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Abstract—The parametric estimation of Multiple-Input
Multiple-Output (MIMO) channels is an important step
towards the space-time characterization of the radio channel
as well as for the design of efficient space-time signaling
techniques. In this paper, we address the problem of multipath
parameter estimation for frequency-selective block-fading
MIMO channels by means of Parallel Factor (PARAFAC)
analysis [1]–[2]. First, we present a fourth-order PARAFAC
model for a specular MIMO radio channel, which jointly
captures the space-time signature (angles of arrival, angles of
departure and delays) and the time-varying fading amplitudes.
Based on this model, an Alternating Least Squares (ALS)
algorithm is used for estimating the multipath signals from a
collection of received data blocks. After the multipath resolution
stage, final estimates of the angles, delays and fading amplitudes
are obtained by exploiting the knowledge of a multi-block
training sequence. Numerical results are provided to illustrate
the performance of this estimation approach.

I. INTRODUCTION
Multiple-Input Multiple-Output (MIMO) antenna systems

have been extensively studied due to their ability of
providing high data-rates and performance gains compared
to traditional single-antenna systems [3], [4]. Perfect channel
estimation is generally assumed in the analysis of MIMO
antenna systems. However, in practice, the MIMO channel
has to be estimated, typically using training/pilot symbols.
An accurate channel estimation is important in coherent
MIMO communication systems as well as it allows the
design of efficient space-time signaling techniques that better
exploit the MIMO channel. Parametric channel estimation
techniques relying on a physical description of the MIMO
channel (i.e. multipath angles, delays and fading amplitudes)
are of great interest in wireless position-location systems and
future wireless intelligent networks.
It is known that in time-varying wireless propagation

environments, the multipath parameters are submitted to
different varying rates. In practical mobile-radio channels,
the multipath angles and delays experience a much slower
rate of variation than the fast-fading amplitudes, and can
be considered stationary over several data transmission
blocks. In other words, while the fading amplitudes can
vary completely when either the transmitter or the receiver
moves as little as fractions of the wavelength, the angles
of departure/arrival and propagation delays remain constant
over changes in position of several (ten to thousands of)
wavelengths [5]. For block transmission (i.e. time-slotted)

MIMO systems, a “block-fading" MIMO channel model
is generally considered for characterizing the time-varying
nature of the radio channel. In the block-fading model, the
path fading amplitudes vary between two successive blocks
but they are considered constant over an entire data block.

Literature review: The exploitation of the algebraic
structure of the wireless channel for the purpose of multipath
parameter estimation was addressed in several works in the
context of Single-Input Multiple-Output (SIMO) channels
(see e.g. [5]–[6] and the references therein). Most of
these approaches are based on high-resolution subspace
methods, which exploit shift-invariance properties and/or the
knowledge of the pulse shape function. In [7], a blind method
for explicit angles and delay estimation is proposed, which
uses a collection of previous unstructured estimates of the
space-time channel impulse response obtained from multiple
transmission blocks.
Training sequence based channel estimation methods

exploiting the multi-block invariance of angles and delays
have been proposed in [5], [8], [6] for an unstructured
estimation of the space-time channel. These methods aim
at showing that an increased estimation accuracy can be
obtained by using multi-slot processing, which consists
of appropriately combining the information from multiple
transmission blocks (or time-slots) at the receiver so as to
extend the effective training sequence.
In the context of MIMO channels, [9] proposes a modal

analysis/filtering concept which exploits the different varying
rates of the multipath parameters for estimating time-varying
(block-fading) frequency-selective MIMO channels. The
authors show that more accurate channel estimates with
respect to the standard Least Squares (LS) estimation method
can be obtained. The approach proposed in [10] is based on
spectral factorizations of the specular channel into stationary
(space) and non-stationary (fading amplitudes) signature
subspaces, and uses linear prediction for estimating/tracking
the time-varying channel. In [11], a subspace-based approach
is proposed for a joint estimation of the Angles-Of-Arrival
(AOAs), Angles-Of-Departure (AODs) and propagation
delays of physical MIMO channels. This approach works
on a previous unstructured estimate of the MIMO channel,
and performs a subspace decomposition of the channel
covariance matrix to determine AOAs, AODs and delays.
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In this work, a new parametric approach for estimating
frequency-selective block-fading MIMO channels is
proposed. It is based on the observation that the considered
MIMO channel model has a tensor structure and follows
a fourth-order PARAFAC model [1]–[2]. By extending a
training sequence over multiple data transmission blocks
and collecting these blocks at the receiver, we show that
the received signal can be interpreted as a third-order
PARAFAC model. This model is exploited for estimating
the complete set of MIMO multipath parameters (AOAs,
AODs, delays and fading amplitudes). The estimation
method consists in using the Alternating Least Squares
(ALS) algorithm, followed by a final estimation stage that
relies on the knowledge of the training sequence. In [12],
we proposed a multipath parameter estimation technique
for SIMO channels, which is also based on a PARAFAC
decomposition for modeling the time-varying multipath
channel. This work can be viewed as an extension of [12]
to MIMO channels.
The organization of this paper is as follows. Section II

