the consumer population, which means that the routing accuracy improves as additional peers
join the system. These excellent results are due to the efficiency of the tree topology. By organizing
peers based on their interests, documents are filtered out as soon as they reach the boundary of the
community of interested consumers. The efficiency of the tree topology improves with the size of the
consumer population because of the increasing number of containment relationships shared between
the peers.

Unsurprisingly, join algorithms that reorganize the peers more frequently produce network topolo-
gies that have lower false positive ratio. As explained in Section 7.3.4, this is directly related to the
number of reorganizations that are performed by each algorithm. However, the differences are very
small and the benefits of the slight increase in accuracy may not justify the additional overhead of
the reorganization process.

Finally, the results obtained with documents of large sizes are slightly higher. This is due to
the fact that the larger a document is, the higher the number of peers that are interested in it, and
especially, the higher the number of more selective peers that are interested in it. Those peers have
higher depths in the tree topology. Thus the larger a document, the deeper and wider its spanning
tree is in the tree topology, and the higher the chances to have false positives.

Network characteristics

We now analyze the main characteristics of the networks of various sizes, obtained with each version
of the join algorithm. We are mainly interested in studying the degree of the peers in the system.
Note that in all the networks generated , the root node was always “artificial”, i.e., not a real peer
with a registered subscription. As previously mentioned, the root node enables to interconnect top-
level peers that share no containment relationships with each others, and can be implemented by
simply connecting top-level peers with each other through “sibling” links. Consequently, that node
was excluded from all the following experiments.

3.5

4

4.5

5

5.5

6

0 10000 20000 30000 40000 50000

A
rit

y

Peers population

Avg. Arity - Full join
Avg. Arity - Basic join

Avg. Arity - Adaptive periodic join

Figure 9.3: Average peer’s degree (leaves excluded)

20

30

40

50

60

70

80

90

100

110

0 10000 20000 30000 40000 50000

A
rit

y

Peers population

Max. Arity - Full join
Max. Arity - Basic join

Max. Arity - Adaptive periodic join

Figure 9.4: Maximum degree reached (root node
excluded)

Figure 9.3 shows the average degree of the peers in the system when excluding those that are
leaves in the tree hierarchy. We first observe that the average number of connections remains quite
low, typically around 5− 10. We also observe that the average degree starts growing very fast then
goes down to an intermediate value, before growing again slowly. The fact that the curve obtained
with the basic join join mechanism also follows this evolution proves that the reorganization phase is

135

not responsible for this behavior. Rather, it is due to the fact that when new peers join an existing
system consisting of a small population, there are not many containment relationships between the
new peers subscriptions and the subscriptions of the existing peers. Thus the new peers do not find
parents other than the most “general” peers (peers with the most general subscription, which have
small depths) and the average number of connections increases very fast. When the population starts
growing, there are more containment relationships and some new peers connect to more selective
peers, which were leaves in the tree hierarchy and that are now taken into account to compute the
average degree. Now, when the population grows more, the leaves become too selective. The average
peer’s degree starts increasing again but at a much lower rate, since there are more internal (non
leaf) peers. Finally, we observe that the networks obtained with the full join mechanism have a
lower degree, on average, than the two others. This is due to the fact that the full join algorithm
performs connections balancing more efficiently. In addition, the full join algorithm performs more
reorganizations than the other two algorithms. Indeed, very selective peers that joined the system
early have low depths in the tree hierarchy. They are bad candidates for being the parents of new
joining peers. If they are reorganized, their depth is increased and they have higher chances to have
children.

Figure 9.4 shows the maximum degree reached by the most loaded peer in the system. The
evolution of all three curves is directly dependent of the maximum size of an equivalent tree in the
system. Indeed, when the population increases, the number of equivalent peers also increases. The
result is that equivalence trees grow, and eventually, one has formed with more than two levels, and
hence the root of that equivalence tree has reached the maximum degree allowed. The fact that
the maximum degree is not exceeded is due, for one part, to the connections balancing technique
employed in all three algorithms (new peers connect to the best peer with lowest degree), and for the
other part, to the mechanism that was explained in Section 7.3.4 to prevent roots of equivalence from
being overloaded. We observe that in the case of the adaptive periodic join algorithm, the maximum
degree is occasionally exceeded, but the algorithm adapts by trying to reorganize the children of the
peers that have exceeded the limit.

0

5

10

15

20

25

30

35

40

45

10000 20000 30000 40000 50000

A
vg

. f
ra

ct
io

n
of

 p
ee

rs
 in

vo
lv

ed
 (

%
)

Peers population

Full join
Basic join

Adaptive periodic join

Figure 9.5: Average fraction of peers involved in a
join process

5

10

15

20

25

30

35

40

10000 20000 30000 40000 50000

A
vg

. f
ra

ct
io

n
of

 p
ee

rs
 in

vo
lv

ed
 (

%
)

Peers population

Full join
Basic join

Adaptive periodic join

Figure 9.6: Average fraction of peers involved in a
full leave process for children of departing peer to
re-join the network.

Efficiency of peers management

To assess the performance of peers management, we have measured the average fraction of the peers
population that is involved in a join or leave process. Indeed, we have seen that in both cases,
the network must be probed recursively so as to find adequate containment relationships. For that
purpose, we proceeded as follows. In networks of different sizes generated with each version of the
join algorithm, we simulated the joining of 1000 new random peers, with the same version of the

136

join algorithm as the one that was used to generate it, and starting at the root node of the network
(joining here has the highest overhead). After each join, we cancelled it to maintain a stable peers
population during the whole experiment (we saved the system state before the join and restored
it subsequently). We measured for each join the fraction of the peers that were involved in the
process, i.e., that received and processed an instance of the JOIN message, and computed the mean
value. To study the cost of peer departures, we proceeded similarly except that, for each of the 1000
measurements, we simulated the departure of a random peer. The full leave mechanism was used to
maintain the most accurate topology. That is, we performed all necessary peers reinsertions in the
tree topology, as explained in Section 7.3.4. Finally, to evaluate the real cost of the procedure, we
excluded peers that are leaves in the tree topology and those that belong to equivalence trees, whose
departure induces no or negligible overhead (but root of equivalence trees were included). Results
are shown in Figures 9.5 and 9.6.

Finally, we evaluate the partial leave mechanism, which consists in reconnecting the children of
the leaving peer at its parent. We have seen that this algorithm has no overhead on the global
system, but that routing accuracy may degrade over time. Consequently, we have measured the
loss of routing accuracy, in terms of false positives, after a given fraction r of the system has left
consecutively. We used documents of size T = 22 tag pairs. We proceeded with networks with an
initial size of 50, 000 peers, generated with each version of the join mechanism. Results are shown
in Figure 9.7.

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

0 5 10 15 20 25 30 35 40 45 50

4.1

6.1

5.1

A
vg

. f
al

se
 p

os
iti

ve
s

ra
tio

 (
%

)

r (%)

Full join
Basic join

Adaptive periodic join

Figure 9.7: Average false positives ratio after a certain fraction r% of the population has consecutively left
the system with the basic leave mechanism.

Join mechanism. We first focus on the case of the joining algorithm. Results are shown in
Figure 9.5. We first observe that the fraction of peers involved in a join process remain reasonably
small (except for the full join mechanism) and scales well to large consumer population. This is
due to the efficiency of the tree topology which increases with the consumer population. Indeed,
the higher the number of peers, the more organized they are in the tree topology, which avoids
unnecessary propagation of JOIN messages further in the tree. We then outline that the full join
mechanism performs significantly worse than the two others, the fraction of peers involved is several
times higher. This is due to the fact that the full join mechanism performs all possible reorganizations
, which necessitates JOIN messages to be propagated much further in the tree topology (even if the
subscription of the new peer has no containment relationships with that of the current peer, as
in lines 19 − 23 in Algorithm 22). In comparison, the simple and the adapt mechanisms perform
significantly less reorganizations and involve less peers in the process.

