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Résumé

La sécurité de l’Internet représente un souci majeur de nos jours. De nombreuses
initiatives sont menées qui cherchent à offrir une meilleure compréhension des me-
naces. Récemment, un nouveau domaine de recherches a vu le jour qui vise à étudier
le mode opératoire des attaquants et à identifier les caractéristiques des groupes res-
ponsables des attaques observées. Le travail réalisé dans cette thèse concourt à cet
objectif. Nous montrons que, à partir de traces réseau obtenues à partir d’un réseau
mondial de pots de miel sur une période de deux ans, il est possible d’extraire de
la connaissance significative et utile sur les attaquants. Pour atteindre ce but, la
thèse offre plusieurs contributions importantes. Tout d’abord, nous montrons que
les traces d’attaques peuvent être groupées en trois classes distinctes, correspondant
à des phénomènes d’attaque différents. Nous avons défini, implémenté et validé des
algorithmes qui permettent de classifier un très grand nombre de traces selon ces
trois catégories. Deuxièmement, nous montrons que, pour deux de ces classes, il est
possible d’identifier des micro et macro événements d’attaques présents durant un
nombre limité de jours. Ces événements sont des éléments importants pour identifier
des activités spécifiques qui, autrement, auraient été perdues dans le bruit diffus des
autres attaques. Ici encore, un environnement été défini, réalisé et validé à l’aide de
deux ans de trace. Des centaines d’événements ont été ainsi trouvés dans nos traces.
Enfin, nous montrons que, en regroupant ces événements, il es possible de mettre
en lumière le mode opératoire des organisations responsables des attaques. La vali-
dation expérimentale de notre approche nous a menés à l’identification de dizaines
de ce que nous appelons des armées de zombies. Leurs caractéristiques principales
sont présentées dans la thèse et elles révèlent des informations importantes sur la
dynamique associée aux attaques observables sur l’Internet.
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Abstract

Internet security is a major issue nowadays. Several research initiatives have
been carried out to understand the Internet security threats. Recently, a domain
has emerged called attack attribution that aims at studying the modus operandi of
the attacks and at identifying the characteristics of the groups responsible for the
observed attacks. The work presented in this thesis participates to the efforts in this
area. We show in this work that, starting from network traces collected over two years
on a distributed system of low interaction honeypots, one can extract meaningful and
useful knowledge about the attackers. To reach this goal, the thesis makes several
important contributions. First of all, we show that attack traces can be automatically
grouped into three distinct classes, corresponding to different attack phenomena. We
have defined, implemented and validated algorithms to automatically group large
amount of traces per category. Secondly, we show that, for two of these classes, so
called micro and macro attack events can be identified that span a limited amount
of time. These attack events represent a key element to help identifying specific
activities that would, otherwise, be lost in the so called attack background radiation
noise. Here too, a new framework has been defined, implemented and validated
over 2 years of traces. Hundreds of significant attack events have been found in our
traces. Last but not least, we showed that, by grouping attack events together, it
was possible to highlight the modus operandi of the organizations responsible for
the attacks. The experimental validation of our approach led to the identification of
dozens of so called zombie armies. Their main characteristics are presented in the
thesis and they reveal new insights on the dynamics of the attacks carried out over
the Internet.
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Synthèse en français

Motivation

Avoir une perception précise du paysage des menaces sur Internet, et la capacité
à déterminer l’identité et la position des attaquants est le centre de préoccupation
d’une partie de la communauté des chercheurs en sécurité. Ces sujets sont générale-
ment qualifiés de compréhension de la situation et de l’attribution d’attaques [24].
Les défis auxquels nous sommes confrontés en traitant ces problèmes sont que les
attaquants essaient de masquer leur identité. Par conséquent, il est difficile d’identi-
fier les responsables. Ceci est particulièrement vrai à la lumière de l’innovation sans
fin des outils d’attaques. A titre d’exemple, durant les six derniers mois de 2008,
Symantec a découvert 1,656,227 nouveaux codes malveillants [120]. Ce processus est
avant tout motivé par le profit commercial des activités de cybercriminalité [128].
Plusieurs modèles ont été examinés. En fait, il existe de nombreuses façons d’utiliser
des machines compromises, par exemple, en volant des informations sensibles, en
effectuant la fraude aux clics [52, 51], en vendant des machines zombies [105, 39],
en envoyant du spam [6, 101, 126, 114, 53, 13], ou encore en faisant des attaques
du type DDoS [54, 107, 72, 84]. En conséquence, Internet est devenu un endroit
attrayant pour de nombreux groupes d’attaquants avec des diversités en stratégies
d’attaque, compétences et objectifs [40].

Entre autres, les menaces trouvées sur Internet ont les deux caractéristiques
suivantes :

– Les activités malveillantes sont localisées. Il a été démontré que les at-
taques observées sur Internet ne sont pas uniformes ni en type, ni en intensité
selon endroit où elles sont observées [10, 22, 18, 28, 57, 81, 92, 91]. Par exemple,
dans [18] Pouget et al a fourni une étude comparative des attaques observées
sur deux capteurs identiques, un en France et l’autre à Taiwan. L’étude a
montré des différences entre les deux traces d’attaques par rapport à plusieurs
aspects tels que les services les plus attaqués, les domaines des attaquants, les
patterns d’attaques spécifiques par réseau. La localité des attaques est égale-
ment confirmée par d’autres travaux [83, 22, 57]. Les vers Nimda [37], Code-
RedII [75], Blaster [11, 15] sont célèbres pour leur mécanisme de propagation
spécifique. Par ailleurs, en profitant de l’information dans la table de routage
BGP, un “routing worm” peut non seulement se propager plus vite, mais peut
également choisir les cibles spécifiques tels qu’un pays, une entreprise, une ISP,
une AS [139].
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– Les machines compromises, organisés en réseaux de zombies, sont de
plus en plus contrôlables. Un réseau de zombies est un réseau de machines
compromises, appelés bots, qui sont sous le contrôle de leur botmaster. Bien
que les bots peuvent partager plusieurs caractéristiques avec d’autres classes de
malwares, leur caractéristique discriminante est d’utiliser une canal de contrôle
et commande (command and controle channel) pour recevoir des commandes
de leur maître. Grâce à cette propriété, les attaquants peuvent exploiter les
machines affectées de manières différentes à objectifs différents. Les réseaux
de zombies ont été vus se déplaçant à partir d’une infrastructure centralisée
[12, 40, 51, 136] vers une distribuée [44, 50, 116, 115, 113, 127], en utilisant
d’abord des protocoles faciles à détecter [12, 40, 51, 136] aux plus difficiles à
détecter [20, 30, 51, 114]. Selon [100], 27 % de toutes les tentatives observés
à partir de notre Darknet distribués peuvent être directement attribués aux
activités de propagation de botnets.

Ces tendances soulignent le fait que les dangers d’une attaque ne résident pas
seulement dans son exploit, c’est à dire dans les mesures prises afin de compromettre
une machine, mais aussi dans la façon dont elle est utilisée (ou le mode opératoire
de l’outil). Par exemple, la localisation rend les outils d’attaques plus furtifs et
la contrôlabilité donne à l’attaquant la possibilité d’avoir différentes options sur
la façon d’exploiter les machines infectées. Alors que les modes opératoires sont
importants, ils ne peuvent pas toujours être tiré ni par l’observation de l’attaque
individuellement, ni par l’analyse de ses binaires. Ceci est peut-être dû à plusieurs
raisons. Par example, le mode opératoire d’un outil n’est pas toujours visible en une
seule attaque. Par exemple, en étudiant individuellement l’attaque entre une source
et une destination, il est impossible de savoir s’il s’agit d’un scan du type balayage.
En outre, des informations sur le mode opératoire ne sont pas toujours présentes dans
les outils. Par exemple, dans le cas d’un réseau de zombies, les cibles des attaques
sont reçues du botmaster, elles ne sont pas définies par les bots. Par conséquent,
nous devons examiner les sources d’attaques dans leur contexte pour comprendre
vraiment les processus d’attaques derrière eux, les stratégies et les motivations des
attaquants.

Positionnement de travail

Pour évaluer le niveau de menace sur Internet, les chercheurs ont pris plusieurs
initiatives telles que la collecte des échantillons de malwares [65, 8], l’analyse de la
dynamique des malwares [63, 26, 108], l’évaluation des URL [99]. La collecte des
traces d’attaque devient une approache couramment acceptée dans la communauté
de sécurité réseaux [32, 77, 9, 27, 14, 36, 81, 96, 76]. Grâce aux données recueillies,
les analystes appliquent des modèles mathématiques pour déduire les caractéris-
tiques des menaces actuelles [2, 3]. Pour que cette approche fonctionne, nous devons
posséder, entre autres choses, un ensemble de données propre et représentatif. Dans
le cadre de cette thèse, nous voulons étudier le problème de sécurité sur Internet
grâce à l’utilisation de traces des attaques. Pour pouvoir avoir de bons résultats,
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il faut un ensemble de données propre comme input pour notre approche. Dans
notre cas, pour permettre d’évaluer la nature des menaces sur Internet, nous devons
recueillir des traces des attaques de différents endroits dans le monde. Les traces
des attaques générées par un outil d’attaque peuvent dépendre de l’environnement
avec lequel il interagit. Ainsi, pour pouvoir comparer des traces, elles doivent être
obtenues grâce au même type de capteur. Afin de créer un ensemble de données
propres, depuis 2003, EURECOM a déployé des pots de miel pour observer et re-
cueillir des traces d’attaque à différents endroits sur Internet. Un pot de miel est
un système d’information dont la valeur réside dans l’utilisation non autorisée ou
illicite de cette ressource [109]. L’ensemble de données recueilli à long terme grâce
à cette infrastructure nous offre la possibilité d’observer l’évolution des menaces
sur une longue période de temps. Du point de vue des réseaux attaqués, nous ne
disposons pas d’informations sur la façon dont les attaques sont effectivement lan-
cées. Ceci rend difficile l’explication des traces des attaques que nous observons. En
fait, des traces observées peuvent être la combinaison des interactions de plusieurs
activités, exploitées par des attaquants différents. Il est habituellement difficile de
dire si deux attaques sont liées ou non. En conséquence, il est difficile d’expliquer
les phénomènes d’attaques où plusieurs sources d’attaques sont impliquées. Dans
l’état actuel du domaine d’analyse de traces d’attaques, la plupart des efforts ont
été consacrés à l’évaluation des types d’attaques [88, 81] ou à la compréhension de
propriétés de la sécurité d’Internet et moins sur la compréhension de la façon dont
les attaques se produisent [69]. Profitant de notre infrastructure distribuée de pots
de miel, notre intention est de regrouper les sources d’attaques dont nous supposons
qu’elles ont la même cause originalle et ensuite d’étudier les caractéristiques de ces
groupes pour déduire les caractéristiques de ces causes originalles. Il est important
de souligner que par causes originalles nous entendons non seulement le type de
l’attaque, mais également son utilisation particulière par un attaquant spécifique.
Pour détecter de tels groupes de machines d’attaques, nous faisons l’hypothèse clé
suivante. Les sources d’attaques partagant la même cause auront des distributions
particulières communes à la fois en terme de temps et d’espace. Des exemples de tels
groupes de sources d’attaques peuvent être, par exemple, dus à des attaques lancées
par des ordinateurs dans un réseau de zombies qui attaquaint un sous-ensemble de
nos capteurs pendant une période de temps donnée. Les machines, au cours de cette
période, sont membres de ce que nous appelons une micro attaque. Plus formelle-
ment :

Définition 1 Une micro attaque µ est définie par un tuple (T ,F ) où T repré-
sente une période de temps limitée, généralement de quelques jours, et F représente
l’empreinte d’une attaque comme on le voit sur nos capteurs. µ est un ensemble
d’adresses IP observées dans T et qui ont été vues laisser les empreintes F d’un
point de vue donné (par exemple un de nos capteurs)

Premier objectif de recherche : Dans cette thèse, nous voulons construire
un mécanisme automatisé qui peut reconnaître et caractériser les micros attaques
existantes dans des traces d’attaques recueillies auprès d’un ensemble distribué de
pots de miel similaires
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Notre hypothèse est que certaines micro attaques peuvent être reliées entre elles
pour faire un phénomène d’attaques plus vaste qui est appelée une macro attaque.

Définition 2 Une macro attaque est un ensemble de micro attaques observées
au cours de la même période de temps et au cours de laquelle les séries temporelles
correspondantes sont fortement similaires.

Deuxième objectif de recherche : Dans cette thèse, nous voulons construire
un mécanisme automatisé qui peut reconnaître et caractériser les macro attaques
existantes dans des traces d’attaques recueillies auprès d’un ensemble distribué de
pots de miel similaires.

Approche et défis

Pour reconnaître les micro et macro attaques, nous sommes confrontés aux pro-
blèmes suivants :

– Identification de micro attaques : Des processus d’attaques différents
peuvent laisser des empreintes différentes. Par exemple, on pourrait attendre
que le trafic généré par un réseau de zombies soit différent à celui généré par
un ver. Notre capacité de reconnaissance pourrait également être impactée par
la façon dont les traces se regroupent. Par exemple, si un ver vient de peu d’en-
droits spécifiques sur Internet, et attaque partout dans le monde, il sera facile
d’identifier les traces qu’il laisse en les regroupant par l’origine des sources des
attaques. Au contraire, si un réseau de zombies est constitué des bots situés
partout dans le monde, mais qu’il attaque quelques blocs d’adresses IP spéci-
fiques, il est possible de mettre en évidence un tel comportement spécifique en
regroupant les traces par la destination plutôt que par la source.

– Complexité : Comme nous le montrerons plus loin, pour détecter les micro
et macro attaques, nous avons besoin de comparer les traces des attaques les
unes avec les autres. Ceci est une tâche très couteuse pour un grand ensemble
de données. Les facteurs qui constituent ce coût sont :
– Le volume des traces des attaques.
– La durée de la période pendant laquelle nous recueillons des traces des at-

taques.
– Précision : Il existe de nombreux types de mesures de similarité/distance

telles que SAX [70], facteur de corrélation Pearson, Minkowski. Elles ont été
inventées dans des contextes historiques différents pour des buts différents.
Nous avons besoin d’identifier celle qui convient à notre but, à savoir corréler
les traces des attaques observées sur Internet.

Contribution

Nos contributions dans cette thèse sont les suivantes :
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– Nous montrons que, en analysant les macro attaques, nous pouvons en ap-
prendre plus sur les outils d’attaques, les modes opératoires de certaines classes
d’attaques, ainsi que plusieurs autres caractéristiques des processus d’attaques
sur Internet. Il est important de souligner le fait que les macro attaques gé-
nérées en tant que résultat de notre approche peuvent être et, en réalité, ont
été utilisées par d’autres chercheurs dans le contexte de leur propre travail
[122, 123].

– Nous démontrons qu’il est possible d’automatiser la détection de macro at-
taques pour un grand ensemble de données. Nous dévelopons trois solutions
pour l’identification de macro attaques qui peuvent s’utiliser dans des contextes
différents. Les trois solutions ont été validées expérimentalement.

– Nous montrons que les outils d’attaques peuvent être classés en trois familles
selon leur niveau d’activité. La première famille se compose d’outils qui sont
utilisées de façon constante. La deuxième famille se compose d’outils qui sont
lancés de temps à autre sur une période de quelques jours. La dernière famille se
compose d’outils qui sont rarement utilisés plus d’une fois et toujours pendant
un ou deux jours seulement. Cette découverte est fondamentale pour réduire
le coût de calcul lors de la détection d’événements d’attaques.

– Nous montrons aussi l’impact qu’à la façon dont on groupe les traces des
attaques sur notre capacité à détecter certaines micro et macro attaques. Selon
que nous utilisons l’origine ou la destination de ces attaques, nous pouvons
identifier des macro attaques différents.

Terminologie

Définition 3 Une Plateforme est une machine physique qui simule, grâce au
programme honeyd [98], la présence de trois machines distinctes. La plateforme est
reliée directement à Internet et recueille les traces tcpdump qui sont fournies quoti-
diennement à la base de données centralisée du projet Leurré.com.

Définition 4 Leurré.com : Le projet Leurré.com est un système distribué de telles
plateformes déployées dans plus de 50 endroits dans 30 pays différents (voir [67] pour
les détails)

Définition 5 Une Source correspond à une addresse IP observée sur une ou plu-
sieurs plateformes, et pour laquelle le temps d’arrivée entre deux paquets consécutifs
reçue reste inférieur à un certain seuil (25 heures).

Définition 6 Une Large Session est l’ensemble de paquets échangés entre une
source et une plateforme particulière.

Définition 7 Un Cluster est un ensemble de larges sessions similaires, qui sont,
en première approximation, générées par un même outil d’attaque
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Définition 8 Une Série Temporelle ΦT,c,op est une fonction définie sur une pé-
riode de temps T , T étant définie comme un intervalle de temps (en jours). Cette
fonction retourne le nombre de sources par jour, associées au cluster c, obser-
vées à partir du point de vue op donné. Le point de vue op peut être soit une
plateforme spécifique ou soit un pays d’origine spécifique. Dans le premier cas,
ΦT,c,platformX

retourne, par jour, le nombre de sources appartenant au cluster c

qui ont été observées par platformX . De même, dans le second cas, ΦT,c,countryX

retourne, par jour, le nombre de sources appartenant au cluster c qui sont géo-
graphiquement situées dans countryX . De toute évidence, nous avons toujours :
∑∀i∈pays ΦT,c,i =

∑∀x∈plateformes ΦT,c,x

Définition 9 Une Série Temporelle Rassemblée ΦT,op est une fonction définie
sur une période de temps T , T étant définie comme un intervalle de temps (en jours).
Cette fonction retourne le nombre de sources par jour pour un point de vue op. Le
point de vue peut être une plateforme spécifique ou un pays d’origine spécifique. En
conséquence, la série temporelle rassemblée ΦT,op est la somme de toutes les séries
temporelles de forme ΦT,∗,op ou ΦT,op =

∑∀c∈clusters ΦT,c,op

Détection de micro et macro attaques

Comme une attaque peut se passer à plusieurs endroits, il est nécessaire de
corréler des attaques pour l’identifier. C’est pour cela que nous commençions par
l’identification de mesure de correlation qui répond bien à notre besoin. La deuxième
section présente l’approache pour identifier des événements d’attaques tous en pre-
nant en compte le problème de complexité. La troisième section propose deux usages
spéciaux des techniques discutées à la deuxième section pour réduire encore plus le
coût de calcul.

Mesures de correlation

Nous avons à ce jour plusieurs techniques qui peuvent être utilisées pour calculer
la distance entre deux séries temporelles. Avant de décider laquelle convient le mieux
à nos besoins, nous étudions en détail notre contexte d’application. Premièrement,
s’agissant de l’exigence opérationnelle, nous avons besoin d’une technique qui est
applicable à un ensemble de données de grande taille. Deuxièmement, concernant
l’exigence fonctionnelle, dans le cadre des traces des attaques, si les séries tempo-
relles sont stables, nous considérons qu’il n’y a aucune activité spéciale qui se passe.
Sinon, si les séries temporelles contiennent de variations ou des pics d’activités, nous
considérons que quelque chose de différent se passe. Quand un tel cas se produit,
c’est appel à regarder et à identifier des phénomènes d’attaques.

En ce qui concerne le contexte d’application tel que décrit ci-dessus, nous iden-
tifions les propriétés obligatoires suivantes pour la fonction de similitude idéal P()

– Synchronisation : P() ne devrait pas retourner vrai si les pics d’activités
ne sont pas synchronisés. La raison en est que les activités importantes sont
les plus intéressantes dans les séries temporelles. Si P() conclut que les deux
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séries temporelles sont corrélées, leurs activités importantes doivent être syn-
chronisées.

– Evolutivité : P() doit être applicable à un grand ensemble de données.
En outre, du point de vue pratique, nous proposons deux autres exigences sup-
plémentaires. Ce ne sont pas des exigences obligatoires susceptibles d’exclure une
technique, mais elles ont une influence certaine sur le choix final.

– Détermination de seuils : Une des tâches de base pour comparer des objets
est de déterminer le seuil à partir duquel deux objets sont considéres comme
étant, ou non, similaires. Dans le même ordre d’esprit, deux séries temporelles
seront, ou non, corrélées sur la base d’une telle valeur. Pour certaines fonctions
de corrélation, nous avons des seuils admis couramment, pour d’autres, le seuil
doit être fixé manuellement. Par exemple, la fonction de distance SAX est
influencée par la taille de l’alphabet, et le ratio de compression. Pour simplifier
les choses, nous plaidons en faveur de fonctions de corrélation P() ayant des
valeurs seuils prédéfinies et largement acceptés.

– Besoin de traitement : Certaines fonctions de corrélation exigent un pré-
traitement des données, à savoir, leur normalisation. Nous favorisons les fonc-
tions de corrélation P() qui ne nécessitent pas de telles tâches pour des raisons
de coût.