describes the system model and assumptions. Section III
formulates the MIMO channel and the received signal using
PARAFAC modeling. A sufficient condition for identifiability
of the proposed PARAFAC model is established in Section
IV. Section V describes the ALS-based method for
estimating the MIMO channel parameters while in Section
VI, some simulation results are presented for performance
evaluation. The paper is concluded in Section VII.

II. SYSTEM MODEL AND ASSUMPTIONS

Let us consider a MIMO antenna system with MT

transmit and MR receive antennae. The spacing between
any two antennae at both the transmit and receive arrays
is assumed to be half-wavelength, so that we can apply the
far-field approximation by assuming a locally plane wave.
In this case, the MIMO channel can be characterized by
specular multipath propagation, i.e., the channel between
each transmit and receive antenna can be parameterized
as the superposition of L paths. Figure 1 illustrates the
considered MIMO propagation scenario. Each path is
associated with a different scatterer located between the
transmitter and the receiver. The location of the l-th scatterer
determines an Angle Of Departure (AOD) φl and an Angle
Of Arrival (AOA) θl (with respect to the transmit/receive
array broadside) and a relative propagation delay τl for the
l-th path It is also assumed that the maximum path delay
exceeds the inverse of the coherence bandwidth so that
the channel is frequency-selective. The finite support of the
channel impulse response is equal to K symbol periods and
the oversampling factor at the receiver is equal to P times the
symbol rate. Let us define the following matrices collecting
the transmitter and the receiver array responses and as well
as the combined transmitter/receiver pulse shape responses:

A(T )(φ) = [a(T )(φ1) · · ·a(T )(φL)] ∈ C
MT ×L

A(R)(θ) = [a(R)(θ1) · · ·a(R)(θL)] ∈ C
MR×L

G(τ ) = [g(τ1) · · ·g(τL)] ∈ C
KP×L.

�
�
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Fig. 1. MIMO multipath propagation scenario

A. Block-fading channel model

We adopt a block-fading model for characterizing the
time-varying propagation channel The block-fading model is
based on the fact that, in a time-varying environment, angles
and delays (long-term parameters) experience a much slower
rate of variation than the fast-fading amplitudes (short-term
parameters). In our model, the path fading amplitudes are
considered constant over an entire data transmission block,
but vary between two blocks. Such an inter-block variation of
the fading amplitudes characterizes the time-varying nature
of the MIMO channel1. On the other hand, φl, θl and
τl (which depend only on the propagation geometry) are
assumed to be constant over an interval of stationarity
spanning I blocks. This block-fading channel model is
reasonable in most of mobile communication systems with
time-slotted transmission, and has been exploited in, e.g. [9],
[10], for purposes of MIMO channel estimation. Assuming
a transmission of I blocks, the fading amplitude of the l-th
path during the i-th block is represented by bi, l. A matrix
collecting the path fading gains during the I blocks is defined
as:

B =

⎡
⎢⎢⎢⎣

b1,1 b1,2 · · · b1,L

b2,1 b2,2 · · · b2,L

...
...

...
...

bI,1 bI,2 · · · bI,L

⎤
⎥⎥⎥⎦ ∈ C

I×L,

where the i-th row of B collects the L fading amplitudes
for the i-th block. We assume that the envelope of each
fading amplitude bi,l follows a Rayleigh distribution while
the associated phase is uniformly distributed. Moreover, the
amplitudes corresponding to different paths are assumed to
be statistically independent.

