
Easing interaction through user-awareness

Alain Karsenty

Eurecom Institut

2229, route des Cretes

06904 Sophia-Antipolis

+33 - 93 00 26 63

karsenty@eurecom.fr

ABSTRACT
In the context of CSCW (Computer Supported Cooperative
work), we propose to ease the interaction between users
through the use of user-aware agents. The purpose of those
agents is to be aware of the user’s state (e.g. is the user
typing on the keyboard, meeting with other people, on the
phone, etc.). We will first describe an application we
developed on top of a Mediaspace, EasyMeeting, based on
user-aware agents. Second, we will present the
implementation (multi-agent architecture, language).
Finally we will discuss various aspects of the agents. We
believe, the user-aware agents are a step toward a better
communication man-machine. Instead of the usual approach
in which users consciously interact with the machine, we
make the computer aware of the users and thus make users
unconsciously interact with the computer.

KEYWORDS: groupware, Computer-Supported
Cooperative Work, Computer-Human Interaction,
Intelligent Agents, Mediaspace.

INTRODUCTION
The keyboard and mouse are today's computers main
source of input. Considering the human capabilities and the
technology available this is quite limitative of what could
be done to improve human-computer communication. In
this paper, we propose to add as an input source to the
computer, the user himself. This is achieved by providing
an "eye" and an "ear" that informs the computer about what
is happening at a particular place. As opposed to the
traditional (mouse, keyboard devices) and less traditional
(multimodal interfaces, speech recognition, gesture based
interface...) input sources, this input is of a passive form
since the computer is aware of the user's actions whereas the
user is not aware of the computer listening to his actions.
We chose a passive input approach since we did not want
to add a burden to the user (e.g. carry badges, fill up
information in a file...). This way, we hope the user will
benefit from the system without having extra-work to do,
which avoids a failure of groupware systems pointed out
before [9].

We call the agents that listen to the user's physical activity
user-aware agents. To illustrate the use of such agents, we
can imagine a simple screen-saver utility twould benefit
from it. Whenever the user is not working in front of the
computer, a user-aware agents informs the computer which
turns the screen-saver on and locks the screen. As soon as
the user is back in front of the computer, the user-aware
agents recognizes the user and the screen automaticall
unlocks itself. However, this work focuses more on the
CSCW (Computer-Supported Cooperative Work) field.
Indeed, knowledge of the user's state can be quite valuable
in CSCW to help improve distant communication between
users. We investigated the use of such agents in a
Mediaspace (multimedia system allowing co-workers to
communicate through audio/video). We show in this paper
how to make meetings between co-workers easier through
the concept of user-awareness. For this purpose we
developed an application, EasyMeeting, thatvarious
kind of meetings to be made. Basically, meeting someone
through the computer is made as simple as dragging an
icon into a window. Once done, the computer will connect
the users whenever possible (e.g. they are in front of the
computer, not talking on the telephone, etc

We will first describe EasyMeeting, the application to a
mediaspace, the implementation and in particular the
architecture, and finally we will discuss the use of agents,
and privacy issues.

RELATED WORK
Both the VideoDesk [11] and the DigitalDesk[24] link the
real world to the computer world, by enabli
to "see" (video analysis). In the VideoDesk, a camera is
mounted on top of the physical desk and analyzes the
scene. It can for instance recognize the text written on a
paper (using Optical Character Recognition (OCR)
techniques) and paste it into an application. The
VideoDesk recognizes the user's hand movements in order
to manipulate objects on the screen. Such work, however,
focuses on single-user application and activinput, whereas
our work focuses on CSCW and passive input.

Multi-agent systems [13, 15] are also related to our work
except that our focus is more on Computer-human
interaction.

On the mediaspace aspect of our work, many systems exist
that study the interaction through video [8, 3, 1, 20, 22,
14, 2]. For instance, Portholes [6] uses the mediaspace in
an asynchronous way to develop group awareness.
Snapshots from people's office are taken at a regular interval
and displayed as a background mosaic picture. Thus, co-
workers unconsciously develop a stronger feeling of co-
presence. Portholes' approach is different from EasyMeeting
in the sense that it brings to the user the knowledge of
who's in the office and who's not but does not bring this
knowledge to the computer. This could have been done, for
instance, by some image processing on the mosaic. In a
similar fashion, VideoWindow [8] connects two distant
rooms through a large video-display, thus improving
communication between distant sites.

