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Achieving Cesaro-Wardrop Equilibrium in Wireless Sensor
Networks

Muhammad Farukh Munir, Arzad Alam Kherani, and Fethi Filali

Abstract

We propose a closed architecture for data sampling in wireless sensor
networks. Examples show that the proposed scheme outperforms the tradio-
tional layered scheme, both in terms of stable operating region as well as the
end-to-end delays.

We then propose a distributed routing scheme for a broad class of wire-
less sensor networks which converges (in the Cesaro sense) to the set of
Cesaro-Wardrop equilibria. The scheme is based on the multiple time-scale
stochastic approximation algorithms. Convergence is established using stan-
dard results from the related literature and validated by simulation results.
Our algorithm can adapt to changes in the network traffic and delays.
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1 Introduction

Wireless Sensor networks is an emerging technology that has a wide range of
potential applications including environment monitoring, medical systems, robotic
exploration, and smart spaces. WSNs are becoming increasingly important in re-
cent years due to their ability to detect and convey real-time, in-situ information for
many civilian and military applications. Such networks consist of large number of
distributed sensor nodes that organize themselves into a multihop wireless network.
Each node has one or more sensors, embedded processors, and low-power radios,
and is normally battery operated. Typically, these nodes coordinate to perform a
common task.

We propose an adaptive and distributed routing scheme for a general class
of wireless sensor networks. The objective of our scheme is to achieve Cesaro
Wardrop equilibrium, an extension of the notion of Wardrop equilibria that first
appeared in [4] in the context of transportation networks. The notion is defined
in Equation (3) later in this paper. Our algorithm is actually an adaptation of the
algorithm proposed in [1] to the case of wireless sensor networks. In the algorithm
of [1], each source uses a two time-scale stochastic approximation algorithm. Dif-
ference in the two algorithms are:

1. In wireless sensor networks that we consider, each node has an attribute
associated with it namely the channel access rate. The delay on a route
depends on the attributes of the nodes on the route. However, in order to
maintain some long term data transfer rate, each node needs to adapt its
attribute to routing.

2. The difference in time scales that we use for various learning/adaptation
schemes helps us prove convergence of our algorithm (such a proof is not
present in [1]).

In this paper, we consider a static wireless sensor network with n sensor nodes.
Given is an n×n neighborhood relation matrix N that indicates the node pairs for
which direct communication is possible. We will assume that N is a symmetric
matrix, i.e., if node i can transmit to node j, then j can also transmit to node i. For
such node pairs, the (i, j)th entry of the matrix N is unity, i.e., Ni,j = 1 if node i
and j can communicate with each other; we will set Ni,j = 0 if nodes i and j can
not communicate. For any node i, we define

Ni = {j : Ni,j = 1},

Which is the set of neighboring nodes of node i. Similarly, the two hop neigh-
bors of node i are defined as

Si = {k /∈ Ni ∪ {i} : Nk,j = 1 for some j ∈ Ni}

Note that Si does not include any of the first-hop neighbors of node i.
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Each sensor node is assumed to be sampling (or, sensing) its environment at a
predefined rate; we let λi denote this sampling rate for node i. The units of λi will
be packets per second, assuming same packet size for all the nodes in the network.
In this work, we will assume that the readings of each of these sensor nodes are
statistically independent of each other so that distributed compression techniques
are not employed.

Each sensor node wants to use the sensor network to forward its sampled data
to a common fusion center (assumed to be a part of the network1). Thus, each
sensor node acts as a forwarder of data from other sensor nodes in the network.
We will assume that the buffering capacity of each node is infinite, so that there
is no data loss in the network. We will allow for the possibility that a sensor
node discriminates between its own packets and the packets to be forwarded (thus
allowing for the model of [3] which considers an Ad Hoc network so that nodes
give priority to transmission of their own packets or the packets to be forwarded).

We let φ denote the n × n routing matrix. The (i, j)thelement of this matrix,
denoted φi,j , takes value in the interval [0, 1]. This means a probabilistic flow split-
ting as in the model of [2], i.e., a fraction φi,j of the traffic transmitted from node
i is forwarded by node j. Clearly, we need that φis a stochastic matrix, i.e., its row
elements sum to unity. Also note that φi,j > 0 is possible only if Ni,j = 1. Our
objective in this paper is to come up with an algorithm using which any node (say
i) is able to converge to the corresponding row of the matrix φ corresponding to
the Wardrop equilibrium.