Full leave mechanism. We now focus on the evaluation of the full leave process. Note that the
basic leave process involves very few peers and is the one that will be used typically. The full leave
mechanism, in contrast, has significantly more overhead, and should only be used for small systems
or when best accuracy is needed. Results are illustrated in Figure 9.6. We first observe that in both
cases, the fraction of the system involved in a leave process remains reasonably small and decreases

137

with the consumer population. This is once again due to the efficiency of the tree topology: the more
the consumer population, the more containment relationships there are, and the highest the chances
that the children of the leaving peer are able to find another parent of same depth, and thus no more
peers need to be re-inserted in the tree topology. Still, the fraction of peers that are involved in a
leave process is significantly higher than that for a join (full join excluded). Indeed, a leave process
requires at least that all the children of the leaving peers be reinserted with the join mechanism in
the tree topology. In addition, as previously mentioned, additional peers among the descendants
might need to re-evaluate their position as well if P ’s departure has decreased their depth. However,
we have seen that the rejoining of those peers can be handled with the Basic join mechanism, which
has the lowest overhead. Consequently, the fraction of the peers involved in a leave process remains
small. This also explains that the overhead for leaving in the different networks (i.e., generated with
different versions of the join algorithm) is similar.

Basic leave mechanism. We observe that, unsurprisingly, the false positives ratio increases when
employing the basic leave algorithm, but at a moderate rate. It does not exceed 6% in all cases.
Note that the accuracy improves as soon as some new peers join the system (unless with the basic
join version), by having some peers that are no longer in their optimal place in the tree topology
being reorganized optimally.

Conclusion

As a conclusion, the containment-based proximity metric fc allows to build a bandwidth-efficient
network topology that produces no false negatives and few false positives. In other words, the system
delivers documents to all interested peers with only a small fraction of false positives.

The full join mechanism yields to the most accurate hierarchy, and to a well balanced topology,
but at the cost of a significantly higher overhead due to the reorganization procedure. In fact, it
appears that the slight increase in accuracy may not justify the additional overhead of the reorgani-
zation process. On the other hand, the basic join mechanism has the lowest overhead, but produces
less accurate networks with poor load balancing properties. Finally, it appears that the adaptive
periodic join mechanism reaches a good compromise between the full and the basic join join mech-
anisms. Indeed, it has an overhead almost similar to that of the basic join algorithm, but produces
a well balanced topology and a routing accuracy very close to that of the full join mechanism.

9.1.3 Similarity metric

We now focus on the system when peers are organized in a graph according to the proximity metric
fs based on subscription similarities. The parameters of the experiments that we conducted are
indicated in table 9.3.

Parameter Description Value range
n connectivity (number of semantic neighbors) {5, 7, 10}
r number of random neighbors 1
ρ random neighbor forwarding probability (%) {0, 50, 100}

Table 9.3: Experimental parameters for organization based on similarity

The parameters of the data used in the experiments were indicated in Section 9.1.1, at the
difference that we experimented with XML documents of size T = 22 and T = 58 (small and
medium).

Our main focus is to evaluate the accuracy of the routing process in the system. We also analyze
the main characteristics of the system in terms of number of connections. We do not assess the
performance of peers management, since we have seen that JOIN messages are broadcast in (a
reasonably large portion of) the whole system during a join or a leave process.

138

0

5

10

15

20

25

30

35

40

5000 10000 15000 20000

24.1
22.5
21.4

0.9
2.6
4.5

R
at

io
 (

%
)

Size of Population (#peers)

FP (n=10,ρ=100)
FN (n=10,ρ=100)

FP (n=7,ρ=100)
FN (n=7,ρ=100)
FP (n=5,ρ=100)
FN (n=5,ρ=100)

Figure 9.8: False positives and false negatives ratios
for networks of different sizes and connectivities, for
documents of size 22.

0

5

10

15

20

25

30

35

40

5000 10000 15000 20000

23.7
21.9
20.6

1.5
3.4
5.3

R
at

io
 (

%
)

Size of Population (#peers)

FP (n=10,ρ=100)
FN (n=10,ρ=100)

FP (n=7,ρ=100)
FN (n=7,ρ=100)
FP (n=5,ρ=100)
FN (n=5,ρ=100)

Figure 9.9: False positives and false negatives ratios
for networks of different sizes and connectivities and
for documents of size 58.

Routing accuracy

Our main focus is to evaluate the routing accuracy of the system. Since the topology based on
similarity does not prevent the occurrence of false negatives, we are interesting in quantifying the
accuracy of our system both in terms of false positives and false negatives. For that purpose, we
proceeded as in the case of the metric based on containment. We first generated networks of different
sizes, using different values of n for the number of proximity neighbors and a value of r = 1 for the
number of random neighbors.

We then injected random documents of different sizes and quantified the routing accuracy. We
measured the false positives ratio as the percentage of the peers in the system that received a message
that did not match their interests, and the false negatives ratio as the percentage of peers interested
in a message that did not receive it. To clarify, let N be the total population. Consider a document
e that has been routed. Let FP be the number of peers not interested in e that received it. Then,
the false positives ratio is computed as FP

N . Now let FN be the number of peers interested in e
that did not receive it, and NI be the total number of peers in the system interested in e. Then,
the false negatives ratio is computed as FN

NI
. We computed the average values over 1, 000 runs. We

experimented with random neighbor forwarding probabilities ρ of 100%, 50% and 0%. In particular
the value ρ = 0% enables us to experiment with a network with no random neighbors, without
having to re-generate it.

Figure 9.8 shows the false positives and false negatives ratios for documents of size 22, when
varying the size of the population, and for different values of n. Figure 9.9 refers to documents of
size 58. Figure 9.10 shows the false positives and negatives ratios for documents of size 22 and for
a value of n = 10, when varying the size of the population and for different values of the random
neighbor forwarding probability ρ. Figure 9.11 shows results with documents of size 58.

We first observe that the average false negatives ratio remains small, typically less than 5% and
much less for networks of high connectivities. This shows that on average, for a given document,
only a negligible fraction of the population of interested consumers does not receive it. In other
words, our system succeeds in delivering documents to almost all interested consumers. The false
positives ratio, while significantly higher, still remains at reasonable values, typically around 20%.

Those results illustrate the benefits of our routing protocol over a broadcast, which would yield
false positives ratios of approximately 75% (the same as for the containment metric, since we used
the same sets of XPath expressions and XML documents). In contrast, our routing protocol, which
has almost the same complexity as a broadcast, achieves significantly lower false positives ratio and
better bandwidth usage, at the cost of only 5% of false negatives, in average.

We also remark that, unsurprisingly, a higher connectivity favors the false negatives ratio over
the false positives ratio. However, results do not differ significantly and remain quite comparable.

139

0

5

10

15

20

25

30

35

40

5000 10000 15000 20000

24.1

0.9

16.3

1.5

5.7

21.7

R
at

io
 (

%
)

Size of Population (#peers)

FP (n=10,ρ=100)
FN (n=10,ρ=100)

FP (n=10,ρ=50)
FN (n=10,ρ=50)

FP (n=10,ρ=0)
FN (n=10,ρ=0)

Figure 9.10: False positives and false negatives ratios
for networks of different sizes and for different values
of ρ, for documents of size 22.

0

5

10

15

20

25

30

35

40

5000 10000 15000 20000

23.7

1.5

16.5

2.3

7.4

15.2R
at

io
 (

%
)

Size of Population (#peers)

FP (n=10,ρ=100)
FN (n=10,ρ=100)

FP (n=10,ρ=50)
FN (n=10,ρ=50)

FP (n=10,ρ=0)
FN (n=10,ρ=0)

Figure 9.11: False positives and false negatives ratios
for networks of different sizes and for different values
of ρ, for documents of size 58.

