
Institut Eurécom
Department of Corporate Communications

2229, route des Crètes
B.P. 193

06904 Sophia-Antipolis
FRANCE

Research Report RR-07-187
SGNET: a distributed infrastructure to handle zero-day

exploits
3/02/2007

Corrado Leita, Marc Dacier

Tel : +33 (0)4 93 00 82 17
Fax : +33 (0)4 93 00 82 00

Email : {corrado.leita, marc.dacier}@eurecom.fr

1Institut Eurécom’s research is partially supported by itsindustrial members: BMW Group Re-
search & Technology – BMW Group Company, Bouygues Télécom, France Télécom, Cisco Sys-
tems, Hitachi Europe, SFR, Sharp, ST Microelectronics, Swisscom, Thales. This research was also
supported by the RESIST European Network of Excellence, contract number 026764, and the French
National project ACES, contract number ANR05RNRT00103.

1



Abstract

This work builds upon the Leurré.com infrastructure and the Scriptgen tech-
nology. Leurré.com is a worldwide distributed setup of lowinteraction honeypots
whereas Scriptgen is a new class of honeypot: a medium interaction one. In this
paper, we see how Scriptgen can be enriched thanks to the Argos and Nepenthes
open source software in order to build a distributed system able to collect rich in-
formation about ongoing attacks and to collect malware, even for zero-day attacks,
without facing the same liability and complexity issues encountered by classical
high interaction honeypots. The design is precisely exposed as well as its im-
plementation. Experimental results are offered that highlight the validity of the
proposed solution.

2



1 Introduction

The US-CERT published in the early 2006 a security bulletin,summarizing the
vulnerabilities being identified between January 2005 and December 2005. In the
whole year, 5198 vulnerabilities, hitting different operating systems and applica-
tions, were reported. This is a frightening number. However, how many of them are
used in practice remains unknown. Most security tools require an in-depth knowl-
edge about each attack and the exploited vulnerability in order to provide protection
against it. It is, therefore, of prime importance to start this work by looking at the
most prevalent ones. The collection of trends information and the characterization
of the different attacks becomes thus extremely valuable. Aconsiderable contribu-
tion in this direction consists in the Leurré.com project1 [13, 17, 14, 15, 18, 16].
The project used the concept of honeypot, introduced by L.Spitzner in [28], to
build a worldwide observatory of attack threats and study their trends across the
whole IP space over long periods of time. SGNET is a distributed honeypot frame-
work meant to supersede the current Leurré.com infrastructure. We will show how
SGNET allows to obtain very rich information about the observed attacks. SGNET
enables us to collect their associated malware, even in the case of zero-day attack.

The most widely spread Internet attacks are the so-called “code injection at-
tacks”. Their final objective consists in forcing the execution of an executable
code on a victim machine exploiting a vulnerable network service. Crandall et al.
introduced in [9] the epsilon-gamma-pi model, to describe the content of a code-
injection attack as being made of three parts:

• Exploit (ǫ). A set of network bytes being mapped onto data which is used for
conditional control flow decisions. This consists in the setof client requests
that the attacker needs to perform to lead the vulnerable service to the control
flow hijacking step.

• Bogus control data (γ). A set of network bytes being mapped onto control
data which hijacks the control flow trace and redirects it to someplace else.

• Payload (π). A set of network bytes to which the attacker redirects the vul-
nerable application control flow through the usage ofǫ andπ. The payload
is also commonly known as shellcode.

However, the final objective of an attack is not the code injection itself: the
length of the payload is usually limited to some hundreds of bytes, or even less.
It is difficult to code in this limited amount of space complexbehaviors. Instead,
it is used to force the victim to download from a remote location a larger amount
of data: the malware. The espilon-gamma-pi model can be extended to include
this dimension. We call it theepsilon-gamma-pi-mumodel whereµ stands for the
malware downloaded.

1www.leurrecom.org

3



In order to retrieve precise information about a code-injection attack, all the
four components of the epsilon-gamma-pi-mu model must be observed. We present
in this paper SGNET, a novel honeypot framework able to emulate and observe
the whole attack trace according to this model. The SGNET takes advantage of
the exploit emulation capabilities of the ScriptGen approach [21, 22] and couples
them with the program flow hijack detection capabilities of Argos [25] and with the
shellcode emulation and malware download capabilities of Nepenthes [3]. We will
show in this paper how we have been able to dynamically combine these entities
to obtain a honeypot system able to observe all the four dimensions of the epsilon-
gamma-pi-mu space. The contributions of this paper are manifold: 1) we present an
easy to deploy honeypot setup for medium interaction, and weperform a usability
study through a testing deployment on the Internet; 2) we improve the Nepenthes
honeypots providing a generic vulnerability module able toincrementally handle
new exploits such as zero-days, and able to detect new variants of the payloadπ;
3) we provide an experimental validation of the ScriptGen approach, showing that
the ScriptGen technique can learn new exploits in a completely unsupervised way.

The paper is structured as follows: Section 2 recalls the principles of the Script-
Gen technology. Section 3 provides a review of the related works in the field. Sec-
tion 4 gives a detailed overview of the functional structureof the SGNET. Section
5 describes the SGNET implementation. Section 6 presents experimental return on
experience. Section 7 concludes the paper.

2 Introduction to ScriptGen

A honeypot is a network host whose value resides in being compromised by
attackers. Bailey et al. in [4] classify them according to their breadth and depth.
The breadth of a honeypot system is defined as its ability to detect threats across
geographical boundaries. The depth of a honeypot system represents the level of
interaction with the attacking client. Solutions such as honeyd [26] allow to easily
increase the breadth, but offer a very shallow depth. Instead, running real OSs
inside virtualization environments such as VMware [32] provides a very profound
depth but at a high cost in terms of resources and maintenance, thus preventing
from achieving big breadths.

Scriptgen is an approach that aims at being a “high depth” onewithout compro-
mising too much the breadth, i.e. one that can be easily deployed in the Leurré.com
project to obtain large breadth and depth.

ScriptGen builds protocol emulators in a completely automated and protocol-
agnostic fashion. The basic idea underneath the ScriptGen approach consists in
learning the protocol behavior starting from samples of protocol interaction be-
tween an attacking client and a real host running the service. These samples are
used to represent the protocol language under the form of a Finite State Machine.
Each Finite State Machine modelizes the interaction between an attacking tool and
a honeypot on a given protocol port. These FSMs can then be used to emulate

4



250 OK

250 OK

250 OK

MA
IL F
ROM

: <a
lice
@eu

reco
m.f
r>

MAIL FROM: <bob.eurecom.fr>

MAIL FROM: <carl@eurecom.fr>

250 OK

MAIL FROM: <*@eurecom.fr>

A

B

Figure 1: ScriptGen FSM

the server behavior mimicking its network interaction. ScriptGen FSMs are trees
composed of states and transitions, with an optional label associated to them. For
TCP, for instance, the scope of a FSM corresponds to a TCP session: the root state
corresponds to the establishment of the connection. Each leaf corresponds to the
termination of the connection. Excerpts of several ongoingSMTP connections are
represented in such an FSM in Figure 1 A. Emulating a TCP session corresponds
to the traversal of the FSM from its root to one of the leaves. Transition labels are
matched with incoming client requests to choose the future state. State labels are
used by the emulator as answers to be sent back to the attacking client.

