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Abstract— This paper evaluates the performance of two
PARAFAC-based receiver structures wireless communication sys-
tems based on code division multiple access (CDMA). Moti-
vated by the multidimensional nature of the wireless signal,
the PARAllel FACtor tensor decomposition (PARAFAC) is an
interesting approach to mitigate multiuser interferences and to
reconstruct the transmitted signal of each user at the base
station receiver. Furthermore, the PARAFAC decomposition is
a simple and elegant multidimensional decomposition that offers
easily interpretable signal models for the considered systems.
The two supervised receiver structures differ on the type of
spreading code sequence employed at the transmitter, which
can be either a conventional Hadamard-Walsh sequence or a
truncated Hadamard-Walsh sequence. Performance evaluation
of the two proposed receivers is made from the analysis of the
Bit Error Rate (BER) and the convergence speed.

Index Terms— Tensor decomposition, communications systems,
array processors, identification, equalization.

I. INTRODUCTION

During the last years, some algorithms have been proposed
to use the PARAllel FACtor decomposition (PARAFAC) for
signal processing in the context of wireless communication
systems. Mainly developed and used in chemometrics and
psychometrics, PARAFAC is a tensor decomposition technique
that merged as an attractive tool for system modeling, blind
beamforming, multiuser channel estimation/equalization and
signal separation for wireless communications [1].

In the multiple access context, PARAFAC has been used
to operate in a blind way with the objective to separate co-
channel user’s signals and to reliably estimate their channel
impulse responses [2], [3]. The PARAFAC decomposition
has also been used recently as an unified modeling tool for
some wireless communication systems such as CDMA, OFDM
and oversampled wireless systems, [4], [5]. It has also been
applied to problems of blind multiuser equalization in [6].
Blind PARAFAC receivers exhibit an inherent scaling and
permutation ambiguity problem, like most of blind techniques.
To overcome this ambiguity problem, constraints linked to the
specific characteristics of the considered wireless communica-
tion systems are imposed on the signal models.

The objective of this paper is to evaluate the performance
of the PARAFAC receivers for CDMA wireless systems under
practical system constraints. Two PARAFAC-based receivers
are presented. The first one is based on the knowledge of the
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spreading code matrix and the second one is based on the use
of a known training sequence.

The paper is organized as follows. In Section 2, the
PARAFAC model is introduced. The data model is presented in
Section 3. The system considerations are discussed in Section
4. Section 5 presents the proposed CDMA receivers. The sim-
ulation results and the conclusions are presented respectively
in Section 6 and Section 7.

II. PARAFAC DECOMPOSITION

Given a three-way array X of dimension I× J×K, the
standard three-way PARAFAC model decomposes each ele-
ment xi,j,k into trilinear components as shown in (1):

xi,j,k =
R∑

r=1

ai,rbj,rck,r. (1)

To simplify the mathematical analysis of the PARAFAC de-
composition, some matrix representations can be used. Let
us define the loading matrices A, B and C with respective
elements ai,r, bj,r and ck,r. The matrix representation that we
will consider in this paper is called the unfolded form. The
tensor is decomposed in matrix-slice forms as [2]:

Xi·· = BDi[A]CT i = 1, . . . , I,

X·j· = CDj [B]AT j = 1, . . . , J, (2)
X··k = ADk[C]BT k = 1, . . . ,K,

where Di[.] is the diagonal operator based on the ith row of
a given matrix. These matrix slices can be concatenated to
construct the three different unfolded matrices given by:

X1 = (A ¦ B)CT

X2 = (B ¦ C)AT (3)
X3 = (C ¦ A)BT

where ¦ denotes the Khatri-Rao (column-wise Kronecker)
product. The unfolded matrices (X1, X2 and X3) have respec-
tive dimensions (JI×K), (KJ×I) and (IK×J), and they are
defined as the concatenation of the respective matrix slices. For
example, X1 = [XT

1.. · · ·XT
I..]

T is one of the unfolded matrices.
Similarly, X2 = [XT

.1. · · ·XT
.J.]

T and X3 = [XT
..1 · · ·XT

..K ]T are
defined in the same way as X1.