Finally the concept of active office [10] and reactive
environment [4] are the most closely related to our work.
The active office builds application based on knowledge of
the location of people wearing active badges. Our systems
differs in the sense that we do not want users to wear any
device, and we also have all type of agents, not only
location ones. In the reactive environment a meeting room
is equipped with all kind of sensors to automatically
perform the various tasks. The user-aware agents approach
is more generic in that it provides a general architecture for
such systems and our experience deals more with
interaction between users than with room equipment.

EASYMEETING: USER-AWARENESS IN A
MEDIASPACE
Part of every day's office work often consists in
informal/formal meetings between co-workers. However,
those meetings, especially informal, do not happen so
easily. As an example, let's consider user A who wants to
meet user B. User A dials B's phone number and gets a
busy tone. A moment later, A passes by B's office, to find
the office closed. A then leaves a note asking B to get back
in touch with him. When B returns, the inverse scenario
happens where A is out of the office making it difficult for B
to get back to A. This scenario can happen indefinitely!

Although reality is not so negative, people in offices still
spend a lot of time running after each other. To improve
communication, electronic mail is often employed. It's
asynchronous, therefore allows the exchange of information
to be made much easier. However, many situations need to
be discussed in face-to-face meetings, or at least through
telephone or video. For this purpose we developed
EasyMeeting, an application built on top of a mediaspace
that allows to easily meet.

In the next sections, we will first define what is a
mediaspace, then we will describe the EasyMeeting
application (office metaphor for the user-interfac
features...).

Mediaspace
A mediaspace is a system that integrates video/audio and
computer networking technology in order to provide a rich
cooperative environment. A number of systems have been
built at different sites [8, 3, 1, 20, 22,
simple systems similar to videophones, which simply
connect users through video to more research oriented
prototypes. The latter kind looks for more original use of
audio/video than simply a telephone with video. Our
research focuses on this direction by using user-aware
agents to ease the interaction through the

We use an analog mediaspace (Figure 1). It is constituted
of nodes connected to a central switch. Each node consists
of a monitor, a camera, speakers and a microphone. The
switch is computer-controlled through the software
Integrated Interactive Intermedia Facility (IIIF) [1].
Moreover, a PIP (Picture In Picture) is connected to the
switch, allowing to divide the monitor's screen in four
rectangular parts. Through the computer, we can connect
until five people together.

EasyMeeting : office metaphor
So far, mediaspaces are accessed through interfaces not so
intuitive and simple to use and with limite
Shifting from single-user to multi-user app
a need to find new metaphors. The user-interface provided
(Figure 2) is based on an office metaphor that we believe

Figure 1 : Connection between two people using the mediaspace.

fits better the needs of CSCW. The same way single-user
interfaces are based on the desktop metaphor, it seemed
natural to extend it, in the case of CSCW, to an office
metaphor. In an office building, we have three basic places
where people meet. First, in their office, where formal
"serious" meetings occur. Second, in the hallway where co-
workers can glance in each other's office and hold informal
meetings. Finally, in the coffee room, where informal
meetings take place whether work or non-work related.

From the user-interface's point of view, this metaphor is
directly represented. Three rooms represent the various
level of communication. From formal communication
(office room) to informal communication (Hallway and
Coffee room):

Office room
This means that users want to meet privately. From the
agent's point of view, the system must make sure the users
are in their office, alone and not on the telephone.

Coffee room
This is an informal type of communication. Users want to
meet, even in a public place. For instance, if the system
detects user A in a public place and user B at his office,
they will still be connected, even though there might be
people around.

Hallway room
Provides the ability for users to glance in someone else's
office. Unless the users explicitly close their access door,
this is always possible. The connection only last a few
seconds.

