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Abstract— This paper addresses the problem of base station that can be found, indicates a promising research avenue.
coordination in multicell wireless networks. We present a d@- VYet, it brings two major issues in practical settings: First
tributed approach to downlink multibase beamforming as wel the complexity of implementing multiuser MIMO solutions

as a low complexity, near-optimal, scheduling algorithm dbwing . o
the multiplexing of M user terminals randomly located in a for a large number of cells and users is prohibitive. Second,

network with N base stations. The algorithms rely on the Optimum antenna combining requires a large signaling over-
maximization of the sum rate of the network, based on locally head between the bases of the network, which must exchange

available information at each base station. Results show #t our jnformation on all the users’ channel responses. This tyipe o
approach ields significant gains in the system capacity wite o5505ch remains of interest for the optimization of veryakm

compared to schemes not allowing cooperation between cells . .
without requiring the extensive signaling overhead involed in networks or clusters of cells. The disadvantage of clusgeri

optimal multicell MIMO processing. however, lies in the edge effects it creates for users whio sit
the neighborhood of two or more clusters.
|. INTRODUCTION To avoid these problems, in the case of larger scale

Aggressive frequency reuse in multicell systems has showgtworks, deriving multibase MIMO-aided cooperation tech
promise of significant capacity gains. In many cases, howyeveiques, which can be realized irdestributed manner and have
this potential is severely limited by intercell interfecen[1]. & reasonable complexity, is of great interest.

We may alleviate the interference problem by employing a In this paper, we investigate such solutions. The key ideas
system-wide resource distribution, through power-alioca Presented here can be summarized asdi@ributed beam-
and scheduling of the users in the different cells [2]. forming and (ii) greedy scheduling. The proposed distributed

In such schemes, user terminals are still communicatif§amforming framework exploits the base antennas so that
with their preferred base station (or access point), but begpherently added signals are received at each of the mpbiles
efiting from reduced interference created by concurremstra Possibly from several bases. The scheduling technique aims
missions in neighboring cells. at assigning users to base stations, one MS being served by

For enhanced performance, this form of resource allocatigie or more BS, from which distributed beamforming will be
based cooperation between cells, may be augmented vagiformed.

a signal processing-based cooperation. In this scendré, t More specifically, we present the following contributions:
antennas at all base stations in the network are seen as A setup for distributed beamforming, where each base
distributed antennas of a large-scale MIMO array, yet subject ~ station only needs hybrid channel state information (CSI).
to per-base power constraints. In this view, known muliiuse By hybrid CSI, we consider instantaneous CSI on locally
MIMO transmission techniques, such as Minimum Mean Mmeasured channels and long-term, statistical CSI on non-
Square Error, Zero-Forcing, or Dirty Paper Coding can be locally measured channels.

reused over the multibase antenna array [3]. o A low complexity algorithm for multibase scheduling,

Certain approaches of this nature are considered in e.g. [4] Where the base stations jointly select users, so as to
and [5], and also with a more theoretical approach in [6] mMaximize the sum capacity of the network.
and [7]. The optimum use of the distributed base antennasThe organization of this paper is as follows: In Section Il we

present the system model. Next, in Section Il the optindzat

This work was supported by the Research Council of Norwaguih the  problem and possible approaches are given. Results from
projects 160637/V30 “Advanced signaling for Multiple Inpdultiple Output . . . . .

(MIMO) Wireless Application to High Speed Data Access Nated and numerical simulations are presented in Section V, and the
VERDIKT 176773/S10 “OptiMO”. concluding remarks are contained in Section VI.



[I. SYSTEM MODEL 6\ (5
We assume a setting witiv base stations (BS) and/ y
mobile stations (MS), the whole system being engaged i8S !
downlink communication. For ease of exposition, all the BSs ﬁ¥ ﬁ
and MSs are equipped with a single antenna. Each base station !
holds anM-length symbol vectors = [sq, s1, -, sar—1]7, 6
h

MS;
wheres,, is intended for M$,, m € {0,1,...,M —1}. The y
symbols are seen as uncorrelat&fk,,s;] =0, for m # k. 9

S

The base stations schedule users and apply precoding in the T
form of transmit side matched filtering. To this end, a base Wji Wk
station BS is required to have perfect CSI on the channels
from itself to the M users. This can be done by a preamble BS 6
using training sequences. Note that this assumes a form of
symbol level synchronization between the bases, reabzifibl Fig. 1. System model, showing the base stations as squaesniulticell
the relative distances between the neighboring bases are metyork, while the users are depicted as circles. Arrowmf&S; to MS;
too large. Synchronization between widely separated h-aseg‘nphes that MS is scheduled by B the interference is not shown.
not a requirement, because the larger path loss will in asg ca
limit the cooperation between such cells.