The organization of this work is as follows. In Section 2, we detail the dif-
ferent data collection mechanisms. We propose a distributed routing algorithm in
Section 3. Numerical results from TinyOS simulations are presented in Section 4.
In Section 5, we briefly conclude the work and outline the future directions.

2 Data Collection Mechanism

There are various ways of achieving the average sampling rate of λi for all the
nodes. We will see later in the paper the qualitative behavior of a Wardrop equi-
librium in sensor networks depends crucially on the data collection mechanism
employed. In this work, we consider two possibilities of data collection mecha-
nism:

2.1 Layered System

This is the traditional slotted Aloha based system with a layered architecture
where the application layer (sampling process in case of sensor networks) does not
directly interact with the lower layers (the random access MAC in our example).

1Conceptually, we can assume that this fusion center is also a sensor node, which has 0 sampling
rate.
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In Section 2.4, we will see the issues with stability in the sensor networks that
use the slotted Aloha like random access mechanism for channel access with a
sampling process without any communication with the MAC layer. Such schemes
were extensively used in the Packet Radio Network literature. The analysis of the
model that we consider above is also available in the PRN literature (see for exam-
ple [2]). The problem of stability that we will see is that for a given sampling rate,
one needs to jointly optimize the channel access rate and the routing in order to op-
timize on delays. We will also see that the sampling rate at a node may be restricted
by the sampling rate of the other downlink nodes. Further, in order to maintain sta-
bility of a node’s transmit buffer, one needs to be operating far from the maximum
allowed sampling rate (this is because, under the assumption of Bernoulli sampling
process, the average queue length grows exponentially with an increase in the sam-
pling rate). In addition, in this model, the sampling rate is not directly related to
the channel access rates (unless it is an outcome of an optimization problem like
the one we consider in Section 2.4). Thus, there is an extra dimension that needs
to be optimally controlled.

2.2 Closed System

Under this mechanism, there is a strong coupling between the channel access
process and the sampling process. This approach has the advantage that one does
not need to find an optimal sampling rate all over again on changing the channel
access rates. The coupling automatically regulates the sampling process for any
change in the channel access process.

The combined channel access/data sampling mechanism is as follows: Node i
decides to attempt a channel access with probability αi in any slot (else, it is sensing
the channel for any possible transmissions). If decided to attempt a transmission,
the node first checks if there is any packet available in its transmit queue. We have
following possibilities:

1. No packets waiting in the transmit queue: In this case, the MAC layer of
node i will ask the appropriate upper layer to sense data and provide it with
a new packet. This packet is then attempted a transmission.

2. At least one packet waiting to be forwarded: In this case, node i will serve
the head-of-line packet from its transmit queue.

Note that under this mechanism the transmit queue of node i can have at most
one packet in the transmit queue that was generated at node i. It can however have
multiple packets in the transmit queue to be forwarded, i.e., those packets that were
initially generated at some other node, and have arrived at node i to be forwarded
to some other node. Clearly, under this scheme if the transmit queue of node i
contains a packet that was generated at node i itself, then this packet will be the
head-of-line packet till the time it leaves the transmit queue of node i.
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2.3 Applications for Closed System

The closed scheme is meant to be used in applications where a sensor network
is used to observe the time variation of a random field over the space on which the
network is deployed. For such applications, one can think of a temporal priority
mechanism for transmitting packets so as to reduce the overall transmissions in
the network. In particular, our sampling scheme amounts to the assumption that a
node assigns highest priority to the most recent packet generated by the node (this
priority is defined over the packets generated by the node, and does not include the
packets that a node receives to forward to some of its neighbors).

2.4 An Example

Consider a 4-node wireless sensor network shown in Fig. 1. Node 0 is the
common destination for all the data generated by the other three sensors, labeled
1, 2, 3. All the transmission in the network is done only by these sensor nodes; the
job of node 0 is to receive data sensed at these sensor nodes. To begin with, we
assume that node 3 can not directly transmit to the destination node 0. Node 1 and
2 can communicate with node 0 but not with each other; Node 3 can communicate
with both, node 1 and node 2.

