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Abstract—Stability and delay constraints have significant im-
pact on the design and operation of wireless sensor networks. In
this paper, we propose a closed architecture for data sampling
in wireless sensor networks. Examples show that the proposed
scheme outperforms the traditional layered scheme, both in terms
of stable operating region as well as the end-to-end delays.

We then propose a distributed routing scheme for a broad class
of wireless sensor networks which converges (in the Cesaro sense)
to the set of Cesaro-Wardrop equilibria. The scheme is based on
multiple time-scale stochastic approximation algorithms. Con-
vergence is established using standard results from the related
literature and validated by simulation results. Our algorithm can
adapt to changes in the network traffic and delays.

I. INTRODUCTION

Wireless Sensor networks (WSNs) is an emerging technol-
ogy that has a wide range of potential applications including
environment monitoring, medical systems, robotic exploration,
and smart spaces. We consider a WSN in which the sensor
nodes are sources of delay insensitive traffic that needs to
be transferred in a multi-hop fashion to a common processing
center. We propose an adaptive and distributed routing scheme
for a general class of WSNs. The objective of our scheme is
to achieve Cesaro Wardrop equilibrium, an extension of the
notion of Wardrop equilibria that first appeared in [3] in the
context of transportation networks. It states that the journey
times in all routes actually used are equal and less than those
which would be experienced by a single vehicle on any unused
route. This notion is defined in Equation (1) later in this paper.

The initial motivation for us for this problem was the
challenge of designing a routing protocol which can adapt
to the traffic requirements in a sensor network as these can
change over time fur to energy outtage. Keeping the finite
energy source at each node in mind, it is valuable to use several
paths simultaneously in carrying traffic from a sensor to a
given sink. Further, using multiple routes by flow-splitting can
result in a fair consumption of available energy sources. Our
algorithm is actually an adaptation of the algorithm proposed
in [1] to the case of WSNs. In the algorithm of [1], each source
uses a two time-scale stochastic approximation algorithm.
Difference in the two algorithms are:
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1) In WSNs that we consider, each node has an attribute
associated with it namely the channel access rate. The
delay on a route depends on the attributes of the nodes
on the route. However, in order to maintain some long
term data transfer rate, each node needs to adapt its
attribute to routing.

2) The difference in time scales that we use for various
learning/adaptation schemes helps us prove convergence
of our algorithm (such a proof is not present in [1]).

The organization is as follows. The network and traffic model
is presented in Section II. Section III analyzes two different
approaches for data sampling in WSNs. In Section IV, we
present our routing algorithm which converges to a Wardrop
equilibrium. Results from simulations are presented in Section
V. Section VI concludes the paper and outlines future work.

II. NETWORK AND TRAFFIC MODEL

In this paper, we consider a static WSN with n sensor
nodes. Given is an n × n neighborhood relation matrix N
that indicates the node pairs for which direct communication
is possible. We will assume that N is a symmetric matrix,
i.e., if node i can transmit to node j, then j can also transmit
to node i. For such node pairs, the (i, j)th entry of the
matrix N is unity, i.e., Ni,j = 1 if node i and j can
communicate with each other; we will set Ni,j = 0 if nodes
i and j can not communicate. For any node i, we define
Ni = {j : Ni,j = 1}, which is the set of neighboring nodes of
node i. Similarly, the two hop neighbors of node i are defined
as Si = {k /∈ Ni ∪ {i} : Nk,j = 1 for some j ∈ Ni}. Note
that Si does not include any of the first-hop neighbors of node
i.

Each sensor node is assumed to be sampling (or, sensing)
its environment at a predefined rate; we let λi denote this
sampling rate for node i. The units of λi will be pkts/s,
assuming same packet size for all the nodes in the network.
In this work, we will assume that the readings of each of these
sensor nodes are statistically independent of each other so that
distributed compression techniques are not employed.