When the sample protocol streams are seen as streams of unstructured bytes,
the resulting FSM is too specific to correctly handle future samples of proto-
col interaction. For instance, if we were using the FSM represented in Figure 1
A, we would not be able to find the correct future state for a mail sent by user
dave@eurecom.frsince we have never seen him before. A semantic abstraction
is required. The Region Analysis Algorithm [22] takes advantage of the statisti-
cal variability of the samples to identify regions in the protocol stream carrying
a strong semantic meaning. It takes advantage of bioinformatics alignment algo-
rithms [23] to identify portions of the protocol streams whose value is never chang-
ing across the samples. The algorithm assumes that these portions (fixed regions)
carry a strong semantic meaning, and thus are used to performpattern matching on
the incoming client requests. This allows to build, from a set of specific samples, a
generic representation, with a partially rebuilt notion ofsemantics, as can be seen
in Figure 1 B. We showed in [21] that the ScriptGen approach allows to emulate

5



the exploit phase for protocols as complex as NetBIOS.
The strengths of the ScriptGen approach are manifold:

• Its protocol agnostic nature allows to build in anunsupervisedway FSMs for
virtually every protocol, as long as their payload is not encrypted.

• Its ability to detect deviations from the current knowledge, as explained in
[21], enables it to detect zero-days.

• Its proxying algorithm enables it to react to new activities. When facing a
new activity such as a zero-day, ScriptGen will not find a pathinside the
FSM associated to the protocol. Thus, ScriptGen will not be able to provide
an answer to the new client request received by the attacker.We showed in
[21] how it is possible to take advantage of a real machine, replaying against
it all the traffic received from the attacker and then act as a proxy between the
attacker and the host. This allows the ScriptGen honeypot tohandle correctly
the conversation with the attacking machine, and more importantly it allows
it to collect a new sample conversation to be used to refine incrementally the
current protocol knowledge represented within the FSM.

With respect to the epsilon-gamma-pi-mu model introduced in Section 1, we
can say that the ScriptGen approach aims at getting theǫ part, leading the attacker
into sending the followingγ and π. Since ScriptGen focuses only on the first
phase, it is unable to observe the last stage of the attack, the malwareµ. An attack
can be characterized as a tuple(ǫ, γ, π, µ). Years ago Internet malicious activity
was dominated by the spread of worms. In that case, it was possible to identify a
correlation between the observed exploit, the corresponding injected payload and
the uploaded malware (the self-replicating worm itself). Thanks to the correla-
tion between the 4 paramaters, retrieving information about a subset of them was
enough to characterize and uniquely identify the attack. This situation is chang-
ing. Taking advantage of the many freely available tools such as Metasploit [29],
even unexperienced users can easily generate shellcodes with personalized behav-
ior. This allows them to generate new combinations along allthe four dimensions,
weakening the correlation between them.

3 State of the art

The idea of performing automated exploit emulation by meansof alignment
algorithms has been considered in parallel by two differentteams. This led to
ScriptGen, on the one hand, and RolePlayer [10] on the other.The two approaches
aim at rebuilding protocol semantics, with some important differences. Scriptgen
claims to be protocol agnostic and takes advantage of the diversity of a large num-
ber of samples to build its FSMs. RolePlayer uses only two samples of protocol
interaction. Since this does not allow to exploit the statistical diversity, additional
information needs to be provided in order to avoid errors in identifying the fixed

6



and mutating portions of the protocol streams. This has an impact also on the abil-
ity to refine the protocol knowledge in a completely unsupervised way, since this
additional information must be provided.

An interesting application of the RolePlayer approach can be found in a tech-
nical report available on the web [11]. In order to better address the comparison
with the SGNET, we postpone its analysis to Section 5.4.

ScriptGen proved to be an extremely interesting method to emulate the exploit
phase during the interaction with an attacker, being able toincrementally learn
zero-day attacks. However, it lacks the capabilities to handle the injected code
itself. A first attempt to solve this problem was made in [21] with the concept of
inter-protocol dependencies.

We saw that the scope of the ScriptGen state model normally corresponds to a
single TCP session. Inter-protocol dependencies define dependency relations be-
tween different TCP sessions. For instance, looking at attack samples, ScriptGen
is able to identify those cases in which a TCP session is established by the attacker
on a “normally closed” port after a successful client request on another TCP ses-
sion. ScriptGen is thus able to learn this dependency, and reproduce this behavior
through emulation. Although these heuristics represent a first step towards the code
injection emulation, they present a number of shortcomings.

First of all, in order to modelize the dependencies it is required to obtain sam-
ples of the whole attack trace. Thus, to modelize the activity we need to allow an
attacker to run a complete attack against a vulnerable host.This can raise a number
of security concerns and raises the maintenance cost.

A second problem is more at a conceptual level. The whole attack trace can
be considered as a complex function that, taking as input a network behavior and
a host configuration, produces as output another network behavior (opening a bind
shell, downloading a malware from a URL, ...). Inter-protocol dependencies are a
set of heuristics that allow, given a certain input, to memorize the corresponding
output. Instead of learning the output of the function for some given inputs, a better
approach would consist in approximating the function for ranges of values. This
is what the SGNET aims at, detecting code injections (detecting γ) and emulating
an approximation of their behavior (emulatingπ) to download malware (retrieving
µ).

Many approaches exist to identify code injections. We can mainly identify
two families: approaches that aim at identifying an executable payloadπ inside a
network stream taking advantage of its characteristics, and approaches that monitor
a vulnerable host to detect hijacks of the control flow.

Several approaches aim at reliably detecting code injections by the observation
of the network interaction between an attacker and a victim.Some of them aim
at recognizing peculiar characteristics of the payload: for instance, detecting the
presence ofsledgesbefore the executable payload [30, 2]. Some aim at detecting
the presence of executable code by checking the correctnessof its control or data
flow. This approach can be used either to detect samples of polymorphic worms
[20] (the malwareµ) or to detect executable payloadsπ and thus buffer overflow

7



attempts [7, 33]. Others aim at detecting decryption routines for polymorphic shell-
codes emulating their execution [24]. All these methods focus on the detection of
the code injection regardless on the host configuration: thepayload is detected in-
dependently from the real success or failure of the attack onthe target host. This is
an advantage in certain contexts, but since our objective consists in characterizing
an attack we do want to know whether the attack succeeds or noton the target host.
These methods could be applied in a successive phase to analyze the amount of
failed attacks against a given host, but this is outside the scope of this paper and
thus will not be taken into consideration here.

