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ABSTRACT

Channel equalization and identi�cation appear as key issues in improving wireless communications. It is known
that the linearization of the GMSK modulation (used in the European standard GSM) leads to a continuous phase
OQPSK which can be considered as a Minimum Shift Keying (MSK) modulation. Thus methods of equalization and
identi�cation when the channel is input by MSK modulated signals is worth to look at. Most algorithms consider
MSK signals as two independent white binary PAM staggered signals; this is not the case in our approach. Here,
MSK signals are seen, after sampling at baud rate, as colored complex discrete signals. Even if this view of MSK
modulation is quite simple, it has never been utilized with the purpose of blind equalization. The particular statistics
of such signals are studied, yielding an original closed-form analytical solution to blind equalization, both in the mono-
variate case (SISO or SIMO) and in the source separation problem (MIMO). Simulations show a good behavior of
the algorithms in terms of Bit Error Rate (BER) as a function of SNR, both in the case of blind equalization and
source separation.
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1. INTRODUCTION

The GSM European standard is based on Gaussian MinimumShift Keying (GMSK) modulation10,9 which e�ciently
reduces the interference between two contiguous frequency bands. GMSK is obtained by a Gaussian �ltering of
the frequency waveform of a MSK modulation. Furthermore, it has been shown by Laurent1 that GMSK could be
linearly approximated, as far as phase is concerned, by MSK modulation. Therefore, the study of MSK sources turns
out to be of prior importance in improving GSM communications.

MSK sources are often treated via their trellis representation which leads to Viterbi-like algorithms (necessarily
sub-optimal in the multiuser case) based on known learning sequences; this also requires the channel to be identi�ed
in a �rst stage. Another approach is to split them into statistically independent BPSK sources. The advantage of
such a representation is that it allows the use of standard algorithms. But the inconvenience is that the three features
of the discrete-time complex envelope of the MSK modulation are not simultaneously taken into account, namely:
its constant modulus, its 4-state discrete distribution, and its memory.

In this paper, we handle MSK sources in a new manner. They are considered as colored signals with a particular
structure wich allows analytical treatment for blind equalization and source separation. In addition, it is worth noting
that, because GSM uses a constant envelope modulation, the received sequence does not need to be synchronized
prior to blind equalization or identi�cation.

The paper is organized as follows. In section 2 the MSK and the GMSK modulations are described, in section 3
the statistical properties of MSK signals are presented. Section 4 is dedicated to the single input (source) case, closed
form solutions to blind equalization are described and illustrated by computer experiments. The source separation
problem (MIMO case) is addressed eventually in section 5. Computer results are reported in the case of MSK sources.

Notation in the following, a roman letter like x denotes any scalar, a bold face letter like x is a vector, (T )
denotes matrix transposition, (�) complex conjugation and (y) Hermitian transposition.

Other author information: grellier@i3s.unice.fr comon@eurecom.fr
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2. MSK DEFINITIONS

2.1. De�nitions of the modulation

It is well known8 that Minimum Shift Keying (MSK) is a Continuous Phase Frequency Shift Keying (CP-FSK),
which associates each binary element with frequencies equal to fc � 1=4Ts where fc is the carrier frequency and Ts
is the symbol duration :

f(t) = fc +
1

4Ts

X
k

"(k)g(t � kTs)

The frequency o�set used here, �1=4Ts, leads to the minimum frequency separation that can ensure orthogonality,
hence the name MSK. Another characteristic of MSK is its narrow spectrum, granted by its continuous phase and
its constant modulus envelope.

MSK can also be de�ned as a particular 4-QAM modulation. Indeed, such a modulation writes :

x(t) =
p
2
X
k

gc(t � kT )sc(uk)cos(2�fct)� gs(t � kT )ss(uk)sin(2�fct)

where gc and gs are waveforms and sc and ss are functions that associate an amplitude to each binary elements to
be sent. If now the following waveforms are used :

gc(t) =

r
2

T
cos

�
�t

T

�
; t 2 [T=2; 3T=2]

gs(t) =

r
2

T
sin

�
�t

T

�
; t 2 [0; T ]

with T = 2Ts, then a MSK signal is obtained.