In addition, we also observe that, as expected, the parameter ρ has the opposite effect: a lower
value of the parameter ρ favors the false positives ratio over the false negatives ratio. For a value of
ρ = 50%, the false positives ratio improves significantly (30% lower, in average) at the cost of a slight
increase of the false negatives ratio. In fact, it appears that if obtaining low false negatives ratios is
not so vital, a value of ρ = 50% may be preferred since it enables to obtain a good false positives ratio
(16% for 20, 000 peers). On the other hand, it appears that a network where peers have no random
neighbors (i.e., ρ = 0%), achieves a very poor false negatives ratio, which, even worse, increases
with the consumer population. It achieves, however, excellent false positive ratio. As previously
anticipated, this is due to the fact that random neighbors avoid the construction of disconnected
semantic communities (because their interests do not compare with the other communities’ interests).
The phenomenon amplifies with the consumer population. Hence, in most cases, it is desirable that
peers have at least one random neighbor.

Besides, we observe that the documents size does not seem to have a major impact on the
routing accuracy. A higher size favors the false positives ratio over the false negatives ratio, but
results remain comparable. That evolution is not obvious. We think, however, that it is due to the
fact that with documents of higher sizes, there are more interested peers in the system. Then, it
is more difficult to reach the population of interested peers, and consequently there are more false
negatives. On the other hand, since there are more interested peers, documents are propagated to
more peers (because of the routing algorithm). Hence, the average false negatives ratio does not
increase significantly. Similarly, there are less non-interested peers, and hence, less false positives.
However, the documents are propagated to more peers, which prevents the false positives ratio from
improving significantly.

Finally, all performance metrics decrease with the size of the consumer population, which shows
that the routing accuracy globally improves with the consumer population. This can be explained
by the fact that, in larger populations, peers are able to find better neighbors according to the
proximity metric fs and hence reduce the occurrence of false positives and false negatives.

Networks characteristics

We now briefly analyze the main characteristics of the networks of various sizes and connectivities.
Since peers are organized in a graph, we are mainly interested in the degree (number of neighbors)
of the peers. Recall that each peer in the system has chosen a set of n proximity neighbors and
r random neighbors, but can be in turn chosen by some other peers as a proximity or a random
neighbor. Hence, the total number of neighbors that a peer has is necessarily higher than n + r. In

140

2

4

6

8

10

12

14

16

18

20

5000 10000 15000 20000
A

rit
y

(#
 p

ee
rs

)
Size of Population (#peers)

Avg. value (n=5)
Avg. value (n=7)

Avg. value (n=10)
Std. dev. (n=5)
Std. dev. (n=7)

Std. dev. (n=10)

Figure 9.12: Mean value and standard deviation of the peers degree.

addition, as previously mentioned, it is not bounded, a priori. Hence, in each network generated
with different values of n, we have measured the average value µ, the maximum value θ and the
standard deviation σ of the total number of neighbors of the peers. Results are reported in table 9.4
and Figure 9.12.

P 1, 000 2, 000 5, 000 10, 000 20, 000
µ 9.81 9.84 10.11 10.32 10.46

n=5 θ 57 70 99 106 133
σ 4.16 3.59 3.20 3.09 2.90
µ 13.02 13.11 13.38 13.70 13.95

n=7 θ 88 100 158 172 217
σ 6.81 5.49 4.93 4.67 4.31
µ 17.49 18.04 18.2 18.61 19.11

n=10 θ 155 147 217 276 317
σ 11.10 9.07 7.77 7.35 6.63

Table 9.4: Average value µ, maximum value θ and standard deviation of the peers degree.

We first observe that the average number of connections increases with the size of the population
but at a very low rate. This is due to the fact that, when the population grows, peers are able to find
better neighbors according to the proximity metric fs. Besides, the standard deviation has relatively
low values and decreases with the consumer population. This shows that for large populations, the
number of connections is more fairly distributed amongst the peers. This is again due to the fact
that peers are able to find better neighbors when the population grows, as well as the connections
balancing techniques that are used in the system.

Finally, we remark that the maximum number of connections increases with the consumer popu-
lation, but at a moderate rate. Although it reaches relatively high values, in particular in networks
with high connectivities (n = 10), we believe those are isolated cases, as indicated by the low values
of the standard deviation. Besides, although not implemented in the system, it is possible for an
overloaded peer to refuse additional connections.

Summary

The organization of peers according to the proximity metric fs based on subscription similarities
enables to build a well balanced and robust network topology that succeeds in delivering documents
to almost all interested consumers with only a relatively small fraction of false positives. The
system offers high scalability to large consumer populations, both in terms of routing accuracy and
connections balancing.

141

Related Work

Many pub/sub systems use an overlay network of event brokers to implement some form of dis-
tributed content based routing, most notably IBM Gryphon [14], Siena [28], Jedi [44] and XNet [37].
As previously mentioned, these systems suffer from various limitations in terms of extensibility,
scalability, and cost.

To address some of these issues, several attempts have been made to implement pub/sub systems
based on P2P networks.

Scribe [33] and Bayeux [127] are two examples of topic-based pub/sub systems built on top of
two overlay network infrastructures. Scribe is built on top of Pastry [104], whereas Bayeux leverages
the architecture of Tapestry [126]. These systems provide application-level multicast services using
the rendezvous-based communication model. The events and the subscriptions are automatically
classified in topics, using an appropriate application-specific schema. They are then associated with
an identifier that is a hash of the data content. Routing is then achieved by leveraging the direct
routing capabilities of the underlying infrastructure. Basically, events are first sent via the rendezvous
node, they are then distributed to interested subscribers. Those systems support large numbers of
topics and perform efficient large-scale routing of message. Also, rendezvous nodes can be replicated
for fault-tolerance. However, one limitation is that all events must be sent via the rendezvous node
which can then become a potential bottleneck. Morever, those systems are incapable of supporting
more sophisticated content-based operations.

More recently, some content-based pub/sub systems based on P2P networks have been proposed.
In [91], the authors combine the notion of rendezvous nodes and content-based multicast to

implement content based routing in a P2P environment. Events are first guided to a rendezvous
node before being disseminated along a multicast tree of interested subscribers. As previously
mentionned, one limitation lies in the fact that all events must be sent via the rendezvous node
which can become a potential bottleneck.

HOMED [40] is a P2P overlay for distributed pub/sub systems. Peers are organized in a mesh-
like structure based on their interests, by assigning to each peer an identifier that represents its
subscription. Peers are then organized in a logically binary hypercube according to their identifiers.
Routing is achieved by propagating the event along a multicast tree embedded in the hypercube.

Hermes [95] is a distributed event based middleware platform that also use the concept of ren-
dezvous nodes to avoid global broadcasts. Hermes implements a type and attribute based routing
scheme that is built on top of a P2P overlay routing network and extends the expressiveness of
subscriptions and supports event hierarchies. An event is first routed to the rendezvous node that
correponds to its type. The direct routing capabilities of the underlying P2P overlay are used for
that purpose (where the ID of the node is the hash of the event type name). The event is then
diffused via a distribution tree rooted at the rendezvous node, setup as in the case of our XNet
publish subscribe system or SIENA. Hermes also encompasses other functions such as subscription
aggregation and fault-tolerance. However, one limitation is that all events must be sent via the
rendezvous node, which can then become a potential bottleneck. Another limitation lies in the fact
that nodes in a Hermes event hierarchy are likely to be dispersed throughout the network, which
can result in large overhead and poor bandwidth usage when propagating an event to all of its
descendants.

