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ABSTRACT
This contribution provides a fresh look at the asymptotic
(in terms of number of antennas) design of multiple-antenna
wireless systems, with the goal of giving useful insights on
the deployment of future MIMO systems. For the i.i.d.
Gaussian and double-directional models, we provide guide-
lines in terms of the repartition of the antennas between
the transmitter and the receiver, and study the influence
of array geometry on the ergodic mutual information per
antenna. Furthermore, we compare the LOS and NLOS sit-
uations, and evaluate the relative importance of the LOS
component and path loss in Ricean fading, as well as in the
low-rank Ricean component case1.

Keywords
Antenna array, random matrix theory, Rayleigh fading, Rice
fading, double-directional model, LOS/NLOS

Categories and Subject Descriptors
H.1.1 [Systems and Information Theory]: General sys-
tems theory; G.3 [Probability and Statistics]: Multivari-
ate statistics

1. INTRODUCTION
A common question that arises in Multiple-Input Multiple-

Output (MIMO) systems concerns the allocation of the an-
tennas between transmitter and receiver. Consider a system
with nt transmit and nr receive antennas, and suppose that
the total number n = nt + nr of antennas is constrained,
what is the optimal proportion γ = nr

nt
that optimizes the

average mutual information in this type of system ? Such
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considerations depend of course on the state of knowledge
at hand and as a consequence on the type of model derived
(see for example [1, 2, 3, 4]). The goal of this paper is to give
a comprehensive overview of design issues related to MIMO
systems. The analysis is conducted in the asymptotic regime
(as n grows to infinity) for insight purposes. However, the
averaging effect has been shown to kick in at a very low num-
ber of antennas (see [5] for details), and therefore that the
results presented here remain useful for systems of moderate
size. We consider the MIMO versions of various commonly
used flat-fading models (Gaussian and Rayleigh with inde-
pendent components, double-directional, and Ricean with
low rank), and show the impact of antenna allocation, array
geometry and Rice component, on the ergodic mutual infor-
mation per antenna, when the transmitter has no knowledge
about the channel state.

2. ANTENNA ALLOCATION IN LARGE
SYSTEMS

Let us consider a frequency-flat MIMO channel, denoted
by a nr × nt complex matrix H, and an additive noise
n with nr complex Gaussian independent identically dis-
tributed (i.i.d.) components of variance σ2

n. The input-
output relationship between the transmitted signal x and
the received signal y is y = Hx+n. When the channel vari-
ations are relatively slow w.r.t. the symbol rate, the mutual
information of x and y for a fixed channel realization H is a
meaningful measure of the achievable rate over this channel.
We recall that the mutual information in this case has been
shown [6] to be IM = log det

“

I + 1
σ2
n
HRxH

H
”

, where Rx

is the covariance of x. Note that in general, the optimal
transmit covariance is a function of H. However, we will
focus on the case where the transmitter has no information
about the current channel realization. In this case, Rx can
still be chosen such as to maximize the expected IM for a
given distribution of H.

2.1 Gaussian i.i.d. Channel Model
Let us consider the case of the i.i.d. Gaussian channel

model. In this case, the optimal transmit covariance is Rx =

Int . Letting ρ = tr(Rx)

σ2
n

denote the signal to noise ratio

(SNR), the asymptotic mean mutual information (in nats)
normalized to the total number of antennas, is given by [7]:
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is a function of γ and ρ. In general, the previous

equation has no analytical expression for its maximum value.
For each SNR ρ, one has to search for the optimum value of
this function. Note that

1. In the case where ρ→ ∞, the optimum value is γ = 1.
This should be related to the fact that the mutual
information scales as min(nt, nr) log(ρ).

2. For low values of the SNR, it can be easy easily shown
that

E

»

IM

n

–

(γ, ρ) =
γρ

1 + γ
+O(ρ). (3)

In this case, the optimum value is γ → ∞. The shift
toward the receiving antennas can be understood intu-
itively: in this regime, the mutual information scales
linearly with the SNR (and not with the degrees of
freedom) and therefore one should focus on increasing
the total received SNR (which can be done by increas-
ing the number of receiving antennas).

For the general case, we have plotted in Figure 1 the mean
mutual information versus γ for several values of the SNR
ρ. In each case, a maximum value occurs (between 1 and
+∞) which depends on ρ as shown in Figure 2.
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Figure 1: Mean Mutual Information vs. γ for the

i.i.d. Gaussian model at various SNR.