Approche

Pré-traitement

Le problème de surcharge de calcul vient du fait que nous avons plusieurs séries
temporelles. En fait, pour savoir si une série temporelle est corrélée avec d’autres,
nous devons comparer cette série à toutes les autres. Il est évident que plus grand
est le nombre de séries temporelles, plus cher est l’effort de calcul. A titre indicatif,
nous avons environ 400000 séries temporelles. Un tel nombre de séries induit de frais
de calcul élevé. Pour faire face à cela, nous observons qu’il existe un moyen facile
de mettre les séries temporelles en des classes différentes. Nous pouvons distinguer
deux types de corrélation de la façon suitvante :

– corrélation de type intra-classe : Il consiste à calculer les corrélations des
séries temporellesr appartenant à une même classe.

– corrélation de type inter-classe : Il consiste à calculer les corrélations des
séries temporelles appartenant à des classes différentes.

Si, par design, les classes que nous avons construites sont telles qu’il ne devrait y
avoir aucune corrélation significative entre deux séries temporelles appartenant à
deux classes différentes, alors nous consacrons l’effort de calcul à la seule évaluation
de la “corrélation du type intra-classe”.

Nous observons que les séries temporelles peuvent être classées en des catégories
différentes en fonction de leur niveau de variabilité. Nous avons montré que les séries
temporelles peuvent être classées dans l’une des trois catégories suivantes :

1. famille de pics : les séries temporelles dans cette famille possèdent un pic
important d’activitiés pendant une période très courte d’un ou deux jours
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et presque aucune activité en dehors de ce pic. Le fait que plusieurs sources
envoient des paquets simultanément à une seule plateforme dans une courte
période de temps montre bien le caractère hautement coordonné des attaques.

2. famille stable : les séries temporelles dans cette famille ont un comportement
constant à peu près durant toute leur vie.

3. famille de variation : les séries temporelles dans cette famille sont caracté-
risées par de larges variations d’amplitude et, parfois, sur de longues périodes
de temps.

Il y a beaucoup d’avantages avec la classification ci-dessus. Premièrement, nous
n’avons pas besoin de calculer la corrélation inter-classes car les séries temporelles
de la famille stable ne peuvent pas être corrélées ni avec celles de la famille de pics ni
avec celles dans la famille de variation. De même, les séries temporelles de la famille
de variation ne sont pas susceptibles d’être corrélées avec celles dans la famille de
pics. Deuxièmement, puisque le calcul de la corrélation des séries temporelles stables
n’a pas beaucoup de sens, nous n’avons pas besoin de calculer les corrélations intra-
classe pour les séries temporelles appartenant à cette catégorie.

Fenêtre glissante

– Etape 1 : Corrélation avec la fenêtre glissante Étant donné deux sé-
ries temporelles Φ et Ψ, de longueur T, nous voulons identifier les périodes
corrélées Pi = {start, stop, Φ, Ψ} où deux séries temporelles Φ et Ψ évoluent
de même façon de start à stop. Pour obtenir ces intervalles de temps, une ap-
proche consiste à calculer les coefficients de corrélation pour tous les intervalles
possibles de [a, b] avec (0 ≤ a ≤ b ≤ T ), mais ce serait extrêmement coûteux.
Pour éviter cela, nous utilisons une corrélation calculée sur une fenêtre glis-
sante. L’idée est que l’on calcule les coefficients de corrélation pour les fenêtres
successives (avec une longueur fixe, L) de Φ et Ψ, passant de la gauche vers la
droite pour obtenir un vecteur de corrélation C.

– Étape 2 : Identification des intervalles corrélés de deux séries tem-
porelles
Étant donné un seuil δ et un vecteur de corrélation C calculé pour deux séries
temporelles Φ et Ψ, notre objectif est de déterminer les intervalles de temps
durant lesquels ces deux séries temporelles sont considérées comme étant en
corrélation. En d’autres termes, nous essayons d’identifier les périodes corrélées
Pi = {starti, stopi, Φ, Ψ}.

– Étape 3 : Identification des intervalles corrélés communs Notre pro-
chain objectif est de regrouper les intervalles corrélés en commun G = ({T1, S1}
, {T2, S2}, · · · {Tk, Sk}). Chaque Gi = {Ti, Si} correspond à un ensemble P de
paires corrélées, entre les mêmes jours Ti,start et Ti,stop. Si contient toutes les
séries temporelles dans Si , ou Si = ∪Pj,ts1, Pj,ts2∀Pj ∈ P

– Étape 4 : Extraction des macro attaques Sur la base de l’intervalles corré-
lés communs, nous avons maintenant besoin de regrouper toutes les séries tem-
porelles qui sont mutuellement corrélées entre elles. Pour ce faire, nous utilisons
une représentation graphique des paires de corrélation identifiées dans l’étape
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précédente de notre algorithme. Les noeuds dans le graphique représentent
les séries temporelles sur des périodes de temps corrélees et deux noeuds sont
liés si deux séries temporelles correspondantes sont corrélées dans durant la
même période de temps. Ensuite, l’identification des macro attaques revient à
trouver les sous-graphes connectées

Usages spéciaux de la fenêtre glissante

Approche Breakdown
Cette approche repose sur l’hypothèse que, les macro attaques ei = (Ti,start, Ti,end, Si)
doivent appartenir à une des trois catégories suivantes :

1. Une macro attaque ei qui n’aurait qu’un seul cluster impliqué. En d’autres
termes, si Si consiste en un ensemble de séries temporelles de la forme ΦT ′,c,∗,
une telle macro attaque est appelée macro attaque distribuée. L’adjectif
distribué souligne que cette attaque concerne plusieurs endroits.

2. Une macro attaque ei qui serait liée à un seul point de vue. Dans ce cas,
si Si consiste en un ensemble de séries temporelles de la forme ΦT ′,∗,op, une
telle macro attaque est appelée macro attaque localisée. L’adjectif localisée
souligne que cette attaque vise qu’un seul endroit, mais implique plusieurs
clusters.

3. Une macro attaque mixte concerne plus d’un cluster et plus d’un point de vue
et est composée de plusieurs macro attaques appartenant aux deux catégories
précédentes.

Dans cet esprit, soit M le nombre de séries temporelles φT,C,op, C = (C1, C2, ...)
l’ensemble de clusters distincts, et OP = (op1, op2, ...) l’ensemble de points de vue
distincts, on procède comme suit pour détecter les trois types macro attaques men-
tionnés ci-dessus :

– Étape 1, Détection de macro attaques distribuées : Nous classons M
séries temporelles dans |C| ensembles (D1, D2, ..., D|C|). L’ensemble, Di, ne
contient que les séries temporelles établies à partir du cluster ci, ou Di =
ΦT ′,ci,op∀op ∈ OP . Nous appliquons ensuite l’approche de corrélation avec la
fenêtre glissante telle que présentée plus tôt pour chaque ensemble de données
Di pour détecter les macro attaques distribuées.

– Étape 2, Détection de macro attaques localisées : Nous classons les M
séries temporelles en, cette fois, |OP | ensembles (D′

1, D
′
2, ..., D

′
|OP |). L’ensemble

D′
i ne contient que les séries temporelles établies à partir du point de vue opi

ou D′
i = Φt′,c,opi

∀c ∈ C. Nous appliquons également l’approche corrélation
avec fenêtre glissante pour détecter les macro attaques localisées dans chaque
ensemble de données.

– Étape 3, Détection de macro attaques mixtes : Cette étape vise à re-
grouper les macro attaques identifiées précédemment. Supposons que E =
(E1, E2, ..., En) est l’ensemble de toutes les macro attaques détectées au cours
de deux étapes précédentes. Toutes les macro attaques ayant une durée de vie
commune (ayant le même Tstart et Tstop) et ayant leurs séries temporelles corré-
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lées sont fusionnées. Les macro attaques obtenues sont appelés macro attaques
mixtes.

Approche des séries temporelles rassemblées

Cette approche vise à réduire les coûts de calcul en adoptant certaines hypothèses
concernant les caractéristiques des macro attaques. En fait, nous ne comparons pas
les séries temporelles, mais leur rassemblemement. La question réside maintenant
dans la façon d’agréger les traces des attaques. Notre observation est que les attaques
(ou du moins certaines catégories d’attaques) ne sont pas uniformément distribuées
ni dans leur source ni dans leur destination [101, 69, 10, 22, 81], on fait l’hypothèse
que s’il y a des macro attaques (liées à certains outils d’attaque) qui ciblent ou
viennent de certains endroits, ces attaques auront un impact sur les traces aggrégées
de toutes les attaques à ces endroits. Par exemple, prenons le cas de la destination des
attaques. Nos platesformes observent un nombre limité d’attaques par jour. Si, à un
moment donné, deux plateformes deviennent la cible d’attaques coordonnées, nous
faisons l’hypothèse que ceci influencera significativement les séries temporelles glo-
bales observées sur ces deux plateformes au cours de cette période. Par conséquent,
la méthode identifie les groupes de séries temporelles agrégées corrélées sur des in-
tervalles de temps différents. De toute évidence, si l’intensité de l’attaque n’est pas
assez élevée pour impacter suffisament les séries temporelles rassemblées au moins à
deux endroits, notre méthode va les manquer. Une fois que nous avons les groupes
de séries temporelles rassemblées corrélées, nous recherchons les causes, à savoir les
clusters qui sont à l’origine de la similitude des séries temporelles rassemblées dans
chaque groupe. Une fois que nous les avons trouvés, nous vérifions qu’ils n’existent
pas aussi à d’autres endroits que ceux initialement trouvés. Cela pourrait se produire
si l’impact de ces attaques sur les autres séries temporelles rassemblées n’était pas
assez fort pour les inclure dans le groupe de séries temporelles rassemblées corrélées.

En faisant ceci, nous réduison fortement l’effort de calcul, puisque le montant
de séries temporelles agrégées est beaucoup plus petit que celui de toutes les séries
temporelles.

Impact des points de vue

Dataset

Nous avons sélectionné des traces d’attaques de 40 des 50 plateformes sur une
période de 800 jours. Durant cette période, aucune d’elles n’a été en panne plus de
10 fois et chacune d’eelles a été opérationnelle en continu pendant au moins 100
jours une fois. Ils ont toutes été en place pendant un minimum de 400 jours au
cours de cette période. L’ensemble de données collectées est brièvement décrit dans
la Table 1.
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TS est composé de 3,477,976 sources
OVP pays plateforme
|TS_L1| 231 40
|TS_L1′| 85 40

(94,4% TS) (100% TS)
|TS_L2| 436,756 395,712
|TS_L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% of TS) (73% of TS)
|TS_L2_P ′| 1,360 1,046
sources 41,418 47,673
|TS_L2_S ′| 1,060 1,081
sources 2,288,826 2,491,249

Table 1 – TS : toutes les sources observées pendant la période étudiée, OV P : point de
vue, TS_L1 : ensemble de séries temporelles rassemblées, TS_L1′ : ensemble de séries tem-
porelles rassemblées significatives dans TS_L1, TS_L2 :ensemble de séries temporelles,
TS_L2′ ensemble de séries temporelles après pré-traitement de TS_L2, TS_L2_P ′ en-
semble de séries temporelles appartenant à la famille des pics dans TS_L2, TS_L2_S′

ensemble de séries temporelles appartenant à la famille des variations dans TS_L2

Table 2 – Résultats sur l’identification de macro attaques
AE-set-I(TScountry) AE-set-II(TSplatform)

No.AEs No.sources No.AEs No.sources

Total 592 574,125 690 578,372

No.AEs : nombre de macro attaques

Résultats sur l’identification de macro attaques

En appliquant la technique de corrélation avec la fenêtre glissante aux deux
ensembles de séries temporelles présentées dans la Table 1, nous avons obtenu les
résultats comme présentés dans Table 2. Ces résultats mettent en évidence le fait
que selon la façon dont nous décomposons l’ensemble initial de traces d’attaques, à
savoir en le divisant par pays d’origine des attaquants ou par plateforme attaquée,
différentes macro attaques apparaissent. Pour évaluer le chevauchement entre les
événements d’attaques identifiés AE-set-I et AE-set-II à partir de différents points
de vue, nous utilisons le ratio de source en commun, csr, mesuré comme suivant :

csr(e, AEop′) =

∑

∀e′∈AEop′
|e ∩ e′|

|e|

où e ∈ AEop et |e| est le nombre de sources dans e, AEop est AE-set-I et AEop′ est
AE-set-II (ou vice versa).

La Figure 1 représente les deux fonctions de distribution cumulative correspon-
dant à cette mesure. Le point (x, y) sur la courbe signifie qu’il existe y ∗ 100% des
macro attaques obtenues grâce à Tcountry (resp. Tplatform) qui ont moins de x ∗ 100%
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Figure 1 – CDF de taux de sources en commun

de sources en commun avec tous les macro attaques obtenues de Tplatform (resp.
Tcountry). La courbe Tcountry représente la distribution cumulative obtenue dans le
premier cas et la courbe Tplatform représente le CDF de taux de sources en commun
pour Tplatform. Comme nous pouvons le remarquer, environ 23% (resp. 25%) des
macro attaques obtenues à partir de Tcountry (resp. Tplatform) n’ont aucune source en
commun avec toutes les macro attaques obtenues en utilisant l’ensemble de séries
temporelles Tplatform (resp. Tcountry). Cela correspond à 136 (16919 sources) et 171
(75920 sources) macro attaques qui n’ont pas été détectées. Au total, il y a 288825
(resp. 293132) sources présentes dans AE-Set-I (resp. AE-Set-II), mais pas dans
AE-Set-II (resp. AE-Set-I). Enfin, il y a au total 867.248 sources ayant participé
à l’ensemble macro attaques détectées de deux ensembles à partir de données qui
correspondent à 25 % des attaques observées dans la période étudié. Elle montre que
les attaques sur Internet ne sont pas totalement aléatoires, mais bien coordonnées
de façon stratégique.

Il y a de bonnes raisons qui expliquent pourquoi nous ne pouvons pas compter
sur un seul point de vue de pour détecter les événements d’attaques. Elles sont
décrites ci-dessous.

– Division par pays : Supposons que nous avons un botnet B fait des ma-
chines qui sont situées dans l’ensemble des pays {X,Y, Z}. Supposons que, de
temps en temps, ces machines attaquent nos plateformes et laissent des traces
qui sont assignées au cluster C. Supposons également que ce cluster C est très
populaire, c’est à dire que beaucoup d’autres machines dans le monde laissent
en permanence des traces sur nos plateformes qui sont assignées à ce cluster.
En conséquence, les activités spécifiquement liées au botnet B sont perdues
dans le bruit de toutes les autres machines qui laissent de traces appartenant à
C. Cela est certainement vrai pour les séries temporelles (tel que définies pré-
cédemment) liées à C et cela peut aussi être vrai pour les séries temporelles
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obtenues en divisant par plateforme,Φ[0−800),C,platformi
∀platformi ∈ 1..40. Tou-

tefois, en divisant les séries temporelles correspondant à cluster C par les
pays d’origines des sources, alors il est fort probable que les série temporelles
Φ[0−800),C,countryi

∀countryi ∈ {X,Y, Z} seront fortement corrélées au cours des
périodes où le botnet présent dans ces pays seront actives contre nos plate-
formes. Cela mènera à l’identification d’un ou plusieurs événements d’attaques.

– Division par platforme : De même, supposons que nous avons un bot-
net B′ fait de machines situées partout dans le monde. Supposons que, de
temps en temps, ces machines attaquent un ensemble spécifique de plateformes
{X,Y, Z} et laissent de traces qui sont assignés au cluster C. Supposons éga-
lement que ce cluster C soit très populaire, c’est à dire que beaucoup d’autres
machines dans le monde laissent des traces en permanence sur toutes nos plate-
formes qui sont assignées à ce cluster. En conséquence, les activités spécifique-
ment liées au botnet B′ sont perdues dans le bruit de toutes les autres machines
laissant de traces appartenant à C. Cela est certainement vrai pour les séries
temporelles liées à C et cela peut aussi être vrai pour les séries temporelles
obtenues en divisant par pays, Φ[0−800),C,countryi

∀countryi ∈ Bigpays. Toutefois,
en divisant les séries temporelles correspondant à cluster C par plateforme, il
est alors fort probable que les série temporelles Φ[0−800),C,platformi

∀platformi ∈
{X,Y, Z} seront fortement corrélées au cours des périodes où le botnet attaque
nos plateformes. Cela mènera à l’identification d’une ou plusieurs macro at-
taques.
L’ensemble de courbes en haut de la Figure 2 représente la macro attaque 79.
Dans ce cas, nous voyons que les traces dues au cluster 175309 sont fortement
corrélées lorsque nous observons ce groupe par plateforme attaquée. En fait,
il y a 9 plateformes impliquées dans cette attaque, ce qui représente un total
de 870 sources. Si nous regroupons les mêmes traces par pays d’origine des
sources, nous obtenons les courbes du bas de la Figure 2 où le phénomène
d’attaque déjà identifié peut être à peine vu.
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Figure 2 – Le graphe du dessus représente l’événement d’attaque 79 lié au cluster
17309 sur 9 plateformes. Celui du bas représente l’évolution de ce cluster par pays.
Le bruit des attaques sur d’autres plateformes diminue de manière significative la
corrélation des séries temporelles
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Identification des armées de zombies

Classification des macro attaques

Macro attaques peuvent être générées par des causes différentes. Comme suggéré
dans [129, 69], de telles attaques coordonnées peuvent être dues aux activités des
vers, des botnets, ou des erreurs de configuration de réseaux. Suivant cette idée,
nous classons les macro attaques que nous avons détectées plus tôt en trois classes :
botnet, ver, et autres. Nous nommons la troisième classe autres puisque nous ne
sommes pas sûrs de la nature de cette catégorie d’activités. Nous observons qu’il
existe une classe de macro attaques frappant une seule plateforme, et sur une ad-
dresse IP unique et toujours la même sur cette plateforme. En regardant en détail
ces attaques, nous observons que les sources ciblent uniquement les numéros de ports
élevés, et la plupart d’entre eux sont utilisés par les clients des réseaux P2P. Cela
fait à penser en quelque sorte que ces événements d’attaques ne sont pas causés par
des vers ni des botnets. En fait, des vers et des botnets peuvent avoir des stratégies
différentes pour choisir leurs cibles (hitlist, uniforme, mode aléatoire, ...) mais ils es-
saient toujours d’augmenter leur efficacité pour se propager en contactant plusieurs
machines. Comme notre plateforme se compose de trois adresses IP consécutives, et
étant donné une grande quantité de sources, dans chaque événement d’attaques ( les
tailles moyennes d’un événement d’attaques dans AE-set-I et AE-set-II sont de 970
et 838 sources, respectivement), nous prévoyons que les macro attaques causés par
les botnets et les vers frappent les trois adresses IP quand ils visent une plateforme.
Pour cette raison, nous classons les macro attaques frappant une seule adresse IP
dans la classe autres. Il est important de noter que, les auteurs dans [69] ont éga-
lement utilisé le nombre limité d’adresses IP contactés afin de classer des attaques
dans la classe erreur de configuration de réseaux. S’il est facile de différencier les
attaques de la classe autres de ceux des classes botnet et ver, Il n’est pas aisé de
différencier les activités causées par des vers et celles causées par des botnets. En
fait, on s’attendrait à ce que le nombre de source d’attaques laissées par un botnet
ait une montée forte et une chute brutale lorque le botnet reçoit des commandes de
son maître, tandis que le nombre de sources utilisées par un ver devrait avoir une
croissance exponentielle. Toutefois, si un botnet utilise le mode pull pour recevoir
des commandes, par exemple comme c’est le cas de Phatbot, tous les bots dans ce
botnet ne commencent pas à lancer des attaques aux même moment. En fait, comme
mentionné dans [131], les Phatbots réveillent toutes les 1000 secondes pour vérifier
s’il y a de nouvelles commandes à exécuter. Compte tenu de ce comportement, plutôt
que d’une apparition brutale, nous pourrions nous attendre à une montée constante
sur un intervalle de 10-20 minutes. Dans notre cas, nous utilisons le pas de temps
d’une journée, nous espérons que cela permettra d’éliminer l’artefact du mode pull.
Donc, dans notre analyse, nous considérons que tous les macro attaques ayant une
montée nette et une décroissance forte sont générés par des botnets. Les autres sont
attribués à des activités causées par des vers. Le résultat final de la classification de
macro attaques est représentée dans la Table 3. Comme nous pouvons le constater,
la majorité des événements d’attaques sont causés par des botnets. Il est intéressant
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Table 3 – Résult sur la classification d’événements d’attaques
AE-set-I AE-set-II

Botnet 532 597
Worm 18 36
Others 42 57

de voir qu’il y a plus d’attaques dans la classe autres que dans la classe ver, et ceci
est vrai pour les résultats obtenus par les deux cas AE-set-I et AE-set-II

Figure 3a représente un exemple un macro attaque de la classe autres. Cet at-
taque se compose de 4.054 sources provenant de plusieurs séries temporelles, ciblant
le port 50286/TCP sur une seule adresse IP d’une plateforme située en Chine. Fi-
gure 3 b montre le cas d’attaque 27, EA27, dans laquelle le cluster 15238 cible le
service Netbios (port 139/TCP) sur les adresses IP de cinq plateformes différentes.
En ce qui concerne la forme, les deux attaques AE27 et AE59 se ressemblent : une
montée forte et une chute brutale. Et dans les deux cas les attaques subsistent du-
rant une très courte période de temps. Toutefois, AE27 attaque les adresses IP sur
un port bien connu et l’AE59 frappe une seule adresse IP sur un port élevé. AE27 est
donc classée dans la classe botnet. Enfin, la Figure 3c représente attaque 79, AE79,
dans laquelle les sources du cluster 65710 attaquent le service Windows Messenger
(port 1026/UDP) sur six plateformes différentes situées dans cinq /8 réseaux. La
différence avec les deux exemples précédents est que, dans AE79 les attaques sont
observable pendant une longue période de temps.
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Figure 3 – a) 4054 sources (appartenant à plusieurs clusters) provenant d’Espagne
attaquent une address IP sur le port 50286/TCP b) Cluster 15238 attaque 5 pla-
teformes sur le Service Netbios (port 139/TCP) c) Cluster 65710 envoie paquets
contre 6 plateformes sur le service Windows Messenger Popup durant une longue
période de temps.

