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Abstract— We consider a wireless sensor network in which the
sensor nodes are sources of delay insensitive traffic that needs to
be transferred in a multi-hop fashion to a common processing
center. We consider two data sampling schemes: a) the sensor
nodes have a sampling process independent of the transmission
scheme, and b) the sensor nodes sample new data only when it
has a opportunity of transmitting the data. The first system is like
the packet radio network for which exact analysis is not available.
We also show that the stability condition proposed in the PRN
literature is not accurate. A correct stability condition for such
a system is provided. It is also observed that the second scheme
gives a better performance in terms of delays and moreover is
amenable to analysis.

We then address the problem of optimal routing that aims
at minimizing the end-to-end delays. Since we allow for traffic
splitting at source nodes, we propose an algorithm that seeks the
Wardrop equilibrium instead of a single least delay path. The
algorithm is implemented in TinyOS and numerical results from
the implementation are provided.

Keywords: Cesaro-Wardrop equilibrium, wireless sensor net-
works, data sampling schemes, analysis, stability, stochastic
approximation.

I. INTRODUCTION

Wireless Sensor networks is an emerging technology that
has a wide range of potential applications including environ-
ment monitoring, medical systems, robotic exploration, and
smart spaces. WSNs are becoming increasingly important in
recent years due to their ability to detect and convey real-time,
in-situ information for many civilian and military applications.
Such networks consist of large number of distributed sensor
nodes that organize themselves into a multihop wireless net-
work. Each node has one or more sensors, embedded proces-
sors, and low-power radios, and is normally battery operated.
Typically, these nodes coordinate to perform a common task.

We propose a closed architecture for data sampling (appli-
cation layer) in a wireless sensor network. In this architecture,
there is a strong coupling between the sampling process
and the channel access scheme. The objective in the closed
architecture is to provide sufficient and necessary conditions
for the stability region and reducing end-to-end delays. With
mathematical analysis and simulations, we show that the
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closed architecture outperforms the traditional layered scheme,
both in terms of stable operating region as well as the end-
to-end delays. We then propose an adaptive and distributed
routing scheme for a general class of wireless sensor networks.
The objective of our scheme is to achieve Cesaro Wardrop
equilibrium, an extension of the notion of Wardrop equilibria
that first appeared in [7] in the context of transportation
networks. The notion is defined in Equation (1) later in this
paper. Our algorithm is actually an adaptation of the algorithm
proposed in [1] to the case of wireless sensor networks. In the
algorithm of [1], each source uses a two time-scale stochastic
approximation algorithm. Difference in the two algorithms are:

1) In wireless sensor networks that we consider, each
node has an attribute associated with it namely the
channel access rate. The delay on a route depends on the
attributes of the nodes on the route. However, in order
to maintain some long term data transfer rate, each node
needs to adapt its attribute to routing.

2) The difference in time scales that we use for various
learning/adaptation schemes helps us prove convergence
of our algorithm (such a proof is not present in [1]).

In this paper, we consider a static wireless sensor network
with n sensor nodes. Given is an n×n neighborhood relation
matrix N that indicates the node pairs for which direct com-
munication is possible. We will assume that N is a symmetric
matrix, i.e., if node i can transmit to node j, then j can also
transmit to node i. For such node pairs, the (i, j)th entry of
the matrix N is unity, i.e., Ni,j = 1 if node i and j can
communicate with each other; we will set Ni,j = 0 if nodes
i and j can not communicate. For any node i, we define

Ni = {j : Ni,j = 1},

Which is the set of neighboring nodes of node i. Similarly,
the two hop neighbors of node i are defined as

Si = {k /∈ Ni ∪ {i} : Nk,j = 1 for some j ∈ Ni}

Note that Si does not include any of the first-hop neighbors
of node i.

Each sensor node is assumed to be sampling (or, sensing)
its environment at a predefined rate; we let λi denote this
sampling rate for node i. The units of λi will be packets



per second, assuming same packet size for all the nodes in
the network. In this work, we will assume that the readings
of each of these sensor nodes are statistically independent
of each other so that distributed compression techniques are
not employed (see [3] for an example where the authors
exploit the correlation among readings of different sensors to
use distributed Slepian-Wolf Coding [2] to reduce the overall
transmission rate of the network).

Each sensor node wants to use the sensor network to
forward its sampled data to a common fusion center (assumed
to be a part of the network1). Thus, each sensor node acts as a
forwarder of data from other sensor nodes in the network. We
will assume that the buffering capacity of each node is infinite,
so that there is no data loss in the network. We will allow for
the possibility that a sensor node discriminates between its
own packets and the packets to be forwarded (thus allowing
for the model of [6] which considers an Ad Hoc network so
that nodes give priority to transmission of their own packets
or the packets to be forwarded).

We let φ denote the n×n routing matrix. The (i, j)thelement
of this matrix, denoted φi,j , takes value in the interval [0, 1].
This means a probabilistic flow splitting as in the model of
[4], i.e., a fraction φi,j of the traffic transmitted from node i
is forwarded by node j. Clearly, we need that φis a stochastic
matrix, i.e., its row elements sum to unity. Also note that
φi,j > 0 is possible only if Ni,j = 1.

