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Abstract

In this contribution, analytical wireless channel models are derived from the maximum entropy principle,
when only limited information about the environment is available. These models are useful in situations
where analytical models of the fading characteristics of a multiple-antennas wireless channel are needed,
and where the classical Rayleigh fading model is too coarse. The issues of the knowledge of the average
channel energy, of an energy upper-bound, and of spatial correlation, are studied. First, analytical models
are derived for the cases where these parameters are known deterministically. Frequently, these param-
eters are unknown, but still known to represent meaningful system characteristics (this includes typical
scenarios where the received energy or the spatial correlation varies with the user position). In these
cases, consistent analytical channel models are derived, based on maximum entropy distributions of the
energy or space correlation parameters. In particular, we show that the entropy-maximizing distribution
of the covariance matrices is conveniently handled through its eigenvalues, whereas its eigenvectors are
uniformly distributed. Using this technique, the modeler can provide consistent models incorporating
correlation of the channel antenna gains without the explicit value of these gains. The results are com-
pared in terms of mutual information to the classical i.i.d. Gaussian model in the SISO case.

1 Introduction

The problem of modelling the characteristics of a wireless transmission channel is crucial to the appro-
priate design of suitable channel codes. The recent shift to the Multiple-Input Multiple-Output (MIMO)
paradigm [1] and the corresponding need for MIMO channel models, together with the introduction of
codes (such as turbo codes [2]) that can operate very close to the channel capacity, has placed the chan-
nel models under scrutiny: initial capacity analyses of MIMO channels assuming i.i.d. Rayleigh fading
[3] were touting promising spectral efficiencies, whereas the importance of correlation between channel
coefficients [4] and of the channel matrix rank are now understood to be critical parameters. In order to
facilitate channel code development, analytical channel models are a desirable asset. Unfortunately, most
of the available channel models that capture the complex spatial characteristics of the propagation chan-
nel (geometry, reflection coefficients, . . . ) are based on ray tracing methods or variations thereof, which
model the channel as a superposition of multipath components [5] and therefore do not lend themselves
easily to analysis. Conversely, some analytical models were proposed to address the problem of accu-
rate space correlation modeling by assuming a Rayleigh fading with appropriately designed correlation
properties [6].
In [7], Debbah et al. address the question of channel modeling on the basis of statistical inference. Rely-
ing only on the principle of logical consistency, they propose a modeling methodology based only on the
knowledge which is available on the environment. In particular, they show that by using the principle
of maximum entropy introduced by Jaynes [8], one can translate the information on the environment
into a joint distribution of the entries of the MIMO channel matrix. Choosing the distribution with the
greatest entropy is justified on the basis of avoiding the arbitrary introduction of information that is not
available. This article extends maximum entropy channel modeling to cases where the channel is known
to have spatial correlation, but the exact characteristics of this correlation are not known.
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2 Notations and channel model

Let us consider the multiple-antenna wireless channel with nt transmit and nr receive antennas. Since we
are only concerned with non-frequency selective channels, let the complex scalar coefficient hi,j denote
the channel attenuation between transmit antenna j and receive antenna i, j = 1 . . . nt, i = 1 . . . nr.
Let H(t) denote the nr × nt channel matrix at time t. We recall the general model for a time-varying
flat-fading channel with additive noise

y(t) = H(t)x(t) + n(t), (1)

where n(t) is usually modeled as a complex circularly-symmetric Gaussian random variable (r.v.) with
independent identically distributed (i.i.d.) coefficients. In this article, we focus on the derivation of the
fading characteristics of H(t). When we are not concerned with the time-related properties of H(t),
we will drop the time index t, and refer to the channel realization H or equivalently to its vectorized

notation h
4
= vec(H) = [h1,1 . . . hnr,1, h1,2 . . . hnr,nt

]T . Let us also denote N
4
= nrnt and map the antenna

indices into [1 . . . N ], i.e. denoting equivalently h = [h1 . . . hN ]T . In the sequel, Re(·) and Im(·) denote
respectively the real and imaginary parts of a complex number.