A. Uniqueness Property

One of the major advantages of the PARAFAC decom-
position is its uniqueness property. Different from the two-
dimensional (2D) models, that may suffer from rotational
ambiguity problems, the trilinear model is unique, up to
scaling and permutation ambiguities [7].
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It is not an easy task to exactly define all the necessary
and sufficient conditions to respect the uniqueness property.
Several conditions have been proposed, but the unknown
characteristic of the tensor’s rank makes hard the definition
of the necessary and sufficient conditions to guarantee the
uniqueness of its decomposition. The least restrictive condition
for uniqueness was proposed by Kruskal [7] by means of the
k-rank (Kruskal-rank) of the loading matrices. Introduced by
Harshman & Lundy [8], the k-rank of a matrix A represents
the maximum number of columns (r) such that every set of r
columns of A are linearly independent and this does not hold
for a set of r + 1 columns. According to Kruskal a multi-way
array X, decomposed as a function of matrices A, B and C,
is unique if

kA + kB + kC ≥ 2(R + 1), (4)

where R is the number of factors of the PARAFAC decompo-
sition and kA, kB and kC are respectively the k-rank of the
loading matrices A, B and C. Sidiropoulos et al [2] extended
the Kruskal proof and showed that the Kruskal condition is
valid for complex tensors. Necessary and sufficient conditions
of uniqueness have been recently proposed in [9].

The meaning of the uniqueness property is that any matrices
A, B and C satisfying the PARAFAC model, are linked to
A, B and C by:

A = AΠ∆1

B = BΠ∆2, (5)
C = CΠ∆3

where Π is a permutation matrix and ∆i=1,2,3 are diagonal
matrices, with ∆1∆2∆3 = I.

B. Alternating Least Square Algorithm (ALS)

The ALS is an iterative technique that can be used to
estimate the loading matrices of the PARAFAC model. Based
on the principle of grouping the parameters into several sets,
the ALS consists in an iterative estimation in a least square
sense of each set of parameters until convergence. In a generic
way, the three-way array Xi=1,2,3 is expressed by a function
f(A, B, C), and the ALS algorithm estimates each component
matrix by assuming the knowledge of the two others, as shown
in (6):

minC ‖X1 − (Z1)CT ‖2
minA ‖X2 − (Z2)AT ‖2, (6)

minB ‖X3 − (Z3)BT ‖2

where Z1, Z2 and Z3 are respectively defined as (Â ¦ B̂),
(B̂¦Ĉ) and (Ĉ¦Â), and Â, B̂ and Ĉ represent the previously
estimated matrices.

Besides the attractive simplicity of the ALS, the conver-
gence to the global optimum can not be always guaranteed
because the algorithm can stop in a local minimum of the
criterium. This characteristic is intimately dependent on the
data nature and the initialization.

III. DATA MODEL

The CDMA system considered in this work is a simple
wireless system where the multidimensional received signal is
modeled as a multi-way array and decomposed as a PARAFAC
model. Let us consider a CDMA system with Q synchronized
users, M receiver antennas and L chips per symbol in a quasi-
static flat fading channel. In absence of noise, the discrete-time
base-band representation of the received signal at the m-th
receiver antenna of the n-th symbol in the l-th chip sampling
is given by

xm,n,l =
Q∑

q=1

hm,qsn,qcl,q, (7)

where hm,q , sn,q and cl,q denote respectively the channel
attenuation factor between the q-th user and the m-th receiver
antenna, the n-th transmitted symbol of the q-th user and the
l-th chip code of the q-th user. Using the PARAFAC model
notation of (1), we can define the three loading matrices H,
S and C of the PARAFAC model as the matrices respectively
constituted by the elements hm,q , sn,q and cl,q . The matrix
H of dimension M ×Q is the multiple-input multiple-output
channel matrix, constructed with the channel elements hm,q .
The matrix S of dimension N ×Q is a symbol matrix, where
its q-th column contains the data sequence of the q-th user. The
matrix C is a code matrix with dimension (L×Q), where each
column q is the code of the q-th user.

For the decomposition process, when applying the ALS
algorithm, the two proposed receiver structures are based on
the knowledge of some properties of the loading matrices.
They are described as follow:
• The first receiver structure assumes that the spreading

codes of all users are known. We propose two variants
for this structure. In the first one (RX1), the channel and
symbol matrices are estimated. After the convergence,
hard decision is performed to estimate the transmitted
sequence. In the second variant (RX2), at each ALS
step, the entries of the symbol matrix are projected
onto the finite modulation alphabet of the transmitted
symbols. Note that since the code matrix is known,
permutation ambiguity is eliminated from the estimation
process. Scaling ambiguity is eliminated by normalizing
the channel matrix.

• In the second structure, the users spreading codes are
not known, but a training sequence is employed in order
to estimate the channel and the code matrices. In this
case, each entry of the code matrix is projected onto
the finite-alphabet of the set of codewords during the
ALS algorithm. Similarly to the first receiver, permutation
and scaling ambiguities are eliminated by the training
sequence knowledge that we have.