We assume that the system operates in discrete time, so that
the time is divided into (conceptually) fixed length slots. The
system operates on CSMA/CA MAC. Assuming that there is
no exponential back-off, the channel access rate of node i (if it
has a packet to be transmitted) is 0 ≤ αi ≤ 1. Thus, αi is the
probability that node i, if it has a packet to be transmitted,
attempts a transmission in any slot. A node can receive a
transmission from its neighbor if it is not transmitting and
also no other neighboring node is transmitting.

Under the above model there will be a delay, say yj,i of
the packet from node j to be served at node i; this packet
could have originated at node j or may have been forwarded
by node j. The Expected delay of a packet transmitted from
node j is thus

∑

i6=j φj,iyj,i. Since delays are additive over
a path, packets from any node will have a delay over any
possible route to the fusion center. A route will be denoted
by an ordered set of nodes that occur on that route, i.e., the
first element will be the source of the route, the last element
will be the fusion center and the intermediate elements will
be nodes arranged in the order that a packet traverses on this
route. Let the total number of possible routes (cycle-free) be
R. Let route i, 1 ≤ i ≤ R be denoted by the set Ri consisting
of Ri elements with Ri,j denoting the jthentry of this route.
Then, a traffic splitting matrix will correspond to a Wardrop
equilibrium iff for any i (see [1] for this definition)

1Conceptually, we can assume that this fusion center is also a sensor node,
which has 0 sampling rate.

∑

1≤j≤R:Rj,1=i

(

∏Rj−1
k=1 φRj,k ,Rj,k+1

)

(

∑Rj−1
k=1 yRj,k,Rj,k+1

)

=
∑Rl−1
k=1 yRl,kRl,k+1,

(1)

for any l with Rl,1 = i and such that
∏Rl−1
k=1 φRl,k ,Rl,k+1 > 0, i.e., the delays on the routes

that are actually used by packets from node i are all equal.
Our objective in this paper is to come up with an algorithm
using which any node (say i) is able to converge to the
corresponding row of the matrix φ corresponding to the
Wardrop equilibrium.

The organization of this paper is as follows. In Section II,
we detail the different data collection mechanisms. Section III
discusses the stability issues. We propose a distributed routing
algorithm in Section IV. Numerical results from TinyOS
simulations are presented in Section V. Section VI overviews
some interesting related work. In Section VII, we briefly
conclude the paper and outline the future directions.

II. DATA COLLECTION MECHANISM

There are various ways of achieving the average sampling
rate of λi for all the nodes. We will see later in the paper
the qualitative behavior of a Wardrop equilibrium in sensor
networks depends crucially on the data collection mechanism
employed. In this paper, we consider two possibilities of data
collection mechanism:

Layered System This is the traditional slotted Aloha based
system with a layered architecture where the application layer
(sampling process in case of sensor networks) does not directly
interact with the lower layers (the random access MAC in our
example).

In Section II-B, we will see the issues with stability in the
sensor networks that use the slotted Aloha like random access
mechanism for channel access with a sampling process without
any communication with the MAC layer. Such schemes were
extensively used in the Packet Radio Network literature. The
analysis of the model that we consider above is also available
in the PRN literature (see for example [4]). The problem of
stability that we will see is that for a given sampling rate,
one needs to jointly optimize the channel access rate and
the routing in order to optimize on delays. We will also see
that the sampling rate at a node may be restricted by the
sampling rate of the other downlink nodes. Further, in order
to maintain stability of a node’s transmit buffer, one needs
to be operating far from the maximum allowed sampling rate
(this is because, under the assumption of Bernoulli sampling
process, the average queue length grows exponentially with
an increase in the sampling rate). In addition, in this model,
the sampling rate is not directly related to the channel access
rates (unless it is an outcome of an optimization problem like
the one we consider in Section II-B). Thus, there is an extra
dimension that needs to be optimally controlled.

Closed System Under this mechanism, there is a strong
coupling between the channel access process and the sampling
process. This approach has the advantage that one does not



need to find an optimal sampling rate all over again on
changing the channel access rates. The coupling automatically
regulates the sampling process for any change in the channel
access process.

The combined channel access/data sampling mechanism is
as follows: Node i decides to attempt a channel access with
probability αi in any slot (else, it is sensing the channel for any
possible transmissions). If decided to attempt a transmission,
the node first checks if there is any packet available in its
transmit queue. We have following possibilities:

1) No packets waiting in the transmit queue: In this case,
the MAC layer of node i will ask the appropriate upper
layer to sense data and provide it with a new packet.
This packet is then attempted a transmission.

2) At least one packet waiting to be forwarded: In this
case, node i will serve the head-of-line packet from its
transmit queue.