In [12], the authors address a major issue encountered by most pub/sub systems, which is their

142

reliance on a fixed infrastructure of brokers. They specifically address the issue that if the network
topology has no relationships with the subscriptions registered by the consumers, then the routing
process performs poorly: it often involves a large number of routers, and is then barely more efficient
than a broadcast. For that purpose, they propose TMS, a self-organizing topology management
system. Its principle is similar to that of our semantic P2P overlay. However, the TMS system
does not implement a routing algorithm. Also, it is not based on the P2P paradigm. Rather,
the authors consider an existing pub/sub system architectured as a network of event brokers, and
propose TMS as an additional component of each broker in the system. TMS operates transparently
and independently of a given content based routing algorithm, aiming at increasing its efficiency.
For that purpose, it rearranges TCP connections between pairs of brokers so as to put consumers
with similar interests as close as possible. This obviously enables to reduce the number of TCP hops
(i.e. the number of brokers involved) for each event diffusion, and hence improve the overal efficiency
and scalability of the system. Also, the system takes into account network-level metrics to ensure
that a new rearrangement is not harmful in terms of network-level performance. Finally, the TMS
system implements fault-tolerance mechanisms and allows routers to dynamically join and leave the
network. One limitation of the TMS system is that each broker must maintain the full history of the
last n received events, so as to estimate the proximity between brokers. This can be an issue if very
large events transit in the system. In contrast, our proximity metric relies on a synopsis of events,
which is a compact representation of a history, even with very large number of events. In addition,
our proximity metric is perfectly capable of operating without any kind of information about the
streamed events (history or synopsis), with only the grammar that is used to express events and
subscriptions.

In [46] and [8], the authors propose a scalable protocol for the diffusion of information in P2P
(or mobile) networks, which also provides anonymity and mobility for producers and consumers. In
their approach, the system is modeled as a logical multi-layer system where each layer l, also referred
to as the communication graph at layer l, is a directed acyclic graph. Topic-based pub/sub is then
implemented by having each communication graph at layer l represent the pub/sub system for the
topic l. Content-based pub/sub is an extension of the topic-based one. Consumers’ interests are
specified using a set of topics, each of them are then handled by the communication graph at the
corresponding layer. This is one limitation of the system. In fact, it is not clear whether consumers
interests are directly replaced by, or only mapped to a set of topics in the system (i.e., in the latter
case, consumers keep their “real” interests and the system handles the associated set of topics). In
the former case, the expressiveness provided to consumers is strongly limited, while the case of a
mapping may result in poor bandwidth and processor usage.

Finally, some proposals have been made to implement content based routing on top of the
Chord [113] P2P network.

In [114], event propagation and filter updates are similar to the broadcast mechanism proposed
in [54], but are attenuated by the use of filters on the edges of the graph and by taking advantage
of covering relationship.

In [116], the event schema is a set of typed attributes. Each node stores pieces of information
regarding some subscriptions, which are called subscription ids. The main idea is to store a sub-
scription id at the nodes of the graph selected by appropriately hashing the values of the attributes
of the subscription. Routing is achieved by fetching the subscription ids of the nodes selected by
hashing the values of the attributes in the event.

143

144

Chapter 10

Conclusions

The pub/sub paradigm has become a hot research topic in the last few years. Indeed, it offers
a convenient abstraction for data producer and consumers, as most of the complexity related to
addressing and routing is encapsulated within the network infrastructure. Most importantly, the
strong decoupling that it allows in time, space and synchronization between the different participants
in the system makes it well adapted to large scale distributed information systems.

In this thesis, we have focused on the research, the design and the implementation of pub/sub
systems with the specific goal of achieving scalable and efficient diffusion of information.

10.1 Contributions

The contributions of this thesis can be summarized as follows:

The XNet XML Content Network. Although some prototypes have been developed by several
researchers in the past, the issue of implementing an Internet-scalable pub/sub system remains a
big challenge. Starting from this observation, we have designed the XNet XML content network to
implement efficient and reliable distribution of structured XML content to very large populations of
consumers. For that purpose, our system integrates several novel technologies. The routing protocol,
XRoute, makes extensive use of subscription aggregation to limit the size of routing tables while
ensuring perfect routing (i.e., an event is forwarded to a link iff it leads to a consumer interested
in that event), even in the presence of subscription cancellation. The filtering engine, XTrie, uses
a sophisticated algorithm to match incoming XML documents against large populations of tree-
structured subscriptions. The XSearch subscription management algorithm enables the system
to manage large and highly dynamic consumer populations, by efficiently determining the possible
containment relationships between a given subscription and a potentially large set of subscriptions.
Finally, our XNet system integrates reliability mechanisms to guarantee that its state is consistent
with the consumer population. It implements several approaches to fault-tolerance to recover from
various types of router and link failures by using the most appropriate scheme depending on various
factors, such as the expected duration of the outage or application-specific availability requirements.

It is important to note that the XNet system is a perfectly operational prototype. Not only
have we analyzed its efficiency by the means of various simulations, but we have also performed
a large scale deployment in the PlanetLab testbed, so as to experiment with the conditions of
the real Internet. Experimental results demonstrate that our prototype does not only offer very
good performance and scalability under normal operation, but can also quickly recover from system
failures.

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks. To address some of
the limitations of traditional pub/sub systems based on server overlays, we have explored a different
and novel approach to building a pub/sub system based on the P2P paradigm. The producers and

145

consumers are organized in a peer-to-peer network that self-adapts upon peer arrival, departure,
or failure. Most importantly, our pub/sub system features an extremely simple routing protocol
that requires almost no resources and no routing state to be maintained at the peers. We have
seen that routing may not be perfectly accurate, but that by organizing the peers in “semantic
communities”, i.e., by organizing them according to their interests with adequate proximity metrics,
we can minimize the routing inaccuracy. We have proposed a containment-based proximity metric
that allows to build a bandwidth-efficient network topology that produces no false negatives and
very few false positives, and a proximity metric based on subscription similarities that yields a more
robust graph structure with small false negatives ratios and very few false positives. Experimental
results demonstrate that the routing process is indeed very accurate and highly efficient, and that
our system features excellent scalability to large consumer populations, both in terms of routing and
peer management overhead.

Finally, we have briefly presented the proximity metric based on subscription similarities that
we developed to organize the peers in the aforementioned system in an efficient and robust graph
structure. The metric evaluates the proximity between two given subscriptions in terms of filtering,
i.e., it evaluates the error that would be induced by filtering XML documents against the other
subscription instead of the original. For that purpose, we introduced the notion of a subscription’s
expansion, a data structure that represents all the possible constraints, on both the structures and the
contents, that a document matching that subscription may contain. Besides, our proximity metric
can operate in various conditions, that is, it adapts to the amount of knowledge that we have about
the data. More precisely, if the grammar of the data or a history or synopsis of previous documents
is known, the proximity metric exploits this knowledge to improve correctness and accuracy. In
particular, a major innovation is that if the grammar is known, then the proximity metric makes use
of the correlations between elements that are defined in it, so as to improve accuracy. The evaluation
of the system in terms of routing shows that the proximity metric is highly accurate.

The proximity metric can be used in a context independent of the pub/sub paradigm. It is of
interest in its own right, and can prove useful in other domains.

10.2 Discussions and future directions

XNet system. As previously mentioned, the XNet system is a perfectly operational prototype
that we deployed and methodically evaluated in the PlanetLab testbed. Besides, it should be noted
that most of the technologies that are integrated in the XNet system are both of a pragmatic and
theoretic interest. Although used in the context of pub/sub, they can be used to address different
networking or data management problems.

There are several directions for future work in the XNet system. In particular, we could use the
“imperfect” aggregation (i.e., lossy) mechanisms presented in [34] to reduce even further the routing
tables sizes in the system, under a given space constraint. The cost is that since aggregation is
imperfect, it is likely that routing is not perfectly accurate, in the sense that events may be wrongly
delivered, or may fail to be delivered. This problem is especially challenging if we aim at preserving
routing accuracy in the presence of subscriptions cancellations. Besides, it would be very interesting
to observe how routing accuracy is affected when related to the “degree” of compression applied to
the routing tables.