Each sensor node wants to use the sensor network to
forward its sampled data to a common fusion center. Thus,
each sensor node acts as a forwarder of data from other
sensor nodes in the network. We will assume that the buffering
capacity of each node is infinite, so that there is no data loss
in the network. We will allow for the possibility that a sensor
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node discriminates between its own packets and the packets
to be forwarded.

We let φ denote the n×n routing matrix. The (i, j)thelement
of this matrix, denoted φi,j , takes value in the interval [0, 1].
This means a probabilistic flow splitting as in the model of
[2], i.e., a fraction φi,j of the traffic transmitted from node i
is forwarded by node j. Clearly, we need that φ is a stochastic
matrix, i.e., its row elements sum to unity. Also note that
φi,j > 0 is possible only if Ni,j = 1. Our objective in this
paper is to come up with an algorithm using which any node
(say i) is able to converge to the corresponding row of the
matrix φ corresponding to the Wardrop equilibrium.

III. DATA COLLECTION MECHANISM

There are various ways of achieving the average sampling
rate of λi for all the nodes. We will see later in the paper
the qualitative behavior of a Wardrop equilibrium in sensor
networks depends crucially on the data collection mechanism
employed. In this paper, we consider two possibilities of data
collection mechanism:

A. Open System (Layered Architecture)

This is the traditional slotted Aloha based system with
a layered architecture where the application layer (sampling
process for WSNs) does not directly interact with the lower
layers (the random access MAC in our case). Such schemes
were extensively used in the Packet Radio Network literature.
The analysis of the model that we consider above is also
available in the PRN literature (see for example [2]). The
problem of stability that we will see is that for a given
sampling rate, one needs to jointly optimize the channel access
rate and the routing in order to optimize on delays. We will
also see that the sampling rate at a node may be restricted by
the sampling rate of the other downlink nodes. Further, in order
to maintain stability of a node’s transmit buffer, one needs to
be operating far from the maximum allowed sampling rate
(this is because, under the assumption of Bernoulli sampling
process, the average queue length grows exponentially with
an increase in the sampling rate). In addition, in this model,
the sampling rate is not directly related to the channel access
rates (unless it is an outcome of an optimization problem like
the one we consider). Thus, there is an extra dimension that
needs to be optimally controlled.

B. Closed System (Cross-layered Architecture)

Under this mechanism, there is a strong coupling between
the channel access process and the sampling process. This
approach has the advantage that one does not need to find
an optimal sampling rate all over again on changing the
channel access rates. The coupling (cross-layer optimization)
automatically regulates the sampling process for any change
in the channel access process.

The combined channel access/data sampling mechanism is
as follows: Node i decides to attempt a channel access with
probability αi in any slot (else, it is sensing the channel for any
possible transmissions). If decided to attempt a transmission,

the node first checks if there is any packet available in its
transmit queue. We have following possibilities:

1) No packets waiting in the transmit queue: In this case,
the MAC layer of node i will ask the appropriate upper
layer to sense data and provide it with a new packet.
This packet is then attempted a transmission.

2) At least one packet waiting to be forwarded: In this
case, node i will serve the head-of-line packet from its
transmit queue.

Note that under this mechanism the transmit queue of node i
can have at most one packet in the transmit queue that was
generated at node i. It can however have multiple packets in
the transmit queue to be forwarded, i.e., those packets that
were initially generated at some other node, and have arrived
at node i to be forwarded. Clearly, under this scheme if the
transmit queue of node i contains a packet that was generated
at node i itself, then this packet will be the head-of-line packet
till the time it leaves the transmit queue of node i.

C. Applications for Closed System

The closed scheme is meant to be used in applications
where a WSN is used to observe the time variation of a
random field over the space on which the network is deployed.
For such applications, one can think of a temporal priority
mechanism for transmitting packets so as to reduce the overall
transmissions in the network. In particular, our sampling
scheme amounts to the assumption that a node assigns highest
priority to the most recent packet generated by the node (this
priority is defined over the packets generated by the node, and
does not include the packets that a node receives to forward).