B. Multi-block training sequence

At the transmitter, each transmission block is organized in
MT data streams that are transmitted by the MT transmit
antennae. The structure of these data streams depend on
the considered particular scheme (e.g., spatial multiplexing,

1The block-fading assumption holds if the transmission block length is
smaller than the coherence time of the multipath fading channel. This is the
case considered here.
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Fig. 2. Multiblock transmission structure with training sequence reuse

space-time coding, etc). Each one of the MT data streams
has a training sequence of N symbols known at the receiver.
The length-N training sequence at the mT -th transmit

antenna for the i-th transmission block is represented by:

smT
(i) = [smT

(i, 1) · · · smT
(i,N)]T ∈ C

N .

In this work, the following assumptions hold concerning the
design of the training sequences:
A.1 The MT training sequence vectors s1, . . . , sMT are

linearly independent2.
A.2 The length N of each training sequence smT

, mT =
1, . . . , MT , satisfy N ≥ MT K.

A.3 The training sequence smT
,mT = 1, . . . , MT , is reused

across I successive transmission blocks, and we have
smT (i) = smT , ∀i ∈ [1, I].

Figure 2 outlines the multiblock transmission structure
with training sequence reuse across transmission blocks.
It is to be noted that one transmission block comprises
MT parallel data blocks, each one of which having its
own training sequence. Note also that the figure indicates
that the same set of training sequences is inserted into I
transmission blocks. Each data block has Nblock = N +
Ndata symbols, Ndata denotes the number of “useful" data
symbols of each data block. Throughout the paper, for signal
modeling and channel estimation purposes, we focus only
on the training sequence portion of each data block. After
having estimated the channel, the useful data portion can
be processed/recovered in a subsequent step by means of
space-time processing.

III. PARAFAC MODELING
The block-fading MIMO channel can be viewed as a

fourth-order tensor H ∈ C
I×MR×MT ×KP , i.e., an array

2We remark that the “independence" assumption does not lead to an
optimal training sequence set for estimating the MIMO channel. An optimal
design should ensure that the training sequences have perfect periodic
autocorrelations and cross-correlations within K − 1 temporal shifts [13],
where K is the temporal span of the channel impulse response. In this
work, we are not concerned with optimal training sequence design, and we
simply assume independent training sequences. As will be shown later in
our simulation results, the independency assumption is enough to guarantee
accurate estimates of the MIMO channel using the proposed approach.

having four dimensions. Let us define hi,mR,mT ,k′ as a scalar
component of the MIMO channel tensor H, which represents
the impulse response of the k′-th tap of the channel between
the mT -th transmit and mR-th receive antenna for the i-th
fading block, k′ = (k − 1)P + p. We propose to use the
PARAFAC (Parallel Factor) decomposition [1], [2] to model
the block-fading MIMO channel. In PARAFAC notation, the
scalar component hi,mR,mT ,k′ of the L-path block-fading
MIMO channel can be written as:

hi,mR,mT ,k′ =
L∑

l=1

bi,la
(R)
mR,la

(T )
mT ,lgk′,l, (1)

where a
(R)
mR,l = [A(R)(θ)]mR,l, a

(T )
mT ,l = [A(T )(φ)]mT ,l,

gk′,l = [G(τ )]k′,l, bi, l = [B]i,l.
After baseband conversion and oversampling at each

receive antenna, we collect NP received samples at each
receive antenna. Let us define xi,mR,n′ as a scalar component
of the received signal tensor X ∈ C

I×MR×NP , representing
the n′-th received signal sample at the mR-th antenna for
the i-th transmission block, and n′ = (n−1)P +p. Ignoring
the additive noise for notation simplicity, xi,mR,n′ can be
written as:

xi,mR,n′ =
MT∑

mT =1

K∑
k=1

hi,mR,mT ,k′ sn′,mT ,k′ , (2)

where
sn′,mT ,k′ = [S]n′,(k′−1)MT +mT

,

is an arbitrary element of S = So ⊗ IP ∈ C
NP×MT KP , and

So = BlockToeplitz(s1, · · · , sMT
) ∈ C

N×MT K (3)

is a block-Toeplitz training sequence matrix. Let us define
Hi·· ∈ C

MR×MT KP as the i-th matrix-slice obtained by
slicing the MIMO fourth-order tensor H along its first
dimension. It can be shown that Hi·· can be expressed as
a function of the multipath parameters as:

Hi·· = A(R)(θ)Di(B)WT (τ ,φ), i = 1, . . . , I, (4)

where Di(B) is a diagonal matrix holding the i-th row of B
on its diagonal and W(τ ,φ) ∈ C

MT KP×L is defined as

W(τ , φ) = G(τ ) � A(T )(φ). (5)

The i-th matrix-slice of the received signal, denoted by
Xi·· ∈ C

MR×NP , can be written as:

Xi·· = Hi··S = A(R)(θ)Di(B)CT (τ , φ), i = 1, . . . , I,

where

C(τ , φ) = S
[
G(τ ) � A(T )(φ)

]
∈ C

NP×L (6)

is a combined space-time channel response at the receiver
side, i.e., a convolution between the receiver space-time
signatures and the training symbols, and � stands for
the Khatri-Rao (column-wise Kronecker) product. Figure 3
illustrates the interpretation of the received signal tensor as
a collection of I matrix-slices.
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Fig. 3. Received signal third-order tensor as a collection of I matrix-slices.