Note that under this mechanism the transmit queue of node i
can have at most one packet in the transmit queue that was
generated at node i. It can however have multiple packets in
the transmit queue to be forwarded, i.e., those packets that
were initially generated at some other node, and have arrived
at node i to be forwarded to some other node. Clearly, under
this scheme if the transmit queue of node i contains a packet
that was generated at node i itself, then this packet will be the
head-of-line packet till the time it leaves the transmit queue
of node i.

A. Applications for Closed System

The closed scheme is meant to be used in applications
where a sensor network is used to observe the time variation
of a random field over the space on which the network is
deployed. For such applications, one can think of a temporal
priority mechanism for transmitting packets so as to reduce
the overall transmissions in the network. In particular, our
sampling scheme amounts to the assumption that a node
assigns highest priority to the most recent packet generated by
the node (this priority is defined over the packets generated by
the node, and does not include the packets that a node receives
to forward to some of its neighbors).

B. An Example

Consider a 4-node wireless sensor network shown in Fig. 1.
Node 0 is the common destination for all the data generated
by the other three sensors, labeled 1, 2, 3. All the transmission
in the network is done only by these sensor nodes; the job
of node 0 is to receive data sensed at these sensor nodes. To
begin with, we assume that node 3 can not directly transmit to
the destination node 0. Node 1 and 2 can communicate with
node 0 but not with each other; Node 3 can communicate with
both, node 1 and node 2.

The time is slotted and the sensor nodes use random access
(CSMA/CA like) mechanism for transmission of their data; if
node i has a packet to be transmitted, it attempts a transmission
in a slot with some given probability αi. We will assume

λ2 λ3

λ1

2 3

10

Fig. 1. Network Configuration

that the packet generation process at node i is Bernoulli with
packet generation probability λi2

Node 1 and 2 transmit directly to node 0, but one has to
decide on the path that packets from node 3 will follow. There
are various options for this:

1) either all the packets generated at node 3 will be
transmitted to node 1, or to node 2, or

2) for each packet transmitted by node 3, the next hop node
is chosen randomly, for example, a packet transmitted
from node 3 goes to node 1 with probability 0.3 and to
node 2 with probability 0.7.

For this example, we will assume the first option (of course,
it is a special case of the second option); we will allow for
the second more general option when we come to optimal
routing. Traffic splitting method as provided by the second
option were also used in PRNs [4]. We will also assume
that each packet from a node is attempted transmission till
it is successfully received by the intended destination. A
transmission is successfully received by a node if it is seeing
no other transmission and the node is not transmitting. For
cases where one allows for possibility of dropping a packet
after it has incurred some number of collisions will not be
considered in this paper for simplicity; the relevant equations
can be found in [6].

Assume that all the packets from node 3 use node 1 to reach
node 0. In this case, let πi denote the steady-state probability
that node i has a packet to be transmitted in a slot. We can then
write down the following approximate equations for the stable
system (formal derivation of these equations can be found in
[4]).

π1α1(1 − π2α2) = λ1 + λ3

2Such models were frequently used in context of Packet Radio Network
(PRN) literature in the 70

′s and 80
′s, see for example [4]. We will see later

that for sensor networks where MAC layer can be allowed to control the
application layer, one can achieve better results compared to those in PRNs
where application layer operates independently of the MAC layer.



π2α2(1 − π1α1) = λ2

π3α3(1 − π1α1) = λ3 (2)

These equations are approximate because they are derived
under a strong decoupling assumption. For stability of all the
queues in the network, we need to choose αi’s such that
the above system of equations (in πi’s ) gives us a solution
(π1, π2, π3) ∈ [0, 1)3. The stability condition under which
above relations are valid are

α1(1 − α2) > λ1 + λ3

α2(1 − α1) > λ2

α3(1 − α1) > λ3

Clearly, for a given sampling rate λi, i = 1, 2, 3, there will
exist many possibilities of the channel access rates that give
a stable system. These conditions are actually very different
from the one proposed in [4]. In fact, a simple counter
example can be given under which the conditions of [4]
implies stability, while the system is not stable.

This system is not analytically tractable for the queueing
delays. Various approximate analysis can be found in [4] and
its references. Because of this reason, the extra degree of
freedom that one gets in the parameter αi is hard to utilize
properly as the correct dependence of the system performance
(for example, the queueing delays at various nodes) is not
known. An instance of this difficulty is that the system of rate
balance equations (2) are not valid for all values of αi. In
fact, the discrepancy between the actual system performance
and that obtained from using (2) can be as large as 50%.
The delay equations provided in [4] and references therein are
based on equation (2) and for this reason, these expressions
perform poorly for a broad range of parameters αi3.

This is clear from the relations (2) which implies that as long
as the system is stable, we can solve the rate balance equations
(2). Since these equations depend on πi and αi only via πiαi,
in the stable region this product πiαi will remain unchanged
(w.r.t. changes in αi). Hence we are tempted to conclude that
there is an extra degree of freedom in αi that can be employed
without changing the end-to-end delays.