Clustering

Nous croyons qu’il y a des macro attaques qui sont générés par les mêmes cause(s)
(ou liées), par exemple le même botnet utilisé pour lancer des attaques différentes
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à différents points dans le temps. Si nous pouvons trouver des caractéristiques com-
munes à plusieurs attaques, nous pourrions les regrouper et vérifier notre hypothèse.
Intuitivement, si deux macro attaques partagent un nombre important de machines
d’attaques, il y a de grandes chances qu’elles aient la même cause. Dans cette op-
tique, nous utilisons les adresses IP communes pour mesurer la distance entre les
événements d’attaques. Bien sûr, nous ne pensons pas que ce nombre sera très élevé.
En fait, pour un botnet donné, plus le temps passe, plus il est raisonnable de s’at-
tendre ce que les addresses IP qui le composent changent (certaines machines sont
désinfectées, de nouvelles sont compromises : les adresses IP changent au cours du
temps pour un même botnet. Donc, si le même botnet attaque nos plateformes
à deux reprises à des périodes de temps distinctes, un moyen simple de les relier
ensemble est en remarquant qu’elles ont une grande quantité d’adresses IP en com-
mun. Plus formellement, nous mesurons la distance de deux macro attaques e1 et e2

comme la suitvante :

sim(e1, e2) =

{

max( |e1∩e2|
|e1|

,
|e1∩e2|
|e2|

) if |e1 ∩ e2| < 200

1 autrement

Nous dirons que e1 and e2 sont causés par les mêmes cause(s) (ou liés) si et
seulement si sim(e1, e2) > δ. Cela n’a de sens que pour une valeur raisonnable de δ.

Résultats

Nous avons identifié 30 (resp. 28) armées de zombies de AE-set-I (resp. AE-
Set-II). Ils contiennent un total de 181 (resp. 234) d’macro attaques. La Figure 4
représente la distribution des tailles (en nombre d’attaques) des armées de zombies.
L’histogramme du haut (resp. bas) représente la répartition des armées obtenues à
partir AE-Set-I (resp. AE-Set-II). Nous pouvons voir que la plus grande armée a 50
attaques dans les deux cas, alors que 20 (resp. 18) armées n’ont été observés qu’à
deux fois.

Analyse des armées de zombies

Durée de vie des armées de zombies

La Figure 5 représente la distribution cumulative des durées de vie des armées
de zombies obtenus à partir de AE-set-I et AE-set-II. Comme on le voit, environ
20 % des armées de zombies ont une durée de vie de plus de 200 jours. Dans un
cas extrême, deux armées semblent avoir survécu pendant 700 jours ! Un tel résultat
semble indiquer que soit i) les machines compromises restent très long temps ou que
ii) les armées sont capables de rester actives pendant de longues périodes de temps
en compromettant en permanence de nouvelles hôtes.
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Figure 4 – Répartition des tailles d’armées de zombies
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Figure 5 – CDF duration

Durées de vie des machines compromises dans les armées de zombies

En fait, nous pouvons classer les armées en deux classes, comme mentionné dans
la section précédente. Par exemple, la Figure 6 a représente la matrice de similarité
de l’armée de zombie 27, AZ27. Pour construire cette matrice, nous trions d’abord les
42 macro attaques de cette armée en fonction du moment de leur apparition. Puis
nous calculons leur similarité dans une matrice de la taille 42X42 M . La cellule
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(i,j) représente la valeur de sim() entre la iime et la jime attaque. Puisque M est
une matrice symétrique, pour des raison de lisibilité, nous n’en représentons que la
moitié. Comme nous pouvons le constater, nous avons une très grande valeur de
similarité , environ 60 %, entre presque toutes les attaques. Cela est également vrai
entre les premières et les dernières attaques. Il est important de noter que l’intervalle
de temps entre la première et la dernière attaque de cette armée était de 754 jours !
De même, la Figure 6 b représente la matrice de similarité de l’armée de zombies
24, AZ24. Cette armée de zombies a également une durée de vie très longue (625
jours), et tous les macro attaques partagent un nombre important d’adresses IP les
uns avec les autres. Toutefois, dans AZ24, les valeurs de similarité sont beaucoup
plus petits que ceux de AZ27.
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Figure 6 – Renewal rate of zombie armies

La Figure 6c représente un cas différent, la matrice de similarité de l’armée de
zombies 28 (AZ28), composée de 50 macro attaques. Comme nous pouvons le voir,
les valeurs importantes sont proches de la diagonale principale de (M) 1. Cela signifie
que deux macro attaques ne partagent un nombre significatif de machines sources
que si elles sont proches l’une de l’autre dans le temps. Et l’existence de cette armée

1. La diagonale elle-même, bien sûr, n’est pas calculée depuis le sim(i, i) = 1∀i.
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est de 536 jours ! Enfin, la Figure 6 d représente un exemple similaire (armée de
zombies 11, AZ11) à ZA28, mais comme on le voit, les valeurs à proximité de la
diagonale de la matrice de similarité sont beaucoup plus élevées. Il est clair, à partir
de ces quatre cas, que la composition des armées évolue dans le temps de différentes
manières. Ceci peut être vu grâce à l’identification des macro attaques et des armées
de zombies mise au point dans cette thèse. Il reste cependant du travail à faire afin
de comprendre les raisons derrière ces différentes stratégies.

Capacité d’attaque des armées de zombies

Par capacité d’attaque, nous faisons référence au nombre d’attaques différentes
qu’une armée donnée est capable de lancer au cours de sa vie. L’histogramme du
haut (resp. bas) de la Figure 7 représente la distribution de la quantité de clusters
distincts par armées de zombies détecté à partir de AE-set-I (resp. AE-Set-II ). Dans
les deux cas, nous observons que la plupart des armées présentent des multiples
traces d’attaque (correspondant à plusieurs clusters). Dans un cas extrême, une
armée de zombies a plus de 120 cluster distincts. Ceci confirme ce qui avait été
observé dans [69], “[...] Le botmaster semble demander à la plupart des bots dans
un réseau de zombies de se concentrer sur une vulnérabilité, tout en choisissant
un petit sous-ensemble de bots pour tester d’autres vulnérabilités”. La Figure 8
représente l’évolution du nombre de clusters distincts dans le temps des AZ27 et
AZ28. Dans les deux cas, le point (x, y) sur la courbe signifie que, jusqu’à la xixime

attaque, on observe au total y clusters distincts. Comme nous pouvons le voir,
dans les deux cas, les bots continuent à essayer de nouveaux clusters au cours de
leur vie. Plus précisément, en observant plus en détail la courbe armée zombie 27
dans la Figure 8 que AZ27 essaie un nouveau cluster presque dans chaque nouvelle
attaque. La liste de séquences des ports correspondante qu’il a essayé est 5900/TCP,
135/TCP, 2967/TCP, 139/TCP, ICMP, 80/TCP, 445/TCP, 1433/TCP, 4899/TCP,
5901/TCP,18886T, 1026/UDP, 445T139T445T139T445T. Il s’agit d’un cas d’outil
d’attaque avec multi-vecteur que l’on voit évoluer au fil du temps.

Exemple 1 : Armée de zombies 24, AZ24, est un exemple intéressant qui n’a
attaqué qu’une seule plateforme. Toutefois, 16 macro attaques distincts sont liés à
cette armée ! La Figure 9 présente ses deux premières activités correspondant aux
deux macro attaques 56 et 57. La Figure 9 b représente quatre autres macro attaques.
Dans chaque cas, l’armée tente un certain nombre de clusters distincts tels que 13882,
14635, 14647, 56608, 144028, 144044, 149357, 164877, 166477. Ces clusters essaient
de nombreuses combinaisons de ports de Windows (135/TCP, 139/TCP, 445/TCP)
et le serveur Web (80/TCP). L’intervalle de temps entre la première et la dernière
activité est de 625 jours !

Exemple 2 : L’armée de zombies 27, AZ-27, est une autre grande armée que
nous avons détectée. En fait, elle se compose de 42 macro attaques. À titre d’exemple
pour montrer ses activités, la courbe en haut à gauche de la Figure 10 représente
attaque 12 laissées par cette armée. La cible est la plateforme 26, et dans ce exemples,
85 machines d’attaque envoient des paquets ICMP sur trois pots de miel. La courbe
à droite en haut montre macro attaque 307 qui envoie des paquets ICMP sur les
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Figure 7 – zombie army Attack Capacity

Table 4 – Nombre des addresses IP en commun de quatre macro attaque 12, 307,
454, et 483

12 307 454 483

12 85 48 60 36
307 48 93 63 37
454 60 63 370 47
483 36 37 47 108

deux plateformes 26 et 41. Dans ce cas en particulier, toutes les sources frappent
seulement une seule adresse IP. On remarque que les deux macro attaques partagent
48 adresses IP. La courbe à gauche en bas de la Figure 10 montre l’macro attaques
454, cette attaque frappe 4 plateformes (26, 13, 50 et 57) et la dernière frappe 5 (26,
45, 53, 56, 57). Pour montrer à quel point ces macro attaques sont liés, la Table 4
montre le nombre d’adresses IP communes entre ces quatre macro attaques. Par
exemple, lattaque 483 partage 37 adresse IP en commun avec l’attaque 307 et 454 et
483 partagent 47 adresses IP en commun... Finalement, l’intervalle entre le premier
et le dernier événement d’attaque émis par cette armée de zombies est de 753 jours.

Conclusion

Cette thèse a commencé en disant qu’il est important de comprendre le modus
operandi des processus d’attaque et que cette tâche est difficile. Les défis auxquels
nous sommes confrontés pour résoudre ce problème sont dus manque de connais-
sances sur la manière et le moment où ces attaques sont lancées. Il est donc difficile
de savoir si deux sources d’attaque sont liées (ou contrôlés par le même proces-
sus d’attaque) ou non. Nous avons besoin d’étudier les sources d’attaque dans leur
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Figure 8 – Renewal rate of infected host of zombie armies

contexte afin de comprendre le processus d’attaque qui se cache derrière les exploits.
Idéalement, nous aimerons pouvoir classer les machines d’attaque en groupes par
leur cause originelle. Dans cette thèse, nous avons appelé de tels groupes de sources
d’attaque des micro et macro attaques. Pour identifier et analyser les macro et ma-
cro attaques, nous avons proposé d’utiliser les techniques classique de traitement du
signal et celles de fouille de données.

En ce qui concerne l’énoncé de la thèse qui a ouvert ce travail, nous avons montré
qu’il est possible d’automatiser l’identification des micro et macro attaques. Pour ce
faire, nous avons adopté les hypothèses clés suivantes : Les sources d’attaque ayant
la même cause ont une distribution spéciale en termes de temps et de localisation
géographique. Ceci nous amène à constater que les macro attaques existent sous
forme de pics d’activités ou de groupes de traces d’attaques corrélées. Nous avons
discuté et mis en place trois solutions alternatives afin de les identifier efficacement.
Les solutions expriment le compromis entre le coût de calcul et la capacité à iden-
tifier les macro attaques. Toutes les solutions ont été soigneusement conçues pour
fonctionner avec de nombreuses données. Comme la détection des macro attaques
est basée sur la technique de corrélation des séries temporelles, nous avons étudié
plusieurs mesures de similarité pour identifier la technique la plus adaptée à notre
contexte d’application. Nous avons validé nos techniques sur un ensemble de données
réelles collectées à partir d’un ensemble distribué de pots de miel. Et les résultats
étaient conformes à nos attentes.

Comme une validation supplémentaire de notre approche dans la compréhension
des traces des attaques, nous avons prouvé que les traces des attaques peuvent être
classées en trois familles selon leur niveau d’activité. La première famille correspond
aux outils d’attaque qui sont presque toujours utilisés dans le temps. La deuxième
famille correspond aux outils d’attaque qui sont utilisés de temps à autre sur une
période de quelques jours. La dernière famille correspond aux outils d’attaque qui
sont rarement utilisés plus d’une fois et toujours pendant un ou deux jours seule-
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Figure 9 – 6 macro attaque de l’AZ24

ment. Outre cela, avec l’étude des macro attaques détectés par nos techniques, nous
avons montré que nous pouvons identifier la cause et les caractéristiques de plusieurs
macro attaques. En fait, à l’égard de la cause, les macro attaques peuvent être clas-
sés en trois catégories suivantes : ver, botnet et autres. En outre, nous avons proposé
une méthode permettant de regrouper les macro attaques liées dans des groupes dif-
férents. L’étude de ces groupes révèle plusieurs aspects intéressants de ces menaces.
Par exemple, dans le cas des réseaux de zombies, nous avons observé que certains
botnets restent actifs aussi longtemps que 700 jours. Il est intéressant de voir que les
botnets adoptent plusieurs stratégies pour renouveler leurs machines de zombies. Par
ailleurs, certains réseaux de zombies ont réussi à survivre pendant une très longue
période de temps même avec un taux de renouvellement de leurs machines de zom-
bies extrêmement élevé. Nous avons également remarqué que les botnets changent
fréquemment de vecteurs d’attaque. Il est important de souligner que nos solutions
sont faciles à déployer et ne reposent sur aucune hypothèse concernant le protocole
de communication utilisé par les botnets. Notre espoir est de donner un aperçu de
la situation globale d’aujourd’hui (et d’hier) des activités des réseaux de zombies.
Ce type de connaissance nous permettra d’avoir un regard plus précis sur les me-
naces actuelles auxquelles nos ordinateurs sont confrontés et donc de construire des
contre-mesures plus efficaces.
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Chapter 1

Introduction

1.1 Motivation

Having an accurate perception of the threat landscape on the Internet, and the
ability to determine the attackers’ identity and location is an area of research within
the network security community. These topics are usually referred to as situational
understanding and attack attribution [24]. The challenges we face when addressing
these problems are that attackers try to obscure their identity. Hence, it is difficult to
identify the primary controlling hosts. This process is especially true under the light
of the endless innovation of attack tools. As an example, during the last six months
of 2008, Symantec has discovered 1,656,227 new malicious codes [120]. This process
is, foremost, motivated by the commercial gain from cyber crime activities [128].
Several business models have been discussed. In fact, there are many ways to get
benefits from the compromised machines, for instance by stealing credential infor-
mation, performing click fraud [52, 51], selling zombies machines [105, 39], using
the compromised machines to send spam [6, 101, 126, 114, 53, 13], or doing DDoS
attacks [54, 107, 72, 84]. As a result, the Internet has become an attractive place for
many groups of attackers with different attack strategies, skills, and targets [40].

Among others, the threats found on the Internet have the following two charac-
teristics :

– The malicious activities have so called locality characteristics. It has
been shown that attacks observed on the Internet are not uniform neither in
type nor in intensity [10, 22, 18, 28, 57, 81, 92, 91]. For instance, in [18] Pouget
et al have provided a comparative survey of attacks observed against two iden-
tical sensors, one in France and the other one in Taiwan. The study has shown
differences between the two attack traffics with respect to several aspects such
as top attacked services, top domains of attacking machines, network-specific
attack patterns. The locality property of attacks is also confirmed by other
works [83, 22, 57]. Real worms Nimda [37], CodeRedII [75], Blaster [11, 15]
are famous for their specific propagation mechanism. Also, by taking advantage
of the information in BGP routing table, routing worms can not only propa-
gate faster but are also able to choose the specific targets such as country,
company, ISP, AS [139].
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– The compromised machines, organized into botnets, are more and
more controllable. A botnet is a network of compromised machines, called
bots, that are under the control of their botmaster. While bots may share
several characteristics with other classes of malwares, their distinguished cha-
racteristic is to use a command and control channel to receive commands
from their master. Thanks to this property, attackers can exploit the com-
promised machines in different ways for different purposes. Botnets have been
seen moving from a centralized infrastructure [12, 40, 51, 136] to a distributed
one [44, 50, 116, 115, 113, 127], from easy to detect protocols [12, 40, 51, 136] to
stealthier ones [20, 30, 51, 114]. According to [100], “[...] 27% of all malicious
connection attempts observed from our distributed darknet can be directly
attributed to botnet related spreading activity”.

These trends highlight the fact that the dangers of an attack do not reside only
in its exploit, i.e. in the actions taken to compromise a machine, but also in the way
it is carried out (or the modus operandi employed by the tool). For instance, the
locality property makes the attack tools stealthier and the controllability gives the
attacker the ability to have various options on how to exploit the infected machines.
While the modus operandi are important, they can not always be derived neither by
observing the attack individually nor by analyzing its binary. This may be due to
several reasons. The modus operandi of a tool is not always visible within a single
attack. For instance, by studying individually the attack between one source and
one destination, it is impossible to know whether it is a sweep scanning source.
Also, information about the modus operandi does not always reside in the tools.
For instance, in the case of a botnet, the targets of the attacks are received from
the botmaster, they are not determined solely by the bots. Hence, we need to look
at the attacking sources in their context to really understand the attack processes
behind them, the strategies, and the motivation of the botmasters.

In the next section (Section 1.2), we introduce the research problem that we
attempt to tackle in this thesis. And we present our contributions in Section 1.3.
Section 1.4 describes the structure of the thesis.

1.2 Problem Definition

1.2.1 Thesis Statement

To assess the threat level of the Internet, researchers have taken several initiatives
such as collecting malware samples [65, 8], analyzing malware dynamics [63, 26, 108],
URLs assessment [99]. Collecting attack traces becomes an agreed needed task within
the network security community [32, 77, 9, 27, 14, 36, 81, 96, 76]. Thanks to these
collected data, analysts apply mathematical models to deduce characteristics of the
current threats [2, 3]. For this approach to work, we need, among other things, a
representative, clean dataset. In fact, a non-representative dataset may bias results.
In the context of this thesis, we want to study the Internet security problem through
the use of attack traces. As a groundwork to have sound results, we need a clean
dataset as an input for our approach. In our case, to make it possible to assess the
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nature of the threats existing in the wild, we must collect the attack traces from
different places in the world. Also, the attack traces generated by a given attack
tool may depend on the environment it interacts with. Therefore, to be able to
compare traces, they must be obtained thanks to the same sensor. As an attempt
to understand the cyber attacks, since 2003, EURECOM has deployed a distributed
honeypot sensor framework to observe and collect attack traces from different places
on the Internet. As defined in [109], a honeypot is an information system resource
whose value lies in unauthorized or illicit use of that resource. We will come back to
this term in some more detail in the next Chapter. The long-term dataset collected
from this infrastructure offers us the possibility to observe the evolution of the
threats over a long period of time.

From the attacked network standpoint, we do not have any information about
how the attacks are actually launched. It makes it difficult to explain the attacks we
observe and to study the attack sources in their action context. In fact, they can be
the mix of the interaction of several activities operated by different attackers. It is
usually difficult to say whether two attacks are related or not. As a consequence, it
is difficult to explain the attack phenomena where several attacking sources are in-
volved. In the current state of the art in the field of attack trace analysis, most of the
effort has been spent assessing the attack types [88, 81] and less on understanding
how attacks happen [69]. Taking advantage of our distributed honeypot infrastruc-
ture, our intention is to group the attacking sources that we hypothesize of having
the same cause and then study the characteristics of these groups to deduce the
characteristics of the underlying threats. It is important to highlight that the cause
of the attacks is not merely the type of the attack, but includes its particular use by
a specific attacker. To detect such groups of attacking machines, we make the follo-
wing key assumption. Attacking sources sharing the same cause will have a special
distribution both in terms of time and space. Examples of such groups of attacking
sources would be attacking machines in a botnet that are observed to attack a subset
of our sensors during a period of time. In this case, by our expectation, the attacking
machines should be grouped together. The machines, during that period of time, are
members of what we call a micro attack event. More formally :

Definition 1 A micro attack event µ is defined by a tuple (T ,F ) where T

represents a limited period of time, typically a few days, and F represents the fin-
gerprint of an attack as seen on our sensors. µ is a set of IP addresses observed over
T and that have been seen leaving fingerprint F from a given observation viewpoint
(e.g. one of our sensors)

FIRST RESEARCH STATEMENT : in this thesis, we want to build an auto-
mated mechanism that can recognize and characterize the micro attack events exis-
ting in malicious attack traffic collected from a distributed and similar honeypot
sensors.