Let us stack I slices X1··, . . . ,XI·· in a matrix X1 ∈
C

MRI×NP , and I slices H1··, . . . ,HI·· in a matrix H1 ∈
C

MRI×MT KP :

X1 =

⎡
⎢⎣

X1··
...

XI··

⎤
⎥⎦ , H1 =

⎡
⎢⎣

H1··
...

HI··

⎤
⎥⎦ .

X1 andH1 are the “unfolded representations" for the tensors
X andH, respectively. Using (4)-(5), we obtain the following
input-output relation:

X1 = H1S =
[
B � A(R)(θ)

]
CT (τ ,φ), (7)

where H1 =
[
B � A(R)(θ)

]
WT (τ , φ). Thanks to the

symmetry of the third-order PARAFAC model, two other
unfolded matrix representations can be obtained: X2 =[
A(R)(θ) � C(τ , φ)

]
BT ∈ C

NPMR×I and X3 =
[C(τ ,φ) � B]A(R)T (θ) ∈ C

INP×MR .

IV. IDENTIFIABILITY
Identifiability of (7) allows one to uniquely determine (up

to trivial ambiguities) the parameters of the L multipaths
from the observed received signal tensor X ∈ C

I×MR×NP .
According to the identifiability results of the PARAFAC
model, the identifiability of A(R), B, and C is linked to
the concept of k-rank of these matrices [2]. Shortly, the
k-rank kA of a matrix A is equal to r if any set of r
columns of A is linear independent, but any set of r + 1
columns of A is linear dependent. The Kruskal condition
says that, if kA(R) +kB +kC ≥ 2(L+1), then A(R), B and
C can be identified from X1 up to trivial permutation and
column scaling ambiguities [2]. In our context, a sufficient
condition for identifying the MIMO multipath parameters
can be obtained by recalling useful results on the k-rank of a
matrix having Khatri-Rao product structure as well as on the
k-rank of a Vandermonde matrix. These results are derived
in [14] (c.f. Lemmas 1 and 2, respectively). A sufficient
identifiability condition for our model can be obtained by
applying the identifiability theorem of [14] to our context:
Theorem: Given Xi·· = A(R)(θ)Di(B)CT (τ , φ), suppose
that the L multipaths have statistically independent
propagation (i.e. distinct AODs, AOAs and delays). Provided
that the fading amplitudes are temporally uncorrelated across
successive transmission blocks, a sufficient condition for
almost-sure identifiability is:

min(I, L)+min(MR, L)+min(MT +KP−1, L) ≥ 2(L+1)

Proof: Use assumptions A.1-A.2 to conclude that S is
full rank (and full k-rank) to deduce rank(C(τ ,φ)) =
rank(W(τ ,φ)). Apply Lemma 1 in [14] by making the
following correspondences: A → G(τ ), B → A(T )(φ), to
verify that rank(W(τ , φ)) ≥ min(kG(τ ) + kA(T )(φ) − 1, L).
Finally, use the fact that the k-rank of a matrix is equal to its
rank with probability one whenever its columns are drawn
independently from an absolutely continuous distribution.
Thus, we have kA(R) = min(MR, L), kB = min(I, L),
kC = min(MT + KP − 1, L). �
Remarks:
1) The identifiability condition established in the previous
theorem is sufficient but not necessary. Assuming M > 1
and N > 1 (irrespective of the oversampling factor P ), a
necessary condition is kB ≥ 2 [15]. In practice, this means
that at least I ≥ 2 transmission blocks must be collected at
the receiver to ensure a uniqueness of model (7).
2) Column permutation is unremovable although not relevant
in our context, since the ordering of the multipath responses
is unimportant for channel estimation purposes. Scaling
ambiguity can be eliminated by exploiting prior knowledge
of the space-time manifold structure i.e., the array geometry
and the pulse shape function.