Further, this model was justified in the standard OSI-like
model where one did not aim at cross-layer optimization and
where the application layer (the sampled voice packets source)
was not in control of the MAC layer. If one likes to minimize
the expected delay on a node, one way would be to control
the arrival of packets from node’s own sensing mechanism.
One such example that we will be considering (or, proposing)
in this paper is the following:

3We remark here that our present observations are not aimed at questioning
the significance of [4] and the related work from PRN literature. Most of these
studies never aimed at tuning the parameters αi, and since they assumed
relatively small values of αi which were fixed a priori, most of the time in
their work the decoupling approximation leading to equations 2 was good. In
our work, however we are trying to get the best system performance, hence
need to tune the parameters αi optimally, so that a correct/accurate analytical
model is required for all possible values of αi’s .

TABLE I

NODE LEVEL DELAYS

Node → 1 2 3

Open system 3.52 2.80 1.45
Closed system 0.56 2.30 2.30

TABLE II

FLOW LEVEL DELAYS

Flow → 1 2 3

Open System 3.52 2.80 4.97
Closed System 0.56 2.30 2.86

A sensor node gets a new packet from the application layer
only if it decides to transmit in a slot but finds the transmit
queue empty. As is the case with random access, sensor node
i decides to attempt a transmission with probability αi. We
will call this system the closed system and the first system
with layered architecture the open system.

For the Closed System model, the throughput of nodes 2
and 3 are

λ2 = α2 (1 − α1)
λ3 = α3 (1 − α1)

Using these, the throughput of node 1 is

λ1 = α1(1 − α2) − λ3

The stability condition is

α1(1 − α2) ≥ α3(1 − α1)

The expected number of packets at the three nodes are

T1 =
ρ0

(1 − ρ)(1 − ρ+ ρ0)
T2 = α1

T3 = α1 (3)

Where ρ0 = (1−α1)α3+α1α2

α1(1−α2) and ρ = (1−α1)α3

α1(1−α2)
. The

expected delay at each node are easily obtained using Little’s
Law as Di = Ti

λi
for i = 2, 3 and D1 = T1

λ1+λ3

. It is to be
noted that these formula are exact, unlike those in the layered
system, where the delay expression available in literature are
approximate [4].

The mean node delay at the three nodes in the two systems
for λi = 0.1 as obtained from discrete event simulations (for
open system) and analysis (for closed system) are shown in
Table I and II. The mean delays for the three flows are thus
obtained to be:

The mean delays for the closed system were obtained using
simple formulae given before in equations (3). For the Open
system, since the delay expressions available in literature
are approximate, we developed a discrete event simulator to
find these delays. The mean delay for the open system was
obtained as follows: the simulation was run using different
combinations of αi spanning the stability region of the system.



The delay vector provided here is the one which was closest
to the origin in terms of Euclidean distance compared to all
the other delay vectors obtained by varying αi. Clearly, the
flow delay is significantly reduced in the closed system, while
using a moderate value of αi.

Observations from the toy example:

1) The values of αi for Open system that gives the best
performance are very large, thus implying waste of
resources due to frequent collisions.

2) The flow delay is significantly reduced in the Closed
system, while using a moderate value of αi.

3) In Open system, one needs to tune the value of αi in
order to get the best delay performance; this may not
of much use because the Closed system is giving better
results compared to the best result from Open system.
Thus, an optimization over αi in the Open system
is not justified. The exact delay expressions are not
known. The approximate expressions used in literature
are valid only for small values of αi whereas the optimal
point is obtained for large α′

is, for which the available
approximation has been shown to perform poorly.

For the Open system, we will assume a given set of channel
access rates. We will see that the routing algorithm is able to
select a good operating point that guarantees stability (as long
as such a point exists for the given value of channel access
probabilities).

III. STABILITY ANALYSIS

A. Open System

We briefly give the correct stability4 condition for the Open
system (introduced as layered system in Section II) where
the data sampling process is independent of the transmission
scheme.

Lemma 1: The minimum rate at which a node can serve its
transmit queue is

µi
∆
= αi

∑

j∈Ni

φi,j (1 − αj)
∏

k∈Nj\{i}

(1 − αk) . (4)

Proof: To prove Lemma 1, we consider a simple sensor
network as shown in Fig. 2.

We define:
A: node i transmit a packet in a given slot;
Ac: node i do not transmit a packet in a given slot;
B: node j transmit a packet in a given slot;
Bc: node j do not transmit a packet in a given slot;
C: node k transmit a packet in a given slot;
Cc: node k do not transmit a packet in a given slot.
The conditional probability that node i makes a transmission

attempt and is received correctly at node j is given by:

P (A ∩ Bc ∩ Cc)

4We do not provide proofs for all the Lemma and some more related results
on rate balance for this system to conserve paper length.
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Fig. 2. An example Network Topology

= P
(

A ∩
[

Bc1

(

∩kC
c(1)
k

)

+Bc2

(

∩kC
c(2)
k

)

+ . . .+BcJ

(

∩kC
c(J)
k

) ])

for 1 ≤ j ≤ J , where Cc(1)k means for node j = 1, all the
other k neighbors of j are not transmitting.