3 Previous results: known channel energy constraint

In [7], a probability distribution is derived as the one that maximizes the entropy
∫

CN − log(P (H))P (H)dH,

where dH
4
=
∏N

i=1 dRe(hi)dIm(hi) is the Haar measure on C
N , under the only assumption that the chan-

nel has a finite average energy NE0, and the normalization constraint associated to the definition of a
probability density, i.e.

∫

CN

||H||2F P (H)dH = NE0, and

∫

CN

P (H)dH = 1. (2)

This is achieved through the method of Lagrange multipliers, by writing

L(P ) =

∫

CN

− log(P (H))P (H)dH + β

[

1 −

∫

CN

P (H)dH

]

+ γ

[

NE0 −

∫

CN

||H||2F P (H)dH

]

(3)

where we introduce the scalar Lagrange coefficients β and γ, and taking the functional derivative [9]
w.r.t. P equal to zero:

δL(P )

δP
= − log(P (H)) − 1 − β − γ||H||2F = 0. (4)

Eq. (4) yields P (H) = exp
(

−(β + 1) − γ||H||2F
)

, and the normalization of this distribution according to
(2) finally yields the coefficients β and γ, and the final distribution is obtained as

PH|E0
(H) =

1

(πE0)N
exp

(

−

N
∑

i=1

|hi|
2

E0

)

(5)

Interestingly, the distribution defined by eq. (5) corresponds to a complex Gaussian r.v. with inde-
pendently fading coefficients, although neither Gaussianity nor independence were among the initial
constraints. These properties are the consequence, via the maximum entropy principle, of the ignorance
by the modeler of any constraint other than the total average energy NE0.

4 Unknown energy constraint

Let us now introduce a new model for situations where the channel energy E can not be assumed constant,
for instance when an unknown shadowing must be accounted for. In this case, we propose to take E as
a r.v., and marginalize the distribution of H over E:

P (H) =

∫

R+

PH,E(H, E)dE =

∫

R+

PH|E(H)PE(E)dE. (6)

In order to establish the probability distribution PE , let us find the maximum entropy distribution under
the constraints:



• 0 ≤ E ≤ Emax, where Emax represents an absolute constraint on the transmit power, or on the
amplitude range of the receiver,

• its average E0
4
=
∫ Emax

0
EPE(E)dE is known.

Applying the Lagrange multipliers method again, we introduce the scalar unknowns β and γ, and maxi-
mize the functional

L(PE) = −

∫ Emax

0

log(PE(E))PE(E)dE + β

[

∫ Emax

0

EPE(E)dE − E0

]

+ γ

[

∫ Emax

0

PE(E)dE − 1

]

.

(7)

Taking the derivative equal to zero ( δL(PE)
δPE

= 0) yields PE(E) = exp (βE − 1 + γ), and the Lagrange
multipliers are finally eliminated by solving the normalization equations

∫ Emax

0

E exp (βE − 1 + γ) dE = E0, and

∫ Emax

0

exp (βE − 1 + γ) dE = 1. (8)

β < 0 is the solution to the transcendental equation

Emax exp(βEmax) −

(

1

β
+ E0

)

(exp(βEmax) − 1) = 0, (9)

and finally PE is obtained as the truncated exponential law

PE(E) =
β

exp(βEmax) − 1
exp(βE), 0 ≤ E ≤ Emax, 0 elsewhere. (10)

Note that taking Emax = +∞ in eq. (9) yields β = − 1
E0

and the exponential law PE(E) = E0 exp
(

− E
E0

)

.

4.1 Application to the SISO channel

In order to illustrate the difference between the two situations presented so far, let us investigate the
Single-Input Single-Output (SISO) case nt = nr = 1, where the channel is represented by a single complex
scalar h. Furthermore, since the distribution is circularly symmetric, it is more convenient to consider

the distribution of r
4
= |h|. After the change of variables h

4
= r(cos θ + i sin θ), and marginalization over

θ, eq. (5) becomes

Pr(r) =
2r

E0
exp

(

−
r2

E0

)

, (11)

whereas eq. (6) yields

Pr(r) =

∫ Emax

0

β

exp(βEmax) − 1

2r

E
exp

(

βE −
r2

E

)

dE. (12)

