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ABSTRACT

We1 consider the blind multichannel dereverberation problem for a

single source. We have shown before [5] that the single-input multi-

output (SIMO) reverberation filter can be equalized blindly by apply-

ing multivariate Linear Prediction (LP) to its output (after SISO in-

put pre-whitening). In this paper, we investigate the LP-based dere-

verberation in a noisy environment, and/or under acoustic channel

length underestimation. Considering ambient noise and late rever-

beration as additive noises, we propose to introduce a postfilter that

transforms the multivariate prediction filter into a somewhat longer

equalizer. The postfilter allows to equalize to non-zero delay. Both

MMSE-ZF and MMSE design criteria are considered here for the

postfilter. Simulations show that the proposed scheme is robust in

noisy environments and channel length underestimation, and per-

forms better compared to the classic Delay-&-Predict equalizer and

the Delay-&-Sum beamformer.

1. INTRODUCTION

Blind dereverberation is the process of removing the effect of rever-

beration from an observed reverberant signal. Reducing the distor-

tion caused by reverberation is a difficult blind deconvolution prob-

lem, due to the colored and non-stationary nature of speech and the

length of the equivalent impulse response from the speaker’s mouth

to the microphone(s). Consider a clean speech signal, sk, produced

in a reverberant room. The reverberant speech signal observed on M
distinct microphones can be written as:

yk = h(q) sk (1)

where yk = [y1,k · · · yM,k]T is the reverberant speech signal, h(z) =

[h1(z) · · · hM (z)]T =
PLh−1

i=0
hiz

−i is the SIMO FIR channel

transfer function, Lh is the channel length. The introduction of q,

where q−1 is the one sample time delay operator: q−1sk = sk−1,

allows to introduce the compact notation of transfer functions in the

time domain (whereas z in the z-transform is a complex number).

Blind dereverberation faces the channel/speech source identifia-

bility problem. In fact, for any invertible scalar filter α(q), (α(q)h(q),
(1/α(q)) sk) is also an acceptable solution for (1). In [1], the au-

thors compute a multichannel FIR equalizer using a subspace based

method. The identifiability problem is solved using accurate infor-

mation of the ”source” (or ”noise”) subspace dimension. The va-

lidity of the technique hinges critically on the true channel impulse
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response being of strictly finite duration, and its successful identifi-

cation requires knowledge of the channel length [2]. For the acoustic

case, the true channel impulse response length is generally unknown

and/or ill-defined. This is a major limitation to the practical applica-

bility of the subspace based methods to speech dereverberation.

In contrast, the alternative Linear Prediction (LP) based technique

(proposed and refined by Slock et al. [3, 4]) proved to be consistent

in the presence of channel order error. This makes the LP equalizer

one of the more attractive solutions for blind speech dereverbera-

tion, as proposed in [5]. One tricky issue though is that in order

for the LP to perform zero delay channel equalization, the source

should be white, otherwise LP will perform both channel equaliza-

tion and source whitening. Hence, in the case of speech dereverber-

ation, some additional processing is required. In [5, 6], the speech

correlation gets compensated via a SISO pre-whitening at the LP

equalizer input (microphone signals). Next, the multivariate LP can

be computed, and applied to the reverberant microphone signals yk:

uk|{z}
M×1

= A(q)|{z}
M×M

yk|{z}
M×1

= h0|{z}
M×1

sk|{z}
1×1

since A(z)h(z) = h0 (2)

where A(q) is the MIMO linear prediction error filter, and h0 =
h(z=+∞) is the multichannel precursor coefficient. The LP equal-

izer is obtained by performing Maximum Ratio Combining (MRC)

(hT
0 ) on the prediction error signal uk components.

In [8] a somewhat related approach has been proposed, in which

only the first microphone signal (assumed to have the shortest delay)

is predicted in terms of the past samples on all microphones (MISO

prediction). Compared to MIMO prediction, MISO prediction loses

the MRC advantage. Since the MISO prediction is applied directly to

yk, a dereverberated but also whitened source signal gets produced.

