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ABSTRACT

In this paper, we are concerned by the self-calibration
of a linear equispaced array impinged by correlated
sources. We propose a new method based on the fact
that sources have discrete distribution which is meaning-
ful in a digital communication context. The assumption
of discrete sources allows an estimation, in the LS sense,
of the mixing matrix which is then used to compute the
sensor gain, phase and location errors.

1 INTRODUCTION

The localization of radiating sources is of great inter-
est in �elds like sonar or radar, and has been exten-
sively studied in the literature. However the various
Direction of Arrival (DOA) estimation schemes, such as
the so-called High-Resolution algorithms, are very sen-
sitive to sensor gain, phase and location errors, espe-
cially when the DOA's are close [4] and for short ob-
servation durations (see �g.1). As a consequence Array
Self-Calibration has become a critical issue.
Few works have been carried out for the identi�ability

conditions which were mainly treated in [10, 11, 3], but
many algorithms have been proposed to recover the ar-
ray calibration. In [6], the authors used the fact that in
absence of gain decalibration the entries of the steering
vectors are of unit modulus. This constraint yields an
analytical estimation of the mixing matrix which is then
used to compute the true sensor locations. The unit
modulus constraint was already used in [13] in conjunc-
tion with the maximization of the orthogonal projection
of the estimated steering vectors on the signal subspace.
In [14], the calibration is performed using a joint esti-
mation of DOAs and sensor locations by the means of a
Fourier transform of the sensor outputs. Other papers,
like [5] and [8] studied the single source case, which often
occurs in sonar.
In this paper, we are concerned by the compensation

for gain, phase and location uncertainties of pathological
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linear equispaced arrays [10], solely based on the fact
that sources have the same discrete distribution.

2 PROBLEM STATEMENT

Assume that P source signals xp impinge on an array of
K sensors. Then, in a narrow band context and if the
propagation medium is linear, the signals observed on
the array can be modeled as:

y =
PX
p=1

xp d(p) +w = D x +w; (1)

where w stands for additive noise, and D is a K � P
matrix. Because of inherent indeterminacies [10], it is
legitimate to assume that the �rst row of D has its en-
tries equal to 1 (the �rst sensor is set as the reference
sensor).
If the array is perfectly known, every DOA d(p) coin-

cides with some d(�(p)), where d(�) denotes the known
array manifold [1],[12]. In presence of decalibration fac-
tors, the observation can be modeled as :

y = A s+w; (2)

and A separates in A = GD, where G stands for the
gain decalibration and D has unit modulus entries and
contains the decalibrated DOAs.
Our problem can now be expressed as : given N in-

dependent observations yn �nd G and the true sensor
locations and phases assuming that :

[A1] x and w are independent,

[A2] the noise w is Gaussian,

[A3] the sources may be partially correlated (multipath
context) and have the same discrete distribution,

[A4] there are more sensors than sources: K � P ,

[A5] there is no coupling between sensors so that
the calibration matrix G is real diagonal (G =
diag(G1; � � � ; GK)),

[A6] by convention, the �rst row of D is formed of ones,
without restricting the generality,



[A7] sensors and sources are coplanar and the sources
are far enough from the observing array so that the
signal wavefronts are planar over the array (far-�eld
assumption).

Since the source signals xp have a discrete distribution
C, but are known up to a scale factor Fp and a phase
shift �p, they can be modeled as : xp = Fp exp(i�p) sp,
where the support of sp is C. Thus (2) rewrites :

y = GDF s+w; (3)

where F is diagonal. This model contains an inherent
indeterminacy that can be �xed by assuming that G1=1
The calibration of the array will be performed in three

steps. First, we estimate the impinging signals using
their discrete distribution and we deduce the mixingma-
trix in the LS sense. Then we compute the estimation
of the diagonal matrices F and G. Finally, we estimate
the angles of arrival, the sensor location errors and the
phase errors.