Obviously, each de�nition corresponds to a di�erent trellis but we will see in the next paragraph that both
baseband sampled signals can merge into the same model.

2.2. General de�nition of the baseband signal

It is quite obvious, from the CP-FSK de�nition of MSK signals, that their phase increase or decrease of �=2 every
symbol duration so that the sampled baseband MSK signal fx(n)g veri�es the following recursion :

x(n+ 1) = x(n) exp
�
i
�

2
"(n)

�
where "(n) equals to �1 and x(0) represents the initial phase of the signal; so x(n) can also be written :

xn = x0 exp

 
i
�

2

n�1X
i=0

"i

!
(1)

Thus, even though MSK is a two-dimensionnal modulation, it is completly described by the single binary sequence
f"(n)g. However, the QAM-MSK de�nition shows that one can handle MSK signals as two binary sequences at
period 2Ts, one being delayed by Ts. This is the current manner of treating MSK sources.

2.3. De�nition of GMSK

Gaussian Minimum Shift Keying (GMSK) is derived from MSK and further reduces the levels of the spectrum
sidelobes by passing the MSK modulating data waveform through a premodulation Gaussian pulse-shaping �lter.
Moreover, the Gaussian �ltering improves the power e�ciency of the modulated signal by introducing ISI in the
transmitted signal. It has been shown in Ishizuka11 that the degradation caused remained not severe unless the
3dB-bandwidth-bit-duration product (BTs) of the �lter is less than 0:3 if the Gaussian �lter is de�ned by :

hG(t) =
1

�
p
2�

exp

�
� t2

2�2

�

with � =
p
ln(2)=2�B. Figure 1 presents the constellation of MSK and GMSK signals and shows that they are quite

similar. Therefore, the performances obtained for MSK signals will be sligthly better than in the case of GMSK as
the eye of the former will be open earlier.
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Figure 1. MSK and GMSK constellations

3. MSK SIGNAL STATISTICS

We now give the statistics of a baseband sampled MSK signal. The computation of its statistics was done with
the de�nition (1) and assuming that the process f"(n)g and x(0) are two independent random processes which are
respectively i.i.d f+1;�1g and uniformly distributed in [��; �[. With these assumptions, it is quite easy to show
that the �rst and third statistics are equal to zero.

3.1. Second order statistics

Since the mean of a MSK signal is equal to zero, the second order moments and cumulants are equal. Hence, we
have to compute :

E [x(n)x(n� `)�] = E

"
jx(0)j2

nY
k=1

n�lY
u=1

exp
�
i
�

2
"(k)

�
exp

�
�i�

2
"(u)

�#

The second-order circular and non-circular moments are then :

E [x(n)x(n� `)�] =

�
1 if ` = 0
0 otherwise

E [x(n)x(n� `)] = 0

But the computation of these expectations conditionnaly to the initial phase state x(0) is of greater interest. Indeed,
even though the circular conditional expectation doesn't change, the non-circular expection turns out to be very
attractive :

E [x(n)x(n� `)jx(0)] =
�

(�1)nx(0)2 if ` = 0
0 otherwise

(2)

The conditional non-circular expectation becomes cyclostationary with period 2Ts. In fact, if the expectation is
removed, equation (2) remains true. In other words, one obtains the alternate series (�1)nx(0)2. This will be the
basis of the coming algorithms.