Our assumption is that certain micro attack events may be linked together to
make a larger attack phenomenon which is called a macro attack event.
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Definition 2 A macro attack event is a set of micro attack events observed over
the same period of time and during which the corresponding time series are strongly
similar.

SECOND RESEARCH STATEMENT : in this thesis, we want to build an
automated mechanism that can recognize and characterize the macro attack events
existing in malicious attack traffic collected from a distributed and similar honeypot
sensors.

1.2.2 Hypothesis

The attack traffic we observe on our honeypot sensors is made of raw packets.
Statistical analysis of their features such as protocols, port numbers, number of
packets can provide some level of indication of a new attack. For instance, one
can detect things such as “there is an important increase of attacks on port X”,
“there is a peak of activities on protocol UDP on day Y”. This kind of knowledge
can help as an indicator for new attacks. However, further analysis is required to
really understand what happens. Since the attack traces we observe on our network
are due to several attack tools launched by different attackers, we must reduce the
interference between several attack tools in order to analyze the threats. This comes
down to being able to classify IP sources according to the attack they have been
seen launching. Ideally, traces left by sources found in one class should be due to a
single attack tool. This belongs to a larger research problem, i.e., traffic classification
which is largely addressed in the literature [56]. Some works are focusing on the
identification of attack tools by observing the traces they generate [66, 81, 89]. In
our analysis, we do not address this research problem, but rather take advantage
of previous results [89]. Therefore, we intentionally keep the discussion about this
subject out of the scope of this work. This leads us to the following hypothesis.

HYPOTHESIS 1 There exists a clustering algorithm that can distinguish the at-
tack traffics generated by different attack tools.

1.2.3 Approach and Challenges

To recognize the micro and macro attack events, we face the following issues :
– Identification of micro attack events : The first challenge we have is how

to detect the micro attack events. Different attack processes may leave different
fingerprints. For instance, one could argue that the traffic generated by botnets
may be different from the one generated by worms. Our recognition ability may
also be impacted by the way we cluster traces together. For instance, if a worm
comes from a few specific places on the Internet, but attacks everywhere, it
will be easy to identify the traces it leaves by grouping traces by the origin of
the attacking sources. At the contrary, if a botnet consists of bots located all
over the world that attack a few specific blocks of IP addresses, it is possible
to highlight such specific behavior by grouping traces by destination instead
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of by source. The importance of the viewpoint in the analysis process will be
discussed in Chapter 5.

– Complexity : As we will show later, to identify the micro and macro attack
events, we need to compare the attack traces together. This is very CPU
intensive task, especially for a large dataset. The factors that constitute this
cost are :
– The number of attack traces.
– The length of the attack traces (or the time frame during which we collect

the attack traffic).
We offer a detailed analysis of this in Chapter 5.

– Accuracy : There exists many kinds of measures of similarity/distance such
as SAX [70], Pearson Correlation, Minkowski. They were invented in different
historical contexts and for different purposes. We need to identify the one that
suits our purpose, which is to correlate the attack traces observed from the
Internet. This is discussed in Chapter 4.

1.3 Contribution

Our contributions in this thesis include :
– We show that by analyzing the attack events we can understand more about

the attack tools, the modus operandi of certain attack classes as well as several
other characteristics. It is important to highlight the fact that the attack events
generated as an output of our approach can be and, actually, have been used
by other researchers in the context of their own work [122, 123].

– We demonstrate that it is feasible to automatize the detection of attack events
for a large dataset. We develop three solutions for identification of attack events
for different use cases. All three solutions have been experimentally validated.

– We show that attack tools can be classified into three families based on their ac-
tivity level. The first family consists of attack tools that are almost constantly
used in time. The second family consists of attack tools that are launched from
time to time over a period of couple of days. The last family consists of attack
tools that are rarely used more than once and always during one or two days
only. This discovery is applied directly to reduce the computational cost when
detecting attack events.

– We show the impact of the clustering of the attack traces on our ability to
detect micro and macro attack events. Depending on whether we use the origin
or the destination of the attacks, we may end up identifying different sets of
attack events.

1.4 Structure of the Thesis

The remainder of the thesis is organised as follows :
In Chapter 2, we present several classes of existing infrastructures to collect at-

tack traces on the Internet and provide a summary of several analysis that have been
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done in the field. This gives us the opportunity to clearly point out our contributions
to the current state of the art.

Chapter 3 describes the Leurré.com infrastructure, an attack traces collection
framework based on honeypot technology. We use data collected thanks to this ar-
chitecture to validate our techniques. Although the techniques proposed in this thesis
can be used on traces obtained thanks to other infrastructure than the Leurré.com
one, due to the historical reasons, we adopt several notations that have been intro-
duced in the past in the context of this seminal project. For the sake of completeness,
they are also given in Chapter 3.

As discussed earlier, we need to compare the attack traces together, this means
that we need some kind of similarity measure. The purpose of Chapter 4 is to
first identify the properties that a similarity measure must have to enable us to
compare the malicious attack traces. Then, we provide an in-depth discussion on
the mathematical properties of several similarity measures. Based on this, we finally
try to figure out the one that best suits our needs.

Chapter 5 builds upon the previous ones to offer some of the main contributions
of this thesis. In that Chapter, we describe formally the problems we are facing
and propose solutions. We also show experimentally the impact of the observation
viewpoints. We validate our different techniques with a dataset collected from the
Leurré.com infrastructure.

In Chapter 6, we justify the validity and the soundness of our method. We show,
by analyzing the macro attack events detected in the previous chapter, that they
enable us to see several characteristics of current botnets, or worms such as their
lifetime and their attack vectors.

Finally, Chapter 7 concludes the thesis and provides the perspectives opened by
this work.
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Chapter 2

BACKGROUND AND RELATED

WORK

This Chapter presents the state of the art in the field of attack traces analysis.
We describe the most relevant works and try to establish the background on which
we develop our thesis. To this end, Section 2.1 provides an overview of existing tech-
niques and architectures to collect attack traces on the Internet. In Section 2.2, we
summarize several kinds of analysis that have been done in the field of analyzing the
malicious attack traces. Section 2.3 describes the various defense mechanisms that
leverage the intelligence from attack traces collected. And finally, Section 2.4 dis-
cusses what is currently missing in the current state of the art to solve our problems.
This discussion motivates the work done in the context of this thesis.

2.1 Attack Traces Collection

To build effective defenses, it is good to know one’s enemies : the kind of tools
they use, the tactics they employ, etc. With the similar idea in mind, network se-
curity analysts have started to collect attack traces left by the attackers to better
understand them, and, thus, to be able to better protect their networks. Existing
data collection infrastructures can be classified into the following two categories :
production system and non-production system. We describe them hereafter.

2.1.1 Production System

The idea here is to gather security logs from several production systems. This
approach is often referred to as log aggregation. The ability of such architecture to
observe malicious activities is a fact of the sizes, distribution, and number of parti-
cipating systems. Depending on the concrete system, security logs could be firewall
logs, IDS security incidents, anti-virus logs. For instance, DShield [32], operated by
SANS Institute, is one such project. By means of a web interface, voluntary log
contributors can submit their firewall logs to the centralized database of DShield.
DShield provides several high level statistics from the aggregated logs. Although
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sharing the same spirit, the approach taken by MyNetWatchman [77] is more auto-
matized. In fact, it first asks participants to install its agent which is in charge of
gathering the firewall incidents and sending them back to the MyNetWatchman’s
center server. To measure the dynamic of the attacking machines (IP addresses), log
events are grouped by IP address. The system raises an alert to the owner of the
specific IP address when the amount of security incidents from this address exceeds
a certain threshold. All the feedback from the owners are documented in detail.
DeepSight [119], run by Symantec, is an Internet scale framework with a similar
data model. It asks the participants to install the so-called DeepSight Extractor,
to gather the security logs. In exchange, DeepSight provides the reports about the
attacks observed on the participants’ computers. DeepSight collects data from a
very large range of sensors : desktop antivirus, IDS, firewall... These data are used
by DeepSight to predict the potential future threats that their client networks may
face.

The advantage of this approach, as a means of data collection, is its ability to
leverage the existing systems, with not much extra effort. However, the model has
also some drawbacks. In fact, as indicated in [29], in case of DShield, there is a
lack of the contextual information in the logs. As a result, the analysis based on
these data may be biased or imprecise. Another downside of the approach concerns
its inability to discover new kinds of attacks. In fact, in case of security incidents
generated by signature based defense systems such as IDS, a classical anti-virus,
the logs we have are all about known attacks (more precisely, attacks recognized by
IDS, anti-virus). In case of firewall logs, we do not have much information about the
attacks but rather about the violation of security policies.

Another approach, but related to this direction, is to extract flow information
from routers [21]. As defined in [21] : “[...]A flow is identified as a unidirectional
stream of packets between a given source and destination-both defined by a network-
layer IP address and transport-layer source and destination port numbers[...].” Au-
thors of [41] proposed a visualisation based method, what they called “contact sur-
face”, to visualize the amount of incoming connections to detect the outbreaks of
Welchia.B worm. In a separated work, authors of [33] use flow information to detect
the outbreaks of Blaster and Sobig.F.

2.1.2 Non-Production System

Monitoring attack traces shows that there is an important volume of network
traffic targeting non-production IP addresses (or unused address blocks). Such traffic
can be either malicious (flooding, backscatter, scans for vulnerabilities, worms) or
benign (misconfiguration). We cover in this Section two classes of techniques that
can be used to capture such non-productive traffic.

2.1.2.1 Darknet

A darknet or a network telescope is a large range of routable but unused blocks of
IP addresses. It passively monitors the incoming traffics to these specific IP address
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blocks and does not generate any outgoing traffic. From the attacker’s perspective,
the presence of a monitoring can not be identified. On the one hand, it requires al-
most no effort to maintain a darknet, on the other hand, it provides little information
about the attacks. In fact, for TCP based attack, the attacker must first establish
the three-way handshake, before any payload can be sent. With darknet we can only
observe the first TCP/SYN packet from which we may derive, at most, the service
thanks to its destination port number. However, due to the lack of interaction with
attackers, it is usually hard, if not to say impossible, to figure out the vulnerabi-
lities that the attacks aim at. The major projects in this line are CAIDA Internet
Telescope [14], Team Cymru Darknet Project [27], Internet Motion Sensors [9].

2.1.2.2 Honeypot Based Attack Traces Collection Framework

As discussed earlier, there is a need to engage and to maintain conversation
with the attackers in order to be able to understand what their goals and strategies
are. Honeypots have been created for this purpose. In fact, as defined in [109] by
Spitzner in 2002, “A honeypot is an information system resource whose value lies in
unauthorized or illicit use of that resource”. According to this definition, a honeypot
can be a machine with a real operating system that is plugged to the Internet and
wait for being attacked. It is important to note that, this definition corresponds
to the traditional honeypot. In this case, it acts as a server, exposing some vul-
nerable services and passively waiting to be attacked. This class of honeypot may
not be able to detect client side attacks. In fact, to detect client side attacks, a
system needs to actively interact with the server or process malicious data. Ano-
ther type of honeypot is therefore needed : the client honeypot. Client honeypots
crawl the network, interact with servers, and classify servers with respect to their
malicious nature [133, 80]. In the context of our work, we limit ourselves only on
studying traffics issues from the traditional honeypot. As a convention, from now
on, we use honeypot to refer to the traditional honeypot. Based on the level of
interaction, we can classify honeypot as low, medium and high interaction. As the
illustrated examples, Honeyd [98], Nepenthes [8], HoneyTank [125], iSink [130], Billy
Goat [103] are considered as low interaction honeypot. Whereas, ScriptGen [66] is a
medium interaction honeypot. Roo Honeywall [97], BotHunter [46], Honeybow [137]
are examples of high interaction honeypot. In a simple word, the higher level of
interaction a honeypot possesses, the more functionality it has (or the more it acts
as a real host). And thus, the more information we can get from and about the
attackers. But there is a trade-off between the level of interaction and the security
of a honeypot. In fact, high interaction honeypots give rich information but suffer
also from a increased level of security risk. Adding on top of that, it is usually more
costly to deploy high interaction honeypots. Based on these technologies, several
data collection frameworks have been deployed [36, 81, 96, 76, 10].
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2.2 Understanding Threat Landscape of Internet

The final purpose of collecting attack traces is to understand the threat land-
scape of the Internet. However, this task is not evident due to the extremely large
amount of attack traffic that can easily overwhelm network security analysts. Several
approaches have been proposed to analyze the malicious attack traces automatically.
They are described hereafter.

2.2.1 Activity Observation

2.2.1.1 Observation of Denial of Service Attacks

This class of analysis aims at studying a specific aspect of the threat landscape
of the Internet. In [74], Davide Moore et al have proposed a method to measure
the prevalence of DDoS attacks on the Internet thanks to data collected by Caida’s
Internet Telescope. The authors assume that flooding attacks are the most popular
DoS attacks. These attacks aim at consuming the resources of the victim, otherwise,
used by benign client requests. The idea is that the attacker sends an important
amount of packets to overwhelm the victim’s CPU, memory or network resources.
And this makes the victim unable to answer the requests coming from legitimate
clients. To conceal the origin of the attacking machines, attackers usually forge, or
spoof the source IP addresses of the packets. Therefore, from the victim stand point,
the packets appear to come from the third parties. In the case that the third party
addresses fall within the monitored IP address blocks, they can be used to infer
the prevalence of DDoS attacks. Taking advantage of data collected from Network
Telescope [14], in this analysis, the authors have provided diverse information on
several facets of DDoS attacks such as victim classification, attack duration, attack
rate, etc.

2.2.1.2 Worm Propagation and Botnet Activity

Darknets cover usually large portions of IP space. If a large scale worm outbreak
occurs, there is a large chance that it hits the darknets. By monitoring the darknets,
we can derive several characteristics of worms such as their method and speed of
propagation. This has been demonstrated during the CodeRed and Slammer worm
cases [75, 73]. Besides that, the data collected from darknets have also been used to
build and/or validate worm models [110, 111].

There is a consensus in the security community to say that botnets are today’s
plague of the Internet. A lot of attention has been paid to detect and eradicate
them. Several approaches have been proposed for this purpose. By identifying the
so called Command and Control (C&C) channels, one can keep track of all IPs
connecting to it. The task is more or less complicated, depending on the type of
C&C (IRC [23, 40, 12, 51, 43, 100], HTTP [20, 30, 114], fast-flux based or not [49,
82, 102], P2P [50, 44, 115, 127], etc.) but, in any case, one needs to have some
insight about the channels and the capability to observe all communications on
them. Another approach consists in sniffing packets on a network and in recognizing
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patterns of bot-like traffic. This is, for instance, the approach pursued by [46, 45, 47]
and [117, 112]. The approach proposed in [69] aims at detecting botnets by observing
their probing events left on monitored networks (darknet, and honeypot). In fact,
the authors assume that “most probing events reflect activity from the coordinated
botnets that dominate today’s Internet attack landscape”. To detect the probing
events, the authors first classify attack traces into sessions as proposed in [55]. On
the session basis, the amount of sources arriving within a time interval are computed.
If this number is above a certain level computed from the previous steps, this is
considered as an unusual event. Unusual events are then classified into three families :
worm, botnet probing, and misconfiguration. The paper then provides a set of scan
patterns checking to determine the scan strategies used by botnets, and then uses
the botnets that have the uniform scanning patterns to extrapolate the attacks of
botnets at the Internet scale. While the take away message is different, this work
shared a large portion with the one in [129]. We present this work in more detail in
Section 2.3.

2.2.2 Identifying the Type of Attacks : The “What” Question

In this Section, we present the class of analysis or framework that tries to answer
the question : “what attacks are we facing ?”. This includes the qualitative and
quantitative analysis of types of the attacks from the Internet. It focuses more on
the understanding of the attacks at a low level and less on the attack strategies.

2.2.2.1 Activity Report

Sometimes, it is interesting to have the very general, and easy to obtain, sta-
tistics about the attack traces. For instance, one of the very basic questions is to
know what services are attacked the most. This information may offer clues on new
attack phenomena, for example, new worm outbreaks. Several services provide such
information, as an example, DShield web interface [32] provides several high-level
statistics such as top attacked port, top attacking country, top attacking sources.
Team Cymru [27] provides the distribution of attacking sources on the IP space. It
is important to notice that, such statistics can only be used to provide hints about
the new phenomenon, further analysis is needed to determine the true nature of
the attacks. For instance, in the case of Blaster, after sending the attack on port
135/TCP to force the vulnerable machine to open a backdoor on port 4444, the
attacking machine sends packets to port 4444. As a consequence, during the Blas-
ter outbreak one could observe two distinct phenomena, namely an increased traffic
against port 135 and also against port 4444. However, these two events had the same
root cause.

2.2.2.2 Attack Type Analysis

In this Section, we present the more in-depth analysis techniques that aim at
recognizing and quantitatively measuring various types of attacks taking place on
an Internet wide scale. One of the representative work in this line is the one done by
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Pang et al in [81]. With the motivation of understanding the nature of background
radiation of the Internet, the authors have proposed a framework that measures the
Internet activities as seen from a very large portion of IP addresses. They use these
traces to recognize several types of attacks. The method consists of two steps. In the
first step, they build an effective filter that significantly reduces the amount of traffic
while keeping the diversity. Then they build a large responder framework that can
handle a huge amount of IP addresses. To achieve this, the authors rely on the iSink
technology [130]. iSink is a stateless responder which is in contrast to the approach
taken by Honeyd. These responders are responsible for maintaining the conversation
with the attackers up to a point where attacks are distinguishable. Obviously, doing
this for all the incoming connections is very expensive in terms of computational
cost. To decide which TCP session should be extended, a data-driven approach is
adopted : the most common form of traffic is selected for building the responder,
and the process repeats until the unknown traffic is sufficiently small.

With a similar idea, i.e., to recognize the type of the attacks that honeypots
are facing, in [89] Pouget et al have chosen a clustering based approach. In fact,
the authors have proposed a method to cluster the attacking sources based on the
fingerprint left on a set of honeypots. To do this, authors start first by withdrawing
the network influences such as packet reordering, and packet losses based on IPID.
Then, by combining the network parameters and the configuration of honeypots.
Seven attributes are chosen to discriminate the different attack types. This includes
the number of packets sent by a source, the number of honeypots hit, the sequence
of destination ports, the duration of the attack, the average inter arrival time of
packets, the average number of packets sent to each honeypot, the payload (if any).
Then a non supervised learning approach is applied to classify distinct activities
into different clusters. It is obvious that the challenge of this approach is to choose
a good set of features for the clustering. We provide a more detailed description of
the algorithm in Chapter 3. The validity and usefulness of this clustering approach
has been discussed and applied in previous publications [93, 138, 18].

ScriptGen [66] is a honeypot that is able to identify and handle new attacks
automatically. It can, therefore, be used to observe and classify the attacks. In fact,
according to [67], “[...] The ScriptGen technology was created with the purpose
of generating honeypots with a high level of interaction having a limited resource
consumption. This is possible by learning the behavior of a given network protocol
when facing deterministic attack tools. The learnt behavior is represented under the
form of a Finite State Machine representing the protocol language. The generated
FSM can then be used to respond to clients, emulating the behavior of the real
service implementation at a very low cost[...].” Furthermore, ScriptGen has also the
capacity of handling the yet unseen attacks. Indeed, if a client request falls outside
the current FSM knowledge (there is no matching transition), it forwards all the
clients requests to a real host and then acts as a proxy between the attacker and the
real host. The way a real host deals with such attack is then observed and learned.
This knowledge is then used automatically to refine the protocol knowledge and
to push new nodes into the FSM present in each sensor [65]. Although there are
differences in the details, work developed in parallel and presented subsequently in
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[25] shares main conceptual ideas with this work.

2.2.3 Inferring Internet Properties : The “How” Question

Another research direction is to understand and/or induce the general properties
of threats found on the Internet. At some level, these properties reflect the attack
strategies used by the attack tools, the analysis aims at answering how the attack
happens. For instance, work in [5] studies the evolution of the scans on the Internet
over a very long period of time. The authors have shown that most of the attacks
on the Internet have moved from direct attacks to scanning. Also in an attempt to
understand the distribution of attacks in the IP space, several research initiatives
compared the attack traces collected from different places on the Internet and have
shown that the attacks have the locality property mentioned before. Namely, it has
been reported that the attacks are different both in volume and type from place to
place [22, 18, 81, 92]. Also, when analyzing the behavior of the infected machines on
their target, authors of [57] have stated that “...20% of all offending sources mount
correlated attacks and they account for more than 40% of all the IDS alerts...”.
Furthermore, attacking machines involved in correlated attacks can be grouped into
clusters by looking at their targets. In other words, there are several sets of attacking
machines, and each group has its own target profile. Futhermore, as claimed in [57],
the list of targets is often very limited. In fact, when using logs collected from
1,700 IDSs, the authors of [57] have concluded that : “[..] 1700 IDSs can be divided
into small groups with 4-6 members that do not change with time ; IDSs in the same
group experience a large number of correlated attacks, while IDSs in different groups
see almost no correlated attacks.” The correlated attacks are also confirmed in [81].
Another class of attacks are the coordinated attacks launched simultaneously by a
set of sources. Examples of this are botnets’ activities [69, 129, 81].