Further, it would be interesting to extend XNet to support “semantic” languages, i.e., that
considers the meaning of the data rather than just its type or content.

Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks. The implementation
of a working prototype of our pub/sub system based on the P2P paradigm is still under progress.
However, the communication protocols have been evaluated by the means of various simulations.
Also, we expect that the extremely simple routing protocol used in our system should yield to an
efficient implementation.

146

It should be noted that our pub/sub system based on P2P is very general. It can be used with
any subscription languages and any proximity metrics. Besides, our scheme is highly applicable
to ad-hocs networks (e.g., sensor networks) where resources are scarce, in terms of participants
(CPU, memory), or network (bandwidth). In this context, the simplicity of our routing and joining
mechanisms largely makes it for the induced routing inaccuracy.

As part of our ongoing research, we are studying refinements of our proximity metrics that take
into account additional factors, such as physical proximity or link bandwidth, in order to minimize
latency and maximize throughput.

As a possible direction for future work, we are studying the possibility to use more expressive
and powerful grammars than DTDs, such as XML schemas (XSD), in our proximity metric. In
particular, DTDs only allow to define rather limited correlations between elements, since they only
come in the form of mutual exclusion or element quantifiers. In contrast, XML schemas enable to
define more varied and expressive correlations.

147

148

Bibliography

[1] An history of the internet. http://academ.hvcc.edu/∼hurdand/web01/HistoryLecture.htm.

[2] Network News Transfer Protocol - A Proposed Standard for the Stream-Based Transmission of
News. Internet Request For Comments (RFC) 977, Internet Engineering Task Force, 1986.

[3] A. Aboulnaga, A.R. Alameldeen, and J.F. Naughton. Estimating the selectivity of xml path
expressions for internet scale applications. In VLDB ’01: Proceedings of the 27th International
Conference on Very Large Data Bases, pages 591–600, San Francisco, CA, USA, 2001.

[4] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching Events
in a Content-based Subscription System. In Proceedings of PODC, pages 53–61, Atlanta, GA,
May 1999.

[5] M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, and T.D. Chandra. Matching events
in a content-based subscription system. In PODC ’99: Proceedings of the eighteenth annual
ACM symposium on Principles of distributed computing, pages 53–61, New York, NY, USA,
1999. ACM Press.

[6] M. Altherr, M. Erzberg, and S. Maffeis. iBus - a software bus middleware for the java platform.
In Proceedings of the International Workshop on Reliable Middleware Systems, pages 49–65,
October 1999.

[7] M. Altinel and M.J. Franklin. Efficient Filtering of XML Documents for Selective Dissemina-
tion of Information. In Proceedings of VLDB, pages 53–64, September 2000.

[8] E. Anceaume, A.K. Datta, M. Gradinariu, and G. Simon. Publish/subscribe scheme for mobile
networks. In POMC ’02: Proceedings of the second ACM international workshop on Principles
of mobile computing, pages 74–81, New York, NY, USA, 2002.

[9] S. Baehni, P. Eugster, and E. Guerraoui. Data-aware multicast. In Proceedings of the 5th
IEEE International Conference on Dependable Systems and Networks, June 2004.

[10] R.A. Baeza-Yates and G.H. Gonnet. Fast text searching for regular expressions or automaton
searching on tries. Journal of the ACM, 43(6):915–936, 1996.

[11] R. Baldoni, R. Beraldi, S.T. Piergiovanni, and A. Virgillito. Measuring notification loss in
publish/subscribe communication systems. In PRDC, pages 84–93, 2004.

[12] R. Baldoni, R. Beraldi, L. Querzoni, and A. Virgillito. A self-organizing crash-resilient topology
management system for content-based publish/subscribe. In 3rd International Workshop on
Distributed Event-Based Systems (DEBS’04), Edinburgh, Scotland, UK, May 2004.

[13] R. Baldoni, M. Contenti, S. T. Piergiovanni, and A. Virgillito. Modeling publish/subscribe
communication systems: towards a formal approach. In Proceedings of the Eighth International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003), pages 304–311.
IEEE, 2003.

149

[14] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R.E. Strom, and D.C. Sturman.
An efficient multicast protocol for content-based publish-subscribe systems. In Proceedings of
ICDCS, May 1999.

[15] G. Banavar, M. Kaplan, K. Shaw, R.E. Strom, D.C. Sturman, and W. Tao. Information
flow based event distribution middleware. In ICDCS Workshop on Electronic Commerce and
Web-based Applications/Middleware, pages 114–121, 1999.

[16] K. Bennett and C. Grothoff. GAP – practical anonymous networking. In Roger Dingledine,
editor, Proceedings of Privacy Enhancing Technologies workshop (PET 2003). Springer-Verlag,
LNCS 2760, March 2003.

[17] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu. Efficient Sharing of Encrypted Data.
In Proceedings of ASCIP 2002, pages 107–120. Springer-Verlag, July 2002.

[18] S. Bhola, R.E. Strom, S. Bagchi, Y. Zhao, and J.S. Auerbach. Exactly-once delivery in a
content-based publish-subscribe system. In DSN ’02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, pages 7–16, Washington, DC, USA, 2002.
IEEE Computer Society.

[19] K. P. Birman. The process group approach to reliable distributed computing. Communications
of the ACM, 12(36):36–53, 1993.

[20] K. P. Birman and R.van Renesse. Reliable distributed computing with the isis toolkit. IEEE
Computer Society Press, 1994.

[21] G. Bricconi, E. Tracanella, and E. Di Nitto. Issues in analyzing the behavior of event dis-
patching systems. In IWSSD ’00: Proceedings of the 10th International Workshop on Software
Specification and Design, page 95, Washington, DC, USA, 2000. IEEE Computer Society.

[22] G. Bricconi, E. Tracanella, E. Di Nitto, and A. Fuggetta. Analyzing the behavior of event
dispatching systems through simulation. In HiPC ’00: Proceedings of the 7th International
Conference on High Performance Computing, pages 131–140, London, UK, 2000. Springer-
Verlag.

[23] A. Carzaniga. Architectures for an Event Notification Service Scalable to Wide-area Networks.
PhD thesis, Politecnico di Milano, Milano, Italy, December 1998.

[24] A. Carzaniga, E. Di Nitto, D.S. Rosenblum, and A.L. Wolf. Issues in supporting event-based
architectural styles. In 3rd International Software Architecture Workshop, Orlando, Florida,
November 1998.

[25] A. Carzaniga, D.R. Rosenblum, and A.L. Wolf. Challenges for distributed event services:
Scalability vs. expressiveness. In Engineering Distributed Objects ’99, Los Angeles, California,
May 1999.

[26] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Achieving scalability and expressiveness in
an internet-scale event notification service. In Proceedings of the Nineteenth Annual ACM
Symposium on Principles of Distributed Computing, pages 219–227, Portland, Oregon, July
2000.

[27] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Content-based addressing and routing: A
general model and its application. Technical Report CU-CS-902-00, Department of Computer
Science, University of Colorado, January 2000.

[28] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and Evaluation of a Wide-Area Event
Notification Service. ACM Transactions on Computer Systems, 19(3):332–383, 2001.

150

[29] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf. Design and evaluation of a wide-area event
notification service. ACM Transactions on Computer Systems, 19(3):332–383, August 2001.

[30] A. Carzaniga, M.J. Rutherford, and A.L. Wolf. A routing scheme for content-based networking.
In Proceedings of IEEE INFOCOM 2004, Hong Kong, China, March 2004.

[31] A. Carzaniga and A.L. Wolf. Content-based networking: A new communication infrastructure.
In NSF Workshop on an Infrastructure for Mobile and Wireless Systems, number 2538 in
Lecture Notes in Computer Science, pages 59–68, Scottsdale, Arizona, October 2001. Springer-
Verlag.