Note that the integral always exists since β < 0. Figure 1(a) depicts the probability density functions
(PDFs) of r under the known energy constraint (eq. (11), with E0 = 1), and the known energy distribution
constraint (eq. (12) is computed numerically, for Emax = 1.5, 4 and +∞, taking E0 = 1). Figure 1(b)
depicts the cumulative density function (CDF) of the corresponding instantaneous mutual information

I(r)
4
= log(1 + ρr2), for signal-to-noise ratio ρ = 15 dB. The lowest range of the CDF is of particular

interest for wireless communications since it represents the probability of a channel outage for a given
transmission rate. The curves clearly show that the models corresponding to the unknown energy have
a lower outage capacity that the Gaussian channel model.

5 Space correlation models

In this section, we shall incorporate several states of knowledge about space correlation characteristics
in the framework of maximum entropy channel modeling. We first study the case where the correlation
matrix is deterministic, and subsequently extend the result to an unknown covariance matrix.
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Figure 1: Amplitude and mutual information distributions of the proposed SISO channel models.

5.1 Deterministic knowledge of the correlation matrix

In this section, we establish the maximum entropy distribution of H under the assumption that the

covariance matrix Q
4
=
∫

CN hhHPH|Q(H)dH is known, where Q is a N × N complex Hermitian matrix.
Each component of the covariance constraint represents an independent linear constraint of the form

∫

CN

hah∗
bPH|Q(H)dH = qa,b (13)

for (a, b) ∈ [1, . . . , N ]2. Note that this constraint makes any previous energy constraint redundant since
∫

CN ||H||2F PH|Q(H)dH = tr(Q). Proceeding along the lines of the method exposed previously, we intro-
duce N2 Lagrange coefficients αa,b, and maximize

L(PH|Q) =

∫

CN

− log(PH|Q(H))PH|Q(H)dH + β

[

1 −

∫

CN

PH|Q(H)dH

]

+
∑

a∈[1,...,N ]
b∈[1,...,N ]

αa,b

[
∫

CN

hah∗
bPH|Q(H)dH − qa,b

]

. (14)

Denoting A = [αa,b](a,b)∈[1,...,N ]2 the N × N matrix of the Lagrange multipliers, the derivative is

δL(PH|Q)

δPH|Q
= − log(PH|Q(H)) − 1 − β − hT Ah∗ = 0. (15)

Therefore, PH|Q(H) = exp
(

−(β + 1) − hT Ah∗
)

, or, after elimination of the Lagrange coefficients through
proper normalization,

PH|Q(H) =
1

det(πQ)
exp

(

−(hHQ−1h)
)

. (16)

Again, the maximum entropy principle yields a Gaussian distribution, although of course its components
are not independent anymore.

5.2 Knowledge of the existence of a correlation matrix

It was shown in Section 3 that in the absence of information on space correlation, maximum entropy
modeling yields i.i.d. coefficients for the channel matrix, and therefore an identity covariance matrix.



We now consider the case where covariance is known to be a parameter of interest, but is not known
deterministically. Again, we will proceed in two steps, first seeking a probability distribution function for
the covariance matrix Q, and then marginalizing the channel distribution over Q.

Let us first establish the distribution of Q, under the energy constraint
∫

tr(Q)PQ(Q)dQ = NE0, by
maximizing the functional

L(PQ) =

∫

S

− log(PQ(Q))PQ(Q)dQ + β

[
∫

S

PQ(Q)dQ − 1

]

+ γ

[
∫

S

tr(Q)PQ(Q)dQ − NE0

]

. (17)

Due to their structure, covariance matrices are restricted to the space S of N × N positive semidefinite
complex matrices. Therefore, let us perform the variable change to the eigenvalues/eigenvectors space.

Specifically, let us denote Λ
4
= diag(λ1 . . . λN ) the diagonal matrix containing the eigenvalues of Q, and

let U be the unitary matrix containing the eigenvectors, such that Q = UΛUH .

We use the mapping between the space of complex N×N self-adjoint matrices (of which S is a subspace),
and U(N)/T ×R

N
≤ , where U(N)/T denotes the space of unitary N ×N matrices with real, non-negative

first row, and R
N
≤ is the space of real N-tuples with non-decreasing components (see [10], Lemma 4.4.6).