3.2. Fourth order statistics

3.2.1. Moments

The fourth order moments are given by :

E

2
4 4Y
j=1

x(nj)
(�)j

3
5 = E

2
4 4Y
j=1

x(0)(�)j
UjY
u=1

exp
�
�ji

�

2
"(u)

�35
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where (�)j stands for an optional conjugation and �j is equal to one if x(nj) is not conjugated and to �1 otherwise.
Since E

�
x40
�
= E

�
x�0x

3
0

�
= 0 and E

�jx0j4� = 1, it is quite obvious that only the moments where exactly two
variables are conjugated may be non zero. Then the problem becomes symmetric and with no loss of generality one
can calculate the moments E [x(n1)x(n2)x�(n3)x�(n4)]. Then three di�erent cases appear :

Case 1 : n1 = n2 = N1 and n3 = n4 = N2 and N1 � N2

E
�
x(N1)

2x(N2)
�2
�
=

N2Y
N1+1

exp(�i�) = (�1)N2�N1

Case 2 : n1 = n3 = N1 and n2 = n4 = N2 and N1 � N2

E
�jx(N1)j2jx(N2)j2

�
= 1

Case 3 : n1 = n2 = n3 = n4 = N
E
�jx(N )j4� = 1

The other moments are deduced by conjugation.

3.2.2. Cumulants

We now deduce the fourth-order cumulants from the above moments. Since E [x(n)] = 0 and with the above results
one can prove that the cumulants which may not be necessary equal to zero are :

C [x(n1)x(n2)x(n3)
�x(n4)

�] = E [x(n1)x(n2)x(n3)
�x(n4)

�]
�E [x(n3)�x(n1)]E [x(n4)�x(n2)]� E [x(n4)�x(n1)]E [x(n3)�x(n2)]

We still observe the following three di�erent cases :

Case 1 : n1 = n2 = N1 and n3 = n4 = N2 and N1 � N2

C
�
x(N1)

2x(N2)
�2
�
= (�1)N2�N1

Case 2 : n1 = n3 = N1 and n2 = n4 = N2 and N1 � N2

C
�jx(N1)j2jx(N2)j2

�
= 0

Case 3 : n1 = n2 = n3 = n4 = N
C
�jxN j4� = �1

Thus, the �rst case proves that MSK signals are colored at fourth order.

4. SINGLE INPUT CASE

4.1. SISO equalization

Assume that the output fy(n)g of a FIR �lter fh(m)g excited by a MSK source signal fx(n)g is observed, in presence
of an additive Gaussian noise fw(n)g :

y(n) =
M�1X
m=0

h(m)�x(n�m) + w(n)

The equalization problem consists of �nding a FIR �lter ff(l)g that transforms fy(n)g into an almost MSK signal,
fz(n)g.

Equation (1) shows that the square of a MSK signal alternates between +1 and �1 if its initial phase is equal to
0 or �. Yet, the initial phase can be pulled in the channel part, without restricting the generality. In other words,
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the equalization problem is to �nd ff(l)g such that the square of z = f � y alternates between +1 and �1. This
constraint on z(n) can be written in the following compact form2 :

(z(n))2 = (�1)n = f yy(n;L)y(n;L)T f� (3)

where y(n;L)
def
= [y(n); y(n � 1); : : : y(n � L + 1)]T and f

def
= [f(0); f(1); : : : f(L � 1)]T . Now equation (3) can be

written even more compactly for every n as :

f
y y(n;L)
 = (�1)n

where f
 is a L(L � 1)=2 � 1 vector containing the squares f2i and the cross terms fifj weigthed by
p
2, without

repetition, and in a given order. The terms are arranged in the same manner in a L(L � 1)=2� 1 vector y
n:L.

When n ranges from 1 to N , the N equations obtained can be merged into a single system :

f
y
�
y(1;L)
T ; � � � ;y(N ;L)
T

� def
= f
yY (1 : N ;L) = d

where Y (1 : N ;L) is a L(L + 1)=2 � N data matrix, and d is the N � 1 vector whose entries are
�
(�1); (�1)2;

� � � ; (�1)N �. The solution of the above system, in the Least Square (LS) sense is given by :

f
LS =
�
Y (1 : N ;L)Y (1 : N ;L)y

��1
Y (1 : N ;L) dy (4)

Now consider the operation unvecs that builds, from a vector f
 of size L(L + 1)=2, the symmetric complex
matrix unvecs(f
) with diagonal entries f(i)2, and as (i; j)-entries the cross products f(i)f(j). Then, in the noiseless
case, unvecs(f
) is the a rank-one matrix f fT . In presence of noise, the rank of unvecs(f
LS) is not 1 anymore, but
its dominant eigenvector gives a good estimate of the corresponding vector f .