2.2 Double directional model
Departing from the Gaussian i.i.d. model of section 2.1,

let us now consider the double directional model of Figure 3.
It is a double-bounce model with sr ≤ nr scatterers at the
receiving side and st ≤ nt scatterers at the transmitting
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Figure 2: Optimum γ vs. SNR for the i.i.d. Gaus-

sian model.

side. The scatterers are defined by their (angular) position
and their attenuation (see [8] for more details). The MIMO
matrix has the form

H =
1√
srst

Φnr×srP
r

1
2 Θsr×stP

t
1
2 Ψst×nt , (4)

where Θsr×st is an sr × st i.i.d. Gaussian matrix with unit
variance components. This general model has been shown
to include the Kronecker model, Sayeed’s virtual represen-
tation and the keyhole channel as particular cases. The
steering matrices Φnr×sr and Ψst×nt represent respectively
the directions of arrival (DoAs) from scatterers near the re-
ceiver to the receiving antennas and the directions of depar-
ture (DoDs) from the transmitting antennas to scatterers
near the transmitter:

Φnr×sr =

0

B

B

@

1 . . . 1
...

. . .
...

ej2π
d(nr−1) sin(φ1)

λ . . . ej2π
d(nr−1) sin(φsr )

λ

1

C

C

A

(5)

and

Ψst×nt =

0

B

B

@

1 . . . ej2π
d(nt−1) sin(ψ1)

λ

...
. . .

...

1 . . . ej2π
d(nt−1) sin(ψst )

λ

1

C

C

A

. (6)

For the sake of simplicity, let us focus on the case where the

Rx Tx

Φnr×sr Ψst×ntΘsr×st

Figure 3: Double Directional model.

scatterers are maximally distant from each other, and have
equal power. Therefore, the angle are distributed according
to the Fourier directions (ψk = 2kπ

st
, k = 1 . . . st, and φk =
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Figure 4: Optimum γ versus sr and st for the double

directional model, at 10dB SNR.

2kπ
sr

, k = 1 . . . sr), and all steering directions have equal gain

(Pr = Isr and Pt = Ist). In this case, denoting ξt = st
nt

and

ξr = nr
sr

, the following result from [8] holds:
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In the general case, there is no explicit expression for the
optimum value of γ. However, at very low SNR (ρ→ 0),

I
M =

γρ

1 + γ
+O(ρ) (9)

which favors a shift towards the number of receiving antenna
in this regime.

Figure 4 shows γopt = arg maxγ E

h

IM

nt

i

versus sr and st

for ρ=10 dB. The figure shows that γopt is in fact a function
of sr only. This is due to the fact that st ≤ nt and there-
fore nt has no effect on the multiplexing gain (st being the
limiting factor). As sr decreases, γ increases to increase the
received SNR, since the multiplexing gain is any case limited
by min(sr, st). Note that the values of γ are between 1 and
+∞.

3. ANTENNA GEOMETRY IN LARGE SYS-
TEMS

Let us consider the mutual information statistics for the
double directional model in the limit of large systems. In
this section, we shall make as little assumptions as possi-
ble about the scattering matrices Φnr×sr and Ψst×nt , with
the ultimate goal of maximizing mutual information by op-
timizing array geometries. As a consequence, the considered
antenna arrays are not necessarily uniform linear, and there-
fore we do not transmit and receive only on Fourier direc-

tions anymore. We will henceforth work under the following
assumptions:

• When the size of matrix Φnr×srP
r

1
2 grows large with

ξr = nr
sr

remaining fixed, the empirical eigenvalue dis-

tribution Ssr,nr of 1
sr

Pr
1
2 ΦH

nr×srΦnr×srP
r

1
2 converges

in distribution to a fixed distribution:

Ssr,nr (λ) =
1

sr

| {j : λj ≤ λ} |→ Sdoa(λ); (10)

• When the size of matrix Pt
1
2 Ψst×nt grows large with

ξt = st
nt

remaining fixed, the empirical eigenvalue dis-

tribution Sst,nt of 1
st

Pt
1
2 Ψst×ntΨ

H
st×ntP

t
1
2 converges

in distribution to a fixed distribution Sdod:

Sst,nt(λ) =
1

st

| {j : λj ≤ λ} |→ Sdod(λ). (11)

Let fdod(λ) = dSdod(λ)
dλ

and fdoa(λ) = dSdoa(λ)
dλ

denote the re-
spective densities of the eigenvalues of
1
st

Pt
1
2 Ψst×ntΨ

H
st×ntP

t
1
2 and 1

sr
Pr

1
2 ΦH

nr×srΦnr×srP
r

1
2 .