= P



A ∩
∑

j

Bcj

(

∩kC
c(j)
k

)





= P (A)P





∑

j

Bcj

(

∩kC
c(j)
k

)





= P (A)
∑

j∈Ni



P
(

Bcj
)

∏

k∈Nj\{i}

P (Cck)





= αi
∑

j∈Ni

φi,j (1 − αj)
∏

k∈Nj\{i}

(1 − αk) .

Where P (A) = αi,
∑

j∈Ni
P

(

Bcj
)

=
∑

j∈Ni
(1 − αj),

and
∏

k∈Nj\{i}
P (Cck) =

∏

k∈Nj\{i}
(1 − αk) . Also, φi,j >

0, when Ni,j = 1. In practice, we need to ensure that the
probabilities φi,j are strictly positive for all the feasible routes
to ensure that we are able to probe for a change in state of all
the available routes.

Lemma 2: The minimum reception capacity of node i is

γi
∆
= (1 − αi)

∑

j∈Ni

φj,iαj
∏

k∈Ni\{j}

(1 − αk) . (5)

Proof: The reception capacity of a node i can be identified
by the conditional probability

P (Ac ∩ B ∩ Cc)

= P
(

Ac ∩
[

B1

(

∩kC
c(i\{1})
k

)

+B2

(

∩kC
c(i\{2})
k

)

+ . . .+BJ

(

∩kC
c(i\{J})
k

)])



for 1 ≤ j ≤ J , where Cc(i\{1})k means that for node j =
1, all the other k neighbors of i are not transmitting.

= P



Ac ∩
∑

j

Bj

(

∩kC
c(i\{j})
k

)





= P (Ac)P





∑

j∈Ni

Bj





∏

k∈Ni\{j}

C
c(i\{j})
k









= P (Ac)
∑

j∈Ni



P (Bj)
∏

k∈Ni\{j}

P (Cck)





= (1 − αi)
∑

j∈Ni

φj,iαj
∏

k∈Ni\{j}

(1 − αk) .

Where P (Ac) = (1 − αi),
∑

j∈Ni
P (Bj) =

∑

j∈Ni
φj,iαj ,

∏

k∈Ni\{j}
P (Cck) =

∏

k∈Ni\{j}
(1 − αk).

The explanation for φj,i here is similar as in the proof of
Lemma 1.

Let the total arrival rate into the transmit buffer of node i
be denoted by ai. If all the transmit queues in the network are
stable, then the following relation is obtained for a′is

Lemma 3: The arrival rate into nodes are given by the fixed
point equation

ai = λi +
∑

j

φj,i (aj ∧ (λj + γj) ∧ µj) (6)

Now, we present the stability condition for the system under
consideration. This is significantly different from that obtained
in the PRN literature [4].

Lemma 4: The transmit queue at node i is stable if




∑

j∈Ni

φi,j (λi + γi)



 ∧ µi > ai (7)

Lemma 5: If all the nodes in the network are stable, then

ai = λi +
∑

j

φj,iaj (8)

B. Closed System

We now consider a sensor network in which there is a
strong coupling between the channel access process and the
sampling process (introduced as closed system in Section II).
This approach has the advantage that one does not need to
find an optimal sampling rate all over again on changing the
channel access rates. The coupling automatically regulates the
sampling process for any change in the channel access process.
Further, we can perform an exact stability and delay analysis
for this system (as opposed to the open system where the
available analysis is approximate).

Lemma 6: The stability condition for the transmit queue at
node i is

αi
∑

j φi,j (1 − αj)
∏

k∈Nj\{i}
(i− αk) >

(1 − αi)
∑

l φl,iαl
∏

k∈Ni\{l}
(1 − αk)

(9)

Lemma 7: The average data generation rate at node i is

λi = αi
∑

j φi,j (1 − αj)
∏

k∈Nj\{i}
(1 − αk)

− (1 − αi)
∑

l φl,iαl
∏

k∈Ni\{l}
(1 − αk)

(10)

In practice, since we are assuming a pre-specified average
data generation node at each node, we will be provided with
a vector λ = (λ1, ..., λN ). For this vector, we need to find
values of α′

is and routing so that the average delays of the
flows are minimized.

Lemma 8: The average delay at the transmit queue of node
i is

1)
∑

l φl,i = 0 :
Delay at node i = Di = 1−si

αisi
, where

si =
∑

j

φi,j (1 − αj)
∏

k∈Nj\{i}

(1 − αk) . (11)

Proof: if
∑

l φl,i = 0, then node i has no traffic to be
forwarded. The Markov chain of the number of packets in the
transmit queue is shown in Fig. 3.