λ2 λ3

λ1

2 3

10

Figure 1: Network Configuration

The time is slotted and the sensor nodes use random access (CSMA/CA like)
mechanism for transmission of their data; if node i has a packet to be transmitted,
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it attempts a transmission in a slot with some given probability αi. We will assume
that the packet generation process at node i is Bernoulli with packet generation
probability λi2

Node 1 and 2 transmit directly to node 0, but one has to decide on the path that
packets from node 3 will follow. There are various options for this:

1. either all the packets generated at node 3 will be transmitted to node 1, or to
node 2, or

2. for each packet transmitted by node 3, the next hop node is chosen randomly,
for example, a packet transmitted from node 3 goes to node 1 with probabil-
ity 0.3 and to node 2 with probability 0.7.

For this example, we will assume the first option (of course, it is a special case
of the second option); we will allow for the second more general option when
we come to optimal routing. Traffic splitting method as provided by the second
option were also used in PRNs [2]. We will also assume that each packet from
a node is attempted transmission till it is successfully received by the intended
destination. A transmission is successfully received by a node if it is seeing no
other transmission and the node is not transmitting. For cases where one allows for
possibility of dropping a packet after it has incurred some number of collisions will
not be considered in this work for simplicity; the relevant equations can be found
in [3].

Assume that all the packets from node 3 use node 1 to reach node 0. In this case,
let πi denote the steady-state probability that node i has a packet to be transmitted
in a slot. We can then write down the following approximate equations for the
stable system (formal derivation of these equations can be found in [2]).

π1α1(1 − π2α2) = λ1 + λ3

π2α2(1 − π1α1) = λ2

π3α3(1 − π1α1) = λ3 (1)

These equations are approximate because they are derived under a strong de-
coupling assumption. For stability of all the queues in the network, we need to
choose αi’s such that the above system of equations (in πi’s ) gives us a solution
(π1, π2, π3) ∈ [0, 1)3 . The stability condition under which above relations are valid
are

2Such models were frequently used in context of Packet Radio Network (PRN) literature in the
70

′s and 80
′s, see for example [2]. We will see later that for sensor networks where MAC layer can

be allowed to control the application layer, one can achieve better results compared to those in PRNs
where application layer operates independently of the MAC layer.
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α1(1 − α2) > λ1 + λ3

α2(1 − α1) > λ2

α3(1 − α1) > λ3

Clearly, for a given sampling rate λi, i = 1, 2, 3, there will exist many pos-
sibilities of the channel access rates that give a stable system. These conditions
are actually very different from the one proposed in [2]. In fact, a simple counter
example can be given under which the conditions of [2] implies stability, while the
system is not stable.

This system is not analytically tractable for the queueing delays. Various ap-
proximate analysis can be found in [2] and its references. Because of this reason,
the extra degree of freedom that one gets in the parameter αi is hard to utilize
properly as the correct dependence of the system performance (for example, the
queueing delays at various nodes) is not known. An instance of this difficulty is
that the system of rate balance equations (1) are not valid for all values of αi.
In fact, the discrepancy between the actual system performance and that obtained
from using (1) can be as large as 50%. The delay equations provided in [2] and
references therein are based on equation (1) and for this reason, these expressions
perform poorly for a broad range of parameters αi3.

This is clear from the relations (1) which implies that as long as the system is
stable, we can solve the rate balance equations (1). Since these equations depend
on πi and αi only via πiαi, in the stable region this product πiαi will remain
unchanged (w.r.t. changes in αi). Hence we are tempted to conclude that there
is an extra degree of freedom in αi that can be employed without changing the
end-to-end delays.

Further, this model was justified in the standard OSI-like model where one did
not aim at cross-layer optimization and where the application layer (the sampled
voice packets source) was not in control of the MAC layer. If one likes to min-
imize the expected delay on a node, one way would be to control the arrival of
packets from node’s own sensing mechanism. One such example that we will be
considering (or, proposing) in this work is the following:

A sensor node gets a new packet from the application layer only if it decides to
transmit in a slot but finds the transmit queue empty. As is the case with random
access, sensor node i decides to attempt a transmission with probability αi. We will
call this system the closed system and the first system with layered architecture the
open system.