[32] A. Carzaniga and A.L. Wolf. Forwarding in a content-based network. In Proceedings of ACM
SIGCOMM 2003, pages 163–174, Karlsruhe, Germany, August 2003.

[33] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron. SCRIBE: A large-scale and decen-
tralized application-level multicast infrastructure. IEEE Journal on Selected Areas in commu-
nications (JSAC), October 2002.

[34] C.-Y. Chan, W. Fan, P. Felber, M. Garofalakis, and R. Rastogi. Tree Pattern Aggregation for
Scalable XML Data Dissemination. In Proceedings of VLDB, August 2002.

[35] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML Documents
with XPath Expressions. VLDB Journal, 11(4):354–379, 2002. Also appeared in Proceedings
of ICDE, 2002.

[36] C-Y. Chan, M. Garofalakis, and R. Rastogi. Re-tree: an efficient index structure for regular
expressions. The VLDB Journal, 12(2):102–119, 2003.

[37] R. Chand and P. Felber. A scalable protocol for content-based routing in overlay networks. In
Proceedings of NCA, Cambridge, MA, April 2003.

[38] R. Chand and P. Felber. Semantic Peer-to-Peer Overlays for Publish/Subscribe Networks. In
EuroPar 2005, September 2005.

[39] R. Chand and P.A Felber. XNet: A Reliable Content-Based Publish/Subscribe System. In
SRDS 2004, 23rd Symposium on Reliable Distributed Systems, Florianopolis, Brazil, October
2004.

[40] Y. Choi, K. Park, and D. Park. Homed: A peer-to-peer overlay architecture for large-scale
content-based publish/subscribe systems. In Proceedings of DEBS, Edinburgh, UK, May 2004.

[41] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In Workshop on Design Issues in Anonymity and
Unobservability, pages 311–320, ICSI, Berkeley, CA, USA, July 2000.

[42] International Press Telecommunications Council. News Industry Text Format.

[43] G. Cugola, E. Di Nitre, and G. Picco. Content-based dispatching in a mobile environment. In
Workshop su Sistemi Distribuiti: Algoritmi, Architetture e Linguaggi (WSDAAL), 2000.

[44] G. Cugola, E. Di Nitto, and A. Fugetta. The JEDI event-based infrastructure and its ap-
plication to the development of the opss wfms. IEEE Transactions on Software Engineering,
27(9):827–850, September 2001.

[45] G. Cugola, E. Di Nitto, and A. Fuggetta. Exploiting an event-based infrastructure to develop
complex distributed systems. In ICSE ’98: Proceedings of the 20th international conference on
Software engineering, pages 261–270, Washington, DC, USA, 1998. IEEE Computer Society.

151

[46] A.K. Datta, M. Gradinariu, M. Raynal, and G. Simon. Anonymous publish/subscribe in p2p
networks. In IPDPS, page 74, 2003.

[47] D.Cheriton and W.Zwaenepoel. Distributed process groups in the v kernel. ACM Transactions
on Computer Systems, 3(2):77–107, 1985.

[48] Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate
evaluation for high-performance xml filtering. In TODS, volume 28(4), pages 467–516, New
York, NY, USA, 2003.

[49] Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and Scalable Filtering of XML
Documents. In Proceedings of ICDE, San Jose, CA, February 2002.

[50] Y. Diao and M.J. Franklin. High-Performance XML Filtering: An Overview of YFilter. IEEE
Data Engineering Bulletin, March 2003.

[51] A.L. Diaz and D. Lovell. XML Generator. http://www.alphaworks.ibm.com/tech/xmlgenerator,
September 1999.

[52] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment Issues for the IP
Multicast Service and Architecture. IEEE Network magazine special issue on Multicasting,
February 2000.

[53] D.Powell. Group communication. Communications of the ACM, 39(4):50–97, April 1996.

[54] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi. Efficient broadcast in structured p2p
networks. In Proceedings of IPTPS03, Berkeley, USA, February 2003.

[55] P.Th. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of pub-
lish/subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

[56] P.Th. Eugster, R. Guerraoui, and Ch.H. Damm. From epidemics to distributed computing.
IEEE Computer, 37(5), pages 60–67, May 2004.

[57] F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, and D. Shasha. Filtering Al-
gorithms and Implementations for Very Fast Publish/Subscribe Systems. In Proceedings of
SIGMOD, pages 115–126, Santa Barbara, California, May 2001.

[58] L. Fiege, G. Mühl, and F.C. Gärtner. A modular approach to build structured event-based
systems. In Proceedings of the 2002 ACM Symposium on Applied Computing (SAC’02), pages
385–392, Madrid, Spain, 2002. ACM Press.

[59] L. Garces, K. Ross, E. Biersack, P. Felber, and G. Urvoy-Keller. Topology-centric look-
up service. In NGC’03, 5th International Workshop on Networked Group Communications,
September 16-19, 2003 - Munich, Germany, Sep 2003.

[60] GNUnet. http://www.gnu.org/software/gnunet/.

[61] Gnutella. http://www.gnutella.wego.com/ (2000).

[62] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing xml streams with deterministic
automata. In ICDT ’03: Proceedings of the 9th International Conference on Database Theory,
pages 173–189, London, UK, 2002. Springer-Verlag.

[63] Object Management Group. The Common Object Request Broker: Architecture and Specifica-
tion. Version 2.3. Object Management Group, Framingham, MA, USA, 1998.

[64] Object Management Group. CORBA event service specification. Version 1.01. OMG Document
formal/2002-08-04, 2002.

152

[65] T.O. Group. DCE 1.1: Remote Procedure Call. Technical Standard C706. The Open Group,
Cambridge, MA, USA, 1997.

[66] R. Gruber, B. Krishnamurthy, and E. Panagos. The architecture of the ready event notification
service. In Proceedings of The International Conference on Distributed Computing Systems,
Workshop on Middleware, Austin, Texas, 1999.

[67] A.K. Gupta and D. Suciu. Stream processing of xpath queries with predicates. In SIGMOD
’03: Proceedings of the 2003 ACM SIGMOD international conference on Management of data,
pages 419–430, New York, NY, USA, 2003.

[68] E.N. Hanson, C. Carnes, L. Huang, O. Konyala, L. Noronha, S. Parthasarathy, B. Park, and
A. Vernon. Scalable trigger processing. In Proceedings of the 15th International Conference
on Data Engineering, pages 266–275, Sydney, Austrialia, March 1999.

[69] E.N. Hanson, M. Chaabouni, C-H. Kim, and Y-W. Wang. A predicate matching algorithm for
database rule systems. In SIGMOD ’90: Proceedings of the 1990 ACM SIGMOD international
conference on Management of data, pages 271–280, Atlantic City, New Jersey, United States,
May 1990.

[70] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment. In Proceedings
of MobiDE, pages 27–34, May 2001.

[71] I2P. http://www.i2p.net/.

[72] IBM. Gryphon: Publish/subscribe over public networks. Technical report, IBM T.J. Watson
Research Center, 2001.

[73] P. Sens J-M. Busca, F. Picconi. Pastis: a Highly-Scalable Multi-User Peer-to-Peer File System.
In EuroPar 2005, September 2005.

[74] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D/ Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao. OceanStore: an architecture for global-
scale persistent storage. SIGPLAN Not., 35(11):190–201, 2000.

[75] L.V.S. Lakshmanan and S. Parthasarathy. On efficient matching of streaming xml documents
and queries. In EDBT ’02: Proceedings of the 8th International Conference on Extending
Database Technology, pages 142–160, London, UK, 2002. Springer-Verlag.

[76] M. Kirtland M. Horstmann. Dcom architecture. http://www.microsoft.com/com/tech/DCOM.asp,
July 1997.

[77] Sun Microsystems, Inc. Java 2 Platform Enterprise Edition. http://java.sun.com/j2ee/.

[78] Sun Microsystems, Inc. Java RMI.