0 1

1 − αi + αisi

αisi

αi(1 − si)

1 − αisi

Fig. 3. Markov chain for the expected number of packets at node i, case 1:
∑

l
φl,i = 0.

so that, we have the following system of equations

π0 (1 − si) = π1si ⇒ π1 =
1 − si
si

π0

⇒ π0 + π1 =
π0

si
= 1

⇒ π0 = si,⇒ π1 = 1 − si

Hence expected number of packets in the transmit queue of
node i is 1 − si. Using Little’s law, the expected delay is

Di =
1 − si
αisi

(12)

since the effective arrival rate into node i’s queue is αisi.
2)

∑

l φl,i > 0 :

Di =
ρ0

(1 − ρ) (1 + ρ0 − ρ) (ψ + λi)
,

where

ψi = (1 − αi)
∑

l

φl,iαl
∏

k∈Nl\{i}

(1 − αk) . (13)



Proof: If
∑

l φl,i > 0, then the transmit queue of node i
can contain more than one packet at a time. The Markov chain
of the number of packets in node i′s transmit buffer is given
in Fig. 4.

1 2 ... n0

Fig. 4. Markov chain for the expected number of packets at node i, case2:
∑

l
φl,i > 0.

where
p0,1 = αi (1 − si) + ψi

pn,n+1 = ψi, for n ≥ 1

pn,n−1 = αisi, for n ≥ 1

we define

ρ0 =
αi (1 − si) + ψi

αisi
,

and ρ = αisi

ψi
. Then π1 = ρ0π0, and πn+1 = ρπn ⇒ ρ0ρ

nπ0

for n ≥ 1

⇒ π0 + π0

∞
∑

n=1

ρ0ρ
n−1 = 1, ⇒ π0

(

1 + ρ0 − ρ

1 − ρ

)

= 1

⇒ π0 =
1 − ρ

1 + ρ0 − ρ
, πn = ρ0ρ

n−1π0

So the expected number of packets in node i′s transmit
queue is then

∞
∑

n=1

nρ0ρ
n−1π0 = ρ0π0

∂

∂ρ

∞
∑

n=1

ρn

=
ρ0π0

(1 − ρ)
2 , =

ρ0

(1 − ρ) (1 + ρ0 − ρ)
,

The expected delay at node i′s transmit buffer using Little’s
law is then

ρ0

(1 − ρ) (1 + ρ0 − ρ) (ψi + λi)
(14)

IV. ROUTING ALGORITHMS FOR DIFFERENT SYSTEMS

UNDER CONSIDERATION

If the traffic split is not allowed, the objective of the
distributed routing algorithm would be to find the shortest
delay path between any given source and the fusion center.
However, one may allow for traffic split and then try to route
the traffic , hoping for a better performance (as the situation
without traffic split is a special case of traffic splitting). Under
this added freedom of traffic splitting, the routing algorithm
is expected to put traffic of a node on those routes for which
the delays are smallest and equal. This is what is well known

as the Wardrop equilibrium. We propose a stochastic approxi-
mation algorithm based distributed algorithm to converge to a
Wardrop equilibrium. This algorithm is actually an adaptation
of the algorithm already proposed in [1] to our system for
which we can prove convergence to Wardrop equilibrium.

A. Open System

The algorithm here is essentially the same as in [1], i.e.,
nodes iteratively keep updating the one-hop routing probabil-
ities based on the delays incurred for every possible path.

Let φ(n) denote the traffic splitting matrix at the beginning
of the nth time slot. Node i does some computation to update
the ith row of this matrix. Let Y k(n)(Rk,1 = i) be the new
value of the delay of a packet sent by sensor i through route
k(i = Rk,1). Node i keeps an estimate of the average delay
on route k.

yk(n+ 1) = (1 − a)yk(n) + aY k(n). (15)

Further, after calculating the expected delays at the start of
a time slot, each node adapts its routing probabilities to the
new expected delays as follows,

φi,Rk,2(n+ 1) = (1 − b)φi,Rk,2(n)+

b
(

∑

1≤l≤R:Rl,1=i
yl(n)φi,Rl,2(n) − yk(n)

) (16)

We will assume that the learning parameters a and b are
such that a � b. This brings us in the two-level stochastic
approximation algorithm framework and, following standard
results [8], the convergence of our delay updating algorithm is
guaranteed and is, thus, omitted here to preserve paper length.
For the convergence of our routing algorithm in practice, we
need to ensure that the probabilities φi,j are strictly positive
for all feasible routes to ensure that we are able to probe for
a change in the state of all the available routes.

B. Closed System

The updates for this system are going to be the same as
that for the Open system. Only new complication here is
that one needs to tune the channel access rates, α′

is, also
in order to guarantee the long term average data sampling
rate. This is easily done because the nodes know (or, can
estimate) the statistics of the traffic they are getting from the
other nodes and also the success rate of its own transmissions
to various neighbors. Using this estimate a node can easily
tune its channel access rate to guarantee itself a preset data
sampling rate, where the delay and routing probability learning
will remain as was in the open system. The detailed results
on this adaptation will be presented later.

C. Practical Considerations

Here, we will discuss some of the practical aspects of our
proposed algorithm. Delay estimation of paths by a node in
every slot can be done by having power of the sink so large
that it can reach all the sensors in one-hop. Therefore, the sink
can acknowledge all the incoming packets so that the sensors
will get estimation of the delay incurred by their packets.