The positive semidefinite property of the covariance matrices further restricts the components of Λ to
non-negative values, and therefore S maps into U(N)/T × R

+N
≤ . Eq. (17) becomes

L(PU,Λ) =

∫

U(N)/T×R
+N
≤

− log(PU,Λ(U,Λ))PU,Λ(U,Λ)K(Λ)dUdΛ

+ β

[

∫

U(N)/T×R
+N
≤

PU,Λ(U,Λ)K(Λ)dUdΛ − 1

]

+ γ

[

∫

U(N)/T×R
+N
≤

(

N
∑

i=1

λi

)

PU,Λ(U,Λ)K(Λ)dUdΛ − NE0

]

, (18)

where we introduced the corresponding Jacobian K(Λ)
4
= (2π)N(N−1)/2

∏N−1
j=1 j!

∏

i<j(λi − λj)
2, and used

tr(Q) = tr(Λ) =
∑N

i=1 λi. Maximizing the entropy of the distribution PU,Λ by taking
δL(PU,Λ)

δPU,Λ
= 0

yields

−K(Λ) − K(Λ) log(PU,Λ(U,Λ)) + βK(Λ) + γ

(

N
∑

i=1

λi

)

K(Λ) = 0. (19)

Since K(Λ) 6= 0 except on a set of measure zero, this is equivalent to

PU,Λ(U,Λ) = exp

(

β − 1 + γ
N
∑

i=1

λi

)

. (20)

Since this distribution does not explicitly depend on U, it can be factored as PU,Λ(U,Λ) = PUPΛ(Λ)

where PU is the (constant) density of U on U(N)/T , and PΛ(Λ)
4
= C exp (γ

∑

i=1...N λi) where C is a con-

stant, is the distribution of the eigenvalues on R
+N
≤ . The unknowns can be eliminated by solving the nor-

malization equations
∫

U(N)/T
PUdU = 1,

∫

U(N)/T×R
+N
≤

PUPΛ(Λ)K(Λ)dUdΛ = 1,
∫

U(N)/T×R
+N
≤

(

∑N
i=1 λi

)

PUPΛ(Λ)K(Λ)dUdΛ = NE0, and PUC = exp(β − 1). Note that the uni-

form distribution on U(N)/T can be easily generated from Gram-Schmidt orthogonalization (and proper
normalization of the first row) of a standard complex Gaussian matrix.

So far, the maximum entropy distribution of Q = UΛUH has been established to be a product distri-
bution, with Λ distributed according to the exponential distribution PΛ(Λ) on R

+N
≤ , and U uniformly



distributed. The distribution of H is finally obtained through

PH(H) =

∫

S

PH|Q(H)PQ(Q)dQ =

∫

U(N)/T×R
+N
≤

PH|U,Λ(H)PUPΛ(Λ)K(Λ)dUdΛ (21)

=

∫

U(N)/T×R
+N
≤

C

N
∏

i=1

(

λ−1
i exp

(

γλi −
|uH

i h|2

λi

))

(2π)N(N−1)/2

πN
∏N−1

j=1 j!

∏

i<j

(λi − λj)
2PUdUdΛ, (22)

where ui denotes the i-th column of U and PH|U,Λ(h) = 1
πN

∏N
i=1 λ−1

i exp
(

−
|uH

i h|2

λi

)

comes from eq. (16).

6 Conclusion

We proposed analytical models for wireless channels using the maximum entropy method, when the
constraints are expressed in terms of channel energy and spatial correlation. When the channel energy
is unknown, numerical simulations show that the proposed model correctly exhibits a reduced mutual
information w.r.t. the known energy case. When the spatial correlation matrix is unknown, but is known
to be a preponderant parameter, we have shown that the maximum entropy method leads to convenient
analytical expressions in the eigenspace of the covariance matrix.

Natural extensions of this method to account for other peculiarities of the wireless channel include the
modeling of time correlation, by jointly modeling a number of successive channel realizations to take into
account the time-varying properties of the channel, or frequency correlation in the case of a frequency-
selective channel.
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