The asymptotic mutual information per receive antenna is
given [9] by
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where and Γ and Υ are the solutions of
8

>

>

<

>

>

:

Γ = γ

Z +∞

0

λ

1 + ρλΥ
fdoa(λ)dλ,

Υ =

Z +∞

0

λ

1 + ρλΓ
fdod(λ)dλ.

(13)

Interestingly, what really governs the transmission limits
of different scenarios are only the properties of the eigenval-
ues of the steering matrix. This result is extremely useful, as
it shows that only the limiting eigenvalue distribution of the
steering directions and their respective powers matters: in
other words, two antenna configuration can yield the same
throughput as long as they give rise to the same eigenvalue
distribution for the steering matrix.

Furthermore, since this result can constitute a good ap-
proximation even in the finite-dimension case, note that
eqs. (12) and (13) can be rewritten for the finite case from

the eigenvalues λdod
1 , . . . , λdod

st of 1
st

Pt
1
2 Ψst×ntΨ

H
st×ntP

t
1
2

and λdoa
1 , . . . , λdoa

sr of 1
sr

Pr
1
2 ΦH

nr×srΦnr×srP
r

1
2 , as
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h

I
M
i
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+ξr
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X
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i Υ) − ρntΓΥ (14)

with
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1 + ρλdod
i Γ
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Based on this result, a scenario that could be devised as
a future evolution of wireless communication systems is the
following: imagine a set of reconfigurable antennas that can
move on a grid. At the beginning of the communication,
the antennas are positioned arbitrarily. Once the trans-
mission starts, the position of the antennas (for fixed scat-
terers) on the grid are then optimized using the previous
formulas in order to increase mutual information. The opti-
mization can either use instantaneous information about the
scatterers’ position (angles of arrival, distance, . . . ) or can
be carried out statistically (e.g. adaptively adjusting inter-
antenna spacing). This is once more a viable scenario from
a software defined radio perspective and gives means for fu-
ture research in the field of antenna design. The antenna
design problem can therefore be related to an eigenvalue
optimization problem.

4. MULTIPLE ANTENNAS VS. SINGLE AN-
TENNA: IS THERE A CONTRADICTION?

Although a Rice distribution is well known to enhance the
performance with respect to the Rayleigh one in the Single-
Input Single-Output (SISO) case, these results cannot be
straightforwardly extended to the MIMO case. Indeed, con-
sider the following example:

Example 1. Suppose that the channel matrix is deter-
ministic with equal entries 1 (this is the limit case of a Rice
distribution with variance 0). The mutual information per
transmitting antenna with input Gaussian entries and co-
variance matrix E(xxH) = Int is:

IM

nt

=
1

nt

log det(Inr + ρ
HHH

nt

) (17)

=
1

nt

nr
X

i=1

log(1 + ρλi), (18)

where λ1, . . . , λnr are the eigenvalues of HH
H

nt
. In this case,

since it is a rank-one matrix, it has one single eigenvalue
equal to nr and the mutual information is given by:

IM

nt

=
1

nt

log(1 + ρnr) −→ 0
nr→+∞

, (19)

where the limit is taken as γ = nr
nt

tends to a fixed value.

This example shows that the line of sight component has
a dramatic effect on the mutual information since it is well
known that in the zero mean i.i.d. Gaussian case, the mu-
tual information per transmitting antenna is constant (see
Section 2.1).

In fact, the analysis of Rice MIMO models is quite im-
portant as it determines the way antennas should be placed.
In light of the previous result, one could conclude that in
MIMO situations, it would be better to avoid Line-of-Sight
situations, and that effectively “hiding” the antenna array
behind scatterers (under a table for example) would increase
channel capacity !