It becomes then interesting to detect the effect of code injection by monitoring
the behavior of the target host. Among the various approaches belonging to this
family, we recall Argos [25], Minos [9] and Vigilante [8]. All these approaches
share a similar basic concept that is memory tainting. Keeping track of the memory
locations whose content derives from packets coming from the network, they are
able to detect the moment in which this data is used in anillegal way. All these
approaches require though to execute a whole operating system together with the
vulnerable applications in order to detect injections. This has two shortcomings:
first of all, they are expensive in terms of resources, and thus they can achieve
rather limited breadths. Secondly, in terms of epsilon-gamma-pi-mu model these
solutions are limited to the first three dimensions of the attack. Even if able to
detect the flow control hijackγ, the execution of the payloadπ must be prevented
to avoid severe security concerns. This paper will show how we have been able
to take advantage of the code injection capabilities of Argos, and address these
shortcomings at the same time.

An interesting approach aiming at capturing and emulating the shellcode is
Nepenthes [3]. Nepenthes is a honeypot with a specific objective: to download
malware from attacking sources. Nepenthes is thus able to handle and observe
all the four phases of the epsilon-gamma-pi-mu model. Nepenthes has proved to
be of significant importance in botnet tracking studies suchas in [27]. Nepenthes
although suffers from two restrictions: the limited visionon the exploitsǫ and the
limited vision on the payloadsπ. Its architecture is nicely structured into three
layers:

• Vulnerability modules: Nepenthes allows the development of plugins that
emulate the network conversation for specific exploits. These plugins con-
tain information about the protocol semantics in order to retrieve the injected
payload (when present) from the protocol stream.

• Shellcode detection: a signature-based engine recognizespatterns in the pay-
load and eventually unpacks its content. An intermediate optional step con-
sists in binding to a given port a shell emulator that receives commands from
the attacker. The final output of this stage is the URL of the malicious file to
be downloaded.

• Download modules: a set of plugins corresponding to different PUSH- and

8



PULL-based download protocols allow to collect the malwareand submit it
to different kinds of locations (filesystems, databases, ...)

The approach is mainly knowledge-based. It relies on some in-depth knowl-
edge of each specific exploit and takes advantage of a set of signatures to recognize
the shellcode. It is thus “blind” to any attack whose behavior falls out of the current
knowledge. We will show in Section 6.3 how SGNET, going beyond the limita-
tions of the Nepenthes approach, enables it to capture malware that it would have
missed otherwise.

4 SGNET and the epsilon-gamma-pi-mu model

When facing an attacker, the SGNET activity can be separatedinto different
parts, corresponding to the basic phases of a network attack. SGNET must emulate
the network conversation with the attacker during the exploit phase (theepsilon).
Then, it needs to detect whether the network conversation ishijacking the applica-
tion control flow (thegamma). In case of code injection, it needs to identify the
injected payload (thepi). Finally, it must emulate the payload behavior in order
to retrieve the malware (themu). This Section will show how SGNET distributes
these phases to three different functional entities:sensor, sample factoryandshell-
code handler.

4.1 Epsilon: Emulating the exploit

In order to emulate the exploit phase, the SGNET needs to emulate network
protocols and allow thus interaction with the attacking clients. As already shown
in [22], if the emulated server does not provide a correct answer to the attacking
client request, the client may abandon the conversation before sending the real
code injection attack. It is thus important to provide a sufficient quality in emu-
lation of the exploit to drive the attacker into sending the code injection. Also,
coherently with what we observed in our experience with the Leurré.com project,
the malicious activity is not uniformly spread over the IP space. In order to achieve
the ability to observe these diversities, the SGNET must thus be able to spread its
service emulation capabilities along the IP space.

The protocol emulation is delegated to the SGNET sensor. A sensor is a host
bound to a set of one or more IPs in the network. Each IP can be bound to a
different profile, which determines the emulated configuration and thus the service
ports open to the attackers. The service emulation is delegated to the ScriptGen
approach. This allows the sensors to provide a sufficient quality of emulation,
enough to capture attacks, without requiring considerableamounts of resources,
and gaining all the advantages already introduced in Section 2.

While handling a newly encountered attack activity, the sensor needs at first to
rely on an entity, such as a real host, able to act as anoracleand provide the correct
answers to the attacker’s requests. In order to build reliable paths for the ScriptGen

9



FSM, the samples must achieve enough statistical diversityto allow the Region
Analysis to correctly infer the protocol semantics. For instance, if all the samples
are generated by a single IP and the corresponding protocol encodes information
about the target IP in the application payload, Region Analysis will wrongly treat
that information as a fixed region. It is important thus to deploy multiple sensors
and allow a distributed collaboration between them in orderto achieve the neces-
sary statistical variability.

After this step, if the path was correctly built the sensor will be able to take
advantage of the FSM information to autonomously handle similar attacks. It is
important to notice that while the learning phase is expensive in terms of resources,
the handling of attacks based on the FSM knowledge is cheap. One of the objec-
tives of the SGNET will thus consist in trying to reduce the learning phase, taking
advantage of the collaboration of multiple distributed sensors and thus increasing
the sample variability and the sample collection rate. We showed in [21] that a
limited number of samples (around 50) is enough to generate areliable protocol
path for a given exploit. We will validate this result with real Internet attacks in
Section 6.1.

4.2 Gamma: detecting the control flow hijack

The knowledge generated by the oracle and synthesized in theFSM allows the
sensor to emulate the exploit autonomously. Normally, the output of the oracle is a
network conversation, that thus provides information about the exploit emulation.
If the oracle was able to provide information also about codeinjection parameters,
it would then be possible to provide this information to the sensor and allow the
sensor to extend its knowledge in terms of epsilon-gamma-pi-mu model.

We propose here a solution to implement an oracle for SGNET sensors focus-
ing on two aspects: 1) the security measures to control the state of the oracle even
after a successful code injection; 2) the ability of the oracle to provide, in addition
to the network behavior information, also information about hijack points in the
application control flow.

The SGNET entity having the purpose of acting as an oracle with respect to
SGNET sensor is the SGNET sample factory. In order to addressboth security
concerns and to extract information about the code-injection, we rely onArgos,
presented by Portokalidis et al. in [25]. Argos takes advantage ofqemu, a fast x86
emulator [5] to implement memory tainting. The sample factory takes advantage
of the Argos honeypot system to achieve a different goal withrespect to its original
one. In SGNET, in fact, the Argos honeypots are not supposed to directly interact
with attackers: they are always mediated by sensors. They are indeed factories
of samples for the SGNET sensors, providing exploit (ǫ) and code-injection (γ,π)
information.

When relaying on a sample factory, a sensor replays against the Argos emulated
host the attack trace sent so far by the attacker. This may raise some security
concerns: the attacker is in fact able to compromise the host, and thus may take

10



advantage of the compromised machine as a stepping stone towards other hosts.
To prevent these undesired effects, we provide two levels ofprotection. First of
all, all the packets generated by the guest host having as a destination address an
IP different from the attacking source being handled by the sensor will be dropped.
Secondly, the Argos technology takes advantage of the memory tainting technique
illustrated in [25] to detect flow control hijacks. In the case of a detected code
injection the sample factory will stop the execution of the guest operating system.