The user interface has been designed so that meetings are
very easy to obtain. Users are represented as icons, when
the user wants to meet a certain college, he simply drag-
and-drops the icon into the appropriate room (optionally
he/she can set a later meeting time). Each room represents a
certain kind of meeting. Whenever the system think it's
appropriate, the users are connected through the
mediaspace. Furthermore, we provided the ability to create
group meetings by dragging icons into an existing user
icon.

Access control
It has been shown that access control is anaspect
of CSCW [16] and mediaspace in particular [7,17]. As we
see on the upper part of the interface, a door icon and a
mirror icon provide two functions giving control to the
users.

The mirror provides a video feed-back. It allows one to see
his/her own image on the monitor in order to be aware of
the image seen by the other users. Users often employ the
mirror function to center their image.

It is also possible to control one's availability through the
door metaphor. Clicking on the door icon makes it vary
from an open door (anybody can come and see me), to a
semi-closed door (meaning you can glance in but
I don't want to be interrupted) to a closed door (I'm not
available, e.g. I'm in a meeting and don't want to be
disturbed). The door metaphor mechanism is also available
in CAVECAT [12].

Ideally our system wouldn't need such a control since the
system guesses what the user is doing and therefore what
kind of connections he/she wants or doesn't want. For
instance, if a user is meeting people at hithe system
detects more than one people and thus assumes that the
user does not want to be disturbed. However, no matter
how sophisticated the user-aware agents are, they still
cannot guess what someone is thinking...In the previous
example, the user might not be in a "serious" formal
meeting, and might be willing to be interrupted. Indeed,
users need to be provided with some kind of control since
all the cases of interaction cannot be taken into account. In
fact, the problem of control still has to be studied, and
future experiments will help us provide access control
features more fitted to the needs.

IMPLEMENTATION
To manage such a distributed systems we chose to use a
hierarchical multi-agent architecture and to implement the
communication between agents with Tcl-dp (a distribute
programming extension to tcl-tk implementing RPC and

Figure 2: EasyMeeting, user-interface.
Karsenty has taken two meetings, one
informal with Madrane and a formal one
with Gelin.

TCP/IP). The interface was implemented in Tcl-tk. Tcl-tk
and its various extensions allowed us to quickly implement
a prototype that is easy to modify. The multi-agent
architecture allowed us to easily add/remove user-aware
agents and to clearly separate the modules of the system.

In this section we describe the implementation first from
the logical architecture point of view, then from physical
one.

Agent-based architecture
The architecture is based on a number of agents that collect
information about users' activity in order to connect them at
the best appropriate time. Given the heterogeneous nature of
the agents, it seemed suited to organize them in a
hierarchical way. We thus based our architecture on three
kind of agents: lower-level agents (user-aware agents) that
collect raw data, higher-level agents (Intelligent Agent) that
analyze the information provided by the various user-aware
agents and the server agent (i.e. the "brain" of the system)
which collects information from the Intelligent Agents in
order to make connections between users. We describe this
architecture in Figure 3. As we see, information flows from
raw data provided by the user-aware agents, to user data
provided by the intelligent agent and finally group data
stored in the server.

Server

Intelligent
agents

User-aware
agents

Figure 3: Logical architecture
User-aware agent
We will first define what is a user-aware agent. The idea is
to collect as much information as possible about the users'
physical activity. User-aware agents, are software/hardware
that provide this information. Such agents are aware of the
user's physical state, e.g. who the user is, what he/she is
doing, where he/she is, etc. The way to get such
information can be very diverse: infra-red motion detectors,
video analysis, pressure captors under the chair, cell
sensitive to light, badges. User-aware agents are low-level
agent in the sense that they provide raw data. For instance,
they can detect motion, or change of light but do not
provide higher-level information such as a user is present or
not.