For the channels between the otiér-1 base stations and gach w,, = [Wno Wn1 .. wn(M—n]T is the scheduling and
the M users, we assume B30 have only long-term, statistical precoding vector of BS, where the coefficient
knowledge. Statistical knowledge is equivalent to knowked
of slow-varying macroscopic parameters of the channetd) su
as distance-based path loss and and shadowing effect. See
Fig. 1 for an illustration of the network, and note that the
coefficientw;; denote the precoding at B30 be defined. i used by BS for sy, the symbol intended for M3.

For the user scheduling, we define seheduling graph, Here, funn is the complex channel gain between ,B&nd

represented by the x M-sized matrixG: MS,,,, including both fast (multipath) fading and more slowly-
changing effects. The transmit power per BS is limited as

|lw,|? = P, (in Watts) and BS transmitsz,, = wls. The
M x 1 vector of received symbols at all the MSs is

BS:

®)

*
Wnm = GInm Pt|hmn| )
mn

G=[909: - ngl]T’ with g,, = [gno, gn1, - - agn(Mfl)]Tv

where each coefficient,,,, is interpreted as

o {1, if BS,, transmits to MS, , o y=HWs+w, (4)

0, otherwise where H is the M x N-sized total channel matrix, with

We scheduleone user MS,, m € {0,1,...,M —1}, per €ntries(H ), = hmn. The M x 1 vectory contains random
base station B§ n € {0,1,...,N —1}, at full power, at noise coefficients, following a Gaussian, white distribati

any given time. More generally, we assume that one usertis ~ (0,0v). Each M§, may receive both desired symbols,

assigned to each spectral resource slot available at edich iderfering symbols, and is also affected by noise:

(time, frequency, code, etc.). Any MSis served by zero, one 4 .

or more base stations. For a given,B#e optimization is thus Ym = (H)m WS+ vm = yp, + Y » (5)

limited to choosing the best receiver, according to a chosen ) ) )

performance criterion, so this is a pure scheduling probleMfhere the desired part of the signal is

There is no attempt at fairness by requiring all users to be N1

served, for this, we rely on user mobility and time-variant d _

channel conditions. U = Vi 7;) o |rnSm ©
The set of feasible graph$g, includes allG for which

eachg,,,n € {0,1,...,N —1}, g¥ being then-th row vector while the interference and noise are contained in
of G, containsa single non-zero element: N1 Mol
SG:{G : gn€{61,62,...,6M}}, () Ym = \/PtZ:OhmnI;)anmsk+vm- (7)
N k:m
where e,, is an M x 1-sized vector with 1 at then-th 7
coordinate, and O elsewhere, so the $ef,e;,...,en} The signal-to-interference-plus-noise ratio (SINR) oéus:
defines the standard basis faf’. is denoted SINR (G, H), as it depends both on the channel

We combine this user selection and the matched filter preF and the scheduling grap@. Using the assumptions that
coding inW = [wo w; ... wN,l]T, a matrix of sizeNxM. E[|s;,|*] = 02, E[s;,s5] = 0 for m # k, and thaE[s,v},] =0



for all possiblet andm, we develop the SINR(G, H) as: the bases, to be centrally collected by the network, which is
not practical for large networks in mobility settings.

SINR,,(G, H) = M
’ Es o[l %] IV. DISTRIBUTED SOLUTIONS
N-1 The concept of the centralized scheduler is simple, as each
E, ['\/En; g”’”'hm"'Smlg} BS only needs to be told which MS to schedule. However,
= N_1 M—1 - the exponential complexity increase and the need for full,
Es,o [|\/1E_)t > hmn 22 gk sk +'Um|2:| instantaneous CSI in a central unit motivates the search for
n=0 ;5;,?1 low-complexity solutions with acceptable performance.
N—1 5 In the following, we give some user scheduling approaches
(\/E > gnm|hmn|) o2 of a more distributed nature. One approach to derive dis-
= N::o - . (8) tributed algorithms is to break channel information intatw
> IVE Y hmngnk%fgg + 02 sets, characterized as being local or non-local informatio
15;% n=0 These sets of information are treated differently and ddbbe
together as "hybrid CSI”. Here, the term is used to desctibe t
I1l. USER SCHEDULING PROBLEM fact that BS, has full, instantaneous CSI on its local channels,
We seek the scheduling grajéh that optimizes our chosendefined as theM channels linking BS to all the users,
measure of performance; the network downlink sum capacity,, = [ho,, hin, - - - h(M_l)n]T, On the remaining// (N —1)

There is no cooperation or coherent combining between tbigannels, BS has only long-term, statistical CSI, by which,
MSs, so the instantaneous capacity of the whole systemfds this scenario, we specifically refer to the path loss dred t
simply the sum of the data rates of ttié non-cooperating shadow fading.