3 SOURCE EXTRACTION

The problem of interest in this section is : given yn
and assuming [A4], estimate the sources sp so that they
have a known discrete distribution.
This problem has already been studied by the authors

in [9] in the case of uncorrelated sources. There, it has
been shown (see also appendix) that the MAP crite-
rion, which is the most natural in this context, can be
approximated by a polynomial criterion of the form :

�N (b) =
1

N

NX
n=1

DY
j=1

jbyy(n) �Cjj
2: (4)

where Cj represents the elements of the constellation C
and D its cardinality. Furthermore, this latter criterion,
�rst introduced in [7], is computationally less complex
and MAP-equivalent in presence of PSK-sources (cf. ap-
pendix). An e�cient minimisationalgorithm, AMiSRoF
dedicated to multivariate polynomial criteria, has been
developed in [9] and allows a fast convergence.
When the sources are uncorrelated, criterion (4) al-

lows to extract the sources one by one using a deation
approach. However, in the correlated case, a regression
is prohibited and it is necessary to resort to other means
to avoid obtaining several times the same source. Our
method is simple and consists of including a penalty
term in the polynomial criterion :

�N (b) =
1

N

NX
n=1

DY
j=1

jbyy(n)� Cjj
2 +

�

p

pX
i=1

bY syp (5)

where p is the number of di�erent extracted sources and
sp is the p

th estimated source.
In order to `guide' AMiSRoF on a viable source es-

timation, we use a singular value decomposition of the
sensor cross-correlation matrix. Indeed, for each source

extraction, we initialize the algorithm with one of the
unused singular vectors corresponding to the signal sub-
space.

4 CALIBRATION

Once the sources sp(n), 1 � n � N , have been esti-
mated, it is possible to invert the relation Y = AS+W
in the LS sense [6] and we can now compute the calibra-
tion.

4.1 Entries of A

>From the assumptions [A5], [A6], since F is diagonal
and G1 = 1, one can easily deduce that A is equal to :

A =

0BBB@
F1 � � � FP

G2D21F1 G2D2PFP
...

...
G2DK1F1 GKDKPFP

1CCCA (6)

The speci�c structure of A will be now used to esti-
mate G and F .

4.2 Estimation of F and G

As (6) shows, the �rst row of Â gives a straight estima-

tion of the entries of F : F̂p = Â1p .

Thanks to F̂ , we can deduce dGD = ÂF̂�1 and since
D has unit modulus entries, it obviously comes out that

Diag(dGDdGDy
) = ĜĜy which gives Ĝk (since the

phase of Gk is included in the corresponding sensor
phase error).

4.3 Estimation of sensor phase and location

Now, the only unknowns we are left with are the sensor
phases and locations and the Angles of Arrival (AOA).
Since D has unit modulus entries, one can express its

elements as : Dkp = exp(i	kp). With assumption [A7],
the phase 	kp rewrites :

	kp =
!

c
(xksin(�p) + ykcos(�p)) + �k (7)

where (xk; yk) is the true location of the kth sensor and
�k its phase.
Now denote (xok; y

o
k) the nominal kth sensor location

and �op an initialization of the pth AOA; one can use,
for example, the so-called BlindMaxCorr technique [2]
or the method used in [14]. Then (7) becomes :

	kp =
!

c

�
(xok + �xk)sin(�

o
p + ��p)

+ (yop + �yp)cos(�
o
p + ��p)

�
+ �k

where (�xk; �yk) and ��p are respectively the location
errors and the AOA errors. If we suppose them su�-
ciently small, a �rst-order Taylor expansion leads to :

c

!
	kp = xoksin�

o
p + yokcos�

o
p�xksin�

o
p + �ykcos�

o
p

+��p(x
o
kcos�

o
p + yoksin�

o
p) + �k



so we can estimate (�xk; �yk) and �k in the LS sense.
Note that the computation of 	kp needs a phase un-

wrapping and that some indeterminacies are inherent in
the problem. As shown in [3], a manner to �x them and
restore identi�ability in the case of far-�eld linear equi-
spaced array is to assume that a second sensor is com-
pletly known (true location and phase) and that there
are at least 3 source signals.

5 COMPUTER RESULTS

Simulations have been carried out using a uniformly
spaced linear array with K = 4 sensors. The �rst sen-
sor was taken as the reference and we assumed that the
last one was completly known. The element spacing
was �=2, where � is the wavelength of the propagating
waveforms. We used P = 3 BPSK sources whose AOAs
were �1 = �15�, �2 = 3� and �3 = 20� and they were
partially correlated (arround 30%). We tested our algo-
rithm with datalength N = 1000, over 500 trials and for
various SNRs. The calibration errors were simulated as
follows :