Now, multivariate channel prediction assumes that the individual mi-

crophone channel transfer functions hi(z) (i = 1, . . . , M ) have no

SISO transfer function factor in common. If such a common factor

exists, or equivalently if the source is colored, the multivariate LP

will model this factor with an all-pole filter and the LP filter will con-

tain a scalar transfer function factor that is the inverse of the all-pole

model. This scalar factor can be determined as the common roots of

the M MISO LP component transfer function polynomials or, as in

[8], as the eigenvalues of a large matrix of which the MISO LP coef-

ficients constitute one column. Postfiltering of the MISO LP residual

with the inverse of the extracted factor then allows to recover in prin-

ciple the unwhitened source. This common root extraction approach

is prone to ill-conditioning, as the results in [8] tend to confirm. In-

deed, due to the tapered off behavior of the late reverberation on all

microphones, the hi(z) tend to have zeros that cluster near the ori-

gin and hence that are close or (almost) in common. This is not a big

problem for the MIMO LP approach in [5, 6] where the effect is that



the reverberation tail will not get equalized, but it is small anyway.

For the purpose of the determination of the source color as in [8] on

the other hand, the effect of such ill-conditioning is more severe.

In [9],[10] the so-called TRINICON method was introduced for

blind separation of acoustic sources. One of the main characteris-

tics of the objective function optimized by the TRINICON method,

which is also based completely on second-order statistics (SOS), is

that the extracted sources at the output of a MIMO FIR filter are

as jointly decorrelated as possible, apart from intra-source correla-

tions. In other words, the MIMO FIR demixing filter tries to produce

source estimates with as little inter-source correlation as possible. As

a result the cascade of the MIMO demixing and mixing filters will

tend to a diagonal MIMO filter (apart from source permutations) and

hence the sources may appear in a filtered fashion. Hence the prob-

lem solved is not so much that of dereverberation but of source sep-

aration. Also, the method is only applicable starting with at least

two sources. And in spite of being SOS based, the objective func-

tion is not quadratic and requires an iterative (natural gradient based)

solution.

Dereverberation techniques are generally introduced in a noise-

less environment (the problem is already quite difficult even under

these ideal conditions). In this paper, we propose a robust scheme for

dereverberation in the presence of noise. This noise may be either

additive acoustic noise or residual late reverberation due to underes-

timation of the reverberation delay spread (for computational com-

plexity reasons or for estimation considerations in non-stationary

environments). We investigate the resulting dereverberation perfor-

mance in both a noisy environment and under the impulse response

length underestimation.

We next summarize the basic D-&-P equalization technique from

[5, 6, 7]. At first yk gets replaced by D(q)yk, a microphone-wise

delayed version of the microphone signals so that the source sig-

nal arrives with the same delay at all microphones. We shall denote

the aligned version of yk still by yk. Next, a SISO source LP fil-

ter As(z) gets determined by performing LP on the yi,k SOS aver-

aged over the M microphones. We then obtain xk = As(q)yk =
h(q) esk where esk = As(q) sk is the whitened source signal. MIMO

LP on xk yields a prediction errorexk = Ax(q)xk = h0 esk with Ax(z)h(z) = h0 . (3)

Finally, the dereverberated source gets estimated as bsk = hT
0 Ax(q)yk.

2. ROBUST DELAY-&-PREDICT EQUALIZATION IN

NOISY ENVIRONMENTS

In a noisy environment, the microphone signals can be written as

yk = h(q) sk + vk (4)

where the noise vk represents acoustic noise and/or the effect of

modeling error in h(z). We shall model vk as spatiotemporally

white noise, independent of sk. Such noise, for given noise power,

is the worst case noise. In any case, at medium to high SNR, the

correlation of the noise is a secondary effect compared to account-

ing for the noise power. The SISO and MIMO LP problems in the

dereverberation approach considered here should still be formulated

for the noise-free signals, even in the noisy case. However, since the

LP problems only involve SOS, the noiseless SOS can easily be ob-

tained from the noisy SOS in the white noise hypothesis, especially

in the multichannel configuration considered here in which signal

and noise subspaces arise. The simplest SOS denoising would be

to subtract the noise covariance matrix (σ2
vI) from the covariance

matrix Ry of yk by estimating σ2
v from the noise subspace eigen-

value(s) of Ry. Various degrees of sophistication are possible, that

we shall not elaborate on here. Applying the (noiseless) MIMO LP

to the noisy microphone signals, we get

uk = Ax(q)yk = h0 sk + Ax(q)vk . (5)

The robustified D&P equalizer then gets constructed as

FD−&−P (q) = w(q)Ax(q) , bsk = FD−&−P (q)yk = w(q)uk (6)

whereas the basic D&P equalizer uses w(q) = hT
0 , which maxi-

mizes the power of the desired signal part but not necessarily the

output SNR. In [7], we have proposed the postfilter w(q) with a

MMSE-ZF design using explicitely the white noise hypothesis (in a

multichannel configuration, there is an infinity of zero-forcing de-

signs, one of which will be MMSE). The filter length of w(q) al-

lows the design of non-zero-delay equalizers. Here we shall consider

the design of the postfilter using the MMSE-ZF and MMSE criteria,

without a white noise hypothesis.