In [121], Thonnard et al have proposed a framework to analyze the attack phe-
nomena on a multi-viewpoints approach. The purpose of this ambitious approach is
to figure out properties that several attack phenomena could have in common.

Finally, there is a class of works that is at the same time similar and different
from both categories mentioned before. In fact, they do not attempt to recognize all
the attacks but just some attack patterns and, then, analyze their properties. For
instance, authors of [138] show that the inter-arrival time of packets can be used to
detect certain class of activities. Pouget et al have shown in [93] how to use time series
correlation to detect the multi-headed attack tools. When studying the persistence of
worms, the authors of [131] concluded :”[...]We also find that worms like CodeRed,
Nimda and SQL Snake persist long after their original release[...].” In the same
paper, when studying the behavior of attacking sources, the authors observed :”[...]a
very small collection of sources are responsible for a significant fraction of intrusion
attempts in any given month and their on/off patterns exhibit cliques of correlated
behavior[...].”
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2.3 Threat Defense

In [129] Yegnesvaran et al have proposed a framework to integrate the intelli-
gence learnt from honeypot traces to help network security analysts. The idea is to
provide some information about the current threats that could help network security
analysts when making decisions. This information could be hints on the cause of the
attacks (e.g., a new worm, a botnet, or a misconfiguration), or whether the attacker
specifically targeted the victim network, and if this attacker matches the one seen
in the past. The process is done as follows. The network activities are classified by
using Bro, and then based on this, by means of statistical measures, the unusually
large-scale events are detected. Based on the shape of attack traces, the traffic are
then classified into three families : worm, botnet, or misconfiguration. The main
challenges of the work is how to write the Bro policies to define the attack profiles.
In the same line but more generic, Allman and colleagues [4] propose to leverage
“[...] the deep understanding of network detectives and the broad understanding of
a large number of network witnesses to form a richer understanding of large-scale
coordinated attackers”. With similar ideas, work in [68] tries to build an architecture
that can index the monitored data from a distributed system : “[...] Such systems
consist of two logically distinct components : a distributed network monitoring sys-
tem, and a distributed querying system”. The detectives in this case are distributed
querying system and witness are distributed monitoring system. Work in [17] can
be classified along the same line as the two previous ones.

Zhang et al [135] argued that the two widely adopted blacklisting strategies
(global worst offender list (GWOL) and local worst offender list (LWOL)) are not
optimal under the light of current threats on the Internet. Actually, the GWOL uses
the large scale repository to build the blacklist and it will be used by network admi-
nistrators to secure their networks. The authors argued that such list can not capture
the more strategical attackers, focusing on a few known vulnerable network [19]. As
opposed to GWOL, LWOL uses the enterprise access log history to form the address
blacklist for itself. While LWOL can capture most of the frequent attackers, it is
reactive. In fact, it can only capture known IP addresses, most of the time, after the
fact. Results in [57] show that, in the current state of Internet, there are clusters
of networks that seem to face a common set of attacking sources. To address the
issues of both blacklist strategies, Zhang et al [135] suggested a new strategy for
blacklisting called highly predictive blacklisting. The blacklist is formed based on a
large number of access logs from different networks. The administrator form the
blacklist based on both the amount of attacks and networks being attacked. Indeed,
if an attacking source attacks network(s) in one cluster, there is a large chance that
it will attack the other networks in that cluster too. Therefore, the corresponding IP
address should be added into blacklists that applied for all networks in that specific
cluster. Since this attacking source does not seem to attack the networks different
than the ones in the mentioned cluster, it does not bring much sense to add it to
their blacklists.
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2.4 Discussion

This Chapter has offered an overview of several types of analysis that can be done
with data collected from monitored network, with a particular focus on honeypot
traces. Echoing to the motivation we have pointed out in Chapter 1, our work has
similarities but is also different from the ones in [129, 69]. In fact, in the purpose, we
all try to identify the attack events, groups of attacking machines acting under the
same cause. To detect the attack events, authors of [129, 69] examine the attacks at
different places separately. In our case, we go one step further, i.e., we use the attack
information from several places to identify the attack events. To detect attack events
occurring on several locations, we need a totally different set of techniques from the
ones used in [129, 69]. They are described and applied in the rest of this thesis.
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Chapter 3

SOURCE OF INFORMATION

3.1 Introduction

EURECOM has started collecting attack traces on the Internet since 2003 by
means of honeypot responders. The first platform consisted of three high interac-
tion honeypots built on top of the VMware technology (the interested reader in
the platform configuration is invited to read [90] for more information). As shown
in [90, 28], these first experiments allowed us to detect some locality in Internet
attacks : activities seen in some networks were not observed in others. To validate
this assumption, we decided to deploy multiple honeypots in diverse locations. With
diversity, we refer both to the geographical location and to the sensor environment
(education, government, private sectors, etc). However, the VMware-based solution
proved not to be scalable. First, this solution had a high cost in terms of security
maintenance. Second, it required significant hardware resources. In fact, to avoid
legal issues we would have needed to ensure that these systems could not be com-
promised and could not be exploited by attackers as stepping stones to attack other
hosts. For those reasons, we have chosen a low-interaction honeypot solution, ho-
neyd [98]. This solution allowed us to deploy low-cost platforms, easy to maintain
and with low security risk, hosted by partners on a voluntary basis. The low-cost of
the solution allowed us to build a distributed honeynet consisting of more than 50
sensors distributed all over the world, collecting data on network attacks and repre-
senting this information under the form of a relational database accessible to all the
partners. Information about the identity of the partners and the observed attackers
is protected by a Non-Disclosure Agreement signed by each entity participating to
the project.

The primary purpose of this chapter is to present the data collection framework
used to validate the approach proposed in this thesis. We also want to explain the
practical motivation that makes our infrastructure as it is now. This includes how
to manage a large distributed system and the key design rationales of our database
schema that enables us to fulfill our operational requirements.
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3.2 Leurré.com : Data Collection Architecture

We describe here some important technical aspects, including the platform ar-
chitecture, the logs collection mechanism, the DB uploading mechanism, and the
data enrichment mechanism.

3.2.1 Platform Architecture

As mentioned before, the main objective is to compare unsolicited network traf-
fic in diverse locations. To make sound comparisons, the platform architecture must
be the same everywhere. We tried to make our Honeyd-based solution as similar
as possible to the initial VMWare setup [90]. We configured Honeyd to simulate 3
virtual hosts running on three different (consecutive) IP addresses. We configured
Honeyd’s personality engine to emulate the presence of two different configurations,
namely two identical virtual machines emulating Windows 2000 SP3, and one ma-
chine emulating a Linux Kernel 2.4.20. To the first two configurations (resp. the
last) correspond a number of open ports : FTP, Telnet, Web server, Netbios name
service, Netbios session service, and Service Message Block (resp. FTP server, SSH
server, Web server on ports (80), Proxy (port 8080, 8081), remote shell (port 514),
LPD Printer service (port 515) and portmapper. We require from each partner hos-
ting the platform a fourth IP address to access the physical host running Honeyd
and to perform maintenance tasks. We run tcpdump [95] to capture the complete
network traces on each platform. As a security measure, a reverse firewall is set up
to protect our system. That is, we accept only incoming connections and drop all
the connections that could eventually be initiated from our system (in theory, this
should never happen). The access to the host machine is very limited : SSH connec-
tions are only allowed in a two-hours daily time frame and only if it is initiated by
our maintenance servers.

3.2.2 Data Collection Mechanism

An automatized mechanism allows us, on a daily basis, to connect to the plat-
forms through an encrypted connection to collect the tcpdump traces. The script,
thanks to the diary on the central server, downloads not only the last day’s log file
but also, possible, older ones that could not have been collected in the previous
days due to, for example, a connectivity problem. All the log files are stored in a
central server. Since platforms could be down or inaccessible for many reasons, ano-
ther automated script checks the data collection status, identifies and sends the list
of need-to-be-checked platforms to the administrator for him to take the relevant
actions.

3.2.3 Data Uploading Mechanism

Just after the data retrieval, the log files are then uploaded to a large database
(built on top of Oracle) by a set of Perl programs. These programs take tcpdump
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files as input and parse them in order to create different abstraction levels of the
attacks. The lowest one corresponds to the raw tcpdump traffic. The higher level is
built on top of the lower ones and has richer semantics. We present some important
concepts in the next section.

3.2.4 Information Enrichment

To enrich the information available about each source, we add to it three other
dimensions :

1. Geographical information : To obtain geographical location such as organi-
sation, ISP, country of a given IP address, we have initially used Netgeo [94],
developed in the context of the CAIDA Project. It provided a very surpri-
sing result which flagged Netherlands and Australia as the two most attacking
countries. As a sanity check, we have used Maxmind [71] and we have de-
tected problems with the Netgeo classification. [91] provides a comparison of
these two tools. As a result, we have kept using the most reliable one, namely
Maxmind.

2. OS fingerprint : To figure out the OS of attacking hosts, we have used
passive OS fingerprinting techniques. We take advantage of disco [106] and
p0f [134]. Active fingerprinting techniques such as Nmap, Quezo, or Xprobe
have not been considered because we wanted to minimize the risk of alerting
the attacker of our investigations.

3. Domain name : We also do reverse DNS lookups to get the domain name of
the attacking machines (when available).

3.3 Leurré.com : An Abstract Level of Database

Schema

3.3.1 Design Rationale

The purpose of an Entity-Relationship model is to allow the description of the
conceptual scheme based on a practical relational model. We can usually optimize
this process with respect to various types of constraints (speed, memory consump-
tion, table sizes, number of indices, etc.). Best practices in designing relational da-
tabases address problems such as data redundancy and update/insertion/deletion
anomaly issues. In database terminology, the update/insertion/deletion anomaly is
the update/insertion/deletion operation that brings the data into the inconsistency
status. To address this issue, people usually apply a so-called normalization pro-
cess [58] to bring the database into the “normal-forms”. The higher level the normal
form is, the better it is in terms of avoiding redundancy, and, thus, of introducing
anomalies during the operational lifetime. To do this, tables that do not satisfy the
normal-form property are usually split into smaller ones. However, when searching
for information, we usually need to join several tables together, and normal forms
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may be less efficient in these cases. In our case, we follow this design principal whe-
rever possible, but it is not an obligation. The reasons for that are twofold. Firstly,
we do not care that much about update and insertion anomaly issues as we do not
usually modify the data once it is inserted into the database, as it represents a fact
of the past. Secondly, we do care a lot about the efficiency of querying the database
and we are not so concerned by space efficiency (be it on disk or in memory) as
the total amount of data we deal with remains rather modest, compared to what
existing database systems can handle. Therefore, we have consciously decided to
integrate in our design some redundant information. In other words, certain tables
contain information that could be retrieved by querying or joining other tables. Ho-
wever, having the results of such queries available at hand in ad-hoc tables proves to
be extremely useful when using the database. As a consequence, we decide to keep
them, acknowledging the fact that, without their presence, the database would be
more ’optimal’ according to the classical criteria.

3.3.2 Database Description

3.3.2.1 Main Components

The database schema can be divided into four main components as follows :
– Platform Information : As the name suggests, this component holds infor-

mation about the platform such as its IP addresses, geographical location, the
time zone.

– Packet Information : This component consists of several large tables related
to the attack traces at packet level. In theory, we can reconstruct raw packets
from these tables. As a matter of fact, they are considered as the original
source of the information or a “backup” of other tables.

– Contextual Information : Various information about the attacking ma-
chines are added to enrich our views on the attackers. It includes the geogra-
phical locations, the domain names, and the operating systems.

– Meta Data : From the packet information, we build many concepts that
represent the attacks at higher semantic levels.

3.3.2.2 Meta Data

As mentioned earlier, we build several concepts that represent the attacks at a
richer semantic level. For the ease of understanding the next chapters, we present
some important ones in this section.

Definition 3 Source : A source corresponds to an IP address that has sent at least
one packet to, at least, one platform. Note that, in our Source model, a given IP
address can correspond to several distinct sources. That is, an IP remains associated
to a given source as long as there is no more than 25 hours between 2 consecutive
packets received from that IP by any platform. After such a delay, a new source
will be assigned to the IP. By grouping packets by sources instead of by IPs, we
minimize the risk of gathering packets sent by distinct physical machines that have
been assigned the same IP dynamically after 25 hours.
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Definition 4 Ports sequence : A ports sequence is a time ordered sequence of
ports (without duplicates) a source has contacted on a given virtual machine.

For example, if an attacker sends the following packets : ICMP, 135 TCP, 135 TCP,
139 TCP to a given virtual machine, the associated ports sequence will be represen-
ted by the string I|135T |139T .

This is an important feature that allows us to classify the attacks into different
classes. In fact, as mentioned in [89], most attack tools are automatized, it is the-
refore quite likely that the same attack tools will leave the same port sequences on
different platforms.

Definition 5 Tiny Session : A Tiny Session groups the packets exchanged between
one source and one virtual host.

Definition 6 Large Session : it is the sequence of packets that have been ex-
changed between one Source and a particular honeypot sensor. A Large Session is
characterized by the duration of the attack, the number of packets sent by the Source,
the number of virtual machines targeted by the source on that specific platform. A
Large Session is thus composed of up to three Tiny Sessions.

Definition 7 Cluster : A Cluster is a set of similar large sessions observed on any
possible platform.

We apply the clustering algorithm defined in [89] on the traffic generated by the
sources. The first step of this clustering algorithm consists in grouping large sessions
into bags. This grouping aims at differentiating between various classes of activity
taking into consideration a set of preliminary discriminators, namely the number of
targeted virtual hosts and the unsorted list of port sequences hitting them. In order
to further refine the bags, a set of continuous parameters is taken into consideration
for each large session, namely : its duration, the total number of packets, the average
inter arrival time of packets, and the average number of packets sent to each honey-
pot. These parameters can assume any value in the range [0,∞], but some ranges
of their values may be used to define bag subclasses. This is done through a peak
picking algorithm that identifies ranges of values considered discriminatory for the
bag refinement. Large sessions belonging to a bag and sharing the same matching
intervals are grouped together in a cluster. A very last refinement step is the payload
validation. The algorithm considers the concatenation of all the payloads sent by the
attacker within a large session ordered according to the arrival time. If it identifies
within a cluster multiple groups of large sessions sharing similar payloads, it further
refines the cluster according to these groups. In summary, a cluster is by design a
set of large sessions that seem to be originating from a similar attack tool.

Figure 3.1 represents the relationship of some of the most important concepts in
the Meta Data component. As we can see, a Source may have from one to n Large
Sessions, n being the number of platforms. A Large Session may have from one to
three Tiny Sessions, and one Large Session belongs to one and only one Cluster.
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Figure 3.1 – Some important concepts in the Meta Data component

3.4 Generic picture

Our first platform has started running in February 2003, since then new part-
ners have joined our collection framework and, therefore, the volume of data kept
increasing month after month. Some global statistics are listed as an indication of
the important volume of data we have now.

– Number of platforms : 50
– Number of observed distinct IP addresses : 3,800,791
– Number of distinct Sources : 5,863,674
– Number of received packets : 354,971,435
– Number of emitted packets : 284,580,993
– Number of received TCP packets : 331,513,017
– Number of received UDP packets : 14,935,446
– Number of received ICMP packets : 9,761,973
– Number of distinct Tiny_Session : 11,290,893
– Number of distinct Large_Session : 6,742,980
– Number of distinct port sequences : 218,107
– Number of distinct clusters : 156,234

3.5 Conclusion

We have presented in this Chapter several aspects of our data collection fra-
mework. It includes the platform configuration, the data collection mechanism, the
data uploading and enrichment. We have also offered a general view of our main da-
tabase components as well as their rational design. Some important concepts have
also been described.
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Chapter 4

TIME SERIES CORRELATION

TECHNIQUE FOR MALICIOUS

NETWORK TRAFFIC

4.1 Introduction

Searching for similarity is an important problem when mining time series. In fact,
it is part of almost any classical data mining problem : clustering [59], indexing [1,
86, 38, 16, 132], classification [42]. In general, to know the distance between two
time series X and Y, people apply a distance function F either directly on raw data
X and Y , or on X ′ and Y ′ (X ′ and Y ′ are derived from X and Y, respectively, with
|X ′| ≪ |X| and |Y ′| ≪ |Y |). The different distance functions have been invented and
used for different situations. In our case, we need to compare the malicious attack
traces to discover the coordinated attack phenomena existing in those traces. Given
this application context, we have certain constraints on the properties of the distance
function. To identify the right distance function for our case, in this Chapter, we
first study the mathematical properties of a set of representative similarity measures
for time series data. Then, with respect to our application context, we enumerate a
set of requirements that the expected distance function must satisfy. Based on this
foundation, we choose the one that best suits our needs.

The remainder of this chapter is organised as follows. Section 4.2 briefly discusses
the notations of distance and similarity function. We present some examples of
real attack traces in Section 4.3. Section 4.4 presents different time series distance
functions. We discuss the applicability of these distance functions in the context of
correlation of malicious attack traces in Section 4.5. Finally, Section 4.6 concludes
the Chapter.

4.2 Distance and Similarity Measure

So far, we have used the term distance and similarity function indifferently, but in
reality, they are two distinct notions. This Section makes a clear distinction between
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the two.
In mathematics, a distance function (or a metric) on a given set M is a function

d : M × M → R+ that has the following characteristics :

1. non-negativity d(x, y) ≥ 0 and Identity of indiscernibles d(x,y)=0 if and only
if x=y

2. symmetry d(x,y)=d(y,x)

3. triangle inequality d(x, z) ≤ d(x, y) + d(y, z)

The distance is used to measure how far the two points are from each other in the
space M. The more important the distance is, the further the two points are, and
vice versa. Given our application context, i.e., to compare the attack traces, we do
not expect that the distance measure we use satisfies all the above conditions. For
instance, as we argue in Section 4.5, some activities may be more important than the
others in the attack traces, it is not necessary for two attack traces to be identical to
have the distance of zero. In this case, we may not need the identity of indiscernibles
property (d(x,y)=0 if and only if x=y). As a convention, from now on, our notion
of distance is referred to this new sense.

Contrary to distance, the similarity measure assesses how close (similar) the two
points are. We can convert the distance unit to similarity unit. This can be done as
follows :

s(x, y) = MAX − d(x, y) (4.1)

in which, x and y are two points in the space M. s(x,y) stands for the similarity
between x and y. MAX is the theoretical maximum distance between two points in
M, and d(x,y) is the distance between x and y.

4.3 Examples

We present three examples of real attack traces observed on our infrastructure
and we use them in the rest of this Chapter to show the needs and constraints we
have when looking for a good similarity measure.

The example in Figure 4.1a represents the evolution of attacks of cluster 156423
on two platforms, 7 and 29, over a period of 151 days. As we can see, the waves
of attacks against these two platforms are highly synchronized. It is quite likely
that the attacks on these two platforms have the same underlying cause. Therefore,
we want the similarity measure to conclude that these attack traces are correlated.
Figure 4.1b shows the attacks of cluster 14647 against the platforms 34 and 39 over
a period of 31 days. As we can observe, the attacks on platform 39 consists of two
strong peaks of activities on days 473 and 480 whereas the attack on platform 34
does not have the corresponding peaks of activities. For this reason, we expect that
the similarity measures flag these attack traces as non correlated. Finally, Figure 4.1c
represents the attack traces of cluster 15715 against the platforms 33 and 37 over
a period of 41 days. Each attack trace has a major peak of activities but not on
the same day. In fact, on the platform 33, the peak of activities is on the day 265
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Figure 4.1 – Examples of evolutions of attack traces

whereas on the platform 37 the peak of activities is on the day 284. Here too, we
do not expect the similarity measure to conclude that these two attack traces are
correlated.

4.4 Measures

We present in this Section several functions to measure the distance (or simi-
larity) of time series data. More precisely, the first three subsections present three
techniques for measuring the similarity, and the second three subsections aim at
representing three distance functions.

4.4.1 ScatterPlot

4.4.1.1 Description

A scatterplot is a useful summary of a set of bivariate data (two variables X
and Y), usually drawn before working out a linear correlation coefficient or fitting
a regression line [34]. It gives a good visual picture of the relationship between
the two variables, and helps in the interpretation of the correlation coefficient or
regression model. Each unit contributes one point to the scatterplot, on which points
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are plotted but not joined. The resulting pattern indicates the type and strength of
the relationship between the two variables.