Gk = 1 + �GjwG(k)j; k 6= 1

�k = ��w�(k)

xk = xok + �Lwx(k); k 6= 1;K

yk = yok + �Lwy(k); k 6= 1;K

where wG, w�, wx and wy are independent uniform pro-
cesses in ]� 1; 1[, and �G = 1, �� = 0:05 and �L = 4%
of the sensor spacing.
Figure 1 shows the behaviour of raw MUSIC in pres-

ence of decalibration and with a 20dB SNR. It shows
that the algorithm is either unable to detect all the
sources or unable to estimate accuratly the AOAs.
The estimation results are sumarized in table 1 in

terms of the Median of the Quadratic Error on the DOAs
(MQED), on the sensors gain (MQEG), on the sensors
phase (MQEP), on the sensor location (MQEx,MQEy).
Under each median we also indicate the standard devi-
ation.
If we consider the median of the quadratic errors, the

behaviour of the algorithm appears to be quite good.
However an overview of the standard deviations shows
that the proposed algorithm may be unreliable. Nev-
ertheless, even though it reveals the existence of ill-
convergences due to the correlation between source sig-
nals, they can be detected by looking at the intercorrela-
tion between the last estimated signal and the previous
ones. For the moment, this test has not been imple-
mented yet. After calibrating the array, the MUSIC
response recovers a performance close to nominal, ac-
cording to �gure 2.

6 CONCLUSIONS

We proposed a new self-calibration method which does
not need cooperating sources. It is solely based on the
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Figure 1: 3 typical responses of MUSIC in presence of
decalibration.

SNR(dB) MQED MGEG MQEP MQEx MQEy
30 1:3e�6 4e�7 6e�9 7e�7 4e�4

4e�2 7e�3 2e�3 5e�2 29:2
25 4e�6 1:4e�6 1:9e�8 2:1e�6 1:2e�3

7:8e�2 2e�2 2e�3 7:4e�2 43:6
20 1:3e�5 4:5e�6 6e�8 6:7e�6 4e�3

0:1 2:5e�2 2e�3 0:4 226
15 4:2e�5 1:5e�5 2e�7 2:2e�5 1:3e�2

0:1 1:5e�2 2e�3 0:57 342
10 1:6e�4 8:2e�5 9e�7 1e�4 6:1e�2

0:1 1:6e�2 2e�3 0:7 394

Table 1: Decalibration estimation results for various
SNR

fact that the impinging source signals have a known dis-
crete distribution. This feature is used in the estima-
tion of the source signals which allows a Least-Square
estimation of the mixing matrix A. The decalibration
is then computed using the particular structure of A.
The results are quite good as far as the median of the
quadratic errors is concerned but the algorithm su�ers
from a few ill-convergences that can be easily detected
by a correlation test.

APPENDIX

Given a number z in the complex plane, consider the
the two optimization criteria 	(z) = minj jz�Cjj

2 and
�(z) =

Q
j jz � Cjj

2, and denote by � the distance be-
tween z and the closest element of the constellation, Cp.
Then �(z) can be written as:

�(z) = jz �Cpj
2
Y
j 6=p

jz �Cj j
2

= 	(z)
Y
j 6=p

jCp �Cj + �j2
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Figure 2: MUSIC response after compensating for errors
with the help of the calibration matrix.

= 	(z)
Y
j 6=p

jCp �Cj j
2
Y
j 6=p

j1 +
�

Cp �Cj
j2

= 	(z)K(p)
Y
j 6=p

j1 +
�

Cp �Cj
j2

= 	(z)K(p)
Y
j 6=p

�
1+2Re

�
�

Cp � Cj

�
+

j�j2

jCp � Cjj2

�
= 	(z)K(p) (1 + fp(�))

A constellation C is said to have a constant power if
9=8c 2 C; c = 1. This property characterizes usual
PSK modulations. For these constellations, K(p) and
fp(�) do not depend on p, and we have:

	(z) =
1

K(1 + f(�))
�(z):

If � is small compared to the distance between constel-
lation symbols (low noise assumption), then jf(�)j � 1,
and a Taylor expansion is possible and yields:

	(z) =
1

K
�(z)(1 + g(�)) + o(�):

Now let zn = b�y(n). Then the MAP solution can be
rewritten as ArgMin

b̂

P
n	(zn), with the notation of

this appendix, and eventually takes the form:

1

K
ArgMin

b̂

X
n

�(zn)(1 + g(�n)) (8)

which can be approximated by

1

K
ArgMin

b̂

"
(1 + �)

X
n

�(zn)

#
;

where � =
�
1

N

P
n�(zn)g(�n)

� �
1

N

P
n�(zn)

��1
keeps

small for bounded N or uniformly small �n. This eventu-
ally shows the MAP equivalence for PSK constellations
and for su�ciently low noise levels.
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