3We remark here that our present observations are not aimed at questioning the significance of [2]
and the related work from PRN literature. Most of these studies never aimed at tuning the parameters
αi, and since they assumed relatively small values of αi which were fixed a priori, most of the time
in their work the decoupling approximation leading to equations 1 was good. In our work, however
we are trying to get the best system performance, hence need to tune the parameters αi optimally, so
that a correct/accurate analytical model is required for all possible values of αi’s .
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Table 1: Node level Delays

Node → 1 2 3

Open system 3.52 2.80 1.45
Closed system 0.56 2.30 2.30

For the Closed System model, the throughput of nodes 2 and 3 are

λ2 = α2 (1 − α1)
λ3 = α3 (1 − α1)

Using these, the throughput of node 1 is

λ1 = α1(1 − α2) − λ3

The stability condition is

α1(1 − α2) ≥ α3(1 − α1)

The expected number of packets at the three nodes are

T1 =
ρ0

(1 − ρ)(1 − ρ+ ρ0)

T2 = α1

T3 = α1 (2)

Where ρ0 = (1−α1)α3+α1α2

α1(1−α2) and ρ = (1−α1)α3

α1(1−α2) . The expected delay4 at each

node are easily obtained using Little’s Law as Di = Ti

λi
for i = 2, 3 and D1 =

T1

λ1+λ3
. It is to be noted that these formula are exact, unlike those in the layered

system, where the delay expression available in literature are approximate [2].
The mean node delay at the three nodes in the two systems for λi = 0.1 as

obtained from discrete event simulations (for open system) and analysis (for closed
system) are shown in Table 1 and 2. The mean delays for the three flows are thus
obtained to be:

The mean delays for the closed system were obtained using simple formulae
given before in equations (2). For the Open system, since the delay expressions
available in literature are approximate, we developed a discrete event simulator to
find these delays. The mean delay for the open system was obtained as follows:
the simulation was run using different combinations of αi spanning the stability
region of the system. The delay vector provided here is the one which was closest
to the origin in terms of Euclidean distance compared to all the other delay vectors

4The formal derivation of these expressions are provided in the Appendix.
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Table 2: Flow level Delays

Flow → 1 2 3

Open System 3.52 2.80 4.97
Closed System 0.56 2.30 2.86

obtained by varying αi. Clearly, the flow delay is significantly reduced in the closed
system, while using a moderate value of αi.

Observations from the toy example:

1. The values of αi for Open system that gives the best performance are very
large, thus implying waste of resources due to frequent collisions.

2. The flow delay is significantly reduced in the Closed system, while using a
moderate value of αi.

3. In Open system, one needs to tune the value of αi in order to get the best
delay performance; this may not of much use because the Closed system is
giving better results compared to the best result from Open system. Thus,
an optimization over αi in the Open system is not justified. The exact delay
expressions are not known. The approximate expressions used in literature
are valid only for small values of αi whereas the optimal point is obtained for
large α′

is, for which the available approximation has been shown to perform
poorly.

For the Open system, we will assume a given set of channel access rates. We
will see that the routing algorithm is able to select a good operating point that
guarantees stability (as long as such a point exists for the given value of channel
access probabilities).

3 Routing Algorithms for Different Systems Under Con-
sideration

If the traffic split is not allowed, the objective of the distributed routing algo-
rithm would be to find the shortest delay path between any given source and the
fusion center. However, one may allow for traffic split and then try to route the traf-
fic , hoping for a better performance (as the situation without traffic split is a special
case of traffic splitting). Under this added freedom of traffic splitting, the routing
algorithm is expected to put traffic of a node on those routes for which the delays
are smallest and equal. This is what is well known as the Wardrop equilibrium.
We propose a stochastic approximation algorithm based distributed algorithm to
converge to a Wardrop equilibrium. This algorithm is actually an adaptation of the
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algorithm already proposed in [1] to our system for which we can prove conver-
gence to Wardrop equilibrium.

We assume that the system operates in discrete time, so that the time is divided
into (conceptually) fixed length slots. The system operates on CSMA/CA MAC.
Assuming that there is no exponential back-off, the channel access rate of node i
(if it has a packet to be transmitted) is 0 ≤ αi ≤ 1. Thus, αi is the probability that
node i, if it has a packet to be transmitted, attempts a transmission in any slot. A
node can receive a transmission from its neighbor if it is not transmitting and also
no other neighboring node is transmitting.