In our case, we decided to use what we had available, i.e.
the video camera that is part of the mediaspace and the
keyboard/mouse attached to each user's computer. The
information thus provided is motion detection and

keyboard/mouse activity. Motion detection is done via a
fairly simple program that analyzes digitized pictures taken
from the camera and consider that motion happened
whenever the pixel sum value between pictures is higher
than a given threshold. The keyboard/mouse activity is
done via a Xlib program that intercepts keyboard and
mouse events. Those agents are enough to detect fairly
accurately whether a user is at his desk or not. Indeed, if a
user is typing, he/she is rather motionless, but is still
detected. And when not typing text, the user is often in
motion (unless reading/writing on the physi

Intelligent agent
The Intelligent Agent is the one that centralizes the
information from the user-aware agents in order to infer
higher-level information. For instance, in the previous
example, an intelligent agent attached to two user-aware
agents (keyboard activity, and motion detection) will infer
that a given user is present or not, whethethis information
is provided by the keyboard activity agent or the motion
detection agent. Intelligent Agents' knowledge are only
about a particular physical place which is usually an office.
Therefore, they collect user data and don't have any
knowledge about the group.

Server
The server has global knowledge of the system. It is the
one that CSCW applications will interact with. As an
example, if we want to connect user A and B together, the
server knows which computer they are usually logged on
and will send a query to the appropriate Intelligent Agents.
Knowing A and B's respective status, the server will guess
whether or not to connect them.

Language
The system has been implemented using mainfor
the interface, Tcl-dp for communication between processes,
and C languages for lower-level routines (image analysis,
keys activity agent...). We show in Figure 4 the main
components of the physical architecture and the languages
used.

Motion detection
agent

C, Xil library
Tcl-dp

Server

Intelligent
agent

keys activity
agent

EasyMeeting
interface

Tcl-dp

Tcl-tk-dp
BLT

Tcl-dp

C
ifff Server

C, Tcl-dp
X11

Figure 4: Physical architecture

For each user's workstation we had three process running.
The keyboard activity agent implemented in C/X11 scans
all the windows and reports when keys are typed,
communication is done via tcl-dp in C. The motion
detection is implemented in C and uses the sun Xil library
to do real-time motion detection. The algorithm is very
basic in order to run fast, pixel difference between
successive pictures is calculated, after a set threshold, the
agent considers that there is motion and communicate the
event to the intelligent agent via tcl-dp. The intelligent
agent is implemented in Tcl-dp in order to communicate
both to the agents and to the server. The server is
implemented in Tcl-dp to communicate both to the
EasyMeeting interface and to the intelligent agents, and
makes call to the iiif server [1] to make the mediaspace
connections. Finally, the EasyMeeting interface is
implemented in tcl-tk for the graphics, using the tcl
extension BLT1.0 to implement the "drag-and-drop" feature
and using Tcl-dp to communicate with the server.

This architecture works well except for a few problems.
First the keyboard activity process must be run by the user
otherwise the user must issue the command "xhost +" for
the name of the machine running the server. In both case
this is not convenient for the user and the administrator of
the system. This problem could be solved by running the
system as root.

Another issue was the number of processes constantly
running and slowing down the machines. When users are
not requesting connections it is in fact a waste of CPU time
to keep the processes running. The solution is to run the
processes on request from the server. When a meeting is
requested, the server should ask the intelligent agents

attached to the users concerned to wake the user-aware
agents up in order to get the information.

Finally, we encountered problems due to the
not control the physical state of the conne
mediaspace. For instance, when requesting a connection
between A and B, A's monitor may switched off, which
will result in a connection where A does not know that B
is connected to him (privacy issue...). A ssolution is
to add an agent that will do some image processing to
check that images are not completly black, in which case
the problem should be reported to the user.

DISCUSSION
In this last section we discuss two issues, one technical
the pros and cons of various user-aware agents, and the
second social, the big brother issue.

What kind of user-aware agents?
There is many ways to get information abouta user's state.
Various hardware/software alternatives can be combined to
obtain the best result. So far, EasyMeeting uses
keyboard/mouse activity and motion detection. It turned
out to be enough for simple cases, when users always log
on the same computer and do not want to be contacted in
other places. However, one of EasyMeeting's initial goal
was to make connections available anywhere in the office.
This goal cannot be achieved without some sophisticate
software such as face-recognition, which are not very
reliable and do not provide real-time recognition. In the
following, we discuss different alternativespros and
cons of each one.

Motion detection (video)
This is a simple efficient captors that canmotion
in real-time. Simple algorithms provide reliable results.
However, the result is very limited, we cannot know who
is moving, or how many users are moving.