MISO receive branches. In Section I1V-B, we describe a spatially distributed multi-
M—-1 base scheduler, of relatively low complexity and where only
C(G,H) = Z Cn(G,H) hybrid CSI is needed. For comparisons, we also give a fully
m=0 distributed, greedy scheduler and a conventional singkeba
M—1

scheduler, in Sections IV-A and IV-C, respectively.
= log,(1 4+ SINR,,(G, H)) , 9 _
5 Bl ( 2 ®) A. Greedy User Scheduling

whereC,, (G, H) is the data rate at M$. From (8), we get  The first scheme is greedy and fully distributed, no central
unitis required for coordination. Each BS» € {0, 1,..., N—

3
I

= = 2 1} schedules the M$ with the maximum receive signal-to

_ /D 2 -lo-
C(GH)= Z_:Obg? (1+( K Z_%g"mmm”') 05/ noise ratio (SNR), with no regard for the interference. Iment
"= " words, BS, finds its own best scheduling vectgf, such that:

M—1 N-1 h* 9
k=0 n=0 [Ttk

k;Zm

os + C’ﬂ > (10) g, = arg max SNR(g,,, hy) , (12)

g,<{e1.e2,....en}
. . . where SN ,h,) is defined as
Given the above presented constraints and assumptions, RG: Fn)
the optimization problem is expressed as finding the best [ ML 2}
scheduling matrix, such that the sum capacityG, H) is SN By — |\/_tm§::09 | 5] 13
maximized. This problem can be approached in different ways Rgn, hn) = 02 : (13)

first we present a cgntrallzed scheduler in Subsection III'Please note that the sum in the above nominator has a single
A, useful for comparison. In Section IV, we propose low-

o non-zero term. From a network point of view, one receiving
complexity distributed schedulers. . : . .
user may be selected by multiple base stations, in which
A. Centralized Scheduler case it receives a coherently added sum of the desired signal

The centralized scheduling approach requires full, instafi€@mformed from these BSs. ,
taneous CSI on the whole channel, and is performed by al he advantages of this method are the very low complexity

central unit, in the form of an exhaustive search. The cent@d the fact that only local information is used, while stital

unit iterates through thentire set of feasible graphSg, and ©xternal information is not needed. In that sense, thisrsehe
picks the one that maximizes the sum capacity, denGtéd 1S fully distributed. One disadvantage is the limited antoafn
cell cooperation, which will in turn limit network performae.
G = arg max C(G,H). (12)

B. Iterative Capacity-Maximizing Scheduling

The cardinality of feasible graphs set|iSg| = MY, so Next, we present an iterative scheme, in which the base
for a large network, the centralized scheduler is prohielyi stations successively update the scheduling g@phn this
complex and time-consuming. Furthermore, this impliesrg vecase, all cells will share a common objective of maximizimeg t
large amount of feedback information between the MSs asdm capacity, thus benefiting from inter-cell cooperatibime



TABLE |

price to pay in comparison with the scheme above, is the need
SIMULATION PARAMETERS

to exchange statistical information throughout the nekwas
well as keeping the scheduling graph updated. The system

e . Parameter Value

starts from an initial grapﬁl_o, _known to all the BSs. Next, in Shadow fading mea, o
a pre-determined, non-optimized order, each, B&termines Shadow fading standard dew, 10 dB
its best corresponding vectgi: in G, such that: Transmit powerP 1 Wait
Transmit antenna gair; 6 dB

* B Receive antenna gai¥', 6 dB

In = arggne{e?}i),(_.,eM} EHn {C(G’ H)} ’ (14) Antenna height hy, hr} {30, I m

) Carrier frequencyf. 1800 MHz

whereE 5 , denotes taking the expected value with respect to Smallest distance between BSs 0.5 km
all channels in Random MS_Ioc_atlonSVMs 50
Channel realizationgVchan 200

H, =[ho, hi, ... hn_1, hps1, ... hy_1],  (15)

which is a matrix containing all the column vectors of thd ful . /
channelH, excepth,,, the ghannel from BSto all MSs. As ,The channel from B3 10 MS,, IS funn = Ymn h.m”’ V\_/he_re
h,, is instantaneously known at BSno averaging is needed.hmn represqnts the complex random, Rayleigh d|str|k_Juted
This reflects that BS only has local, instantaneous channeff’]lSt fao_lmg,hmnﬁw CN(0, 1). Th? C(én_stant anc(jj slow-lvarylng
state information, while it has long-term statistical infamtion trqnsm|SS|on effects are contained ... In dB scale, we
on the rest of the channeld,,. write