A complete stability analysis of the above mentioned data
collection schemes is presented in [7], and hence, not repeated
here. For the Open system, we will assume a given set of
channel access rates. We will see that the routing algorithm is
able to select a good operating point that guarantees stability
(as long as such a point exists for the given value of channel
access probabilities).

IV. THE ROUTING ALGORITHM FOR OPEN AND CLOSED

SYSTEM

We assume that the system operates in discrete time, so that
the time is divided into (conceptually) fixed length slots. The
system operates on CSMA/CA MAC. Assuming that there is
no exponential back-off, the channel access rate of node i (if it
has a packet to be transmitted) is 0 ≤ αi ≤ 1. Thus, αi is the
probability that node i, if it has a packet to be transmitted,
attempts a transmission in any slot. A node can receive a
transmission from its neighbor if it is not transmitting and
also no other neighboring node is transmitting.

Under the above model there will be a delay, say yj,i of
the packet from node j to be served at node i; this packet
could have originated at node j or may have been forwarded
by node j. The Expected delay of a packet transmitted from
node j is thus

∑
i�=j φj,iyj,i. Since delays are additive over

a path, packets from any node will have a delay over any
possible route to the fusion center. A route will be denoted
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by an ordered set of nodes that occur on that route, i.e., the
first element will be the source of the route, the last element
will be the fusion center and the intermediate elements will
be nodes arranged in the order that a packet traverses on this
route. Let the total number of possible routes (cycle-free) be
R. Let route i, 1 ≤ i ≤ R be denoted by the set Ri consisting
of Ri elements with Ri,j denoting the jthentry of this route.
Then, a traffic splitting matrix will correspond to a Wardrop
equilibrium iff for any i

∑
1≤j≤R:Rj,1=i

(∏Rj−1
k=1 φRj,k,Rj,k+1

)
(∑Rj−1

k=1 yRj,k,Rj,k+1

)
=

∑Rl−1
k=1 yRl,kRl,k+1 ,

(1)

for any l with Rl,1 = i and such that
∏Rl−1

k=1 φRl,k,Rl,k+1 >
0, i.e., the delays on the routes that are actually used by packets
from node i are all equal.

A. Open System

Nodes iteratively keep updating the one-hop routing prob-
abilities based on the delays incurred for every possible path.
Let φ(n) denote the traffic splitting matrix at the beginning of
the nth time slot. Node i does some computation to update
the ith row of this matrix. Let Y k(n)(Rk,1 = i) be the new
value of the delay of a packet sent by sensor i through route
k(i = Rk,1). Node i keeps an estimate of the average delay
on route k.

yk(n + 1) = (1 − a)yk(n) + aY k(n). (2)

Further, after calculating the expected delays at the start of
a time slot, each node adapts its routing probabilities to the
new expected delays as follows,

φi,Rk,2(n + 1) = (1 − b)φi,Rk,2(n)+
b
(∑

1≤l≤R:Rl,1=i yl(n)φi,Rl,2(n) − yk(n)
) (3)

B. Proof of Convergence to Wardrop Equilibrium

We will assume that the learning parameters a and b are
such that a � b. This brings us in the two-level stochastic
approximation algorithm framework and, following standard
results [4], the update of the traffic split will see the average
delays yl as static so that the effect of the second update
will be that all the traffic from node i will be directed to
the smallest delay route. The algorithm for updating the delay
estimates over route will thus see no effect of the dynamics of
the second update scheme except that the statistical properties
of the random variables will come from the splitting vector
in which each node directs all its traffic on one of the
possible routes from the node to the fusion center; note that
in general different nodes will be choosing different routes.
Thus, by the standard o.d.e. approach to stochastic approxi-
mation algorithms [4], [5], the delay updating algorithm will
behave like an autonomous ordinary differential equation. The
convergence of this differential is guaranteed using arguments
similar to those used in [6]. Since the point of convergence
satisfies the defining condition of the Wardrop equilibrium, the

proposed algorithm will converge to the Wardrop equilibrium.
Note that this convergence is for the average of delays, this is
what we mean by Cesaro-Wardrop equilibrium.