Here are some rules to recognize the correlation from a scatterplot ( [34]).
– The more the points tend to cluster around a straight line, the stronger the

linear relationship between the two variables (the higher the correlation).
– If the line around which the points tends to cluster runs from lower left to

upper right, the relationship between the two variables is positive (direct).
– If the line around which the points tends to cluster runs from upper left to

lower right, the relationship between the two variables is negative (inverse).
– If there exists a random scatter of points, there is no relationship between the

two variables (very low or zero correlation).
Figure 4.2a shows the scatter plot of two random time series X and Y . In this

example, both X and Y have the size of 100 and each element takes the random
value from 0 to 100, as we can see, the points are randomly distributed. Figure 4.2b
shows the scatter plot of two linearly correlated variable X and Y (The points tend
to cluster around a straight line). And the positive slope of the line indicates that a
large value of X corresponds to a large value of Y, and a small value of X corresponds
to a small value of Y.
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Figure 4.2 – a) A random distribution of points in the scatterplot indicates a no-
correlation of X and Y b)Linear correlation (points tend to cluster around a straight
line)

As an example, Scatter plots of attack traces represented in Figures 4.1a, 4.1b,
and 4.1c are represented in Figures 4.3a, 4.3b, and 4.3c, respectively. Figure 4.3a
shows that attack traces on Figure 4.1a are somehow correlated. Whereas, the out-
liers in scatter plots of Figures 4.3b and 4.3c shows that the important values of two
activities in Figure 4.1b and 4.1c are not synchronized.

4.4.1.2 Discussion

Scatterplot is a visualisation based method, it is intuitive and does not require
special characteristic from data input. However, discovering the correlation of a large
dataset is a time costly task as human participation is required. As clearly shown in
Figure 4.3a, interpretation of a strong correlation is not always straightforward for
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Figure 4.3 – Scatter Plots

many time series.

4.4.2 Pearson

4.4.2.1 Description

Pearson Product Moment Correlation Coefficient (Pearson correlation for short)
is a correlation measure.The formula to compute the correlation coefficient between
X = (X1, X2, ...Xn) and Y = (Y1, Y2, ...Yn) is defined as follows :

r =
1

n − 1

n∑

i=1

(
Xi − X

SX

)(
Yi − Y

SY

) (4.2)

where X (resp. Y ) and SX(resp. SY ) are the mean and standard deviation of X

(resp. Y ). The product moment part of the name comes from the way in which the
correlation coefficient is calculated : by summing up the products of the deviations
of the data points from the mean.

4.4.2.2 Threshold

Pearson correlation is a similarity measure. It ranges from -1 to +1. A correlation
of +1 means that there is a perfect positive linear relationship between time series.
In other words, whenever X increases (or decreases), so does Y . A correlation of -1
means that there is a perfect negative linear relationship between variables. In other
words, a high (low) value of X is associated with a low (high) value of Y. The level
of correlation is usually based on wide-accepted thresholds described as follows [31] :

– -1.0 to -0.8 strong negative association.
– -0.8 to -0.5 moderate negative association.
– -0.5 to +0.5 weak or no association.
– +0.5 to +0.8 moderate positive association.
– +0.8 to +1.0 strong positive association.
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As an example, the correlation coefficients of attack traces given in Figures 4.1a, 4.1b,
and 4.1c are 0.91, 0.37, and -0.06, respectively. In other words, Pearson correlation
confirms that only the attack traces in Figure 4.1a are correlated.

4.4.2.3 Discussion

Pearson correlation is able to compute the correlation even in the case of time
series with differences in their scale. Figure 4.4 shows the evolution of two time series
X and Y. The time series X experiences an abrupt change at point 21 whereas the
time series Y is just slightly increasing. Despite the differences in amplitude, Pearson
correlation gives a strong coefficient, 0.81. Depending on the application domain, we
can consider this as either a strength or a weakness. We show how to benefit from
this characteristic when working on aggregated attack traces in the next chapter.

Note that, Pearson’s correlation coefficient only measures linear relationships
between variables, and if data contains outlier, it will be greatly affected, since the
value of Xi − X will become important in such a case.

Figure 4.4 – Pearson correlation tolerates the difference in scale of time series data

4.4.3 Spearman

4.4.3.1 Description

It is sometimes important to know that one element is greater than the other one,
no matter how different they are. In scale measurement, people call it ordinal scale.
For instance, in a marathon race, the first runner reaching the target is ranked first,
second comer is second, etc. no matter what the inter-arrival time between them is.
Instead of comparing the real values, we can also compare objects by their ranks. Two
time series will be seen as highly correlated if and only if their highest (resp. second,
third, etc.) values show up in the same positions, no matter what values these points
have. To calculate such correlation coefficient, Spearman correlation first transforms
time series data to their rank-form and then applies Pearson correlation on the two



29

rank-form time series. This is used for time series where the order is more important
than the values themselves. To convert the time series X = (X1, X2, ...Xn) into the
rank-form Y = (Y1, Y2, ...Yn), we proceed as follows :

– Step 1 : X ′ is a sorted-form of X.
– Step 2 : We build M ′ = ((X ′

1, 1), (X ′
2, 2), (X ′

3, 3), ...(X ′
n, n))

– Step 3 : We build the final mapping table M = ((DX1, Y1), (DX2, Y2), ...(DXN , YN)),
in which (DX1, DX2, ...DXN) is the set of distinct values of X and Yk is the
mean of all Y ′

j of all couples (X ′
j, Y

′
j ) ∈ M ′ which has X ′

j = DXk.
For illustrative purpose, given the time series X = (6, 2, 7, 3, 30, 4, 3), the sorted-

form of X is X ′ = (2, 3, 3, 4, 6, 7, 30), and M ′ is ((2,1),(3, 2), (3,3), (4,4), (6,5), (7,6),
(30,7)). The final mapping table is ((2,1), (3,2.5), (4,4), (6,5), (7,6), (30,7)). Thus
the rank form of X is Y = (5, 1, 6, 2.5, 7, 4, 2.5).

4.4.3.2 Threshold

As Spearman correlation applies Pearson correlation technique, the significance
of the correlation coefficients should be interpreted in the same way as in 4.4.2.

As an example, the Spearman correlation coefficients of attack traces represen-
ted in Figures 4.1a, 4.1b, and 4.1c are 0.88, 0.7, and -0.09, respectively. Spearman
correlation flags the first two examples as correlated.

4.4.3.3 Discussion

By working on ordinal data, Spearman correlation can avoid the problems caused
by outliers in data. In fact, in the rank-form, the difference between outlier points
and other data points will be significantly reduced, therefore, their impact will be less
important in the rank-form than in the original values. For instance, the reason for
which Spearman gives a high correlation value (0.7) for the attack traces represented
in the Figure 4.1b is explained by the ranked forms of the two corresponding time
series as represented in Figure 4.5.
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Figure 4.5 – The ranked values of attack traces from Figure 4.1b
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4.4.4 Symbolic Aggregate Approximation

4.4.4.1 Description

Lin et al have proposed SAX (Symbolic Aggregate approXimation) in [70]. SAX
allows to reduce the dimensionality of the time series. Simply speaking, to reduce
the time series X of length n to w, SAX divides X into w equal frames to obtain the
time series P. Each point in the newly obtained time series P is the mean of data
points in the corresponding frame on the time series X. This technique is well-known
under the name PAA (Piecewise Aggregation Approximations). The second step is
to quantize the value of the newly created time series P into P , called the SAX
representation of P. More formally, SAX transformation is described as follows :

1. Dimensionality Reduction Via PAA : Time series X = (X1, X2, ...Xn) is
first normalized to obtain X ′ = (X ′

1, X
′
2, ...X

′
n) having a mean of zero and a

standard deviation of one.

X ′
i =

(Xi − X)

SX

(4.3)

(Where X and SX are the mean and standard deviation of X, respectively).
The normalized time series X ′ is then converted into its PAA representation
P = (P1, P2, ...Pw). Given the new time series length w, the ith element of P

is calculated with the following equation :

Pi =
w

n

n
w

i
∑

j= n
w

(i−1)+1

X ′
j (4.4)

(Note that n
w

is called the compression ratio).

2. Discrimination : The second step of SAX is to transform the PAA represen-
tation P of time series X into a discrete representation P where each value Pi

is represented by a symbol belonging to a given alphabet. It has been shown
that the best way to do the discrimination is to choose the quantization in
such a way that every symbol has equiprobability distribution [7]. And since
the normalized time series has the Gaussian Distribution by design [64], Lin
et al have proposed to use the "break points" that will produce the equal size
area under the Gaussian curve [64]. For example, the breakpoints for an al-
phabet size of 4 {a,b,c,d} are -0.67, 0, 0.67. In other words, it means that all
the values of P ≤ −0.67 will be represented by “a”, all the values of P > −0.67
and P ≤ 0 will be represented by “b”... Figure 4.6 is an example of the output
of this step.

3. Distance : SAX estimates the distance between two time series X and Y of
length n as the distance between their SAX representations PX and PY . For
the sake of efficiency, inter symbol distances can be pre-computed and loaded
into a lookup table TAB. For instance, when alphabet size α = 4, the corres-
ponding look up table is represented in Table 4.1. In this case, the distance bet-
ween “a” and “b” is TAB(“a”,“b”)=0, between “a” and “c” is TAB(“a”,“c”)=0.67,
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Figure 4.6 – Discrimination example

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 4.1 – Lookup table for alphabet α of 4

etc. Based on this, we define the distance between PX and PY as follows :

D(PX,PY ) =

√
√
√
√

n

w

w∑

i=1

TAB(PX(i), PY (i)) (4.5)

where PX(i) and PY (i) are the i-th symbols of PX and PY , respectively.

4.4.4.2 Threshold

SAX is a distance measure. Unlike the Pearson and Spearman measures, there is
no fixed threshold to determine the similitude of two time series. In fact, the distance
value depends on many factors : compression ratio, alphabet size...

As an example, when applying SAX distance with different alphabet sizes, and
the compression ratio of 1 to the attack traces represented in Figures 4.1a, 4.1b, and
4.1c, we obtain the distances given in Table 4.2.

4.4.4.3 Discussion

SAX is a flexible and powerful tool for dimensionality reduction. It is flexible
since we can adjust the compression ratio and the alphabet size. But of course, this
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α Figure 4.1a Figure 4.1b Figure 4.1c
4 1.34 1.5 1.5
5 0.71 2.31 1.65
6 1.18 1.79 2.27

Table 4.2 – Examples of SAX distances

is a trade off. In Figure 4.7, time series Y has a slight peak at point 13 and a strong
peak at point 20 whereas time series X has a strong peak at point 13 and a slight
peak at point 20. Applying SAX with α = 5 and w = 30 (the same as the original
length of the original time series), we obtain the two alphabet strings CX and CY

as follows :
PX=2 3 3 3 3 3 3 2 3 2 2 3 4 3 2 3 3 2 2 5 2 3 3 3 3 2 3 2 3 3
PY =2 2 3 3 2 3 3 3 3 3 2 3 5 3 3 3 3 3 3 4 3 2 3 3 2 3 3 2 2 3
SAX returns a distance of zero for these two time series which corresponds to

the highest level of similarity that two time series can obtain. It is difficult to judge
whether it is good or bad without considering this in a concrete application context.

0 10 20 30
0

10

20

30

40

Time

N
um

be
r o

f o
bs

er
va

tio
ns

X
Y

Figure 4.7 – SAX : distance of zero

4.4.5 Minkowski

4.4.5.1 Description

Another important distance measure is Minkowski. Given two time series X(X1, X2, .., Xn)
and Y (Y1, Y2, .., Yn), the Minkowski distance of order p (p-norm distance) is defined
as follows :

D =
( n∑

i=1

|Xi − Yi|
p
) 1

p

(4.6)

In practice, the most frequently chosen values for p are :
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p Figure 4.1a Figure 4.1b Figure 4.1c
2 49.7 114.7 86.9
3 28.9 100.1 72.7
4 23.2 96.2 68.2

Table 4.3 – Examples of Minkowski distances

1. p=1, Manhattan : The Manhattan distance is also known as City Block
distance. This function computes the distance that would be traveled to get
from one data point to the other if a grid-like path is followed. The Manhattan
distance between two items is the sum of the differences of their corresponding
components. The formula for the distance between X = (X1, X2, ...Xn) and
Y = (Y1, Y2, ...Yn) is :

D =
n∑

i=1

|Xi − Yi| (4.7)

2. p=2, Euclidean Distance : The Euclidean distance function measures the
as-the-crow-flies distance. The formula for such distance between X = (X1, X2, ...Xn)
and Y = (Y1, Y2, ...Yn) is :

D =

√
√
√
√

n∑

i=1

(Xi − Yi)
2 (4.8)

According to [61], Euclidean distance is used in 80% cases as distance measure
of time series.

3. p → ∞, Chebychev Distance The Chebychev distance between X and Y is
the maximum distance between the points in two time series.

lim
p→∞

( n∑

i=1

|Xi − Yi|
p
) 1

p

= max(|X1 − Y1|, |X2 − Y2|, ..., |Xn − Yn|) (4.9)

The Chebychev distance may be appropriate if the difference between points
is reflected more by differences in individual dimensions rather than all the
dimensions considered together.

4.4.5.2 Threshold

Minkowski is a distance measure, the distance value depends on the nature of
the data, the length of time series, and also the value of p. So, in order to determine
that two time series are similar, we must fix the threshold manually.

Applying the Minkowski distance with different values of p to attack traces
represented in Figure 4.1a, 4.1b, and 4.1c, we obtained the distances as represented
in Table 4.3.
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4.4.5.3 Discussion

The Minkowski distance is based on the sum of the differences |Xi − Yi|
p (from

Equation 4.6) of the corresponding elements in two time series. By changing the
parameter p, we can adjust the impact of these differences on the final distance.
Actually, the greater the value of p is, the less important the small differences are
and when p → ∞ the distance is equal to the maximum difference of |Xi − Yi|
(Chebychev Distance). At the contrary, when p is small, the contribution of the
small differences |Xi − Yi| to the total distance increases.

It is obvious that we can not apply this technique to raw data since it will
introduce a large distance even in case of high correlation. As an example, Figure 4.8a
represents two similar time series, but it has a large Minkowski distance due to the
differences in amplitude (illustrated in Figure 4.8b).

(a) (b)

Figure 4.8 – a)Two similar time series (reprinted from [61]) b)Large Minkowski
distance due to the difference in amplitude(reprinted from [61])

4.4.6 Dynamic Time Warping (DTW)

4.4.6.1 Description

DTW is introduced in [62] and mostly used in speech recognition thanks to
its ability to treat the out of phase time series. In addition to speech recognition,
DTW has also been found useful in many other disciplines [60], including data mi-
ning, gesture recognition, robotics, manufacturing, and medicine. Given the two
time series X = (X1, X2, ...XM) and Y = (Y1, Y2, ...YN), we construct a cost matrix
M-by-N (illustrated on Figure 4.9) in which the value of cell (i,j) is the correspon-
ding distance d(Xi, Yj) between Xi and Yj (Euclidean distance is usually used, so
d(Xi, Yj) = (Xi − Yj)

2). We denote each cell (i, j) a certain Wk. The warp path
W = (W1,W2, ...WK) is the list of cells satisfying the follow conditions :

1. The warp path’s length must be greater than or equal to the maximal length
of two time series and smaller than the sum of both of them MAX(M,N) ≤
K ≤ M + N − 1
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Figure 4.9 – A cost matrix with the minimum-distance warp path traced through
it (reprinted from [104])

2. The warp path starts from the beginning of each time series W1 = (1, 1) and
ends at each time series Wk = (M,N)

3. The index must be monotonically increasing : Wk = (i, j),Wk+1 = (i′, j′) i ≤
i′ ≤ i + 1, j ≤ j′ ≤ j + 1.

The DTW distance is the minimum-distance warp path, which is defined as follows :

DTW (X,Y ) =
K∑

k=1

Wk (4.10)

where Wk is the value of the corresponding cell Wk of the matrix.

4.4.6.2 Threshold

DTW is a distance measure. Similarly to the SAX and Minkowski distances,
the threshold must be fixed manually. The distances of attack traces represented in
Figure 4.1a, 4.1b, and 4.1c are 31.4, 109.1, and 5.38, respectively.

4.4.6.3 Discussion

DTW, like the Minkowski distance, also suffers from the scaling issue. Therefore,
the time series data need to be normalized before applying DTW. Besides that, the
out-of-phase feature sometimes introduces unexpected results. For instance, consi-
dering attack traces of cluster 15715 on platforms 33 and 37 as represented in Fi-
gure 4.1c, each of them contains only one important peak of activities but they are
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out-of-phase. It is obvious that, without further analysis, there is no means for us
to conclude that these two activities are linked together. It is why we do not expect
that the correlation measures flag them as correlated. However, DTW concludes that
their distance is 5.38 which is much smaller than the value for Figure 4.1a where
curves are clearly correlated.

4.5 Discussion

4.5.1 Measure Requirements

We have presented so far several techniques that can be used to compute the
distance or similarity between two time series data. Before deciding which one best
suits our needs, we go to some more levels of detail about our application context.
First, regarding the operational requirement, we need a technique that is applicable
to a large dataset (as described in Chapter 3). Second, concerning the functional
requirement, in the context of malicious network traffic, if the time series is stable, we
consider that there is no special activity happening. Otherwise, if time series exhibits
variation or peaks of activities, we consider that something different is happening,
worthwhile being identified and analyzed.

With respect to the application context as described above, we identify the fol-
lowing mandatory properties for the ideal similarity function P()

– Synchronization : P() should not return true if peaks of activities are not
synchronized. The reason for this is that the important activities are the most
interesting ones in the time series. If a P() concludes that the two time series
are correlated, their important activities must be synchronized.

– Scalability : P() must be applicable to a large dataset.

Besides that, from the practical viewpoints, we propose two other supplementary
requirements. These are not mandatory requirements to exclude a technique, but
they have some impact on the final choice.

– Threshold determination : One of the basic tasks when comparing objects
is to determine the threshold. With the same magnitude, two time series are,
are not, correlated on the basis of such value. For some correlation functions,
we have well-accepted thresholds, for some others, the threshold needs to be
fixed manually. For instance, SAX distance function is influenced by the al-
phabet size, and the compression ratio. Clearly, having well defined thresholds
greatly helps in automatizing the approach. To simplify things, we plead for
the correlation function P() having some wide-accepted predefined threshold.

– Pre-processing requirement : Some correlation functions require the pre-
processing step, i.e, normalization. We tend to choose the correlation function
P() that does not require the pre-processing task if there are two equal can-
didates, for cost reason.
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4.5.2 Discussion

This Section provides the discussion about the applicability of different correla-
tion functions with respect to our application context. All techniques are evaluated
with respect to the level of satisfaction of the requirements mentioned in 4.5.1. As far
as the synchronisation criteria is concerned, SAX does not ensure synchronization
of important activities because of the data reduction step, as shown in Figure 4.7.
Spearman can reduce the impact of outliers, but in our application context, the
outliers correspond to important activities that characterize the cluster time series.
In other words, Spearman correlation’s strength becomes its weakness in our case.
DTW has the capacity of treating out-of-phrase time series, whereas, in our context,
the important activities must be synchronised. Again the capacity of treating the
out-of-phase time series has a negative impact in our context. Regarding the scala-
bility requirement, only Scatterplot is disqualified, since it is a visualization based
approach, it needs the participation of human for the judgement. As discussed ear-
lier in Section 4.4.5 and Section 4.4.6, DTW and Minkowski distances require the
pre-processing step to normalize data input. Finally, regarding the threshold deter-
mination criteria, the significance of correlation coefficient given by Spearman and
Pearson are widely accepted, whereas in the case of SAX, Minkowski, and DTW
distance, we must fix the threshold manually.

Table 4.4 is the summary of our discussion. Based on this, Pearson appears to
be the only technique satisfying all our requirements and is, therefore, chosen in the
sequel of this work.

Measure Synchro Scalability Threshold Preprocessing
-nisation determination

Scatter C Yes No NA No
Spearman C No Yes Fixed No

SAX D No Yes Manual No
DTW D No Yes Manual Yes

Minkowski D Yes Yes Manual Yes
Pearson C Yes Yes Fixed No

D :Distance, C :Correlation, NA :Non-Applicable

Table 4.4 – Comparison of correlation techniques

4.6 Summary

We have introduced several techniques to compute the similarity of time series
data. For each technique, we have studied in detail its mathematical properties. In
the context of comparing malicious network traffic with a high volume of data, we
have proposed four criteria coming into play for the choice of the appropriate cor-
relation technique. We have concluded that Pearson correlation is the most suitable
for our case.

x
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Chapter 5

ON THE IDENTIFICATION OF

ATTACK EVENTS

5.1 Introduction

As said earlier, we want to detect the macro attack events, that is, the groups
of correlated micro attack events. For this to happen, we need first to choose the
best suited correlation techniques for our application domain. This issue has been
discussed in Chapter 4. Second, given a large dataset (as presented in Chapter 3) we
need efficient methods to find the similarities between all the attack traces at our
disposal. In this Chapter, we explain why we need all of that in order to identify the
micro and macro attack events. This is justified when we discuss the two approaches
we use to detect the micro and macro attack events. In the first approach, to detect
the macro attack events, we need first to detect the micro attack events. At the
contrary, in the second approach, we start with the identification of macro attack
events to subsequently find the micro attack events. The remainder of this Chapter
is organized as follows. Section 5.2 shows how we reduce the number of attack
traces to be considered, thus, to reduce the computational cost. In Section 5.3, we
describe the first approach, i.e. to detect first the micro attack events, and, then, to
identify macro attack events. In Section 5.4, we present the second approach, i.e. to
detect first the macro attack events, and, then, the micro attack events. Section 5.5
presents the experimental validation of our approach. Finally, Section 5.6 concludes
the Chapter.