The generated network conversation does not include per se any information
about possible successful code injections. We have been able to extract this infor-
mation from Argos, extending the memory tainting techniqueto include informa-
tion about the packets containing the code injection. When asensor is forwarding
the sample factory and the packetsP1, ..., Pn, if Pn triggers a code injection the
sensor will be immediately notified. The sample factory is thus able to provide ex-
act information to the sensor about a successful control flowhijack (gamma dimen-
sion). Also, it is possible to identify the network packets containing the shellcode.

The interaction with the sample factory allows the ScriptGen learning phase
to incorporate code injection information inside the FSM. This allows the SGNET
sensors to know when a FSM traversal corresponds to a code injection, and pro-
vides useful hints about the position of the payload. Nevertheless, for the security
concerns mentioned before, the Argos host will be stoppedbeforethe payload ex-
ecution. The handling of the payload information is delegated to a different entity.

4.3 Pi: Handling the payload

In order to handle the payload dimension, it is necessary to identify its position
inside the protocol stream. We saw in the previous Section that the sample factory
allows us to retrieve the position of the first network byte being executed by the
guest host. We make here a very simple assumption: the injected payload will
correspond to the network bytesfollowing the first executed byte. Whenever a code
injected is detected by a sensor, either through the interaction with a sample factory
or through the information embedded in the FSMs, it will define as injected payload
all the bytes of reassembled protocol stream following thatbyte. The (in)validity
of this assumption will be discussed in Section 6.3.

The SGNET sensors are then entities able to correctly handlethe exploit phase,
and provide information about the presence of code injections and about the candi-
date payloadπ. This specification is compatible with that of theNepenthes[3] vul-
nerability modules. We thus take advantage of the sensors todirectly feed payloads
into the Nepenthes shellcode manager bypassing all its vulnerability modules, i.e.
circumventing its knowledge base. If a new attack tool is spreading whose charac-
teristics fall out of the Nepenthes knowledge, SGNET will still be able to provide
correct information about the exploit and the successfulness of the code injection.
This is a major contribution with respect to the previous work in Nepenthes [3] as
we are getting rid of its main limitation, namely the need to develop a large number
of highly specific vulnerability modules.

11



4.4 Mu: downloading the malware

The final phaseµ of the attack functionally corresponds to the Nepenthes
download modules. The SGNET shellcode handler is not allowed to directly ac-
cess the network. The only SGNET component having the right to directly access
the network is the sensor: it is the sensor that handles the whole network conversa-
tion with the attacking client, emulating all the steps of the epsilon-gamma-pi-mu
model.

We saw in Section 4.1 that the sensor relays on an oracle to emulate the exploit
phase when the attack is unknown, and we saw that the ScriptGen approach allows
to learn the exploit activity taking advantage of the generated samples. Theµ
phase corresponds to a network behavior that is always unknown to the sensor: we
motivated in Section 3 the reasons for which the ScriptGen approach does not adapt
to its learning. The SGNET shellcode handler is thus an oracle with respect to the
malware download phase: the sensor will rely on it to generate the correct packets
to download malware every time that a shellcode has been correctly recognized.
Differently from the exploit emulation phase, the sensor will not try to learn the
behavior of the shellcode and it will always rely on it. This solution does not impact
scalability, since differently from the sample generatorsthe shellcode handlers do
not have significant resource requirements.

5 The SGNET

We have implemented a SGNET prototype and deployed it in the Internet. In
this Section we show how we have implemented it.

5.1 The architecture

The SGNET aims at being a distributed system. The SGNET sensors must be
deployable in different locations of the IP-space in order to increase the variabil-
ity of the samples. The various SGNET sensors must exchange collected samples
to learn the new exploits and offload the sample factories. A way to allow dis-
tributed communications between the various components isnecessary. This goal
is achieved through a simple TCP-based HTTP-like protocol designed specifically
for this purpose: thePeirosprotocol. Through this protocol, the sensors are able
to send requests to the other entities, exchanging the various parameters needed
for their initialization. With respect to Peiros, the SGNETentities are service
providers, to which clients (the SGNET sensors) can subscribe.

In order to coordinate the sample distribution, we chose thecentralized ap-
proach as shown in Figure 2. This greatly simplifies the complexity of the task and
the synchronization between different sensors. A central location, calledSGNET
gateway, acts as a default home for all the SGNET sensors. The gatewayacts as
an application proxy for the sample factories and the shellcode handlers, deployed
in a private network and not directly accessible from the sensors. It receives all the

12



Sensors
Sample factories

Shellcode handlers

SG1

SG2

SG3

SF1 SF2 SF3

SH1 SH2

GW
Private 
Network

Figure 2: SGNET architecture

service requests from the clients, and dispatches them to the appropriate entity able
to handle them. Multiple sample factories and shellcode handlers can be deployed
on different hosts, and the gateway acts as a simple load balancer using round robin
scheduling.

All the interactions between the sensors and the other SGNETentities are me-
diated by the gateway. The gateway is able to observe the network traffic between
any sensor and the oracle generated by the sample factory, and it is thus able to
collect samples of new attacks observed byall the sensors deployed in the SGNET.
The gateway position as a centralized sample collector allows the centralized re-
finement of the FSMs taking advantage of the ScriptGen approach. The generated
FSMs are thenpushedto all the sensors at each update: all the sensors active at a
given moment will thus have the same protocol knowledge, with some approxima-
tion due to network latency and retransmissions.

5.2 RAW Proxying

We propose in this paper an important contribution to the current state of the
art of the ScriptGen technology. We showed in Section 4 that SGNET sensors
need to rely on oracles to handle network conversations whose knowledge is not
represented in the ScriptGen FSMs. This behavior was referred to asproxying in
[21], since the sensor behaves as a proxy between the attacker and a real host (the
oracle).

The initial proxying algorithm, as introduced in [21], was application level
proxying. That is, the ScriptGen honeypot was handling reassembled TCP streams,
or UDP data payloads. The information about packet boundaries was thus ignored.
We considered this approach good since most of the exploits currently observable

13



FSM

driven

Warm

up

Packet from 
known activity

Packet 
from 0-day Success

Timeout

Packet 

Raw

PXY

Figure 3: Proxying FSM

on the Internet target application-level vulnerabilitiesand not the TCP/IP stack.
The practical experience in replaying Internet attacks such as Blaster [6] underlined
the importance of preserving packet boundaries in order to correctly reproduce the
attack trace. Also, preserving the TCP/IP headers would allow to correctly repro-
duce attacks based on misuse of the TCP/IP header fields. We thus introduce here
a RAW proxying algorithm able to replay exactly the same attack trace observed
by the sensor.