Face recognition (video)
Face-recognition is a very active field of research [5, 21],
however no real-time efficient algorithm exists for this
complex problem. This is the reason why we haven't used
it. We are currently working on a way aroun
Instead of face-recognition, we could use "shirt-recogniti
which is much easier. For instance, when the user first log
on the computer in the morning, we could detect the shirt
pattern and use it as future reference during the day (hoping
the users don't change shirts during the day...). User
identification is of crucial importance for the system, since
this is the feature that allows one to be contacted wherever
he is. The most reliable solution is probably badges
however we do not want at this point users to wear any
special device.

Scene analysis (video)
This is similar to face recognition but more generic. We
may want to know, for instance, the user's location in the
office, how many users are present, etc. Except for a few
simple cases, it cannot be achieved in real-time, which
might not always be a problem. In the case where we want

to know the number of users present in the office (i.e. trying
to find out if the user is busy holding a meeting), we can
tolerate a few minutes delay.

Speech recognition
Such agent has the interesting real-time feature. However,
the drawback, is from the human-computer interaction side.
One has to speak to be identified, which goes against the
passive approach of our system. However, such agent could
be used as a complement to other captors.

Telephone activity
This captors can easily be implemented and provide very
reliable information. In fact, it could also be coupled with
the previous speech recognition module. Such agent can
tell the user is busy on the telephone, and moreover knows
who the user is calling. With such information, the
interaction could be customized. For instance, if a co-
worker wants to meet user B, and user B is on the
telephone talking to a friend, the system could be
customized in order to authorize the agent to make a video
connection, despite the conversation on the telephone. Or,
user B may customize the system not to be interrupted
when talking to customers.

Keyboard/Mouse activity
The simplest form of monitoring is the keyboard/mouse
activity. Such activity informs the server that a user is
present in front of the computer. Information provided by
this agent is however partial: a user might be in front of the
computer simply reading, the software agent will not detect
activity.

Software agents
By software agents, we mean the many software that run on
a machine which can provide useful information about the
user. For instance, if a user runs a calendar manager
application, the server can extract from it useful information
(e.g. the user is out of the office this afternoon, etc.). The
screen lock on signifies that a user is probably not at his
desk. If user logs on somebody else's display, his/her login
can be detected making it easy to detect where the user is
located. Finally, EasyMeeting itself can provide useful
information, since it monitors who's meeting who at
different time. From an implementation point of view, the
software agents need to communicate with the server, which
means to either modify the applications (e.g. implement a
custom shell, calendar manager, etc.) or, if possible, use
existing API (Application Programming Interface) to get
the information.

prese
nce

who how
many

Real-
time

what

Speech
recognition

* * *

Motion
detection

* *

Face
recognition

*

Scene
analysis

* *

Telephone
activity

* * *

Keyboard
activity

* *

Software
activity

* * * *

Figure 5: Pros and cons of various user-aware
agents

We summarize the pros and cons of the various user-aware
agents in Figure 5. We gave five criteria:

• presence: the agent can detect someone's

• who: the agent is able to identify the u

• how many: detect the number of users pre

• real-time: the agent is able to provide the information
in real-time.

• what: the agent is able to detect what tuser is doing
(e.g. the user is writing at his desk, on the telephone,
etc.)

As a conclusion, it is obvious that there is no one all
powerful agent, but each with a specific advantage. A good
system will rely on combining in the most clever way
many agents in order to build a reliable sy

Big brother issue
A fundamental issue to the whole system, is the "Big
Brother" issue. Agents scattered through the office,
monitoring the actions of the users reminds too much of a
telesurveillance system...We ought to desiga system that
users will trust. Nobody will use a system where it is
possible to spy on everyone's actions.

To overcome the big brother issue, we present a number of
rules we followed during the design and implementation of
the system.

No access to other users’ state data
One of the fundamental design of the system is the
impossibility for a user to know what another user is
doing. When requesting a connection with someone, if the
user cannot be reached, the reason why is completely
hidden to other users. If one wants to find out the reason

he/she cannot get in touch with someone, traditional
methods needs to be employed. For instance, one should
ask the secretary if the college is out of the office, or go
physically to the college's office.