5.2 Pre-processing

Before going to the detailed discussion about the pre-processing technique, we
introduce a very important concept, observed cluster time series, in the follo-
wing.

Definition 8 An Observed Cluster Time Series ΦT,c,op is a function defined
over a period of time T , T being defined as a time interval (in days). That function
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returns the amount of sources per day associated to the cluster c 1 as seen from the
given observation viewpoint op. The observation viewpoint op can either be a specific
platform or a specific country of origin. In the first case, ΦT,c,platformX

returns, per
day, the amount of sources belonging to cluster c that have hit platformX . Similarly,
in the second case, ΦT,c,countryX

returns, per day, the amount of sources belonging
to cluster c that are geographically located in countryX . Clearly, we always have :
∑∀i∈countries ΦT,c,i =

∑∀x∈platforms ΦT,c,x

As indicated later, the computational overhead problem comes from the fact that
we have too many observed cluster time series. In fact, to learn whether an observed
cluster time series is correlated with another observed cluster time series, we must
compare that observed cluster time series to all the others. It is evident that the
more observed cluster time series we have, the more expensive the computational
effort is. As an indication, we have around 400,000 observed cluster time series as
of now. Such a high number of observed cluster time series is the main reason for
computational overhead. To deal with this, we start with the following observation.
Let us assume that there is an easy way to put the observed cluster time series into
different classes, we can distinguish two kinds of correlation as follows :

– within-class correlation : it is to compute the correlation of observed cluster
time series belonging to one class.

– cross-class correlation : it is to compute the correlation of observed cluster
time series belonging to different classes.

If, by design, the classes we have built are such that there should be no signifi-
cant correlation between two observed cluster time series belonging to two different
classes, then we will dramatically decrease the computational effort by limiting our-
selves to the evaluation of the “within class correlation”. In the following, we discuss
how to build these classes.

5.2.1 Assumption

Our assumption is that the observed cluster time series could be classified into
different categories based on their level of stability. The observed cluster time series
of certain attack tools may vary more than the others. There may be many reasons
for that to happen. For instance, several attack processes may exploit the attack
tools differently. Or it may be due to the varying of the amount of infected machines
(new machines are infected, others get patched). With that in mind, we make the
assumption that the observed cluster time series can be classified into the following
three categories :

1. Peaked family : observed cluster time series in this family exhibit a significant
peak of values during a very small period of one or two days and almost no
activity otherwise. The fact that several sources send packets simultaneously
to a single platform in a short period of time shows the highly coordinated
nature of the attacking machines.

1. The notation of cluster, as used here, is the one defined in Chapter 3, Section 3.3.2.2
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2. Stable family : observed cluster time series in this family have a roughly
constant behavior during their whole lifetime.

3. Strongly varying family : observed cluster time series in this family are
characterized by wide amplitude variations over, possibly very, long periods of
time.

There are many advantages with the above classification. Firstly, we do not need to
compute the cross-class correlation since the stable observed cluster time series can
not be correlated neither with peaked observed cluster time series nor with strongly
varying observed cluster time series. Similarly, the observed cluster time series in the
strongly varying family are not likely to be correlated with peaked ones. Secondly,
since computing the correlation of stable observed cluster time series does not bring
much sense, we do not need to compute the within-class correlation for the observed
cluster time series in this class.

5.2.2 Validation

To validate our above assumptions, for each observed cluster time series, we first
identify its active period or lifetime. The lifetime of an observed cluster time series is
defined as the period from the first day to the last day during which that observed
cluster time series is observed. If the lifetime of one observed cluster time series
is only one day, then, we declare that the observed cluster time series belongs to
the peaked family. Otherwise, we compute the standard deviation of the observed
cluster time series over its lifetime. If it is smaller than a threshold δ, then we flag
the observed cluster time series as belonging to the stable family. Otherwise, we
filter out the outlier data point from the time series to form the filtered time series.
Outlier data point is defined as the maximum value of the time series. Then we
compute the standard deviation of filtered time series. If the standard deviation
is now smaller than δ, we declare the time series as being a peaked time series 2.
Otherwise, we declare the observed cluster time series as belonging to the strongly
varying family.

Figure 5.1 illustrates the algorithm for an observed cluster time series that spans
over 20 days. The standard deviation of the time series is 6.51. Since it is greater
than 1, our algorithm does not declare this time series as a stable one. We next
filter the extreme values from this time series. This boils down to cutting the peak
on day 12. The resulting time series is obviously smoother than the initial one and
its standard deviation is 0.46, which is smaller than the threshold 1. Hence, our
algorithm eventually flags the time series of Figure 5.1 as belonging to the peaked
family.

5.2.2.1 Threshold

We test the approach with a subset 20,756 observed cluster time series extracted
from a bigger dataset as presented in Section 5.5. As mentioned earlier, our intention

2. It is different from the first case in the sense that its lifetime is greater than 1, and it has the
stable behavior during its whole lifetime besides on a single point
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Figure 5.1 – Example of the peaked family time series

is to classify them into three different categories. The problem now is to choose a
good threshold δ to separate them. Suppose that there exists an ideal threshold δ′

that can classify correctly observed cluster time series into three different classes.
For δ ≤ δ′, we may misclassify a stable time series as a peaked or strongly varying
time series. In this case, we will spend more computational effort than we could
have with δ′, but we will never miss any correlation (i.e., we will never conclude
that two varying time series are not similar whereas they are). For δ ≥ δ′, we could
consider the strongly time series or peaked time series as stable. In this case, there
are less computational effort but we may not detect all the phenomena existing in
the dataset. For the sake of completeness, we tend to choose δ ≤ δ′. Of course we
can not visually inspect all the time series to choose the good threshold δ. We adopt
the following heuristic approach, we first choose a random value of δ = v, then we
extract the set of time series identified as strongly varying or peaked time series
for δ = v, but not when δ = v + ǫ. If the visualization tells us that these observed
cluster time series are all stable time series, we know that δ ≤ δ′, we increase δ by
ǫ. Otherwise, we decrease δ by ǫ. We stop the process when δ is stable.

We have chosen ǫ = 0.2, and by applying the heuristic described as above, we
end up with δ = 1. It is important to notice that we have tested with smaller value
of ǫ and it has been shown that the smaller granularity of ǫ has very small impact on
the final result. Figure 5.2a shows the evolution of three classes (For the visibility,
Figure 5.2b represents the distribution of only peaked and strongly varying time
series). The figure tells us that most of time series fall within the stable time series
class. Concretely for δ = 1, we have 19564 time series in stable family, 375 time
series in the peaked family and 835 time series in the strongly varying family. This
result shows the usefulness of the pre-processing step, since most of the cluster time
series fall within the stable family for which we do not need to compute neither the
cross-classes correlation nor the within-class correlation.
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Figure 5.2 – Plot a represents the evolution of size of three classes over thre-
shold(Plot b represents a two of them for the visibility)

5.3 Micro Attack Event Approach

To detect the micro and macro attack events, this approach starts first by iden-
tifying individually the micro attack events, and then based on that, detects the
macro attack events.

5.3.1 Micro Attack Event Detection

A micro attack event, as defined in Chapter 1, is made of a set of attacking
machines, having left the same attack fingerprint, observed over a limited period
of time. Our assumption is that attacking sources that are part of the same attack
campaign will have a special distribution both in terms of time and space. In our
context, we have represented the attack traces by the observed cluster time series.
That is the evolution of the use of a given attack tool seen in one place. In this
sense, if attacks of one cluster targeting one place suddenly increase and stop, they
should be considered linked to each other. In other words, this would be considered
as a micro attack event. We classify them into two classes.

– A set of such micro attack events is detected in the pre-processing step, and
they are considered as peaked observed cluster time series. As an example,
Figure 5.3 represents an observed cluster time series from the peaked family.
It consists of activities generated by cluster 149315 happening on day 55 on
platform 44. These activities are caused by around two hundreds sources. Note
that, we only keep peaks at least 50 sources. This is supposed to be a conser-
vative threshold to eliminate the background noise.

– Micro attack events may also exist as peaks in the strongly varying observed
cluster time series. As an example, Figure 5.4 represents the evolution of cluster
14647 on platform 1 over a period of 150 days. As we can notice, there are
three peaks of activities on three different days. Our goal is to have those peaks
identified as micro attack events by our approach. To detect them, we proceed
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Figure 5.3 – Peaked cluster time series 149315 on platform 44

as follows. Since the outliers are locally compared to their neighbourhood
data items, we first split a long time series Φ into several sub time series s

of smaller size. For each sub time series s, we then need to verify if there are
outliers in it. Since the values of the outliers, if any, are much more important
than those of the others, the standard deviations of time series s with/and
without these outliers must be very different. More precisely, on each time
series, we remove an amount of ten percent of the number of data points in
s to form a filtered time series. The removed items are the most important
ones. In our case, we express the difference between two standard deviations
by their ratio. If this ratio exceeds a given threshold η, we know that there
are the peaks of activities in the sub time series. In this analysis, the length
of s is 30. We have tested different values η and experiment shows that value
η of 3 gives good results. If the above process concludes that sub time series s
indeed contains the outliers, we proceed as follow to detect them. To identify
the peaks, we compare the data points of s with a given threshold δ. Any data
points greater than δ are considered as peaks (the method is well-known under
the name Peak Picking algorithm). Our problem now lies in how to choose δ.
One possible solution is based on the average of the population. For instance,
the author of [87] has proposed to use the threshold δ as twice the average
of population. Experiment shows that it works well especially when the peaks
expand in a short time interval. This happens to be the situation we are in.
Applying the Peak Picking algorithm represented in Alg. 1 to the example in
Figure 5.4, we obtain three micro attack events on three distinct time intervals
[485,485], [561,561], and [575,575], i.e. exactly what we wanted.

5.3.2 Detection of Macro Attack Events

Since the micro attack events detected by the previous method have short life
spans (one or two days), we consider that any other micro attack event happening in
the same period of time should be seen as being correlated. To build the macro attack
events, we just need to group together all the micro attack events happening on the
same time interval. As an example, Figure 5.5 represents the evolution of cluster
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Figure 5.4 – Three micro attack events of cluster 14647 observed on platform 1

Alg. 1 : Peak Peaking Function

Input :
X = (X1, X2, ...Xn) : Time Series

Output :
IX Index of peaks

begin
1 choose the right δ

for i=1 to n
2 if Xi > δ

3 IX(i) ← 1
4 else
5 IX(i) ← 0
6 end

end
end

0 on platform 1. Applying the Peak Picking technique, we obtain the three similar
time intervals [485,485], [561,561], and [575,575] with the ones detected earlier in
Figure 5.4. Combining with the previous example in Figure 5.4, we obtain three
macro attack events. They all consist of two cluster 0 and 14647 on platform 1, but
happen on three distinct time intervals [485,485], [561,561], and [575,575].

We denote the (micro and macro) attack event i as ei = (Tstart, Tend, Si) where
the (micro and macro) attack event starts at Tstart, ends at Tend and Si contains a
set of observed cluster time series identifiers (ci, opi). If Si is a singleton set, ei is a
micro attack event. Otherwise, ei is a macro attack event, and all Φ[Tstar−Tend],ci,opi

are strongly correlated to each other ∀(ci, opi) ∈ Si.

Applying to the previous case, we have three macro attack events : e1 = (485, 485,
{(14647, 1), (0, 1)}), e2 = (561, 561, {(14647, 1), (0, 1)}), and e3 = (575, 575, {(14647, 1),
(0, 1)}).
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Figure 5.5 – Three micros attack events of cluster 0 observed on platform 1

5.4 Macro Attack Event Approach

5.4.1 Introduction

Applying the approach as presented in Section 5.3, we can identify phenomena
that are locally visible. In other words, the phenomena must have great impact on the
observed cluster time series, so that, they are detectable. By doing so, we somehow
do not leverage the strength of our distributed system, i.e., to observe the attacks
at different places. In fact, there may exist phenomena that may not be detected
by using local information, but are detectable when using global information. As
an example, Figure 5.6a represents the evolution of attacks of the cluster 14647 on
the platform 45. We see a small peak of activities on day 169 (9 sources only), but
it is not a strong evidence indicating that something special is happening. Such
event, if looked at it in isolation, will be considered to be part of the radiation noise
that exists on the Internet. But when we look at the other observed cluster time
series on this period of time, we identify 16 other observed cluster time series which
also exhibit peaks of activities at the very same day. This suggests to use another
approach that can correlate this kind of information to detect micro and macro
attack events.

To detect macro attack events that involve several observed cluster time series
having a small number of sources, we apply the time series correlation technique to
extract the groups of correlated observed cluster time series, i.e., the macro attack
events. More precisely, Section 5.4.2 represents what we call the correlation sliding
window approach to detect the macro attack events. The approach takes the obser-
ved cluster time series as input and returns the macro attack events existing in the
observed cluster time series. To make our approach applicable for different contexts,
we develop in Section 5.4.3 two particular uses of the correlation sliding window
method that can treat large datasets.
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Figure 5.6 – a) evolution of cluster 14647 on platform 45. b) several correlated
observed cluster time series from 10 platforms

5.4.2 Correlation Sliding Window

The algorithm consists of five steps. In the first step, we compute the correlation
coefficients for each pair of observed cluster time series. In the second step, we
identify the correlated time intervals for each pair of observed cluster time series. In
steps 3 and 4, we identify what we call common correlated time interval, in which
several time series are correlated. And in step 5, we identify the macro attack events
on the common correlated time interval basis. We give the detailed description for
each step in the following.

5.4.2.1 Step 1 : Correlation Sliding Window

Given two time series Φ and Ψ, of length T, we want to identify the correlated
pair Pi = {start, stop, Φ, Ψ} where two time series Φ and Ψ evolve similarly from
day start to day stop. To obtain these correlated time intervals, one of the approach
consists in computing the correlation coefficient of all possible sub periods [a, b]
with (0 ≤ a ≤ b ≤ T ), but this would be extremely costly. To avoid this, we make
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use of the correlation sliding window technique. The idea is that we compute the
correlation coefficient of successive time windows (with a fixed length of L) on Φ and
Ψ, moving from the left to the right. Let cor(A,B) be the correlation coefficient of
two vectors A and B. The correlation vector C of Φ and Ψ is computed as follows :

C[k] = cor(Φ[k, k + L − 1], Ψ[k, k + L − 1]), k = 1, . . . T − L + 1 (5.1)

(cor(Φ[k, k +L− 1], Ψ[k, k +L− 1]) is the correlation coefficient of the time window
from k to k + L − 1)

As one can imagine, if the value of L is too high, we may not discover the
short correlated period of two time series. Otherwise, if value of L is too small,
the correlation value may be due to the random factor. In reality, we have tested
different values of L, and found that L=30 gives good results.

5.4.2.2 Step 2 : Identification of Correlated Time Intervals of Two Time
Series

Given a threshold δ and a correlation vector C of two time series Φ and Ψ,
our goal in this step is to identify time intervals where these two time series are
considered as being correlated. In other words, we try to identify the correlated pair
Pi = {start, stop, Φ, Ψ}. To this end, we have tested the following three techniques,
namely strict policy, tolerant policy, and tolerant policy with adjustment. They are
described as follows :

– Tolerant policy : We call C ′ the vector that holds the correlation status of
Φ and Ψ. At first, we assign C ′(i) = 0, ∀i ∈ [1, T ]. Then, for each C[k] ≥ δ,
we update the status of C ′ in the time interval [k, k + L − 1] to 1, (C ′(i) =
1, ∀i ∈ [k, k + L − 1]). Φ and Ψ are considered as being correlated in the
time interval [a, b] when C ′(i) = 1, ∀i ∈ [a, b].
An important parameter in our procedure is the choice of the threshold δ

to declare that two time series are correlated. Again, we rely on experience,
i.e., visual inspection of a lot of cases for different values of δ, to choose our
threshold. We end up having a threshold of 0.7.
Figure 5.7 represents the evolution of two observed cluster time series from
day 1 to day 100. The dashed curve represents the correlation value (vector
C), the threshold curve (dotted curve) intersects it at two points t1, and t2
(corresponding to X=9 and X=40, respectively). In this specific example, we
use the sliding window of size 30. In the tolerant policy, we define these two time
series as correlated from day 9 to day 69. From a statistical viewpoint, this is
totally correct since the two time series are indeed similar, w.r.t the correlation
value calculated, during this period. However, when looking at the network
activity we see that this is due mostly (if not all) to the time interval from
day 38 to day 40 during which most of the important synchronized activities
happen.

– Strict policy : In contrast to the previous case, we first assign C ′(i) =
1, ∀i ∈ [1, T ]. Then for each correlated value C[k] < δ, we update the status
of C ′ in the time interval [k, k+L−1] to zero (C ′(i) = 0, ∀i ∈ [k, k+L−1]).
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Figure 5.7 – The tolerant policy says that the two time series are correlated from
day 9 to day 69 whereas the strict policy says from day 38 to day 40

Φ and Ψ are then considered as being correlated in the time interval [a, b] when
C ′(i) = 1 ∀i ∈ [a, b].

Applying the strict policy to the same example in Figure 5.7, we obtain the
correlated time interval from day 38 to day 40, which is much more precise
than what is provided by the tolerant policy. However, the strict policy faces
another kind of error. For instance, Figure 5.8 represents the same example
as on Figure 5.7, except that there are peaks of activities from day 60 to day
63 on the sole time series A. Due to the interference of these activities, the
correlation values degrade significantly. This time, the threshold curve (dashed
curve) intersects the correlation value curve (dashed dotted) at two points
t1(X=9), and t2(X=33). As a consequence, strict policy can not discover the
correlated time interval from day 38 to day 40 (note that our sliding window’s
length is always equal to 30). We use the term “dismissal problem” to indicate
this kind of error.

– Tolerant policy with adjustment : as discussed earlier, the tolerant policy
suffers from some inaccuracy when detecting the correlated time interval and
the strict policy faces the dismissal problem when identifying the correlated
periods of two time series. We want a more robust technique to achieve this
goal. Our solution is, first, to apply the tolerant policy to get the temporal
correlated time intervals, then we apply the post-processing step to eliminate
the potential inaccuracies caused by the tolerant policy technique. We present
hereafter three steps to do the post-processing techniques.

1. Recognition of type of correlation : Suppose that after applying the
tolerant policy, we identify that Φ and Ψ are correlated during [a, b]. Our
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Figure 5.8 – The strict policy can not discover the correlation period in this case
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Figure 5.9 – Example of long correlation

observations show that the correlation of Φ and Ψ can be classified into
one of the following two categories :
– Short correlation : The correlation of two time series within the time

interval [a, b] is mostly caused by some synchronized peaks of activities.
Besides that, the two time series are not correlated at all. Figure 5.7
offers an example illustrating this case.

– Long correlation : Two time series are synchronized at almost every
point in the time interval [a, b]. Figure 5.9 is an example illustrating
this case.
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Figure 5.10 – Correlation detection of two time series 1 and 2. The strict policy
says that the two time series are correlated from day 59 to day 63 whereas the
tolerant policy says from day 29 to day 93

Since the inaccuracy occurs mostly in the case of short correlation, we
apply the post-processing technique only to this family. We have tested
the two following techniques to recognize the type of correlation of two
time series in the period [a, b].
– As mentioned earlier, in the case of short correlation, the correlation is

caused mostly by the few synchronized peaks of activities. To recognize
whether such peaks exist in a time series, we apply the technique as pre-
sented in Section 5.3. If there is a peak in the time series, we conclude
that it belongs to the short correlation. Otherwise, we classify it into
the long correlation family.
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Figure 5.11 – Peak Peaking

– With the same arguments as before, we remove the most important
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data points from each time series. To recognize their type of correla-
tion, we compute the correlation coefficient between the two residual
time series. If the correlation computation yields a high value, we flag
the correlation as long correlation. Otherwise, we class it into short
correlation family.
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Figure 5.12 – (a) temporal correlated time interval b) peak picking technique misses
the second peak

2. Determination of potential correlated time interval : Suppose that
now we have two time series Φ and Ψ identified as being shortly correlated
during [a, b]. As a remainder, the short correlation is due to the outliers
existing in the time series. Our task now is to separate these peaks of
activities on each time series during [a, b]. To identify the peaks, we can
apply the peak picking technique presented in Section 5.3. We compare
the data points of the attack trace with a threshold computed as a certain
factor of the average of the population. Any data point greater than
threshold is considered as a peak. Experiment shows that it works well
especially when the peaks expand in a short time interval. For instance,
Figure 5.11 shows an example of this technique. The threshold curve
intersects with the time series curve at three places, the time series has
three outliers. However, this approach does not give the expected results,
neither when the important activities span on several days (not long
enough though to make it belong to the long correlation class), nor when
there are peaks of distinct heights, as in Figure 5.12a. In that specific
example, there are two correlated peaks of activities of cluster 15611 and
15610 on platforms 4 and 9. There is almost no activity anywhere else
during the time interval from day 60 to day 150 for these two clusters.
Figure 5.12b represents the peak picking technique based on the average
of the population. As we can observe, the method misses the second peak
of activities since its values are less than the threshold. The reason for
this is that the high peaks make the average value important.
We have observed that, in the case of short correlation, the total spanning
lengths, in term of number of days, of the important peaks of activities
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is much smaller than the temporal correlated time interval identified by
the tolerant policy. To be sure that we can detect all the correlated time
intervals, we choose a very conservative threshold of 40th percentile 3 By
doing so, the threshold does not depend on the outlier data points as far
as their total spanning life is less than 60%. Since the 40th is a conservative
threshold, the amount of detected peaks of important activities will be
greater than its real value. We show how to mitigate them in the next
step. We use the peak picking algorithm represented in Algorithm1 and
we give hereafter an example of the output of this function.