Under the above model there will be a delay, say yj,i of the packet from node
j to be served at node i; this packet could have originated at node j or may have
been forwarded by node j. The Expected delay of a packet transmitted from node
j is thus

∑

i6=j φj,iyj,i. Since delays are additive over a path, packets from any
node will have a delay over any possible route to the fusion center. A route will be
denoted by an ordered set of nodes that occur on that route, i.e., the first element
will be the source of the route, the last element will be the fusion center and the
intermediate elements will be nodes arranged in the order that a packet traverses
on this route. Let the total number of possible routes (cycle-free) be R. Let route
i, 1 ≤ i ≤ R be denoted by the set Ri consisting of Ri elements with Ri,j

denoting the jthentry of this route. Then, a traffic splitting matrix will correspond
to a Wardrop equilibrium iff for any i (see [1] for this definition)

∑

1≤j≤R:Rj,1=i

(

∏Rj−1
k=1 φRj,k,Rj,k+1

)

(

∑Rj−1
k=1 yRj,k,Rj,k+1

)

=
∑Rl−1

k=1 yRl,kRl,k+1,
(3)

for any l with Rl,1 = i and such that
∏Rl−1
k=1 φRl,k,Rl,k+1 > 0, i.e., the delays

on the routes that are actually used by packets from node i are all equal.

3.1 Open System

Nodes iteratively keep updating the one-hop routing probabilities based on the
delays incurred for every possible path.

Let φ(n) denote the traffic splitting matrix at the beginning of the nth time
slot. Node i does some computation to update the ith row of this matrix. Let
Y k(n)(Rk,1 = i) be the new value of the delay of a packet sent by sensor i through
route k(i = Rk,1). Node i keeps an estimate of the average delay on route k.

yk(n+ 1) = (1 − a)yk(n) + aY k(n). (4)

Further, after calculating the expected delays at the start of a time slot, each
node adapts its routing probabilities to the new expected delays as follows,

φi,Rk,2(n+ 1) = (1 − b)φi,Rk,2(n)+

b
(

∑

1≤l≤R:Rl,1=i y
l(n)φi,Rl,2(n) − yk(n)

) (5)
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Proof of Convergence to Wardrop Equilibrium: We will assume that the
learning parameters a and b are such that a � b. This brings us in the two-level
stochastic approximation algorithm framework and, following standard results [5],
the update of the traffic split will see the average delays y l as static so that the
effect of the second update will be that all the traffic from node i will be directed
to the smallest delay route. The algorithm for updating the delay estimates over
route will thus see no effect of the dynamics of the second update scheme except
that the statistical properties of the random variables will come from the splitting
vector in which each node directs all its traffic on one of the possible routes from
the node to the fusion center; note that in general different nodes will be choosing
different routes. Thus, by the standard o.d.e. approach to stochastic approximation
algorithms [5], the delay updating algorithm will behave like an autonomous ordi-
nary differential equation. The convergence of this differential is guaranteed using
arguments similar to those used in [7]. Since the point of convergence satisfies the
defining condition of the Wardrop equilibrium, the proposed algorithm will con-
verge to the Wardrop equilibrium. Note that this convergence is for the average of
delays, this is what we mean by Cesaro-Wardrop equilibrium.

3.2 Closed System

The updates for this system are going to be the same as that for the Open
system. Only new complication here is that one needs to tune the channel access
rates, α′

is, also in order to guarantee the long term average data sampling rate.
This is easily done because the nodes know (or, can estimate) the statistics of the
traffic they are getting from the other nodes and also the success rate of its own
transmissions to various neighbors. Using this estimate a node can easily tune its
channel access rate to guarantee itself a preset data sampling rate.

In each time slot, ith sensor tries to hold channel for transmission with prob-
ability αi. If the node tries to hold channel in a time slot, it either succeeds in
transmitting or fails. If the node succeeds, then if the packet transmitted can be
the one which is generated at the current node or it may be the one which the node
received from any of the neighboring nodes. Let n (k) be the number of slots in
which node has successfully transmitted a packet generated by itself in total k slots.
λ̂ki is the rate of transmission node is able to provide in the kth slot,

λ̂ki =
n (k)

k
(6)

.

αk+1
i = max

{

min
[

αki + c
(

λi − λ̂ki

)

, 1
]

, 0
}

. (7)

Where c is a positive learning parameter. Delay and routing probability learn-
ing will remain as was in the Open System.
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3.3 Practical Considerations

Here, we will discuss some of the practical aspects of our proposed algorithm.
Delay estimation of paths by a node in every slot can be done by having power of
the sink so large that it can reach all the sensors in one-hop. Therefore, the sink
can acknowledge all the incoming packets so that the sensors will get estimation
of the delay incurred by their packets.