4.1 Some Considerations on MIMO Rice
Channels

As a consequence, a more in-depth analysis should be con-
ducted for determining the parameters governing the perfor-
mance achievable in the presence of Rice fading with respect

to the i.i.d. Gaussian case. Before going into detail, let us
introduce more precisely the MIMO Rice model. It essen-
tially consists in a weighted superposition of Line-of-Sight
(LOS) and Non-Line of Sight (NLOS) components. There-
fore, the complex entries of H are independently Gaussian
distributed with identical variance and mean E(hij) = mij .
Letting K denote the Rice factor of the channel, we rewrite
the channel matrix H as

H =

r

K

K + 1
H

LOS +

r

1

K + 1
H

NLOS (20)

in order to separate the random component of the channel
from the deterministic part:

• HLOS represents the line of sight component of the
channel such as ‖HLOS‖2

F = ntnr with entries hLOS
ij =

q

K+1
K

µij .

• HNLOS is the random component of the channel with
Gaussian, independent and identically distributed en-
tries. The complex element hNLOS

ij is circularly sym-
metric, with zero mean and unit variance.

This model is general enough to take into account line of
sight (LOS) and non line of sight (NLOS) cases, since as
K → ∞, eq. (20) models a deterministic channel, whereas
for K = 0 it describes a Rayleigh i.i.d. fading channel.

We would like to predict the mutual information of a
general Ricean MIMO channel using only a few meaningful
parameters, namely the asymptotic eigenvalue distribution
of the mean matrix HLOS, the Ricean factor K, the SNR,
and the number of receive antennas per transmit antenna
γ = nr

nt
. This situation has been studied by several authors,

see e.g. [10, 11].

Assumption: As nr, nt → ∞ while the ratio γ = nr
nt

re-
mains constant, the sequence of the empirical eigenvalue dis-

tribution of the matrix H
LOS

H
LOSH

nt
is assumed to converge

in distribution to a deterministic limit function
F

HLOSHLOSH

nt

(λ).

In this case, let us recall some important results of Cot-
tatellucci et al. [11]:

Theorem 1. As nr, nt → +∞ while γ = nr
nt

tends to a
fixed value, the asymptotic mutual information per transmit
antenna assuming Gaussian, spatially white (covariance Int)
input, converges almost surely to a deterministic value:

lim
n→+∞
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„
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x
m

HHH

nt

(− 1

x
)

«

dx,

(21)
where m

HHH

nt

(z) is the unique solution of the fixed point

equation

m
HHH
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=
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0
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(λ)

Kλ
γm

HHH
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−z
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γm
HHH
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K+1
+1

1

C

A
+ 1−γ
K+1

dλ (22)

such that Im(m
HHH

nt

(z)) > 0 for Im(z) > 0.

m
HHH

nt

(z) =

Z +∞

0

1

λ− z
F

HHH

nt

(λ)dλ (23)



is the Stieltjes transform of the limit distribution function

F
HHH

nt

of the eigenvalues of HH
H

nt
, and is implicitly – through

eq. (22) – a function of the limit distribution F
HLOSHLOSH

nt

(λ)

of the eigenvalues of the LOS component.

Remarkably, in this case, the asymptotic mutual infor-
mation per antenna is completely determined knowing only

γ, ρ, K, and the eigenvalues of H
LOS

H
LOSH

nt
, but not the

particular fluctuations of the fading.

4.1.1 LOS versus NLOS situations

• In the LOS case K → ∞, the Ricean component dom-
inates, and eq. (22) logically simplifies into

m
HHH

nt

(z) =

Z +∞

0

1

λ− z
F

HLOSHLOSH

nt

(λ)dλ, (24)

which is nothing else then the Stieltjes transform of
the distribution of the line of sight component.

• In the Rayleigh (K → 0, NLOS) case, eq. (22) be-
comes

m
HHH

nt

(z) =
1

−z
„

γm
HHH

nt

(z) + 1

«

+ (1 − γ)

, (25)

which yields (using the notation [z]+ = max(0, z))

F
HHH
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(λ) = [1 − 1

γ
]+δ(λ)

+
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>
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>
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:

1
πγλ

q

λ− 1
4
(λ− 1 − 1

γ
)2

if (
q

1
γ
− 1)2 ≤ λ ≤ (

q

1
γ

+ 1)2,

0 otherwise.

(26)

In this case, one obtains the classical semi-circle law
distribution corresponding to the i.i.d. zero mean Gaus-
sian channel, with the Dirac delta term accounting for
the null eigenvalues when H is tall (γ > 1).