This gives the core of the SISO blind equalization algorithm described in Comon's patent.2 Its main advantage
is that the solution is not iterative, and can thus be computed theoretically with data samples as short as N = L.
In practice, as will be shown in �gure 3, excellent performance is already obtained for data length N = 157, that is,
a single GSM burst!

4.2. SIMO equalization

Suppose now that the outputs fyk(n)g of K sensors, excited by a single MSK source fx(n)g, are observed in presence
of additive Gaussian noises fwk(n)g :

y(n) =
M�1X
m=0

h(m)yx(n �m) +w(n)

where y(n) = [y1(n); � � � ; yK(n)]T , w = [w1(n); � � � ; wK(n)]T , h(m) = [h1(m); � � � ; hK(m)]T and M denotes the
largest channel length. Therefore, we now have to �nd K �lters ffk(`)g such that

z(n) =
X
k;`

fk(`)
� yk(n � `)

verify the MSK constraint z(n)2 = (�1)n.
The corresponding �lters can be computed in the same manner as in the SISO case. Denote :

f =
�
fT1 ; � � � ; fTK

�T
y(n;L) =

�
y1(n;L)

T ; � � � ; yTK(n;L)
�T

with fk = [fk(0); � � � ; fk(L � 1)]T , the solution is then given by the dominant eigenvector of unvecs(f
LS).
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4.3. Computer results in the SISO case

Computer experiments have been run using the channel impulse response shown in �gure 2, which looks like the
GSM urban channel. Actually, it has been generated by the following AR2 �lter :

H(z�1) = A

(1 � z0z�1)(1� z1z�1)

with A = exp(i�=7), z0 = 0:7 exp(i�=3) and z1 = z�0 exp(i�=9). This choice has been made in order to make it
feasible to compute the exact channel inverse, for the purpose of comparisons. But our algorithm does not require
the channel to be AR.

The analytical algorithm has been tested over 10000 runs and for a source duration equal to 157 symbols (the
duration of a GSM burst). The performance shown is the Bit Error Rate (BER) for various SNR's. The solid line in
�gure 3 corresponds to our blind equalizer, whereas the dashed line corresponds to the mere channel inversion. This
shows that the analytical equalization performs as well as (and even slightly better than) the zero forcing equalization.
This behavior is excellent in comparison with the number of symbols used (most blind equalizers are iterative, and
require dozens of thousands of samples to converge). A comparison with the MMSE equalization should yield a
similar performance.
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Figure 2. Channel Impulse response

5. MIMO CASE

5.1. Source Separation

5.1.1. Algorithm

Assume that P source signals impinge on an array of K � P sensors. Then, in a narrow band context and if the
medium is linear, the signals observed on the array can be modeled as a static mixture :

y = Ax+w

where w stands for additive noise and A is a K�P matrix. This problem has been extensively studied by Cardoso35

or Comon,4 among others, but the case of MSK sources, as formulated in this paper, is quite new.

It is well known that P discrete sources with constellation C can be separated if the vector x describes all the
Possible P -uplets in CP . But due to the inherent structure of MSK sources described in section 2, these signals do
not verify this necessary condition. Thus standard algorithms, such as CMA,7 cannot recover them and we must
resort to other means to perform the separation.
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Figure 3. Performance of Blind SISO equalization
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Figure 4. Typical example for SNR=20dB

As we have more sensors than sources and if we suppose the mixture is non singular, the source signals can be
computed by looking for the vector bp such that fzp(n) = bypy(n)g is almost MSK, that is bypy(n)y(n)

Tb�p = (�1)n.
The case bTp y(n)y(n)

Tbp = 1, for the separation of BPSK sources, has already been studied.6 Thus the following
must be seen as an extension of this previous work to MSK sources.