C. Closed System

The updates for this system are going to be the same as
that for the Open system. Only new complication here is
that one needs to tune the channel access rates, α′

is, also
in order to guarantee the long term average data sampling
rate. This is easily done because the nodes know (or, can
estimate) the statistics of the traffic they are getting from the
other nodes and also the success rate of its own transmissions
to various neighbors. Using this estimate a node can easily
tune its channel access rate to guarantee itself a preset data
sampling rate.

In each time slot, ith sensor tries to hold channel for
transmission with probability αi. If the node tries to hold
channel in a time slot, it either succeeds in transmitting or
fails. If the node succeeds, then if the packet transmitted can
be the one which is generated at the current node or it may be
the one which the node received from any of the neighboring
nodes. Let n (k) be the number of slots in which node has
successfully transmitted a packet generated by itself in total k
slots. λ̂k

i is the rate of transmission node is able to provide in
the kth slot, λ̂k

i = n(k)
k .

αk+1
i = max

{
min

[
αk

i + c
(
λi − λ̂k

i

)
, 1

]
, 0

}
(4)

Where c is a positive learning parameter. Delay and routing
probability learning will remain as was in the Open System.

D. Practical Considerations

Delay estimation of paths by a node in every slot can be
done by having power of sink so large that it can reach all
the sensors in one-hop. Therefore, the sink can ACK all the
incoming packets so that the sensors will get estimation of
the delay incurred by their packets. In cases, where the sink
can not transmit an ACK in one-hop, it will be transmitted in
a multi-hop fashion. The ACK in multi-hop case follows the
same path as the data-packet. However, this will only result
in a slow convergence to the Wardrop equilibrium.

V. IMPLEMENTATION RESULTS

We consider a 6-node WSN shown in Fig. 1. It is easily
seen that φ1,0 = φ2,0 = φ4,0 = 1, node 0 being the common
destination for all the packets generated in the network. Node
3 can transmit to 1 and 2. Node 5 can transmit to 1 and 4. The
routing algorithm thus has to find appropriate value of φ3,2 and
φ5,4 in order that the traffic flow in the network corresponds
to a Wardrop equilibrium. We consider this simple network to
clearly demonstrate the effect of delay and routing learning
probabilities. However, the distributed routing algorithm is
able to converge to a Wardrop equilibrium for any-scale
random deployment of WSNs.

Apart from a demonstration of the convergence of the
proposed algorithm, we will see in this section that the data
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Fig. 1. The Simulated Network consisting of 5 sensors and 1 sink.

sampling rates that a network can support using the Open
architecture is very small. This is essentially because of the
stability constraints on the channel access rates. On the other
hand, the Closed system can support higher data sampling
rates because of the fact that it is essentially self-regulating,
guaranteed to be stable while maintaining large data sampling
rates; this is because a node generates a new packet only
if it has no other packet in the queue. This however does
not mean that the Closed system can support arbitrary data
sampling rates. Characterizing the exact stability region for
both systems is an ongoing work. We have implemented the
Open as an application layer module, Closed system as a
cross-layer (Application-MAC) module, and routing algorithm
is incorporated at the routing layer in TinyOS [8].

A. Observations from Open System

In Fig. 2 and 3 we plot, against the slot number, the average
delays on the four routes 3 → 2 → 0, 3 → 1 → 0, 5 → 4 → 0,
and 5 → 1 → 0 for the open system. The data sampling rates
were set at λ1 = 0.01, λ2 = 0.05, λ3 = 0.05, λ4 = 0.01, and
λ5 = 0.04 . Note that the data sampling rates are small. We
were forced to select small data rates in order to guarantee
stability of the nodes in the network. The channel access rates
were set to α1 = 0.2, α2 = 0.2, α3 = 0.2, α4 = 0.15,
α5 = 0.1.