V. ESTIMATION OF THE MIMO CHANNEL PARAMETERS

The estimation of the MIMO multipath parameters is done
in two-stages. The first one is blind, and consists in using
the trilinear Alternating Least Squares (ALS) algorithm [2]
for fitting a third-order PARAFAC model to the received
signal tensor X ∈ C

I×MR×NP . Each iteration of the ALS
algorithm is composed of three estimation steps. In each step
one component matrix is updated by fixing the two others to
their values obtained in previous steps. Given the unfolded
representations Xi=1,2,3 of the received signal tensor, the
conditional LS updates at the r-th iteration are given by:

ĈT
(r) =

[
B̂(r−1) � Â(R)

(r−1)

]†
X1,

B̂T
(r) =

[
Â(R)

(r−1) � Ĉ(r)

]†
X2,

Â(R)T
(r) =

[
Ĉ(r) � B̂(r)

]†
X3,

where Â(R)
(r) = Â(R)

(r) (θ) and Ĉ(r) = Ĉ(r)(τ ,φ). At the first
iteration (r = 1), Â(R)

(0) B̂(0) can be randomly initialized
or using previous knowledge of the multipath parameters
(e.g. AOAs). Let e(r) =

∥∥∥X1 −
[
B̂(r) � Â(R)(r)

]
ĈT (r)

∥∥∥
F

denote the estimation error at the end of the r-th iteration.
The convergence is declared when |e(r) − e(r − 1)| ≤
10−5. The second stage consists in using the training
sequence matrix S to find an LS estimate of W(τ , φ) =
G(τ ) � A(T )(φ) as Ŵ(τ ,φ) = S†Ĉ(conv)(τ , φ), where
Ĉ(conv)(τ , φ) is the estimated value of C(τ ,φ) at the
convergence. Separated estimations of Â(T )(φ) and Ĝ(τ ) as
well as the elimination of the scaling factors can be carried
out by exploiting the Vandermonde structures of A(R)(θ)
and A(T )(φ) and using proper pulse shape design.
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Fig. 4. The normalized MUSIC spectrum for AOD and AOA estimation.

VI. SIMULATION RESULTS

In this section, some simulation results are shown to
illustrate the performance of the proposed parametric MIMO
channel estimator. We assume N = 10 training symbols
per transmit antenna. The training symbols are modulated
using Binary Phase Shift Keying (BPSK). The oversampling
factor is assumed to be P = 2. The pulse shape function
is a raised cosine with roll-off 0.35. We consider L = 3
specular multipaths with equal average power. The vector
containing the AODs, AOAs and delays of the multipaths are
respectively φ = [−10o, 30o, 50o], θ = [−18o, 20o, 35o]
and τ = [0, T, 2T ], where T denotes the symbol period
(K=3 is assumed). Uncorrelated fading across the successive
blocks is modeled by assuming that bi,l ∼N(0,1).
In order to evaluate the accuracy of the proposed method

in estimating the spatial signatures, Fig. 4 depicts the
normalized MUSIC spectrum for the AODs and AOAs. We
have assumed MT = MR = 4, I = 10 and a Signal to Noise
Ratio (SNR) of 20dB. We can see that accurate estimates of
the transmitter and receiver spatial signatures are obtained.
Figure 5 shows the Root Mean Square Error (RMSE)

between estimated Ĥ and true H MIMO channel matrices
as a function of the SNR at each receive antenna. These
results are an average over 1000 independent realizations
assuming MT = MR = 2 and I = 3, 10 or 30. In this
simulation, 95% of the runs were retained for plotting the
results. The 5% worst (ill-convergent) runs were discarded.
Convergent runs have converged within 30 iterations in
average. Note that the estimation performance improves as
the number of transmission blocks is increased. In fact,
fading amplitudes variation across the blocks is converted
into temporal diversity for resolving the multipath signals.

VII. CONCLUSION

In this paper, a PARAFAC-based tensor model for
frequency-selective block-fading MIMO channels has been
proposed. Using a multi-block training sequence (i.e.
a training sequence that is reused across successive
transmission blocks), a third-order PARAFAC model has
been considered for the received signal. Based on this
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Fig. 5. RMSE performance of the proposed estimator.

model, an ALS-based estimation method has been used for a
complete determination of the multipath parameters (AOAs,
AODs, delays and fading amplitudes). In future work, we
shall provide performance comparisons of the proposed
method with competing ones under realistic channel models.
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