Given an IPT and an attacking source (IP address)S, a sensor defines an at-
tack as the whole ordered sequence of packets(P1, P2, ...Pn) sent byS towards
T . An attack can then spread over several TCP sessions, UDP requests and ICMP
packets. Using a finer proxying granularity such as the single TCP session or UDP
packet sequence would be wrong: the attack trace may be the result of several state
modifications obtained through multiple TCP sessions or UDPpacket sequences.
A sensor maintains thus a different proxying state for each couple(S, T ) of attack-
ing source and target address. Each couple(S, T ) can be bound to three different
states, which evolve according to the FSM represented in Figure 3:

• FSM driven. The sensor handles the exploit with the attacker taking advan-
tage of its own FSMs. In this case, the sensor takes advantageof the normal
kernel TCP/IP stack, that handles retransmissions and duplicate packets and
provides to the sensor the application data stream. Taking advantage of the
Netfilter ipqueue libraries [34], the sensor caches all the RAW IP packets
P1...Pi sent fromA to S.

• Warm up. When the sensor faces a request for which there is no knowledge
in the FSMs, it needs to initialize an oracleH and act as a proxy to handle
and learn the newly encountered attack activity. During this phase the sensor
replays to the oracle the raw IP packetsP1...Pi received in the previous state
in order to reproduce the attack trace.

• RAW proxy. After the initialization, the sensor will prevent its TCP/IP stack
to receive any packet coming from the attackerA targeting IPT , dropping

14



them using the ipqueue libraries. The attack packetsPi+1, ...Pn will be in-
stead pushed directly toH.

Proxying potentially arises an important issue. We can identify in a network
protocol two different kinds of cookie fields: server-driven and client-driven. A
server driven field is a protocol field whose value is decided by the server when
answering to a request. It can be used by the client to determine other field values
for the following requests. Client-driven cookie fields areinstead set by the client in
the client requests, and then used by the server to generate the following answers.
In [21] we claimed the importance of handling the client-driven cookie fields to
raise the emulation quality: if a client sets a cookie field, the ScriptGen-based
emulators need to take into consideration its value when generating their answers.
Server-driven cookie fields instead do not generate any concern with respect to
the ScriptGen emulation: the logic to handle the transformation of the field in the
following packets is embedded in the client. Nevertheless the initialization of the
RAW proxying in the middle of a protocol interaction may leadto an inconsistency:
the value chosen by the sensor and by the oracle host for the server-driven field
could be different. The transition between FSM driven operation and RAW proxy
will not be transparent to the attacker. In order to solve theproblem, the sensor
needs to compare the answers generated by the oracle in the warm up phase with
the answer generated by the sensor when driven by the FSM knowledge, learn the
modifications and reverse them in the RAW proxy phase.

Even if theoretically possible, we never observed this kindof inconsistency
at application level; although, we encountered it at the transport layer form when
dealing with TCP sequence numbers. When opening a TCP connection with the
attacker, the TCP/IP stack of the sensor chooses an initial sequence numberISN1.
This initial sequence number is analogue to a server-drivencookie field: in the
warm up phase, when establishing the connection the oracle will choose a differ-
ent initial sequence numberISN2. The replay engine needs thus to observe the
answers generated by the oracle in the warm up phase in order to learnISN2. In
the RAW proxy state, the sensor will need to reverse this modification changing all
the sequence numbers related to the oracle by the quantityISN2 − ISN1.

It is clear from this description that RAW proxying is comparable to a TCP
session hijacking attack. In fact, the RAW proxy phase overrides the host TCP/IP
stack and redirects the packets towards another TCP/IP stack which carries on the
conversation. When, after a period of inactivityTo, the sensor assumes the source
S as “expired”, it reverts its state to FSM driven allowing it to access again the
hijacked TCP/IP stack. IfTo is not long enough, the TCP/IP stack will be de-
synchronized and will thus potentially generate TCP ACK storms. It is thus impor-
tant to correctly tuneTo to a period of several minutes and to check the ACK ratio
of each source to timely block these situations.

15



5.3 Attacks and IP addresses

When facing a newly encountered activity, a sensor needs to rely on an oracle
provided by the sample factory. The sensor thus sends a service request through
the Peiros protocol to a free sample factory. If enough resources are available,
the sample factory initializes an Argos instance using the guest operating system
associated to that sensor (e.g. a Windows 2000 configuration). It is possible to take
advantage of the virtualization capabilities of Argos to load the memory snapshot
of an already running system in less than one second, allowing thus an extremely
fast initialization.

It would be possible in theory to always associate the same IPaddress to the
guest host, and then perform NAT while replaying the packetsfrom the sensor
to the host. However, many exploits such as the LSASS exploit[1] put in the
application payload the IP address of the target machine. The presence of NAT
during the replay of the attack trace leads the attack to fail, since the IP address in
the application payload will not match any more the IP address associated with the
host network interface. Thus, the IP address of the host handled by the oraclemust
match the IP address of the sensor.

Matching the IP address of the host with the IP address of the sensor proved
to be a difficult task. We implemented a “smart” DHCP server inside the sample
factory. When initializing a host, the sample factory takesadvantage of the DHCP
protocol [19] to assign it the same IP address than the one of the requesting sensor.
We found out that this solution is unfeasible when dealing with certain Microsoft
operating systems. During our testing with a Windows 2000 unpatched system,
we observed an extremely peculiar behavior. When assigned anew IP address, the
host starts to broadcast its presence for a period of approximately 30 seconds. Dur-
ing this period, any communication attempt with the runningservices fails. This
introduces an important delay in the sensor warm up phase, leading the attacking
source to timeout. We consequently decided to store a different memory dump
for each sensor being placed in the network. This allows to immediately initialize
a guest host having the desired IP address in a negligible time at the expense, of
course, of disk space.

5.4 Comparison with GQ

An interesting work sharing some similarities with SGNET isdescribed in a
technical report that can be found on the Internet, and called GQ [11]. GQ is a
high interaction internet telescope, taking advantage of the application-level filter-
ing capabilities of RolePlayer [10]. The main idea of GQ consists in increasing the
breadth of a set of virtualized hosts performing a smart filtering on the observed ac-
tivities. The well-known attack activities are handled by RolePlayer scripts, while
new and interesting attack activities are left to the virtualized hosts.

GQ shares thus a similar idea to SGNET, but profoundly differs in the archi-
tecture.

16



First of all, SGNET is designed to be a distributed system. Weare aware thanks
to our efforts with the Leurré.com project that the attack activity is not uniformly
spread along the whole IP space. SGNET aims at observing the attack activities in
different locations of the IP space, deploying different sensors synchronized by a
central entity. On the other hand GQ is a highly interactive Internet telescope, and
thus aims at observing global trends and background radiation in large blocks of
addresses rather than at observing threats in diverse environments.