V. IMPLEMENTATION RESULTS

We consider a 6-node sensor network shown in Fig. 5. It
is easily see that φ1,0 = φ3,0 = φ5,0 = 1, node 0 being
the common destination for all the packets generated in the
network. The routing algorithm thus has to find appropriate
value of φ2,5 and φ4,3 in order that the traffic flow in the
network corresponds to a Wardrop equilibrium.
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Fig. 5. Network Simulated

Apart from a demonstration of the convergence of the
proposed algorithm, we will see in this section that the data
sampling rates that a network can support using the Open
architecture is very small. This is essentially because of the
stability constraints on the channel access rates. On the other
hand, the Closed system can support higher data sampling
rates because of the fact that it is essentially self-regulating,
guaranteed to be stable while maintaining large data sampling
rates; this is because a node generates a new packet only if it
has no other packet in the queue. This however does not mean
that the Closed system can support arbitrary data sampling
rates.

We have implemented the Open and Closed system as
an application layer module in TinyOS [10]. TinyOS is an
open-source operating system designed for wireless embedded
sensor networks. It features a component-based architecture
which enables rapid innovation and implementation while min-
imizing code size as required by the severe memory constraints
inherent in sensor networks. The sensor network model under
consideration is shown in Fig. 6. The sensor nodes sample the
data at a predefined rate, λ′is. The sampled data is sent to the
MAC queue for both open and closed system according to the
explanation given earlier in Section II. The transmit queue of
node i can have at most one packet in the transmit queue that
was generated at node i. It can however have multiple packets
in the transmit queue to be forwarded, i.e., those packets that

were initially generated at some other node, and have arrived at
node i to be forwarded to some other node. Therefore, we need
not implement two-queues at the MAC layer for sensor nodes
for prioritizing traffic. At simulation start up, the nodes learn
the network topology and built routes toward the fusion center
(sink, node 0). The fusion center is also a sensor node which
has 0 sampling rate. This learning process, which depends on
the network topology for the given network in Fig. 5, can take
upto 50 − 70 seconds. The routing layer is initiated with the
minimum-hop routing, which is updated during the network
lifetime according to the algorithm proposed in Section IV.
In this section, we present the numerical results once the
neighbors are discovered and routes are established toward
the fusion center. We have utilized the TOSSIM simulator
of TinyOS to validate our proposals. All simulation runs for
1000 seconds. The results presented in this section are the
average over several simulation runs.

Routing Routing Routing

ROUTING

MAC

PHY

APPLICATION

Source Destination
(Fusion Center)

Forwarders

...

...

...

Fig. 6. Sensor network architecture. → represents the flow of packets from
the source to the destination. The forwarding sensor network receives a packet
and queues into the forwarding queue at the MAC layer. The routing layer
does not buffer the forwarding traffic.

A. Open System

In Fig. 7 and 8 we plot, against the slot number, the average
delays on the four routes 2 → 5 → 0, 2 → 1 → 0, 4 → 3 → 0,
and 4 → 1 → 0 for the open system. The data sampling rates
were set at λ1 = λ2 = λ3 = λ4 = λ5 = 0.2. Note that the
data sampling rates are small. We were forced to select small
data rates in order to guarantee stability of the nodes in the
network. The channel access rates were set to αi ≤ 0.2 for
i = 1, ..., 5.

Observations
1) The delays on routes 2 → 5 → 0 and 2 → 1 → 0 are

very close to each other, with a very fast convergence.
Similarly for routes 4 → 3 → 0 and 4 → 1 → 0.
This shows that the algorithm succeeds in achieving a
Wardrop equilibrium.

2) Note the high value of delay on routes 2 → 1 → 0 and
4 → 1 → 0 even for the moderate (or, very small) load
on the system.

3) The delays on different routes are sensitive to the
channel access probabilities. Thus, there is a need for
carefully tunning the channel access probabilities. In
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Fig. 7. Figure Showing the delays incurred on routes 2 → 5 → 0, 2 →
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Fig. 8. Figure Showing the delays incurred on routes 4 → 3 → 0, 4 →

1 → 0 for Open System. Where λ1 = λ2 = λ3 = λ4 = λ5 = 0.2

Fig. 7 and 8, we also see the convergence to a load-
balanced regime (equal delays on all the possible routes
from a particular source).

B. Closed System

Simulation results for the closed system are presented in
Fig. 9 and 10. The data sampling rates were set at λ1 = λ2 =
λ3 = λ4 = λ5 = 0.2. Nodes were expected to adapt their
channel access probabilities based on the optimal traffic split
used by node 2 and 4.

Observations
1) The delays on routes 2 → 5 → 0 and 2 → 1 →

0are very close to each other, with a fast convergence.
This shows that the algorithm succeeds in achieving a
Wardrop equilibrium.

2) For routes 4 → 3 → 0 and 4 → 1 → 0, the delays
are also close to each other, with a fast convergence.

This shows that the algorithm is successful in achieving
a Wardrop equilibrium (equal delays on all the possible
routes from a particular source).