MMSE-ZF Design

For a given filter length Lw and an equalization delay 0 ≤ d ≤
(Lw−1), the weighting filters are optimized by maximizing the out-

put SNR (under the d-delay zero-forcing constraint), i.e.8>><>>: w = arg max
w

σ2
sI

w(z)Su(z)w†(z)
dz

2πjz
− σ2

s

w(z)h0 = z−d

(7)

where w†(z) denotes the paraconjugate (matched filter) of w(z),

and Su(z) = Ax(z) Sy(z) A†
x(z) is the matrix spectrum of uk .

For a time domain formulation, let w = [w0 · · ·wLw−1], Uk =
[uT

k · · ·uT
k−Lw+1]

T , H0 = ILw
⊗ h0 and ed = [0 . . . 0 1 0 . . . 0]

with a 1 in position d+1. Hence bsk = wUk. The optimization in

(7) becomes (
w

zf

Lw,d = arg min
w

wRUw
T

wH0 = ed

(8)

where RU is short for RUU = E UkU
T
k , the covariance matrix of

uk of (block) size Lw. The optimal postfilter is

w
zf

Lw,d = ed

�
H

T
0 R

−1
U H0

�−1

H
T
0 R

−1
U (9)

with corresponding optimal

SNR
zf

Lw,d =
σ2

s

ed

�
HT

0 R−1

U H0

�−1
eT

d − σ2
s

. (10)

The optimal delay (maximum SNR) corresponds to the position of

the smallest diagonal element of
�
HT

0 R−1
U H0

�−1
.

MMSE Design

The MMSE design corresponds to wmmse
Lw,d = Rq−ds UR−1

UU. Now

Rq−ds U = ed RSS HT
0 where RSS is the source covariance matrix

of size Lw, to be constructed using an AR model using the SISO LP

filter. Note that ed RSS means that only row d+1 of RSS needs to

be computed. Hence wmmse
Lw,d = ed RSS HT

0 R−1
U and

SNR
mmse
Lw,d =

σ2
s

ed RSS HT
0 R−1

U H0 RSS eT
d

− 1 . (11)



3. EXPERIMENTAL RESULTS

3.1. MMSE-ZF postfiltering for robust dereverberation in noisy

environment

We first illustrate the behavior of zero-forcing post-processing, and

we provide a comparison with the classic Delay-&-Predict equal-

izer. We consider a rectangular room with dimensions Lx = 8 m,

Ly = 10 m and Lz = 4 m, and with wall reflection coefficients

ρx = ρy = ρz = 0.9 (T60 = 250 ms). A speech signal with du-

ration of 8.8s, and sampled at 8 kHz is used as the original source

signal. The reverberant speech signal is observed on 2 distinct mi-

crophones. A computer implementation (graciously provided by

Geert Rombouts while at K.U. Leuven) of the image method as de-

scribed in [11] is used to generate synthetic room impulse responses

for the microphones. We constrain the postfilter length (and hence

the equalization delay d) to Lw ≤ 100 (d ≤ 12.5 ms). The optimal

delay (maximizing (10)) is selected. Figure 1 plots the Signal-to-
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Fig. 1. The SENR function of the input SNR.

Echo+Noise Ratio (SENR =

P
k

s2
kP

k
(sk − bsk)2

) as a function of the

input Signal-to-Noise Ratio (SNR =

P
k
‖yk − vk‖

2P
k
‖vk‖

2
). The curves

show that, in all regions, the MMSE-ZF D-&-P performs better than

both the classic D-&-P and D-&-S. Particularly in a noisy environ-

ment, the postfiltering becomes essential in order to have acceptable

enhancement accuracy. On the other hand, one can also remark that

the post-processing still has a positive effect even in absence of am-

bient noise (SNR=60 dB). The reason is that the postfiltering also

compensates for the errors in the estimation of the source spectrum

(the estimation is done by averaging only two observation spectra

(M = 2)).

3.2. MMSE-ZF Delay-&-Predict equalization under channel length

underestimation

Ambient noise is not the unique source of additive noise. In fact,

acoustic reverberation is theoretically infinitely long. As we assume

that the channel has a finite length Lh, the late reverberation will be

considered as additive noise, i.e.,

yk =

Lh−1X
i=0

hisk−i +
∞X

i=Lh

hisk−i| {z }
vk

. (12)

Classically the channel length is chosen long enough such that the

energy of the remaining reverberation is negligible (typically Lh ≥

T60fs). With such a choice, the acoustic channels may have con-

siderable length in real propagation environments. Hence, the algo-

rithm may become computationally very expensive. In this section,

we investigate the effect of undermodeling of the reverberation re-

sponse on the dereverberation performance.