IV. SYSTEM ASSUMPTIONS

For simplicity, we make some assumptions:
• The system is frame-based, which means that the signal

processing elaborated by the receiver is done after the
reception of each data packet;
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• The wireless channel is a quasi-static flat fading channel.
The flat fading assumption can easily be achieved by the
insertion of guard chips or by the use of techniques like
Orthogonal Frequency Division Multiplexing (OFDM).

• The signals captured by different antennas of the receiver
array are assumed to be uncorrelated. This assumption is
valid for an antenna array that has an antenna separation
exceeding half of the wavelength of the wireless signal;

• Each receiver antenna employs an automatic gain con-
troller that normalizes the received signal. This normal-
ization is important to avoid scaling ambiguities in the
receiver structures RX1 and RX2.

A. Uniqueness

The uniqueness property of the PARAFAC model, as de-
scribed in Section II-A, means that the decomposition process
is unique, implying that we can estimate the exact loading
matrices of the multi-way array. Let us consider the signal
model of the CDMA system as described in (7). The Kruskal
condition that respects the uniqueness property is given by

kH + kS + kC ≥ 2(Q + 1), (8)

where kH , kS and kC are respectively the k-rank of the
matrices H, S and C, and Q is the number of users.

Analyzing the loading matrices and considering the system
characteristics, we can conclude that:
• The channel between each user and each receiver antenna

suffers from an independent fading, which implies that H
is full k-rank 1.

• The data sequence generated by each user is uncorrelated
from the data sequence of the other users. Assuming that
the number of symbols per frame is much greater than the
number of users (N À Q), the matrix S has full k-rank.

• The code matrix C is generated so that each user has
different codes, based on the considered code set. Two
different kinds of code are considered: Hadamard-Walsh
(HW) and truncated Hadamard-Walsh (THW) codes. For
HW codes, the matrix C is always full k-rank. For THW
codes, the matrix C is full k-rank when L ≥ Q. These
characteristics are shown in Appendix.

Under these assumptions, we can rewrite (8) as

min(M, Q) + min(N, Q) + min(L,Q) ≥ 2(Q + 1),

which shows uniqueness conditions related with system pa-
rameters.

V. PARAFAC CDMA RECEIVERS

To evaluate the performance of the PARAFAC receiver
structures, two CDMA systems are considered. Differently
from the blind approach of [2], the CDMA receivers con-
sidered in this paper always have the information of one of

1The matrix whose columns are drawn independently from an absolutely
continuous distribution is full k-rank with probability one, because any
combination of columns can be thought as another random matrix with
columns drawn independently from an absolutely continuous distribution.

the loading matrices (either the code matrix or the symbol
matrix). This eliminates the intrinsic permutation ambiguity.
The scale ambiguity is eliminated exploiting the knowledge of
the alphabet used on the symbol matrix and code matrix.

A. Code Knowledge-based Receiver

Based on the conventional CDMA system, this receiver
exploits the knowledge of the code matrix. Under this assump-
tion, each frame is analyzed independently from the others,
and each frame processing generates two estimated matrices:
the channel matrix and the symbol matrix. This receiver is
analyzed in terms of code length, number of users and number
of receiver antennas. Two proposed structures (RX1 and RX2)
are considered for performance evaluation.

B. Training Sequence-based Receiver

This receiver uses a training sequence at the beginning of
each packet transmission. In this case, the channel matrix is
estimated by using the training sequence information. After
that, unknown symbols are transmitted and the channel matrix
and the code matrix are considered static.

This receiver is analyzed in terms of training sequence
length, code length, number of users and number of receiver
antennas. For simplicity, the receiver knows the set of code-
words. For this reason, only the second proposed receiver
structure (RX2) is considered. This structure projects the
estimated code matrix on the finite set of codewords.

VI. SIMULATIONS

The performance of the proposed receiver schemes is eval-
uated in this section by means of computer simulations. We
employ binary-phase-shift-keying (BPSK) modulated symbols
and each run represents a transmitted frame of 1000 symbols.
The ALS initialization is done by using the knowledge of
one of the loading matrices and the two other matrices are
randomly initialized. The results are evaluated for different
numbers of receiver antennas, different code lengths, different
numbers of users, under the assumption of a flat fading chan-
nel. For the supervised case, the training sequence is generated
with a length equal to the number of users. Performance
evaluation is done in terms of Bit-Error-Rate (BER) and
convergence speed. All the simulations are based on the Monte
Carlo technique with 100 experiments. The performance re-
sults shown in the figures are the average performance over
all the users. A brief summary of the simulation parameters
is given in Table I.