Our approach is different from other systems such as
Portholes. They aim at developing group awareness, a
sense of co-presence, by explicitly making users graphically
co-present, whereas our aim, in the case of EasyMeeting, is
to ease the interaction through the mediaspace. Therefore,
privacy can and should be respected.

Evanescent data
This is the computer aspect of privacy. Data, such as who
is where, doing what, should not be stored in a file, unless
necessary. For instance, when a connection is requested, the
server will simply ask the various agents to find the user.
Whenever the connection is established, there is no need to
keep the information about the user.

By doing so, we ensure that in the design of the system
itself, there is no way to break privacy rules. We therefore
make this technology more trustable.

Ubiquitous/invisible agents
From a hardware point of view, the agents can be numerous
and scattered through the building. In order not to make the
users not feel "watched", ubiquitous agents should be made
part of the environment, thus invisible. In that sense we
move toward Weiser's view of ubiquitous computing [23].

In many mediaspace, including ours, a node consists of a
monitor, on top of it a video camera, a microphone on the
table or attached to the camera, and next to it the
workstation. The whole system takes up a lot of physical
space, and is far from being invisible...Systems such as
Hydra [18] provide interesting alternatives to be used in
mediaspaces: a hydra unit consists of a small box made of a
small camera and a mini-display, which can be easily
moved around. A meeting consist in using many hydra
units next to each other.

WISYYSM
We can derive from the acronym WYSIWIS (What You
See Is What I See) often used in groupware [19] the
acronym WISYYSM (When I See You, You See Me). One
way to apply it is to only allow two-way connections. One-
way connections, which would allow someone to spy in
somebody else's office, are thus not possible. However the
WISYYSM can be extended in many other way. For
instance, when someone glances in a college's office, a
snapshot may be taken. In a similar fashion, an agent could
detect when someone physically glance in a college's office
and take a snapshot of the user peeking through the door.
When the college comes back to the office, snapshots can
be replayed, thus the college can find out who is trying to
reach him/her. This way we also respect privacy, since a
user cannot use the glance feature to "spy" in somebody
else's office.

CONCLUSION
Human-computer interaction research is focused on active

mode of communications, in which the user is aware when
communicating to the computer. In this papewe described
what we call a passive approach to human-computer
interaction, in which the user is not aware to communicate
to the computer. On the contrary, it is the computer that is
made aware of the user. On this principle, we have
described a user-aware agents based architecture for CSCW
and an application to the mediaspace, EasyM

This work is continuing in different direct

First, we need to further experiment. This is still a
prototype, and we are currently making it more robust.
Experimentation will allow us to validate sideas
discussed in this paper.

Second, we plan to add more captors than keyboard/mouse
activity and motion detection. The most important one is
user identification. Even if face recognition is not reliable
yet, it will still be useful to do some bas

Finally, we are interested to apply the user-aware agents
architecture to other applications, CSCW or single-user
Many applications can take advantage of this concept (e.g.
the screen-saver described at the introduction, teleteaching
shared editing, etc.) and this will also help us refine our
architecture.

ACKNOWLEDGEMENTS
We would like to thank Armand Sanier who greatly
contributed to the implementation of the first prototype.
Pascal Gros for the exchange of toughts and the help in
setting up the mediaspace. Bernard Merialdo for the useful
discussion. Nabil Madrane for helping implementing the
motion detection agent. And finally the many people who
participated in testing the system and gave useful feedback,
Jean-Michel Sadoul, Katia Fintzel, Florence Dubois and
Khaled Boussetta.

REFERENCES
1.Buxton, W. and Moran, T., "Europarc's Integrated

Interactive Intermedia Facility (IIIF): Early
Experiences," in Multi-User Interfaces and
Applications, Gibbs, S. and Verrijn-Stuart, A.A., Eds.
North Holland, 1990, pp. 181-188.

2.Buxton, W., "The three mirrors of interaction : A
holistic approach to user interfaces." In L. W.
MacDonald & J. Vince, editors, Interactin
Environments. Wiley: NY, 1994.