3) Note the small value of delay on routes 2 → 5 → 0
and 4 → 3 → 0 even for moderate (or, very small)
load on the system. This is to be compared with the
corresponding values shown under the results for open
system where the delays on these routes were higher
even though the average data sampling rates were sig-
nificantly smaller. Thus, in comparison with the open
system, the closed system provides better performance.
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Fig. 9. Figure Showing the delays incurred on routes 2 → 5 → 0, 2 →

1 → 0 for Closed System. Where λ1 = λ2 = λ3 = λ4 = λ5 = 0.2
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Fig. 10. Figure Showing the delays incurred on routes 4 → 3 → 0, 4 →

1 → 0 for Closed System. Where λ1 = λ2 = λ3 = λ4 = λ5 = 0.2

VI. RELATED LITERATURE

In multihop packet radio networks, packets passed between
two packet radio nodes may have to be relayed by interme-
diate nodes. In [4], Hamilton and Yu developed an optimal
routing algorithm for slotted-ALOHA PRNs which minimizes



the average packet delay. The packet radio sources serve
as sources (and sinks) of traffic as well as repeaters which
forward packets to other nodes.The optimal routing algorithm
captures the important features of PRNs and avoids routes that
result in high levels of interference and delay. The authors
provide approximate analysis for multihop PRNs as the exact
analysis requires modeling the entire network as a Markovian
network of queues. Because of interference among nodes and
enormous number of linear equations to be solved, the exact
analysis is known to be mathematically intractable and details
can be found in the references therein. The algorithm proposed
in essentially similar to the minimum delay routing algorithm
proposed by Gallagar in [5].

In [3], Cristescu et al. exploit the correlation among readings
of different sensors to use distributed Slepian-Wolf Coding [2]
to reduce the overall transmission rate of the network. They
consider a set of correlated sources located at the nodes of a
network, and a set of links that are the destinations for some
of the sources. For the case of data gathering, the optimal
transmission structure is fully characterized and a closed-form
solution for the optimal rate allocation is provided. For the
general case of an arbitrary traffic matrix, the problem of
finding the optimal transmission structure is shown to be NP-
complete.

In [6], Kherani et al. studied the throughput of multi-hop
routes and stability of forwarding queues in a wireless Ad-
Hoc network with random access channel. The main results
include the characterization of stability condition and the end-
to-end throughput using the balance. The impact of routing
on end-to-end throughput and stability of intermediate nodes
is also investigated. The authors showed that as long as the
intermediate queues in the network are stable, the end-to-end
throughput of a connection does not depend on the load on
intermediate nodes. Some numerical results are also provided
to support the results of the analysis.

A routing scheme for a broad class of networks which
converges (in the Cesaro sense) with probability one to the
set of approximate Cesaro-Wardrop equilibria, an extension
of the notion of a Wardrop equilibrium [7] is analyzed in [1].
The routing algorithm is distributed, using only local infor-
mation about observed delays by the nodes, and is moreover
impervious to clock offsets at nodes. The scheme is also fully
asynchronous, since different iterates have their own counters
and the orders of packets and their acknowledgments may
be scrambled. The scheme is adaptive to traffic patterns in
the network. The demonstration of convergence in a fully
dynamic context involves the treatment of two-time scales
[8] distributed asynchronous stochastic iterations. Using an
ODE approach [9], the invariant measures are identified. A
direct stochastic analysis shows that the algorithm avoids non-
Wardrop equilibria.

In this work, we proposed a closed architecture for wireless
sensor network which outperforms the layered architecture,
both in terms of stable operating region as well as end-to-
end delays. Our routing algorithm is actually an adaptation
of the algorithm proposed in [1] to the case of wireless

sensor networks. In the algorithm of [1], each source uses a
two time-scale stochastic approximation algorithm. In wireless
sensor networks that we consider, each node has an attribute
associated with it namely the channel access rate. The delay
on a route depends on the attributes of the nodes on the
route. However, in order to maintain some long term data
transfer rate, each node needs to adapt its attribute to rout-
ing. The difference in time scales that we use for various
learning/adaptation schemes helps us prove convergence of our
algorithm.

VII. CONCLUSIONS AND FUTURE WORK

For wireless sensor networks with random channel access,
we proposed a data sampling approach that guarantees a
long term data sampling rate while minimizing the end-to-
end delays. Numerical results show that performance of this
scheme is better than the traditional layered architecture where
the channel access mechanism is independent of the data
sampling process. We also saw that the proposed scheme does
not require tedious parameter tuning as is the case for the
layered architecture.

We then proposed a learning algorithm, applicable to both
the open system as well as the closed system, to achieve
Wardrop equilibrium for the end-to-end delays incurred on
different routes from sensor nodes to the fusion center. For the
closed system, this algorithm also adapted the channel access
rates of the sensor nodes (detailed results on this adaptation
will be presented later). Since the objective of the algorithm
was only to converge to a Wardrop equilibrium, at this moment
it is not able to make a judicious choice among multiple
Wardrop equilibria, if they exist. We are now working on
modifications of the algorithm to make it converge to an
efficient equilibrium.
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