TABLE I
SIMULATION PARAMETERS.

Symbol modulation BPSK
# users (Q) 10
# symbols per frame (N ) 1000
# receiver antennas (M ) 2 and 4
# chips per code (L) ≥ # users
# training symbols (Symbtr) = # users
# Monte Carlo experiments 100
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Fig. 1. ALS convergence for 4 antennas, 10 users and SNR of 5db.
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Fig. 2. BER versus SNR for the structure RX1 with 10 users.

A. CDMA Receiver with Code Knowledge

In Fig. 1, the ALS convergence is evaluated for a SNR of
5dB for the two structures (RX1 and RX2) with two different
codes (code THW with 10 chips and code HW with 16 chips)
in a conventional CDMA system. It can be seen that the ALS
convergence is very fast, convergence being achieved after
very few iterations, and the two structures do not show any
performance difference.

For performance evaluation, we only consider the structure
RX1 because it gives the same performance as the RX2 struc-
ture with less complexity. Figure 2 compares the performance
for two numbers of receiver antennas (M = 2 and M = 4)
and two different code structures, which are Hadamard-Walsh
(HW) and Truncated Hadamard-Walsh (THW). It can be seen
that a satisfactory BER performance is achieved. The receiver
performance improves where the number of receiver antennas
is increased. These results were expected because multiple
antennas at the receiver provide spatial diversity, adding more
redundancy to the received signal.
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Fig. 3. BER versus SNR for structure RX1 with 10 users and different codes.
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Fig. 4. BER versus SNR for different number of users, HW and THW codes.

Regarding the influence of the code length, all the figures
show a better performance when the code length increases.
In Fig. 3, it can be seen that the system efficiency increases
with the code length. In other words, when we increase the
code length, we increase the symbol redundancy, which in turn
increases the system performance. It is important to note that
the HW code is orthogonal, and it represents the best code
with length L = 16.

In order to evaluate the impact of the number of users,
we present in Fig. 4 the performance of the system that
employs 35, 40 and 50 users with different codes. As we
expected, the increase of the number of users degrades the
receiver performance, but the system continues to be able to
separate/recover the transmitted signals.

B. Supervised CDMA Receiver

For the supervised CDMA receiver, the ALS convergence
is achieved after the first iteration. As was observed in all
the simulations, this convergence can be justified by the



VI INTERNATIONAL TELECOMMUNICATIONS SYMPOSIUM (ITS2006), SEPTEMBER 3-6, 2006, FORTALEZA-CE, BRAZIL 5

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Code THW:10 AntRX:2
Code THW:10 AntRX:4
Code HW:16 AntRX:2
Code HW:16 AntRX:4

Fig. 5. BER versus SNR with a training sequence of 10 symbols, 10 users.
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Fig. 6. BER versus SNR with a training sequence of 10 symbols.

knowledge of the training symbol matrix and the codewords
ensemble at the receiver, i.e., after the first iteration, the
symbol matrix is exactly known and the estimated code matrix
columns are projected on the known set of possible codewords.
In Fig. 5, we compare the performance as a function of the
number of receiver antennas (M = 2 and M = 4) and as
a function of the code type (THW with 10 chips and HW
with 16 chips). Like for the PARAFAC receiver with code
knowledge, Fig. 5 shows that when we increase the number
of receiver antennas, the receiver performance is improved. In
Fig. 6, it can be seen that an increased code length results in
an improved receiver performance.

In order to evaluate the impact of the number of users, Fig.
7 shows the performance of a system with 35, 40 and 50 users,
considering different code structures. Note that an increase on
the number of users degrades the receiver performance, but
for high SNR, the signal separation/recovery is remarkable.
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Fig. 7. BER versus SNR with a training sequence of 64 symbols.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we have presented two PARAFAC-based
receivers for CDMA systems. The receivers exhibit satisfac-
tory BER performance for two different system configurations
(code knowledge or training sequence) and remarkable con-
vergence speed, showing reasonable performance with low
complexity. A perspective of this work includes the use of
non-finite-alphabet codes which is full k-rank by definition.
It is also expected to take the dispersion and time-varying
channel into account for performance evaluation.

APPENDIX

The k-rank is extremely important for the PARAFAC
uniqueness property. In this section, we show that the
considered code matrices (Hadamard-Walsh and truncated
Hadamard-Walsh) are full k-rank.