Secondly, SGNET precisely separates the various phases of the epsilon-gamma-
pi-mu model and handles each phase with a different entity. We believe that the
FSM model generated by ScriptGen, or by RolePlayer, fits onlyto the emulation of
the exploit phase but is insufficient to model the complex interactions inherent to
the code-injections. A small modification in the injected payload can completely
modify the network behavior of the attack, and representingall the possible behav-
iors in the FSMs would lead to an explosion of the number of paths. SGNET thus
takes advantage of different entities that better fit to handle the different phases of
the attack trace, dynamically switching between them. Fromour understanding of
GQ, this does not seem to be the case.

Thirdly, SGNET is designed to operate in a completely unsupervised way. We
will show in Section 6 how we are able to incrementally refine the protocol knowl-
edge collecting new samples of protocol interaction. We showed in Section 3 that,
differently from ScriptGen, RolePlayer does not suit well to automated learning.
Indeed, no automated learning capabilities are mentioned in the current literature
about GQ.

Finally, SGNET is able to model the whole attack trace without executing the
code injection itself. Allowing the execution of the whole attack trace on real hosts
taking advantage of virtualization, as proposed by GQ, raises security concerns that
we prefer to avoid.

6 SGNET experimental results

A prototype of the SGNET infrastructure was deployed on the Internet and has
been running for more than one month2. The various partners of the Leurré.com
project are being invited to join the experimentation of thenew infrastructure. At
this time of writing, two SGNET sensors are operational: one, bound to a single
IP, is running in France; another, bound to 3 sequential IPs,is running in Australia.
All the sensors are associated to an unpatched Microsoft Windows 2000 machine,
running the IIS services. Several open TCP and UDP ports are associated to its
corresponding FSM, such as TCP ports 135, 139 and 445, UDP port 137 and others.
More sensors will be deployed in the following months. Interesting results have
already been obtained with this initial setup. They are usedhereafter to validate
the whole approach.

2Note to the reviewers: if accepted, we will be glad to enrich this Section with updated figures.

17



Known, unrecognized injection
����

����

��
��
��
��

����
����

Known, no injection
Unknown, no injection
Unknown, recognized injection
Unknown, unrecognized injection
Known, recognized injection

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
� �
�
�
�

�
�
�
�

��
��
��
��

  0
10987654321

A
tta

ck
 s

ou
rc

es

Days

  25

  20

  15

  10

  5

  30

Figure 4: Learning phase

When evaluating the SGNET, several points must be considered: the reaction
time, the stability of the FSMs, the correctness of the code injection information
and the ability to download malware. Thereaction timecorresponds to the time
that it takes to generate a new path in the ScriptGen FSMs for agiven new attack
activity. Once the path is generated, itsstability is important: the semantic abstrac-
tion provided by the ScriptGen approach must be good enough to allow the sensors
to handle autonomously future similar attacks without continuously creating new
variations of that same path. The code injection information learnt from the sample
factory must allow a sensor to provide the shellcode handlerwith correct payloads.
Finally, the provided payloads must allow Nepenthes to effectively download mal-
ware. These various aspects will be addressed in the following sections.

6.1 Reaction time

In the following, we report on our observations of the behavior of the ScriptGen
sensors on a specific port, the Microsoft DCOM Service Control Manager (TCP
135). This port has been chosen for two reasons. On the one hand, it corresponds
to a relatively complex binary protocol, thus constitutinga non-trivial example of
automated learning. On the other hand, it is hit by a significant number of attackers,
accounting for 32.5% of the total number of observed attackers hitting open ports.

On day 0, the experiment was started with a completely untrained configura-
tion. Initially, all the FSMs provided to the SGNET sensors were empty. We then
tracked the behavior of the SGNET in handling the attackers along the days. Fig-
ure 4 focuses only on the first 10 days of observed behavior fora stable SGNET

18



setup. Figure 4 groups the attackers according to how they have been handled by
the SGNET. The attacks can be known, that is the sensor was able to handle the
conversation taking advantage only of the knowledge represented in the FSMs; or
they can be unknown, requiring thus the interaction with thesample factory. With
respect to code injections, a code injection may or may not bedetected, and may
or may not be recognized by the shellcode handler.

In almost every day, we can notice a rather constant amount ofattackers whose
behavior is known to the sensor but who do not inject code. These sources are ac-
tually connecting to the port and then disconnecting immediately without sending
any payload. This likely corresponds to scanning activities.

The first 6 days are dominated by unknown activities, that require the sensor to
rely on the sample factory. On the 7th day, after having collected 73 attack samples
for that single port, a new protocol path is generated by the SGNET and pushed
to the sensors. Even if the breadth of the SGNET is at the moment limited, it has
been able to incorporate in its FSMs a new activity in a relatively short amount of
time.

These results clearly underline the ability of the ScriptGen approach to learn
Internet attacks in a completely unsupervised way within a reasonable learning
time. This result is an important point in validating the whole SGNET architecture.
What has just been said for port 135 was also observed for another commonly
exploited port, that is port 139 (NetBIOS Session Service).Other less commonly
attacked ports have not developed yet stable protocol pathsin their FSMs mainly
because of the lack of samples. As soon as more sensors will bedeployed on the
Internet, the reaction time of the systems will decrease since more samples will be
made available more rapidly. At this point, it is worth noting that, unfortunately,
these two sensors are located within IP blocks of addresses that are among those
that get the fewest number of attacks per hours, as indicatedby our Leurré.com
statistics.

6.2 Stability

When creating a protocol path, it is important to understandwhether the se-
mantic abstraction performed by ScriptGen is sufficient to correctly handle newer
instances of the same attack. By design, a FSM path is never refined: once created
it will never be modified. If the generalization is not sufficient, new attack samples
will not traverse the path and will trigger again the proxying algorithm to rely on
the sample factory. This means that if the generalization isnot sufficient and the
path is not stable the sensor will never be able to handle autonomously an attack.
Also, this will lead to an explosion of the complexity of the FSMs, with many
protocol paths never traversed by any sample.

According to what we have just said, the verification of the stability of the paths
consists in observing a decrease of the unknown activities after a refinement of a
FSM. Referring to Figure 4, the sudden increase on day 7 of known activities with
recognized code injections is a clear validation of the stability of the generated

19



Bi Bn

Bi BnBa

A

B

Figure 5: Finding the payload

path.

6.3 Recognizing the shellcode

Figure 4 shows that after day 7 SGNET sensors are able to successfully emu-
late exploits against port 135 and submit recognizable payloads to the Nepenthes
framework. The same has happened for the protocol paths generated for port 139.
It is also interesting to notice in Figure 4 a small fraction of activities that generated
a code injection not recognized by Nepenthes. It is interesting to focus on these
cases since they underline a possible failure of the knowledge based model used by
Nepenthes.