We model the late reverberation as a spherically diffuse noise [12]

(although strictly speaking this additive noise (late reverberation) is

neither white nor independent from the reverberant signal). Then,

we apply MMSE-ZF postfiltering to reduce the late reverberation ef-

fect. We consider the Direct to Reverberant energy Ratio (DRR) as

an evaluation criterion for the dereverberation accuracy:

DRR = 10 log10

(Pτ−1

t=0
eh2

tP∞

t=τ
eh2

t

)
dB (13)

where eht = ft ∗ ht =
P

i
fiht−i denotes the equalized channel

(with a given equalizer f(q)), and τ is the number of samples to be

included as the direct component. The choice of the parameter τ de-

pends on the application (how annoying early and late reverberation

are in the given application). By increasing the value of τ , we give

more weight to the degradation due to the late reverberation. If τ
is small (τ ≤ 1 ms), the DRR criterion will be correlated with the

dereverberation SENR (equal if the input is white). Figures 2 and 3

plot the curves of the output DRR of the classic, MMSE-ZF Delay-

&-Predict equalizers, and the Delay-&-Sum beamformer (function

of the assumed channel length), respectively using 2 and 4 micro-

phone array setup (for τ = 10 ms and τ = 1 ms).
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Fig. 2. The output DRR as function of the assumed channel length,

using a 2 microphone array setup (τ = 10 ms and τ = 1 ms)).
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Fig. 3. The output DRR as function of the assumed channel length,

using a 4 microphone array setup (τ = 10 ms and τ = 1 ms).

One can remark that the MMSE-ZF D-&-P outperforms the classic



D-&-P in terms of equalization accuracy, and increases the robust-

ness to channel length undermodeling. In all cases, the two schemes

(classic and MMSE-ZF D-&-P) outperform the D-&-S beamformer.

Also note that even when the channel length is over-estimated, the

MMSE-ZF D-&-P still performs better than the classic D-&-P, es-

pecially when only few microphones are available. As stated in the

previous section, this is due to the fact that the MMSE-ZF D-&-P

can compensate for the errors in the estimation of the source corre-

lations. These errors become more severe as the number of micro-

phones decreases.

3.3. MMSE postfiltering for robust dereverberation

Next, we investigate the behavior of MMSE postfiltering, and we

provide a comparison with the MMSE-ZF design. The source corre-

lations Rss are reconstructed from the estimated source AR model

(as described in [5]). We consider the effect of both additive white

noise and channel length underestimation. The postfilter lengths are

constrained to Lw ≤ 100. The same equalization delay is used for

both MMSE and MMSE-ZF post-processing and is set to d = 50.

As an evaluation criterion, we consider the SENR Gain (we consider

the classic Delay-&-Sum performance as reference). We plot the

SENR Gain as a function of the assumed channel length. The input

SNR is set to 5 dB (figure 4) and 15 dB (figure 5), respectively.
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Fig. 4. The SENR Gain as function of the assumed channel length

(SNR = 5dB, M = 4).
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Fig. 5. The SENR Gain as function of the assumed channel length

(SNR = 15dB, M = 4).

These simulations confirm that allowing for an equalization delay

improves the overall dereverberation performance, and it is essential

at low SNR. We observe also that MMSE postfiltering outperforms

the MMSE-ZF based scheme, especially in the low SNR region. As

expected, the benefit of an MMSE design vanishes at high SNR.

One may remark that classic D-&-P may be inferior to D-&-S in

these unideal conditions, but the new designs are precisely designed

to handle those conditions.

4. CONCLUSIONS

In this paper, we have introduced robust Delay-&-Predict equaliza-

tion for blind SIMO dereverberation. We have optimized the trans-

formation of the multivariate prediction filter to a longer equalizer

using the MSE criterion. The optimization is performed with or

without zero-forcing constraints, leading respectively to MMSE-ZF

and MMSE designs. The filter length increase allows for the intro-

duction of some equalization delay, that can also be optimized. Ex-

perimental results illustrate that considerable gains can be achieved

by allowing for a small equalization delay. It has also been shown

that the post-processing is crucial in the low SNR region, increases

robustness to the channel length underestimation and alleviates er-

rors in the source color estimation. In these regions of interest, sim-

ulations prove that the MMSE design is more appropriate.
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