4 Implementation Results

We consider a 6-node sensor network shown in Fig. 2. It is easily seen that
φ1,0 = φ2,0 = φ4,0 = 1, node 0 being the common destination for all the packets
generated in the network. Node 3 can transmit to 1 and 2. Node 5 can transmit to 1
and 4. The routing algorithm thus has to find appropriate value of φ3,2 and φ5,4 in
order that the traffic flow in the network corresponds to a Wardrop equilibrium. We
consider this simple network to clearly demonstrate the effect of delay and routing
learning probabilities. In general, the algorithm is able to converge to a Wardrop
equilibrium for any-scale random deployment of wireless sensor networks.

0

1

φ31

φ32

φ51

φ54

λ1

2

3

4

5

λ2

λ3

λ4

λ5

Figure 2: Network Simulated

Apart from a demonstration of the convergence of the proposed algorithm, we
will see in this section that the data sampling rates that a network can support using
the Open architecture is very small. This is essentially because of the stability
constraints on the channel access rates. On the other hand, the Closed system can
support higher data sampling rates because of the fact that it is essentially self-
regulating, guaranteed to be stable while maintaining large data sampling rates;
this is because a node generates a new packet only if it has no other packet in the
queue. This however does not mean that the Closed system can support arbitrary
data sampling rates. We have implemented the Open and Closed system as an
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Figure 3: Open System

application layer module in TinyOS [8]. At simulation start up, the nodes learn
the network topology and built routes toward the fusion center (sink, node 0). The
results presented in this section are the average over several simulation runs.

4.1 Observations from Open System

In Fig. 3 and 4 we plot, against the slot number, the average delays on the four
routes 3 → 2 → 0, 3 → 1 → 0, 5 → 4 → 0, and 5 → 1 → 0 for the open system.
The data sampling rates were set at λ1 = λ2 = λ3 = λ4 = λ5 = 0.2. Note that the
data sampling rates are small. We were forced to select small data rates in order to
guarantee stability of the nodes in the network. The channel access rates were set
to αi ≤ 0.2 for i = 1, ..., 5.

1. The delays on routes 3 → 1 → 0 and 3 → 2 → 0 are very close to each
other, with a very fast convergence. Similarly for routes 5 → 4 → 0 and
5 → 1 → 0. This shows that the algorithm succeeds in achieving a Wardrop
equilibrium.

2. Note the high value of delay on routes 3 → 1 → 0 and 3 → 2 → 0 even for
moderate (or, very small) load on the system.

3. Fig. 4 shows the delay obtained by varying the channel access rates to αi =
0.1 for i = 1, ..., 5, and λ′s remaining the same as earlier. The estimated
delays show the sensitivity to channel access probabilities. Thus, there is
a need to carefully tune the α′

is. In Fig. 4, we also see that convergence
to a load-balanced regime (equal delays on all the possible routes from a
particular source) is violated by changing the α′

is. As we will see later, this
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Figure 4: Open System

is not a problem in the closed system because the system adapts its channel
acess probabilities to meet the target traffic and there is no need of further
tuning this parameter.

4.2 Observations from Closed System

Simulation results for the closed system are presented in Fig. 5, 6, and 7. The
data sampling rates were set at λ1 = λ2 = λ3 = λ4 = λ5 = 0.2. Nodes were
expected to adapt their channel access probabilities based on the optimal traffic
split used by node 3 and 5.

1. The delays on routes 3 → 1 → 0 and 3 → 2 → 0are very close to each
other, with a fast convergence. This shows that the algorithm succeeds in
achieving a Wardrop equilibrium.

2. For routes 5 → 1 → 0 and 5 → 4 → 0, the delays are also close to
each other, with a fast convergence. This is also reflected in the traffic split
obtained by the algorithm, as in Fig. 6 we see that node 5 uses node 1
for most of its traffic, thus obtaining smaller delay. This is again Wardrop
equilibrium where the higher delay path is not used (the small +ve value
of traffic on route 5 → 4 → 0 is imposed by the algorithm to ensure that
all the alternatives are probed often enough to cope up with a change in the
network).