In the beginning of the testing we ran into a considerable number of cases in
which the shellcode was not recognized correctly. The information provided by the
Argos honeypots contains hints on the first byteBi of payloadpi being executed
by the host. When embedding this information in the new protocol paths of the
ScriptGen FSM, we considered as payload all the following bytesBi, Bi+1, ...Bn

up to the end of the reassembled application-level stream (Figure 5 A). This ap-
proach was often generating extremely short payloads, consisting only of a few
bytes. The real behavior of these payloads is shown in Figure5 B. The identified
payload consists of a jump instruction to another memory location containing most
of the payload, that was locatedbeforeBi in the reassembled application stream.

We revised our initial assumptions as follows. Given a reassembled application
level streamB1...Bn identified by Argos as containing a payloadpi at byteBi, the
sensor tries to submit a payloadπ = (Bk, ...Bn) with k ≤ i to the shellcode
handler. The indexk is gradually decreased starting fromi until the payload is
recognized successfully. This allows to backtrack from theinitial hint given by
Argos, that in this particular situations proves to be misleading. Since the payload
recognition takes a very small time on the shellcode handler, the heuristic adds a
minimum overload.

This heuristic allowed to increase the recognition ratio ofthe shellcodes, un-
veiling a much more interesting phenomenon. In the last weekof December 2006,
SGNET logged a high number of shellcodes injected through port 139 and not
being recognized by the shellcode handler. 147 out of a totalof 200 submitted

20



Detection rate (percentage)

  5

  10

  15

  20

  25

  30

90
−

10
0

80
−

90

70
−

80

60
−

70

50
−

60

40
−

50

30
−

40

20
−

30

10
−

20

0−
10

N
um

be
r 

of
 s

am
pl

es

  0

Figure 6: Antivirus detection rate for downloaded malware samples

shellcodes were not detected, catching thus our attention.After submission of the
collected payload samples to the Nepenthes development team, the signature for
one class of shellcodes (bindfiletransfer:amberg) was modified. ScriptGen was in
fact collecting samples differing by 3 bytes from the original signature. This dif-
ference is probably due to the fact that the shellcode had been modified by using
different opcodes for the same operations. This episode is extremely important
since it underlines two facts: 1) the knowledge-based approach used by Nepenthes
to detect and emulate shellcodes can be evaded; 2) the SGNET allows to observe
these cases and take the appropriate measures.

6.4 Downloading the malware

Finally, some considerations must be made on the malware download phase.
The amount of malware effectively collected by the SGNET with respect to the
number of detected and successfully emulated code injections is rather low.

Looking at the SGNET logs for the period going from the 10th tothe 26th of
January 2007, we can deduce some interesting statistics. Out of 227 submitted
shellcodes detected and recognized by the shellcode handler, only 60 led to suc-
cessful download of malware samples. Of the remaining 167, 110 were actually
corresponding to non-routable addresses mainly belongingto the 192.168.0.0/16
network. This result is extremely surprising, but can be justified by the fast utiliza-
tion in the nowadays Internet of private addressing and NAT.

We can in fact recognize two different classes of downloads:those in which the

21



Name Result (19/1) Result (26/1)
AntiVir found nothing found [Worm/Allaple.B.151]
Authentium found nothing found [W32/NetWorm.BL]
Avast found nothing found nothing
AVG found [Worm/Allaple.B] found [Worm/Allaple.B]
BitDefender found nothing found nothing
CAT-QuickHeal found nothing found nothing
ClamAV found nothing found nothing
DrWeb found nothing found nothing
eSafe found [Suspicious Trojan/Worm] found [Win32.Allaple.b]
eTrust-InoculateIT found nothing found nothing
eTrust-Vet found nothing found nothing
Ewido found nothing found [Worm.Allaple.b]
F-Prot found nothing found nothing
F-Prot4 found nothing found nothing
Fortinet found [suspicious] found [W32/Allaple.B!worm.im]
Ikarus found nothing found [Net-Worm.Win32.Allaple.b]
Kaspersky found [Net-Worm.Win32.Allaple.b] found [Net-Worm.Win32.Allaple.b]
McAfee found nothing found nothing
Microsoft found nothing found nothing
NOD32v2 found nothing found nothing
Norman found nothing found nothing
Panda found nothing found nothing
Prevx1 found nothing found nothing
Sophos found [Mal/Packer] found [Mal/Packer]
Sunbelt found nothing found nothing
TheHacker found nothing found nothing
UNA found nothing found nothing
VBA32 found nothing found nothing
VirusBuster found [Worm.Allaple.Gen] found [Worm.Allaple.Gen]

Table 1: Example of submission

attacker forces the victim to download malware from a central location, such as an
FTP or HTTP server, and those in which the attacker forces thevictim to download
the malware from its own host, usually taking advantage of a small TFTP daemon.
The latter case can be greatly impacted by the presence of NAT: the attacker will
use as address for the TFTP server the IP assigned to its own network card. In
many cases, such as the WiFi/ADSL routers normally distributed by many ISPs,
that address is not routable and belongs to a private network, masked to the outside
world by NAT. In these cases the worm has no chance or propagating, even if it
continuously scans the network for vulnerable machines.

Nevertheless, we have been able to successfully download malware samples.
We submitted these samples to VirusTotal [31], a free service allowing to scan
suspicious files using several well known antivirus engines, both commercial and
open. At the moment of writing, VirusTotal is offering 28 different antivirus
engines, most of them constantly updated with the latest signatures. Figure 6
shows the detection rate distribution for the submitted samples downloaded by the

22



SGNET. We define the detection rate of a malware sample as the ratio of antivirus
softwares having identified the sample as containing something malicious. It is in-
teresting to see how the detection rate is almost always below 70%, thus meaning
that in average at least 8 antivirus softwares fail to recognize the submitted malware
as being malicious. In parallel to well-known worms such as Blaster, we have been
able to observe relatively recent malware samples such as Allaple.A, discovered
according to the F-Secure database on the 7th of December 2006.

An important issue not addressed in the scope of this paper isthe problem of
broken malware downloads. Some of the upload methods used byattackers are
based on unreliable protocols, and thus the emulated download phase may end up
in a corrupted file. An example of this behavior is shown in Table 1. We submitted
the sample to CWSandbox [12], a new sandbox implementation able to analyze the
host-based behavior of a malware sample. According to the sandbox analysis, the
file cannot be executed and is thus broken. All the successfuldetection cases can
thus be considered asfalse positives. The presence of this kind of false positives
mainly depends on the antivirus policy and in the aggressiveness of its detection
engine. The even more surprising result is that when submitting the same malware
a second time one week later, we observed that the detection rate had “improved”.
A more in depth analysis of the downloaded samples would be necessary to better
understand this phenomena. It is indeed important to underline how, to collect
meaningful detection statistics, it is important to recognize the broken samples
taking advantage of technologies such as CWSandbox. This isout of the scope of
this work and it is left for future investigation.