1) The delays on routes 3 → 1 → 0 and 3 → 2 → 0 are
very close to each other, with a very fast convergence.
Similarly for routes 5 → 4 → 0 and 5 → 1 → 0.
This shows that the algorithm succeeds in achieving a
Wardrop equilibrium.

2) Note the high value of delay on routes 3 → 1 → 0 and
3 → 2 → 0 even for moderate (or, very small) load on
the system.

3) Fig. 3 shows the delay obtained by varying the channel
access rates to αi = 0.1 for i = 1, ..., 5, and λ′s remain-
ing the same as earlier. The estimated delays show the
sensitivity to channel access probabilities. Thus, there
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Fig. 2. Delays incurred on different routes for open system.
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Fig. 3. Delays on different routes for open system w.r.t changing α′
is.

is a need to carefully tune the α′
is. In Fig. 3, we also

see that convergence to a load-balanced regime (equal
delays on all the possible routes) is violated by changing
the α′

is. As we will see later, this is not a problem in
the closed system because the system adapts its channel
access probabilities to meet the target traffic and there
is no need of further tuning this parameter.

B. Observations from Closed System

Simulation results for the closed system are presented in
Fig. 4, 5, and 6. The data sampling rates were set at λ1 =
0.1, λ2 = 0.2, λ3 = 0.1, λ4 = 0.005, λ5 = 0.1. Nodes were
expected to adapt their channel access probabilities based on
the optimal traffic split used by node 3 and 5.

1) The delays on routes 3 → 1 → 0 and 3 → 2 → 0
are very close to each other, with a fast convergence.
This shows that the algorithm succeeds in achieving a
Wardrop equilibrium.

2) For routes 5 → 1 → 0 and 5 → 4 → 0, the delays are
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Fig. 4. Delays incurred on different routes for closed system.
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significantly different. This is also reflected in the traffic
split obtained by the algorithm, as in Fig. 5 we see that
node 5 uses node 1 for most of its traffic, thus obtaining
smaller delay. This is again Wardrop equilibrium where
the higher delay path is not used (the small +ve value of
traffic on route 5 → 4 → 0 is imposed by the algorithm
to ensure that all the alternatives are probed often enough
to cope up with a change in the network).

3) Note the small value of delay on routes 3 → 1 → 0
and 3 → 2 → 0 even for moderate (or, very small)
load on the system. This is to be compared with the
corresponding values shown under the results for open
system where the delays on these routes were higher
even though the average data sampling rates were sig-
nificantly smaller. Thus, in comparison with the open
system, the closed system provides better performance.

4) Fig. 6 shows that the algorithm is also able to adapt
the channel access rates in a distributed fashion. It can
be checked that the values of α′

is converged-to by the
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Fig. 6. Convergence of channel access rates for closed system.

algorithm indeed are just enough to serve the traffic that
is offered to the different nodes.

VI. CONCLUSIONS AND FUTURE WORK

For wireless sensor networks with random channel access,
we proposed a data sampling approach that guarantees a
long term data sampling rate while minimizing the end-to-
end delays. Simulation results show that performance of this
scheme is better than the traditional layered architecture. We
also saw that the proposed scheme does not require tedious
parameter tuning as is the case for the layered architecture. We
also proposed a learning algorithm, applicable to both the open
as well as the closed system, to achieve Wardrop equilibrium
for the end-to-end delays incurred on different routes from
sensor nodes to the fusion center. For the closed system, this
algorithm also adapted the channel access rates of the sensor
nodes.

We are now working on modifications of the algorithm
to make it converge to an efficient equilibrium. We are also
tempted to perform the network lifetime analysis as a result of
a very fast convergence to Wardrop equilibrium.
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