A. Hadamard-Walsh Code Matrices

The Hadamard-Walsh code matrices is a code family that
has a particular orthogonal structure. The cross correlation
between any two Hadamard-Walsh codes of the same code
matrix is zero, implying that the columns are mutually or-
thogonal, i.e., for two different codewords (cp and cq) with
length N , generated by the same Hadamard-Walsh matrix, we
have that

N−1∑

i=0

cp(i) · cq(i) = 0 ∀p 6= q. (9)

Because of this property, the Hadamard-Walsh matrices are
always full k-rank.

B. Truncated Hadamard-Walsh Code Matrices

The truncated Hadamard-Walsh code matrix is built
based on the Hadamard-Walsh structure. Different from the
Hadamard-Walsh matrix, the truncated one has not any con-
straint on the code length (the Hadamard-Walsh has always
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length N = 2n). For this reason, the truncated Hadamard-
Walsh does not satisfy the orthogonal property between dif-
ferent codewords. Besides this characteristics, it is possible
to prove that a truncated Hadamard-Walsh code matrix is full
k-rank when the code length is greater than one value that
depends on the number of users, i.e., for Q users, we define a
value n such that (2n−1 < Q ≤ 2n) and the code length L is
chosen to be greater than (2n−1). To exemplify the problem,
let us consider a 4× 4 Hadamard-Walsh matrix:

C(4) =

∣∣∣∣∣∣∣∣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

∣∣∣∣∣∣∣∣
,

where each column represents an user codeword. We will
denote the four code words respectively as c(4)

1 , c(4)
2 , c(4)

3 and
c(4)
4 . Now, let us consider a 5× 5 truncated Hadamard-Walsh

matrix:

C(5) =

∣∣∣∣∣∣∣∣∣∣

1 1 1 1 1
1 −1 1 −1 1
1 1 −1 −1 1
1 −1 −1 1 1
1 1 1 1 −1

∣∣∣∣∣∣∣∣∣∣

.

Rewriting the matrix in terms of the C(4) codewords, we have:

C(5) =
∣∣∣∣

c(4)
1 c(4)

2 c(4)
3 c(4)

4 c(4)
1

1 1 1 1 −1

∣∣∣∣ .

Assuming that the codewords of the matrix C(5) are linear
dependent, we have that:

α

∣∣∣∣
c(4)
1

1

∣∣∣∣+β

∣∣∣∣
c(4)
2

1

∣∣∣∣+γ

∣∣∣∣
c(4)
3

1

∣∣∣∣+ξ

∣∣∣∣
c(4)
4

1

∣∣∣∣+ζ

∣∣∣∣
c(4)
1

−1

∣∣∣∣ = 0

or equivalently:

(α + ζ)c(4)
1 = −βc(4)

2 − γc(4)
3 − ξc(4)

4 (10)
α + β + γ + ξ − ζ = 0. (11)

By definition, c(4)
1 , c(4)

2 , c(4)
3 and c(4)

4 are linear independent
(orthogonal codewords). This implies that the only solution
of (10) is the trivial solution, where β, γ, ξ and (α + ζ) are
equal to zero, i.e., the columns built with different orthogonal
codewords are independent.

Assuming the proposed conditions for the code matrix,
which has codes with length greater than L > (2n−1 + 1),
where n is an integer given by a relation with the number of
users (2n−1 < Q ≤ 2n). With these constraints, for a generic
system with a given number of users, each of the orthogonal
codewords with length (L > (2n−1 + 1)) is used to build at
maximum two different columns of the truncated Hadamard-
Walsh matrix. Let us have a truncated Hadamard-Walsh code
matrix C(s) with a given dimension ((2n−1 + 1)×Q), which
the number of users and the code length respect the proposed
conditions. This matrix is constructed based on the Hadamard-
Walsh matrix C(2n−1) and given by:

C(s) =

∣∣∣∣∣
C(2n−1) c(2n−1)

1 · · · c(2n−1)
Q−2n−1

rT −1 · · · −1

∣∣∣∣∣ ,

where c(2n−1)
i is the ith column of the matrix C(2n−1) and r

is a column vector of ones with dimension (2n−1 × 1).
As we can see in the above equation, due to the structure of

the truncated Hadamard-Walsh matrix, the columns beginning
with the same orthogonal codeword vector (c(2n−1)

i ) are linear
independent because of the insertion of the new row of
elements. The independence of the codewords guarantees that
the code matrix is full k-rank for every code matrix constituted
by Q users, and L chips where n satisfies both assumptions
(2n−1 < Q ≤ 2n and L ≥ 2n−1).
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