In the above iterative procedure, the global schedulinglgra Ymn.d8 = Gr.d8 — Pmn.d8 + Xmn.dg + Grag,  (17)
G is updated once for each of thé base stations. This calls
for a central unit to hold and distribute the curre®t but the whereG: s and G, qs are the transmit and receive antenna
exchange of information to and from the users is moderategains, anc,,, is the path loss, generated using the COST 231

model [8]. The distributed, long-term (shadow) fadigg., s

C. Conventional Singlebase Assignment is modeled as random, log-normaly.,.as ~ Njiy, oy ).

Finally, we formalize a conventional singlebase approa&fseful parameters are detailed in Table I.

for this scenario, in the sense that a receiving MS can onlyAll the simulations were run by averaging the resulting
be scheduled by a single BS. A central unit goes througdm capacity over a total ofVys random MS locations
the N available base stations, and allows each BS to chod¥ed Nenan realizations of the instantaneously known channel
a previously unscheduled MS, if there are any left. Thigoefficients. The expectation operaf®y; , of (14), implies
approach is based on the same hybrid CSI as in the previddgher averaging for each of th¥chan channel realizations.
sections. The central unit holds and updates the schedulingimulations have been run for three different scenarios,
graph, ensuring that one MS is scheduled by one BS ontyhere performance is measured by the network sum capacity
For BS,, the user is selected by maximizing the receive SNRf (10) per cell, with unit bits/second/Herz/cell.

First, we tested a rather small network, with only 4 trans-

9n = arg max SNR(g,,; hn) , (16) mitting base stations and 4 receiving usels,= M = 4.

In Fig. 2, the curves show how the network sum capacity
where S. is a subset of the fullR™ standard basis develops with an increasing edge-of-cell target SNR (eefee
{e1,e2,...,en}, representing those users not already schegalue for single-user at distandgy). The top curve represents
uled by a BS. the centralized scheduler of Section Ill-A, while the ottieee

The central unit exploits the available information to @esult from using the schemes described in Sections IV-B, IV
maximum by optimizing the order in which the receiving usera and IV-C, in downward order.
are scheduled to the base stations, at all times couplinB$he  Second, we fixed the target SNR to 20 dB and explored the
MS pair that maximum expected SNR, among the remainingetwork sum capacity when increasing the number of reagivin
not previously scheduled, BSs and MSs. usersM = {4,8,12,16}, while keeping a constan¥ = 4
base stations. The results are shown in Fig. 3. In this case, a
the M increases beyond/, note that onlyN of these users

Next, we present some results of Monte-Carlo simulationgll be served at any given time.
for the above described schedulers, focusing on how the low-Finally, in Fig. 4, we present the simulation results when
complexity, capacity-maximizing approach in Section IV-Bncreasing the number of receiving users and base stations,
performs when compared to the centralized, the greedy ahl= N = {4,8,12,16}. We observe that the sum capacity
the conventional schemes. per cell is decreasing when increasing and N together,

The base stations are placed in a grid, as seen in Fig. 1, waild see an explanation for this in the increased levels of
a minimum distancd between neighbors. The positions of thénterference resulting from more BSs transmitting. In Figs
mobile users are quasi-static, generated following a rand@nd 4, only three curves are plotted, as the centralizechsehe
and uniform spatial distribution over the entire networkar of Section IlI-A is very time-consuming in larger networks.

V. NUMERICAL RESULTS
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Fig. 3. Sum capacity per cell versus number of receiving M&sedge-of-
cell target SNR of 20 dB andv = 4 BSs, averaged oveNys random MS

realizations. Note that the iterative, capacity-maximizscheduling approach location sets andVchan channel realizations. Note that the iterative, capacity-

lies between that of the centralized scheme and the ineerderlimited
performance of the greedy and the conventional schedulers.

V1. CONCLUSION

In this paper, we have presented approaches to bas
tion coordination in multicell, multiuser wireless netwer
First, a framework for distributed, downlink beamformi
was given, where each partaking BS only needs acce
hybrid channel state information, including instantareeGI|
on locally measured channels. Next, we have detailed
scheduling schemes to use with this framework, all ail
at maximizing the sum capacity of the network. In g
ticular, the low-complexity approach for iterative, caipgc
maximizing scheduling represents a middle course bet
the interference-limited greedy and conventional scheames
the prohibitively complex centralized algorithm.
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