Consider the economical SVD of y : y = U�V y. The constraint on fz(n)g, to be almost MSK, rewrites

fTp v
�
nv

y
nfp = (�1)n with V = [v1; � � � ;vN ]T . When n ranges from 1 to N , the N equations obtained can be merged

into a single system :

V 
f
� =

2
64

�1
...

(�1)N

3
75

with V 
 =
�
v
1

�; � � � ; v
N�
�T
.

A similar system was analytically solved by Van der Veen6 for a right-hand side equal to [1 � � �1]T and gave the es-
timates of the P impingingBPSK sources. The estimates of the P MSK sources can be computed by transforming our
right-hand side vector

��1 � � � (�1)N � into [1 � � �1] by a matrix premultiplication, and then run the abovementioned
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algorithm. For this purpose, de�ne the transformation :

Q V 
f
� = Q

2
64

�1
...

(�1)N

3
75 =

2
64

1
...
1

3
75

where

Q =
1

2

0
BBBBBBB@

�1 1 0 � � � 0

0 1 �1 .. .
...

0 0 �1 .. . 0
...

. . .
. . .

. . . (�1)N
0 � � � 0 0 2:(�1)N

1
CCCCCCCA

5.1.2. Computer results

Simulations have been carried out using a uniformly spaced linear array of 4 sensors impinged by 3 MSK sources
with angles �1 = �30�, �2 = 10�and �3 = 20�. The element spacing was �=2, where � is the wavelength of the
propagating waveforms. We tested our algorithm with datalength N = 157 (the duration of a GSM burst), over 3000
trials and for various SNRs. The results in terms of Bit Error Rate for each source signal, the �rst in solid line, the
second in dashdotted line and the third in dashed line, are presented in �gure 5.

The performances are quite good if we consider the datalength and the poor SINR. Moreover, one remarks that
the closest sources have the worst BER, which exhibits a good behavior as far as we search for the most isolated
source.
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Figure 5. Performance of source separation

5.2. MIMO Equalization

Convolutive mixtures can be treated quite similarly to the case of static mixtures. Indeed, assume that one observes
the outputs fyk(n)g of K sensors excited by P statistically independent sources fxp(n)g. In presence of Gaussian
additive noises we have :

yk(n) =
PX
p=1

M�1X
m=0

hkp(m)�xp(n�m) +wk(n)

where M denotes the largest channel length.
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Now, the goal is to �nd KP �lters fpk such that the

zp(n) =
KX
k=1

L�1X
`=0

fpk(`)
�yk(n � `) (5)

are statistically independent MSK signals (L denotes the largest inverse �lter length). Equation (5) can be rewritten
in a compact form :

zp(n) = f ypy

with fp =
�
fTp1; � � � ; fTpK

�T
and y =

�
y1(n;L)T ; � � � ; yK(n;L)T

�T
. Then the MSK constraint zp(n)2 = (�1)n rewrites

f yyyT f� = (�1)n that has already been studied in section 5.1. Therefore, the algorithm used for static mixtures can
also perform MIMO equalization. This has been experimentally veri�ed but a statistical performance analysis has
not been carried out yet.

6. CONCLUSION

In this paper, we have presented a new way to handle MSK signals. This new formulation of baseband MSK sources
leads to analytical algorithms able to perform blind equalization (SISO or MIMO) as well as blind source separation.
All these algorithms are based on the fact that the square of a MSK signal alternates between +1 and �1. The
performance of blind SISO equalization are excellent and source separation also performs quite well. Moreover,
these algorithms also work with GMSK sources that are actually used in the GSM European standard; the results
concerning blind channel identi�cation are currently completed and will be presented in an upcoming paper.
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