[79] Sun Microsystems, INC. Network Programming. Sun Microsystems, Mountain View, CA,
March 1990.

[80] G. Miklau and D. Suciu. Containment and equivalence for an XPath fragment. In PODS ’02:
Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 65–76, New York, NY, USA, 2002. ACM Press.

[81] G. Mühl. Large-Scale Content-Based Publish/Subscribe Systems. PhD thesis, Darmstadt Uni-
versity of Technology, 2002.

[82] S. Mullender, editor. Distributed Systems, chapter 7 and 8. Addison-Wesley, 2nd edition, 1993.

153

[83] N. Bruno and L. Gravano and N. Koudas and D. Srivastava. Navigation- vs. index-based XML
multi-query processing. In In Proceedings of ICDE 2003, pages 139–150, Los Alamitos, Calif.,
March 2003.

[84] Napster. http://www.napster.com/ (2000).

[85] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Monitoring XML data on the Web. In
Proceedings of ACM SIGMOD, pages 437–448, Santa Barbara, California, May 2001.

[86] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information bus: an architecture for extensible
distributed systems. In SOSP ’93: Proceedings of the fourteenth ACM symposium on Operating
systems principles, pages 58–68, New York, NY, USA, 1993. ACM Press.

[87] L. Opyrchal, M. Astley, J. Auerbach, G. Banavar, R. Strom, and D. Sturman. Exploiting
ip multicast in content-based publish-subscribe systems. In Proceedings of Middleware, April
2000.

[88] L. Opyrchal and A. Prakash. Secure distribution of events in content-based publish subscribe
systems. In 10th USENIX Security Symposium, August 2001.

[89] P. Eugster. Type-based publish/subscribe. PhD thesis, EPFL Lausanne, December 2001.

[90] P.E. Chung, Y. Huang, S. Yajnik, D. Liang, J.C. Shih, C.-Y. Wang, Y.M.Wang. DCOM and
CORBA side by side, step by step, and layer by layer. C++ Report, 10(1), January 1998.

[91] G. Perng, C. Wang, and M.K. Reiter. Providing content based services in a peer to peer
environment. In Proceedings of DEBS, Edinburgh, UK, May 2004.

[92] G. Picco, G. Cugola, and A. Murphy. Efficient content-based event dispatching in the presence
of topological reconfiguration. In Proceedings of ICDCS, 2003.

[93] P.R. Pietzuch. Event-based middleware: A new paradigm for wide-area distributed systems?
In 6th CaberNet Radicals Workshop, February 2002.

[94] P.R. Pietzuch. Hermes: A Scalable Event-Based Middleware. PhD thesis, Computer Labora-
tory, Queens’ College, University of Cambridge, February 2004.

[95] P.R. Pietzuch and J. Bacon. Hermes: A distributed event-based middleware architecture. In
ICDCSW ’02: Proceedings of the 22nd International Conference on Distributed Computing
Systems, pages 611–618, Washington, DC, USA, 2002. IEEE Computer Society.

[96] P.R. Pietzuch and J.M. Bacon. Hermes: A Distributed Event-Based Middleware Architecture.
In Proc. of the 1st Int. Workshop on Distributed Event-Based Systems (DEBS’02), pages 611–
618, Vienna, Austria, July 2002.

[97] Planetlab. http://www.planet-lab.org.

[98] R. Preotiuc-Pietro, J. Pereira, F. Llirbat, F. Fabret, K. Ross, and D. Shasha. Publish/subscribe
on the web at extreme speed. In Proc. of ACM SIGMOD Conf. on Management of Data, Cairo,
Egypt, 2000.

[99] P.Th. Eugster and R. Guerraoui and Ch.H. Damm. On Objects and Events. In Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
254–269, 2001.

[100] R. Chand and P.A. Felber. Efficient subscription management in content-based networks. In
Proceedings of DEBS, Edinburgh, UK, May 2004.

154

[101] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content addressable
network. In Proceedings of ACM SIGCOMM 2001, 2001.

[102] Rebeca Web Site. http://www.gkec.informatik.tu-darmstadt.de/rebeca/.

[103] D.R. Rosenblum, A.L. Wolf, and A. Carzaniga. Critical considerations and designs for Internet-
scale, event-based compositional architectures. In Workshop on Compositional Software Ar-
chitectures, January 1998.

[104] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized object location, and routing
for large-scale peer-to-peer systems. In Proceedings of International Conference on Distributed
Systems Platforms (Middleware), 2001.

[105] S. Daniel and J. Ellis and T. Truscott. USENET - A General Access UNIX Network.
ftp://ftp.std.com/obi/USENET/a/usenet/uprop.n, 1980.

[106] B. Segall and D. Arnold. Elvin Has Left the Building: A Publish/Subscribe Notification
Service with Quenching. In Proceedings of the 1997 Australian UNIX and Open Systems Users
Group Conference, 1997.

[107] B. Segall, D. Arnold, J. Boot, M. Henderson, and T. Phelps. Content Based Routing with
Elvin4. In AUUG2K, Canberra, Australia, June 2000.

[108] R. Shah, R. Jain, and F. Anjum. Efficient Dissemination of Personalized Information Using
Content-Based Multicast. In Proceedings of INFOCOM, New-York, June 2002.

[109] SIENA Web Site. http://www.cs.colorado.edu/users/carzanig/siena/.

[110] D. Skeen. Vitria’s Publish-Subscribe Architecture: Publish-Subscribe Overview.
http://www.vitria.com, 1998.

[111] A.C. Snoeren, K. Conley, and D.K. Gifford. Mesh Based Content Routing using XML. In
Proceedings of SOSP, pages 160–173, Alberta, Canada, October 2001.

[112] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. Internet indirection infrastructure.
In Proceedings of ACM SIGCOMM 2002, pages 73–88, aug 2002.

[113] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-
to-peer lookup service for internet applications. In Proceedings of ACM SIGCOMM, pages
149–160, 2001.

[114] W.W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A.P. Buchman. A peer-to-peer approach
to content-based publish/subscribe. In Proceedings of DEBS, San Diego, USA, June 2003.

[115] A. Tozawa and M. Hagiya. XML schema containment checking based on semi-implicit tech-
niques. In Proceedings of the Conference on Implementation and Application of Automata
(CIAA), July 2003.

[116] P. Triantafillou and I. Aekaterinidis. Content-based publish-subscribe over structured p2p
networks. In Proceedings of DEBS, Edinburgh, UK, May 2004.

[117] A. Virgillito. Publish/Subscribe Communication Systems: From Models to Applications. PhD
thesis, Universita degli studi di Roma La Sapienza, 2003.

[118] W3C. XML Path Language (XPath) 1.0, November 1999.

[119] W3C. Extensible Markup Language (XML) 1.0, 2nd Edition, October 2000.

[120] W3C. Simple Object Access Protocol (SOAP) 1.2, June 2003. http://www.w3.org/TR/soap/.

155

[121] W3C. XML Query (XQuery) 1.0, April 2005.

[122] S. Wu and U. Manber. Fast text searching: allowing errors. Communications of the ACM,
35(10):83–91, 1992.

[123] Y. Diao and S. Rizvi and M.J. Franklin. Towards an Internet-Scale XML Dissemination
Service. In Proceedings of VLDB 2004, Toronto, Canada, August 2004.

[124] H. Yu, D. Estrin, and R. Govindan. A hierarchical proxy architecture for internet-scale event
services. In WETICE ’99: Proceedings of the 8th Workshop on Enabling Technologies on
Infrastructure for Collaborative Enterprises, pages 78–83, Washington, DC, USA, 1999. IEEE
Computer Society.

[125] E.W. Zegura, K. Calvert, and S. Bhattacharjee. How to Model an Internetwork. In Proceedings
of INFOCOM, San Francisco, March 1996.

[126] B.Y. Zhao, L. Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz. Tapestry:
A global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in Com-
munications, 2003.