3. Note the small value of delay on routes 3 → 1 → 0 and 3 → 2 → 0 even for
moderate (or, very small) load on the system. This is to be compared with
the corresponding values shown under the results for open system where the
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Figure 7: Convergence of Channel Access Rates

delays on these routes were higher even though the average data sampling
rates were significantly smaller. Thus, in comparison with the open system,
the closed system provides better performance.

4. Fig. 7 shows that the algorithm is also able to adapt the channel access rates
in a distributed fashion. It can be checked that the values of α′

is converged-
to by the algorithm indeed are just enough to serve the traffic offered to the
different nodes.

5 Conclusions and Future Work

For wireless sensor networks with random channel access, we proposed a data
sampling approach that guarantees a long term data sampling rate while minimiz-
ing the end-to-end delays. Simulation results show that performance of this scheme
is better than the traditional layered architecture where the channel access mecha-
nism is independent of the data sampling process. We also saw that the proposed
scheme does not require tedious parameter tuning as is the case for the layered
architecture.

We then proposed a learning algorithm, applicable to both the open system as
well as the closed system, to achieve Wardrop equilibrium for the end-to-end delays
incurred on different routes from sensor nodes to the fusion center. For the closed
system, this algorithm also adapted the channel access rates of the sensor nodes.
Since the objective of the algorithm was only to converge to a Wardrop equilibrium,
at this moment it is not able to make a judicious choice among multiple Wardrop
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equilibria, if they exist. We are now working on modifications of the algorithm to
make it converge to an efficient equilibrium.

Appendix

Under closed system, the average delay at the transmit queue of node i is
1) When nodes do not have any traffic to forward,

∑

l φl,i = 0 :
Delay at node i = Di = 1−si

αisi
, where

si =
∑

j

φi,j (1 − αj)
∏

k∈Nj\{i}

(1 − αk) . (8)

Proof: if
∑

l φl,i = 0, then node i has no traffic to be forwarded. The Markov
chain of the number of packets in the transmit queue is shown in Fig. 8.

0 1

1 − αi + αisi

αisi

αi(1 − si)

1 − αisi

Figure 8: Markov chain for the expected number of packets at node i, case 1:
∑

l φl,i = 0.

so that, we have the following system of equations

π0 (1 − si) = π1si ⇒ π1 =
1 − si
si

π0

⇒ π0 + π1 =
π0

si
= 1

⇒ π0 = si,⇒ π1 = 1 − si

Hence expected number of packets in the transmit queue of node i is 1 − si.
Using Little’s law, the expected delay is

Di =
1 − si
αisi

(9)

since the effective arrival rate into node i’s queue is αisi.
2) The transmit queue of node i can contain more than one packet at a time,

∑

l φl,i > 0 :
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Di =
ρ0

(1 − ρ) (1 + ρ0 − ρ) (ψ + λi)
,

where

ψi = (1 − αi)
∑

l

φl,iαl
∏

k∈Ni\{l}

(1 − αk) . (10)

Proof: If
∑

l φl,i > 0, then the transmit queue of node i can contain more
than one packet at a time. The Markov chain of the number of packets in node i′s
transmit buffer is given in Fig. 9.

1 2 ... n0

Figure 9: Markov chain for the expected number of packets at node i, case2:
∑

l φl,i > 0.

where
p0,1 = αi (1 − si) + ψi

pn,n+1 = ψi, for n ≥ 1

pn,n−1 = αisi, for n ≥ 1

we define

ρ0 =
αi (1 − si) + ψi

αisi
,

and ρ = αisi

ψi
. Then π1 = ρ0π0, and πn+1 = ρπn ⇒ ρ0ρ

nπ0 for n ≥ 1

⇒ π0 + π0

∞
∑

n=1

ρ0ρ
n−1 = 1, ⇒ π0

(

1 + ρ0 − ρ

1 − ρ

)

= 1

⇒ π0 =
1 − ρ

1 + ρ0 − ρ
, πn = ρ0ρ

n−1π0

So the expected number of packets in node i′s transmit queue is then

∞
∑

n=1

nρ0ρ
n−1π0 = ρ0π0

∂

∂ρ

∞
∑

n=1

ρn
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=
ρ0π0

(1 − ρ)2
, =

ρ0

(1 − ρ) (1 + ρ0 − ρ)
,

The expected delay at node i′s transmit buffer using Little’s law is then

ρ0

(1 − ρ) (1 + ρ0 − ρ) (ψi + λi)
(11)
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