7 Conclusions

We presented in this paper a novel infrastructure to observeInternet attacks.
We showed how, focusing on code injection attacks, we have been able to address
the epsilon-gamma-pi-mu model and emulate the steps required to successfully
download malware samples. We took advantage of three different approaches,
namely ScriptGen, Argos and Nepenthes, and we have been ableto exploit their
strengths in addressing specific phases of the attack process. We showed how
the ScriptGen approach can act as a generic vulnerability module for Nepenthes,
providing behavior-based information and allowing to identify the limitations of
the Nepenthes knowledge-based approach. Also, we have beenable to concretely
validate the ScriptGen approach by handling successfully real Internet attacks. The
ongoing deployment of SGNET sensors in different locationsof the IP space will
allow us to gather a more detailed picture of the local threats observable in the
Internet.

References

[1] Microsoft Windows LSASS Remote Overflow, http://www.osvdb.org/5248,

23



2007.

[2] P. Akritidis, E.P. Markatos, M. Polychronakis, and K. Anagnostakis. Stride:
Polymorphic sled detection through instruction sequence analysis.20th IFIP
International Information Security Conference, 2005.

[3] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling. The Nepenthes
Platform: An Efficient Approach to Collect Malware.Proceedings of the 9th
International Symposium on Recent Advances in Intrusion Detection (RAID),
September 2006.

[4] Michael Bailey, Evan Cooke, Farnam Jahanian, Jose Nazario, and David Wat-
son. The internet motion sensor: A distributed blackhole monitoring system.
In 12th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, February 2005.

[5] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. Proceedings
of the USENIX Annual Technical Conference, FREENIX Track, pages 41–46,
2005.

[6] CERT. Advisory CA-2003-20 W32/Blaster worm, August 2003.

[7] Ramkumar Chinchani and Eric van der Berg. A fast static analysis approach
to detect exploit code inside network flows.Proceedings of the International
Symposium on Recent Advances in Intrusion Detection (RAID), 2005.

[8] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham. Vigilante: end-to-end containment of internet worms. Proceed-
ings of the twentieth ACM symposium on Operating systems principles, pages
133–147, 2005.

[9] J.R. Crandall, S.F. Wu, and F.T. Chong. Experiences using Minos as a tool for
capturing and analyzing novel worms for unknown vulnerabilities. Proceed-
ings of GI SIG SIDAR Conference on Detection of Intrusions and Malware
and Vulnerability Assessment (DIMVA), 2005.

[10] Weidong Cui, Randy H. Katz, and Wai-tian Tan. Protocol-independent adap-
tive replay of application dialog. InThe 13th Annual Network and Distributed
System Security Symposium (NDSS), February 2006.

[11] Weidong Cui, Vern Paxson, and Nicholas Weaver. Gq: Realizing a system to
catch worms in a quarter million places. Technical report, ICSI Tech Report
TR-06-004, September 2006.

[12] CWSandbox - Automated Behavior Analysis of Malware.
www.cwsandbox.org, 2007.

[13] Marc Dacier, Fabien Pouget, and H. Debar. Attack processes found on the in-
ternet. InNATO Symposium IST-041/RSY-013, Toulouse, France, April 2004.

24



[14] Marc Dacier, Fabien Pouget, and H. Debar. Honeypot-based forensics. In
Proceedings of AusCERT Asia Pacific Information TechnologySecurity Con-
ference 2004, Brisbane, Australia, May 2004.

[15] Marc Dacier, Fabien Pouget, and H. Debar. Honeypots, a practical mean to
validate malicious fault assumptions. InProceedings of the 10th Pacific Ream
Dependable Computing Conference (PRDC04), Tahiti, February 2004.

[16] Marc Dacier, Fabien Pouget, and H. Debar. Towards a better understanding of
internet threats to enhance survivability. InProceedings of the International
Infrastructure Survivability Workshop 2004 (IISW’04), Lisbonne, Portugal,
December 2004.

[17] Marc Dacier, Fabien Pouget, and H. Debar. Honeynets: foundations for the
development of early warning information systems. In J. Kowalik, J. Gorski,
and A. Sachenko, editors,Proceedings of the Cyberspace Security and De-
fense: Research Issues, 2005.

[18] Marc Dacier, Fabien Pouget, and H. Debar. Leurre.com: On the advantages
of deploying a large scale distributed honeypot platform. In Proceedings of
the E-Crime and Computer Conference 2005 (ECCE’05), Monaco, March
2005.

[19] R. Droms. Dynamic Host Configuration Protocol; RFC-2131. Internet Re-
quest for Comments, 2131, 1997.

[20] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
Worm Detection Using Structural Information of Executables. Symposium
on Recent Advances in Intrusion Detection, September 2005.

[21] Corrado Leita, Marc Dacier, and Frédéric Massicotte. Automatic handling
of protocol dependencies and reaction to 0-day attacks withScriptGen based
honeypots. InRAID 2006, 9th International Symposium on Recent Advances
in Intrusion Detection, September 20-22, 2006, Hamburg, Germany - Also
published as Lecture Notes in Computer Science Volume 4219/2006, Sep
2006.

[22] Corrado Leita, Ken Mermoud, and Marc Dacier. Scriptgen: an automated
script generation tool for honeyd. InProceedings of the 21st Annual Com-
puter Security Applications Conference, December 2005.

[23] Saul Needleman and Christian Wunsch.A general method applicable to the
search for similarities in the amino acid sequence of two proteins. J Mol Biol.
48(3):443-53, 1970.

[24] M. Polychronakis, K.G. Anagnostakis, and E.P. Markatos. Network-Level
Polymorphic Shellcode Detection Using Emulation.Proceedings of the

25



GI/IEEE SIG SIDAR Conference on Detection of Intrusions andMalware
and Vulnerability Assessment (DIMVA), July, 2006.

[25] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an emulator for finger-
printing zero-day attacks.Proc. ACM SIGOPS EUROSYS, 2006.

[26] Niels Provos. A virtual honeypot framework. InProceedings of the 12th
USENIX Security Symposium, pages 1–14, August 2004.

[27] Moheeb Rajab, Jay Zarfoss, Fabian Monrose, and AndreasTerzis. A mul-
tifaceted approach to understanding the botnet phenomenon. In ACM SIG-
COMM/USENIX Internet Measurement Conference, October 2006.

[28] Lance Spitzner.Honeypots: Tracking Hackers. Addison-Welsey, Boston,
2002.

[29] The Metasploit Project. www.metasploit.org, 2007.

[30] Thomas Toth and Christopher Kruegel. Accurate buffer overflow detection
via abstract payload execution. In5th Symposium on Recent Advances in
Intrusion Detection (RAID). Springer, 2002.

[31] VirusTotal. www.virustotal.com, 2007.

[32] VMware Inc. The VMWare software package, www.vmware.com, 2007.

[33] Xinran Wang, Chi-Chun Pan, Peng Liu, and Sencun Zhu. Sigfree: A
signature-free buffer overflow attack blocker.USENIX Security, 2006.

[34] H. Welte. The Netfilter framework in Linux 2.4.Proceedings of Linux
Kongress, 2000.

26