[127] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architecture
for scalable and fault-tolerant wide-area data dissemination. In Proceedings of the Eleventh
International Workshop on Network and Operating System Support for Digital Audio and Video
(NOSSDAV 2001), June 2001.

156

Appendix A

Extension of the RTU algorithm to
the case of multiple producers

Algorithm 27 — Subscription Substitution
1: create a null entry(S)
2: for all upstream interface Ig

up 6= Ik do
3: if ∃S′, S′ ⊃ S, P trg

S′ = null then

4: substitute S by S′ at Ig
up

5: else
6: for all Sk that can be substituted by S at Ig

up do
7: substitute Sk by S at Ig

up

8: end for
9: end if

10: end for
11: call Algorithm 30: “Subscription Representation”.

Algorithm 28 — Routing Table Update
1: for all upstream interface Ig

up 6= Ik do
2: if Ptrg

S 6= null then
3: for all S′ ancestor of S in treeg(hg(S)) do
4: Rg

S′ ← Rg
S′ + nS + rS

5: end for
6: advg

out ← (hg(S); 0; nS + rS)
7: else
8: advg

out ← (S; nS ; rS)
9: end if

10: Rg
S ← Rg

S + rS

11: Send advg
out to upstream interface Ig

up

12: end for
13: T k

S .x← T k
S .x + nS

14: T k
S .z ← T k

S .z + rS

Algorithm 29 — Reinsert function: reinsertg()
1: for all Sj such that Ptrg

Sj
= S do

2: push Sj in Lg
reinsert

3: Reset Ptrg
Sj

4: end for
5: delete entry(S)
6: for all Sj ∈ Lg

reinsert do
7: if ∃S′, S′ ⊃ Sj , P trg

S′ = null then

8: substitute Sj by S′ at Ig
up

9: end if
10: end for
11: for all Sj ∈ Lg

reinsert do
12: if Ptrg

Sj
= null then

13: countSj
=

∑
k T k

Sj
.x

14: append (Sj ; countSj
; Rg

Sj
) to advg

out

15: end if
16: if Ptrg

Sj
/∈ Lg

reinsert then

17: countSj
=

∑
k T k

Sj
.x

18: append (Ptrg
Sj

; 0; countSj
+ Rg

Sj
) to advg

out

19: end if
20: end for

157

Algorithm 30 — Subscription Representation
1: declare Ag = 0 for all upstream interface Ig

up 6= Ik

2: for all Sj subscriptions that can be represented by S at
Ik do

3: declare Tj = T k
Sj

4: Represent Sj by S at Ik

5: for all upstream interface Ig
up 6= Ik do

6: if Sj ∈ treeg(S) then
7: for all Sk ancestor of Sj in treeg(S) do
8: Rg

Sk
← Rg

Sk
− Tj

9: end for
10: else
11: for all Sk ancestor of Sj in treeg(hg(Sj)) do
12: Rg

Sk
← Rg

Sk
− Tj

13: end for
14: if Sj /∈ treeg(hg(S)) then
15: append (hg(Sj); 0;−Tj) to advg

out
16: Ag ← Ag + Tj

17: end if
18: for all Sk ancestor of S in treeg(hg(S)) do
19: Rg

Sk
← Rg

Sk
+ Tj

20: end for
21: end if
22: end for
23: if

∑
p≤n T p

Sj
= 0 then

24: remove entry(Sj)
25: for all upstream interface Ig

up 6= Ik do
26: for all Sk such that Ptrg

Sk
= Sj do

27: Ptrg
Sk
← Ptrg

Sj

28: end for
29: end for
30: end if
31: end for
32: T k

S .x← T k
S .x + nS

33: T k
S .z ← T k

S .z + rS

34: for all upstream interface Ig
up 6= Ik do

35: for all Sk ancestor of S in treeg(hg(S)) do
36: Rg

Sk
← Rg

Sk
+ nS + rS

37: end for
38: Rg

S ← Rg
S + rS

39: if hg(S) 6= null then
40: advg

out ← (hg(S); 0; nS +rS +Ag) [+ appended triples]
41: else
42: advg

out ← (S; nS ; rS + Ag) [+ appended triples]
43: end if
44: Send advg

out to upstream interface Ig
up

45: end for

Algorithm 31 — Cancellation algorithm - inner
nodes
1: declare L
2: declare Lg

keep, Lg
reinsert, keepg for all upstream interface

Ig
up 6= Ik

3: for all Sj ∈ advin(S) do
4: push Sj in L
5: end for
6: for all Sj ∈ L do
7: if Sj does not have an entry then
8: create a null entry for Sj , entry(Sj)
9: Ptrg

Sj
← S for all upstream interface Ig

up 6= Ik

10: end if
11: T k

Sj
.x← T k

Sj
.x + nSj

12: T k
Sj

.z ← T k
Sj

.z + rSj

13: for all upstream interface Ig
up 6= Ik do

14: for all Sk ancestor of Sj in treeg(hg(Sj)) do
15: Rg

Sk
← Rg

Sk
+ nSj

+ rSj

16: end for
17: if Sj ∈ treeg(hg(S)) then
18: keep← keep + nSj

+ rSj

19: Rg
Sj
← Rg

Sj
+ rSj

20: else
21: if Ptrg

Sj
6= null then

22: advg
out ← (hg(Sj); 0; nSj

+ rSj
)

23: else
24: advg

out ← (Sj ; nSj
; rSj

)
25: end if
26: Rg

Sj
← Rg

Sj
+ rSj

27: end if
28: end for
29: end for
30: for all upstream interface Ig

up 6= Ik do
31: for all Si ancestor of S in treeg(hg(S)) do
32: Rg

Si
← Rg

Si
+ nS − T k

S .z

33: end for
34: if Ptrg

S 6= null then

35: advg
out ← (h(S); 0; nS − T k

S .z + keepg)

36: if ∀p, T p
S = 0 then

37: for all Si such that Ptrg
Si

= S do

38: Ptrg
Si

= PtrS

39: end for
40: else
41: Rg

S ← Rg
S − T k

S .z
42: end if
43: else
44: if ∀p, T p

S 6= 0 then
45: call reinsertg() (Algorithm 29)
46: advg

out ← (S; nS ; 0) [+ appended triples]
47: else
48: advg

out ← (S; nS ;−T k
S .z + keepg)

49: Rg
S ← Rg

S − T k
S .z

50: T k
S ← (0, 0)

51: end if
52: end if
53: Send advg

out to upstream interface Ig
up

54: end for

158

Appendix B

Extension of the Crash/Recover
algorithm to the case of multiple
producers

Algorithm 32 On receiving Adv(sn) from inter-
face i
1: if 0 < sn ≤ hri then {Duplicate advertisement}
2: Send Ack(sn) down interface i
3: else if sn = hri + 1 then {Expected advertisement}
4: Update routing table with XRoute and generate

Adv1
out(hs) · · ·Advp

out(hs)
5: hri ← hri + 1
6: for all Upstream interface Ik

up do

7: hsk ← hsk + 1

8: RetrBufk append←− Advk
out(hsk)

9: end for
10: Backup log and routing table in recovery database
11: Send Ack(sn) down interface i
12: for all Upstream interface Ik

up do

13: Send Advk
out(hsk) upstream Ik

up
14: end for
15: end if

Algorithm 33 On receiving Back from up-
stream interface Ik

up

1: Send RetrBufk upstream interface Ik
up

Algorithm 34 On receiving Ack(snk) from up-
stream interface Ik

up

1: if Advk
out(sn

k) is found in RetrBufk then
2: Remove Advk

out(sn
k) from log

3: Backup log in recovery database
4: end if

Algorithm 35 On recovering from failure
1: Recover routing table and log from recovery database
2: for all Upstream interface Ik

up do

3: Send RetrBufk upstream interface Ik
up

4: end for
5: Send Back downstream all interfaces

159