3.Sarah A. BLY, Steve R. HARRISON, and Susan IRWIN,
"Media Spaces: Bringing People Together in a Video,
Audio and Computing Environment", Communications
of the ACM, 36(1), p.28-47, January 1993

4.Cooperstock, J. R., Tanikoshi, K., Beirne, G., Narine,
T., Buxton, W., "Evolution of a Reactive
Environment", In Communications of CHI’9

5.Davies, E. and Shepherd (eds), "Perceiving and
Remembering Faces", Academic Press, Londo

6.Paul Dourish, Annette Adler, Victoria Bellotti, and
Austin Henderson, "Your Place or Mine? Learning from
Long-Term Use of Video Communication", Europarc,
Technical Report EPC-94-105, EuroPARC, Cambridge
1994.

7.Paul Dourish, "Culture and Control in a Media Space",
in Proceedings of ECSCW'93.

8.Fish, R. S., Kraut, R. E., Chalfonte, B. L. "The
VIdeoWindow System in Informal Communications",
in Proceedings CSCW'90, Oct. 7-10, 1990, pp.1-11.

9.Grudin, J, "Why CSCW Applications Fail: Problems
in the Design and Evaluation of Organizational
Interfaces," in Proceedings of the ACM Conference on
Computer-Supported Cooperative Work (CSCW’88),
Portland, OR, September 26-29, 1988, pp. 85-93.

10.Harter, A, Hopper, A, "A Distributed Location System
for the Active Office", In IEEE Network, vol. 8, n.1, pp.
62-70, Jan/Feb 1994..

11.Krueger, Myron, W. Artificial Reality. Reading:
Addison-Wesley, 1993.

12.Mantei, M., Baecker, R., Sellen, A., Buxton, W., and
Milligan, T., "Experience in the Use of a Media Space,"
in CHI'95, 1991, pp. 203-208.

13.Martial, F. V., "Coordinating plans of autonomous
agents. LNAI 610, Springer-Verlag: Berlin.

14.Margrethe H. Olson and Sara A. Bly. "The Portland
experience: A report on a distributed research group."
International Journal of Man Machine Studies,
34(2):211-228, 1991.

15.Rizzo, P., Cesta, A., and Miceli, M., "On Helping
Behavior in Cooperative Environments", in
International Workshop on the Design of Cooperative
Systems, June 1995.

16.Tom Rodden, Gordon Blair, "CSCW and Distributed
Systems: The Problem of Control" in Proceedings of
the Second European Conference on Computer
Supported Cooperative-Work (ECSCW'91), September
25-27, 1991, Amsterdam.

17.Salber, D. and Coutaz, J., "Fenetres sur groupe: des
mediaspaces pour collaborer et communiquer." In
Proceedings of Interface des mondes reels et virtuels,
Montpellier, pp. 309-318, Feb. 1994.

18.Sellen, A., Buxton, W. and Arnott, J. "Using spatial
cues to improve videoconferencing" in Proceedings of
CHI'92, pp. 651-652, 1992.

19.Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., and
Tatar, D., "WYSIWIS Revisited: Early Experiences
with Multiuser Interfaces," ACM Trans. on Office
Information Systems, vol. 5, no. 2, 147D167, April
1987.

20.Thomas, R. H., Forsdick, H. C., Crowley, T. R.,
Schaaf, R. W., Tomlinson, R. S., Travers, V. M.,
Robertson, and G. G. "Diamond: A multimedia
message system built on a distributed architecture."In
IEEE Computer, volume 18, pages 65-78. 1985.
Reprinted in Greif, 1988.

21.Turk, M. A. and Pentland, A. P., "Face Recognition
Using Eigenfaces" in Proceedings IEEE, 19

22.Kazuo Watabe, Shiro Sakata, Kazutoshi Maeno,
Hideyuki Fukuoka, and Toyoko Ohmori. "Distribute
multiparty desktop conferencing system: Mermaid."
pages 27-38. ACM Press, New York, NY, October
1990.

23.Weiser, M., "The computer for the 21st century."
Scientific American, pp. 66-75, Sept. 199

24.Wellner, P.. "Interacting with paper on the
DigitalDesk". In Communications of the ACM, July
1993, vol. 36, no 7, pp. 87-97.