In those two extreme cases, we verified that the results pro-
vided by Theorem 1 are consistent with previous knowledge.

4.1.2 Finite-dimension systems
Although formally valid only in the asymptotic regime,

results on capacity of MIMO channels have been shown [5] to
hold even for relatively low number of antennas. Therefore,
let us apply the previous results to finite dimension cases by
replacing the integral in eq. (22) by a discrete sum. This
yields

m
HHH

nt

(z)

=
1

nr

nr
X

i=1

1

KλLOS
i

γm
HHH

nt

(z)+K+1
− z

 

γm
HHH
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(z)

K+1
+ 1

!

+ 1−γ

K+1

(27)

where λLOS
1 , . . . , λLOS

nr are the eigenvalues of H
LOS

H
LOSH

nt
.

Similarly, in finite dimension, (23) reduces to

m
HHH

nt

(z) =
1

nr

nr
X

i=1

1

λi − z
. (28)

Therefore, the average mutual information is given by
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where the λ1, . . . , λnr are the solution of
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KλLOS
i

γ

nr

Pnr
i=1

1
λi−z

+K + 1
(30)

−z
 

γ

nr(K + 1)

nr
X

i=1

1

λi − z
+ 1

!

+
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#
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such that Im(m
HHH

nt

(z)) > 0 for Im(z) > 0.

4.1.3 The infamous diversity versus path loss trade-
off

In the light of the previous results, should the user “hide
under the table” to communicate ? In fact, the result de-
pends mostly on how the mean matrix (through its limiting
singular value decomposition) is structured, as revealed by
eq. (22). Even the situation presented in Example 1 is tricky:
one cannot compare Rice and Rayleigh at the same SNR ρ.

Indeed, in the case of Line of Sight, the path loss incurred
by the Rice distribution is less dramatic than in the case
of non-line of sight and as a consequence favors the Rice
model. Therefore, in order to make sensible decisions in
terms of system design, we need to consider the trade-off
between the number of degrees of freedom of the channel
(through the rank of H) and the path loss factor (which
influences ρ). Let us approach this issue by considering the
following two extreme cases:

Rank-one channel The nr ×nt Rice matrix has rank one
(with zero variance) and the path loss factor is a func-
tion of the distance r between the transmit and receive
antenna arrays. Letting ρ = ρmax

r2 (path loss model in
free space), we consider a rank-one channel model, i.e.
H =

√
ρhrh

H
t with hr = [1 . . . 1]T and ht = [1 . . . 1].

This situation can be regarded as an extreme case of a
pinhole channel [12]. In this case, the total mutual in-
formation at high SNR is given by IM = log(nrρmax

r2 ).

Rayleigh channel The Rayleigh case has a path loss fac-
tor ρ = ρmax

rl
(l ≥ 2). In this case, the total mu-

tual information at high SNR is given [6] by: IM =
nr log( ρmax

rl
).

For a given SNR and number of antennas, the exponent
of r is the dominant factor in the analysis of the situation
if l > 2, and in this case the rank-one (Line-of-Sight) case
is always the most favorable when r tends to +∞, whereas
the Rayleigh situations yields a higher mutual information
at short distances.

At high SNR, the path loss factor influences the slope
of the mutual information (with respect to the distance).
The intersection of the two cases is given by: nr log(ρmax)−
nrl log(r) = log(ρmax) + log(nr) − 2 log(r), which yields for

a high number of antennas (nr → +∞): r ∼ ρmax
1
l .

In practice, this trade-off between diversity and the path
loss is hard to analyze, and the simplifying assumptions that
were used above are not expected to hold for all situations.



In particular, the assumptions on the rank of the Rice ma-
trix and the SNR are not always fulfilled. However, these
examples still remain meaningful as extreme cases.

5. CONCLUSIONS
We presented an overview of issues faced during the de-

sign of a multiple-antenna wireless system, when the goal
is to maximize the efficiency of the system (in terms of
achieved ergodic mutual information per antenna). Vari-
ous fading situations have been considered (Gaussian i.i.d.,
Ricean, double-directional and limited-rank models), as well
as the trade-off between LOS and NLOS situations, and
guidelines in terms of the repartition of the antennas be-
tween the transmitter and the receiver, as well as in terms
of array geometry, have been established. In particular, the
concept of a reconfigurable array that adapts its geometry
to the channel conditions is proposed.
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