IX = 000011100001100001110000

IX(i) =

{
0 if the ith element of X is below the threshold
1 if the ith element of X is above the threshold

In this particular example, we have three peaks of activities detected.
The first one starts from position 5 to position 7, the second one starts
from position 12 to position 13, the third one starts from position 18 to
position 20.

3. Identification of correlated time intervals : We identify all the per-
iods where the elements from two time series are greater than the thre-
shold. By doing so, we will reduce an important amount of wrongly detec-
ted peaks. For instance, let’s consider the following outputs of the peak
picking technique :

IX = 000011100001100001110000

IY = 0000 111
︸︷︷︸

T1

0000000000 111
︸︷︷︸

T2

0000

As said earlier, there are three peaks (from position 5 to position 7, from
12 to 13, and from 18 to 20) in the time series X. And we have two peaks
in the time series Y (from position 5 to position 7, and from position 18 to
position 20). As a result, we have two correlated periods P1 = {5, 7, X, Y }
and P2 = {18, 20, X, Y }. Note that, the second peak (from position 12
to position 13) from the time series X is not considered as there is not
corresponding period on time series Y .

Application of the above procedure to all the pairs of time series leads to the iden-
tification of a set of correlated pairs over different periods of time Pi = (start, stop, Φ, Ψ).
Figure 5.13 illustrates the situation at the end of the first phase. In this illustrated
case, the length T of the time series is equal to 9. A curve on the plot represents
a correlated time interval of two time series, for instance, the plot shows that time
series 1 and 2 (curve 1&2) are correlated from day 3 to day 6 or P1 = (3, 6, 1, 2),
time series 7 and 8 (curve 7&8) are correlated from day 1 to day 8, P2 = (1, 8, 7, 8)
etc.

3. the 40th percentile of a time series X is the value at the position of 40% of the length of X
on the sorted form of X
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Figure 5.13 – Correlated pairs of time series over time, curve 1&2 says that time
series 1 and time series 2 are correlated from day 3 to day 6...

5.4.2.3 Step 3 : Overlap Cutting

The two correlated pairs P1 = (start, stop, ts1, ts2), P2 = (start, stop, ts1, ts2)
are said to be overlapping when the following conditions hold :

1. P1,start < P2,stop and P2,start < P1,stop

2. (P1,ts1 ∪ P1,ts2) ∩ (P2,ts1 ∪ P2,ts2) 6= ∅

There are two overlapping cases in Figure 5.13, i.e. between P5 = (5, 8, 6, 7) and
P6 = (1, 8, 7, 8), P6 = (1, 8, 7, 8) and P7 = (5, 8, 6, 8). We are going to split the
correlated pair P6 = (1, 8, 7, 8) into two correlated pairs P ′

6 = (1, 5, 7, 8) and P ′′
6 =

(5, 8, 7, 8). The explanation for this is that there may be two activities. The first one
involves only two time series 7 and 8 whereas the second one concerns three time
series 6, 7, and 8. The whole procedure to split the overlapping of correlated pairs
is described in Algorithm 2.
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Alg. 2 : Overlap Cutting

Input :
P1 = {start, stop,X, Y }, P2 = {start, stop,X, Z} : two correlated periods
with the overlapping of time series X

Output :
S : a set of correlated period

begin
1 S ← ∅
2 We create two new periods :
3 P ′

1 = {max(P1,start, P2,start),min(P1,stop, P2,stop), X, Y }
4 P ′

2 = {max(P1,start, P2,start),min(P1,stop, P2,stop), X, Z}
5 and add them to S

6 if |P1,start − P2,start| > 0
7 P ′

3,start = min(P1,start, P2,start)
8 P ′

3,stop = max(P1,start, P2,start)
9 if P1,start < P2,start

10 P ′
3,ts1 = P1,X

11 P ′
3,ts2 = P1,Y

12 else
13 P ′

3,ts1 = P2,X

14 P ′
3,ts2 = P2,Z

15 end
16 add P ′

3 to S
17 end
18 if |P1,stop − P2,stop| > 0
19 P ′

4,start = min(P1,stop, P2,stop)
20 P ′

4,stop = max(P1,stop, P2,stop)
21 if |P1,stop − P2,stop| ≥ 0
22 P ′

4,ts1 = P1,X

23 P ′
3,ts2 = P1,Y

24 else
25 P ′

4,ts1 = P2,X

26 P ′
4,ts2 = P2,Z

27 end
28 add P ′

4 to S
29 end



56 5. ON THE IDENTIFICATION OF ATTACK EVENTS

Table 5.1 – Common Correlated Time Intervals
T1 = [Tstart,1, Tstop,1] = [5, 8] S1 = {(6, 7), (7, 8), (8, 6)}
T2 = [Tstart,2, Tstop,2] = [3, 6] S2 = {(1, 2), (2, 3), (3, 1), (4, 5)}
T3 = [Tstart,3, Tstop,3] = [1, 5] S3 = {(7, 8)}

5.4.2.4 Step 4 : Common Correlated Time Interval Identification

Our next objective is to form the common correlated time interval G = ({T1, S1},
{T2, S2}, · · · {Tk, Sk}). Each Gi = {Ti, Si} corresponds to a set P of correlated pairs,
in which all pairs start at the same day Ti,start and stop at the same day Ti,stop, and
Si contains all the time series in P , or Si = ∪Pj,ts1, Pj,ts2∀Pj ∈ P

Applying this to the case described in Figure 5.13, it leads to the identification
of the three common correlated time intervals defined in Table 5.1.

5.4.2.5 Step 5 : Macro Attack Event Extraction

On the basis of common correlated time interval, we now need to group together
all the time series that are mutually correlated with each other. To do that, we
use a graph representation of the correlated pairs identified in the previous stage of
our algorithm. Nodes in the graph represent the time series and if two time series
are correlated in that period, their edges are connected. The problem corresponds
to the identification of the connected subgraphs. We have tested the two following
techniques :

(a) (b)

Figure 5.14 – group extraction technique : (a) clique, (b) connected component

– Clique : A clique in an undirected graph G is a set of vertices V such that for
every two vertices in V, there exists an edge connecting the two, Figure 5.14a
is an example of this. The clique extraction problem is an NP-complete one
(the complexity is O(3n/3) with n is the number of nodes) [124].

– Connected component : A connected component in an undirected graph G
is a set of vertices V such that there exists a path to connect any two nodes,
Figure 5.14b is an example of this. This technique can resist to noise but in
the same time, it may lead us to a situation where two non-correlated time
series are grouped together. This is especially true for the nodes that are far
away from each other on the graph.
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Table 5.2 – Groups
T1 = [5, 8] S1 = (6, 7, 8)
T2 = [3, 6] S2 = (1, 2, 3)
T3 = [3, 6] S3 = (4, 5)
T4 = [1, 5] S4 = (7, 8)

Figure 5.15 – Correlated groups extraction

Figure 5.15 depicts the graphs we obtain for the periods T1, T2, and T3 extracted
from Figure 5.13. According to this graph, we have four macro attack events e1 =
(5, 8, {6, 7, 8}), e2 = (3, 6, {4, 5}), e3 = (3, 6, {1, 2, 3}), and e4 = (1, 5, {7, 8})

Complexity Analysis : This Section provides the complexity analysis to detect
the macro attack events. We represent the cost in two cases : the theoretical one
and the correlation sliding window one.

– Theoretical Approach : Given that we have N observed cluster time series of
length T. Since we do not have any knowledge neither about which time series
are involved, nor about when the macro attack events happen, we need to
compare all the observed cluster time series to each other on all the sub time
intervals [a, b] of [0, T ]. To discover macro attack events on any time interval
[a, b], we first need to compare all the observed cluster time series on this
period to each other, i.e. to compute N×(N−1)

2
correlation operations.

After this step, we know how similar any two observed cluster time series
are, thanks to this knowledge, we can build the similarity matrix, and apply
the Step 5 as represented in Section 5.4.2 to identify the macro attack events
existing in the time interval [a, b]. As showed in Section 5.4.2, this step has the
computational cost of O(3N/3). The total cost to detect all the macro attack
events in any time interval [a, b] is :

C1 = O(N2) + O(3N/3) (5.2)

Since we have no knowledge beforehand when such macro attack events hap-
pen, in theory, we need to compute the correlation and identify the macro
attack events for all possible sub intervals (T×(T−1)

2
) of [0, T ]. As a result, the

final computational cost is :

C2 = (O(N2) + O(3N/3)) × O(T 2) (5.3)
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– Correlation Sliding Window Technique : Given a set of M time series with
length of T days, a correlation sliding window of length L, for each time inter-
val, we need M×(M−1)

2
correlation operations. The number of windows we have

is T − L + 1. The cost for computing the correlation is :

C3 = O(M2T ) (5.4)

Suppose that we identify G common correlated time intervals, and K is the
maximum number of observed cluster time series that are involved in the
common correlated time intervals. The cost for extracting macro attack events
is :

C4 = G × O(3K/3) (5.5)

The total cost of the Correlation Sliding Window Technique is :

C5 = G × O(3K/3) + O(M2T ) (5.6)

In practice, we have K ≪ M and G ≪ T (T−1)
2

, so C5 ≪ C2.

5.4.3 Application of Correlation Sliding Window Technique

Although the pre-processing technique reduces an important amount of observed
cluster time series, applying the correlation sliding window technique to detect macro
attack events in the very large datasets may be costly. To deal with this, we propose
hereafter two alternative solutions that can deal with large datasets with reasonable
costs. The two approaches are called breakdown approach and aggregated time series
approach. They are described as follows.

5.4.3.1 Breakdown Approach

This approach relies on the assumption that, in general, a macro attack event
ei = (Ti,start, Ti,end, Si) can only be classified into one of the following three classes :

1. Macro attack event ei has only one cluster involved. In other words, Si consists
of a set of observed cluster time series of form ΦT ′,c,∗. Such a macro attack event
is referred as distributed macro attack event. We term distributed since
such macro attack event concerns several locations.

2. Macro attack event ei happens at only one observation viewpoint. In this case,
Si consists of a set of observed cluster time series of form ΦT ′,∗,op. Such a macro
attack event is referred as localized macro attack event. We term localized
since such macro attack event concerns only one location but several clusters.

3. Macro attack event concerns more than one cluster and one observation view-
point and can be split into several macro attack events belonging to the two
earlier classes. Such a macro attack event is referred as mixed macro attack
event.
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With that in mind, given that M is the number of observed cluster time series
ΦT,c,op, C = (c1, c2, ...) is the set of distinct clusters, and OP = (op1, op2, ...) is the
set of distinct observation viewpoints, we proceed as follows to detect the three kinds
of macro attack events as mentioned above :

– Step 1, detection of distributed macro attack events : we classify M
observed cluster time series into |C| sets (D1, D2, ..., D|C|). The ith set, Di,
contains only the observed cluster time series derived from cluster ci, or Di =
ΦT ′,ci,op ∀op ∈ OP . We then apply the correlation sliding window approach as
presented earlier to each dataset Di to detect the possible distributed macro
attack events.

– Step 2, detection of localized macro attack events : we classify M
observed cluster time series into, this time, |OP | sets (D′

1, D
′
2, ..., D

′
|OP |), and

the ith set, D′
i, contains only the observed cluster time series derived from

the observation viewpoint opi, i.e., D′
i = {ΦT ′,c,opi

} with ∀c ∈ C. We apply
also the correlation sliding window technique to detect the eventual localized
macro attack events existing in these datasets.

– Step 3, detection of mixed macro attack events : This step aims at re-
grouping macro attack events identified earlier. Suppose that E = (e1, e2, ..., en)
is the set of all macro attack events detected during the two earlier steps. All
macro attack events having the common lifetime (having the same Tstart and
Tstop) and having their time series correlated are merged. The newly obtained
macro attack events are called mixed macro attack events.

Complexity Analysis : We will show later that the macro attack events often
occur in a limited amount of locations and involve, most frequently, a limited number
of clusters. That is the reason why we assume that the computational cost in Step
3 is negligible. We focus on Step 1 and Step 2. In Step 1, we apply |C| times the
correlation sliding window approach for |C| sets of time series. Call |Di| the amount
of time series of the ith set, Di, according to Equation 5.6, the computational cost
of Step 1 is :

C6 =

|C|
∑

i=1

O(Gi × 3Ki/3) + O(|Di|
2T ) (5.7)

In which, Gi is the number of common correlated time interval of the dataset Di,
Ki is the maximum number of the observed cluster time series on all the common
correlated time intervals. We expect that Gi ≪

T (T−1)
2

, and Ki ≪ |Di|.
Similarly, the computational cost of the Step 2 is :

C7 =

|OP |
∑

i=1

O(G′
i × 3K′

i/3) + O(|D′
i|

2T ) (5.8)

The final computational cost of this approach is C8 = C6 + C7. We expect that
C8 ≪ C5 since this approach does not compute the correlation between all the
observed cluster time series. Besides that, we apply the correlation sliding window
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technique on the much smaller datasets (in Step 1 and Step 2) the cost will be less
important.

5.4.3.2 Aggregated Time Series

Before going into the detail of the technique, we define precisely what is an
aggregated time series.

Definition 9 An Aggregated Time Series ΦT,op is a function defined over a
period of time T , T being defined as a time interval (in days). That function returns
the amount of sources per day seen from the observation viewpoint op. The observa-
tion viewpoint can either be a specific platform or a specific country of origin. As a
consequence, the aggregation time series ΦT,op is the sum of all the observed cluster
time series of form ΦT,∗,op, or ΦT,op =

∑∀c∈clusters ΦT,c,op

This approach aims at reducing this cost by adopting some assumptions about
the characteristics of the macro attack events. In fact, we do not compare the ob-
served cluster time series, but their aggregation. The question lies now in how to
aggregate the attack traces. Our observation is that the attacks (or at least certain
classes of attacks) are not uniformly distributed neither in their source nor in their
destination [101, 69, 10, 22, 81], we make the assumption that if there are macro
attack events (linked to certain attack tools) that target or come from certain places,
these attacks will impact the total attack traces at those places. For instance, let’s
take the case of the destination of the attacks, our platforms observe a limited num-
ber of hits per day. If at some point in time two platforms become the target of
the coordinated attacks, we make the assumption that this will significantly impact
the overall corresponding aggregated time series of these two platforms during that
period. Therefore, the method identifies groups of correlated aggregated time series
over different time intervals. Obviously, if the intensity of the attack is not high
enough to impact the aggregated time series of at least two locations, our method
will miss it. When having the groups of correlated aggregated time series, we search
for the root causes, i.e. the clusters that are responsible, if any, for the similarity of
the aggregated time series in each group. Once we have found them, we verify that
they do not also exist on other locations than the ones we initially had in the group
under study. This can happen if the impact of these attacks on the other aggregated
time series was not strong enough to include them in the group of correlated ag-
gregated time series. By doing so, we hope to reduce the computational effort since
the amount of aggregated time series is much smaller than that of all the observed
cluster time series.

Hereafter is the detailed description of the method. It is important to notice that
in the following text, we refer to the targets of the attacks, i.e. the platforms as the
observation viewpoints, but all the steps can also be applied to the case where the
observation viewpoints are, for instance, the countries of origin of the attacks.

1. Pairwise correlation of aggregated time series

To obtain the correlated groups of aggregated time series, we apply the tech-
niques presented in Section 5.4.2. The only difference is that, in Section 5.4.2,
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Figure 5.16 – aggregated time series 2 and 15 are correlated from day t1 to day t3

the correlation sliding window approach takes the observed cluster time series
as input, in the present case, it takes the aggregated time series as input. To
eliminate the impact introduced by the aggregated time series on the ability to
identify the exact correlation period, we take advantage of the tolerant policy
as described earlier in Section 5.4.2.

Figure 5.16 illustrates the first step of our procedure. The aggregated time
series for platforms 2 and 15 are deemed correlated in the interval [t1, t3]
as their correlation vector is greater than the threshold of 0.7 in the period
[t1, t2] = [t1, t3 − L].

2. Root Cause Analysis

The most intuitive explanation behind the existence of correlated groups of
platforms is that those platforms are targeted by the same tool, launched from
a diverse set of sources in a loosely coordinated way. In that case, the same
cluster(s) should be found on each platform of the group as being the root
cause of the correlation of the aggregated time series. We could, therefore,
simply search for the root causes on one platform per group. However, as
explained in [93, 85], multi-headed worms could hit platform X with cluster 1
and platform Y with cluster 2. Therefore, we take the stance of not assuming a
priori that the traces left by a given attack tool are the same on the platforms
that compose a correlated group. We thus look for the root causes behind the
correlation independently for each platform in a correlated group. This means
that for a period of T ′ days associated to a correlated group, we look, for each
platform, for the set of observed cluster time series that are correlated with the
aggregated time series. Here too, we use a sliding window as one can imagine
that the aggregated time series are correlated due to two distinct, consecutive,
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Figure 5.17 – cluster time series for the clusters uncovered during the root cause
analysis for platforms 2 and 15

or overlapping phenomena. When obtaining a set of root cause time series, as
a sanity check, we verify that they are all correlated to each other. If not, we
will split them into several mutually correlated groups.

The correlated group in Figure 5.16 (between day 31 and day 91) provides an
illustration of when the attack tool leaves the same fingerprint on each platform
of a correlated group. Indeed, our root cause analysis technique identifies three
clusters numbered 15238, 15715 and 60231 on both platform 2 and platform
15 as the root causes behind the correlation of the aggregated time series.
Figure 5.17 depicts the observed cluster time series over the corresponding
interval. Table 5.3 summarizes the correlation values obtained between the
different observed cluster time series identified as root cause. As we can see,
the correlation coefficients between those clusters are extremely high (greater
than 0.85) in this period.

It is worth noting that we need to apply the set of techniques as described in
Section 5.4.2 to the set of correlated root cause time series to detect exactly
their correlated periods. As an example, in Figure 5.17, there are three different
correlated periods.

3. Hidden Correlations

The root cause analysis technique described above enables us to find a set of
candidate clusters associated to each correlated group for each platform in that
group. However, since we initially identify correlation based on the aggregated
time series, it is possible that a tool targeted x platforms but the effect of the
tool is only strongly influencing a subset of y < x aggregated time series (e.g
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Table 5.3 – Correlation coefficient between clusters
cluster t.s 2 2 2 15 15 15

15238 15715 60231 15238 15715 60231
15238-2 1.0000 0.8521 0.8422 0.8916 0.8631 0.8550
15715-2 0.8521 1.0000 0.9863 0.9248 0.9938 0.9908
60231-2 0.8422 0.9863 1.0000 0.9260 0.9873 0.9873
15238-15 0.8916 0.9248 0.9260 1.0000 0.9154 0.9121
15715-15 0.8631 0.9938 0.9873 0.9154 1.0000 0.9969
60231-15 0.8550 0.9908 0.9873 0.9121 0.9969 1.0000

due to the activity of other local malwares). To uncover all possible hidden
correlations, we check if all clusters identified as root causes for a period of T ′

days for a correlated group are correlated with their siblings on the platforms
that are not in the correlated group.

Complexity Analysis : Given S, the amount of the aggregated time series, the
computational cost for correlation operations from Equation 5.6 now becomes

C9 = O(S2T ) + O(G1 × (3K1/3) (5.9)

This leads us to the identification of a certain amount P (with P ≪ T − L) of
periods in which we have a group of Gi (with i = 1..P and for ∀i|Gi| ≪ S) correlated
aggregated time series. For each period, we have to find the clusters responsible for
the identified similarity. In other words, for each period, we must compare the M

observed cluster time series with, at maximum, S aggregation time series. If we
define G = max(Gi|i = 1..P ) an upper bound of the cost of this operation can
be given by C10 = P × G × M . Thus, the total cost of this method is equal to
C11 = C9 + C10. In the general case, nothing ensures, a priori, that C11 ≪ C8 ≪ C5

but, as we expect that G ≪ S and S ≪ M , this justifies the choice of this solution.
Experimental results presented in Section 5.5.2 validate this choice.

5.5 Application and Validation

5.5.1 Dataset

5.5.1.1 Downtime Issue

To validate the methodology and the soundness of the results it generates, we
need to apply it to a well defined dataset. For many reasons, platforms may be unable
to capture data from time to time. When this happens, attack traces collected from
those platforms exhibit peculiar increasing and decay shapes that are not related to
the actual attack traffic. For instance, the top plot of Figure 5.18 shows the evolution
of the number of sources observed on one of our platforms for the period from day 625
to day 660. For some reasons, this platform has been active only from day 639 to day
646. On the bottom plot, we show the observed cluster time series of this platform.
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Figure 5.18 – top plot represents the amount of sources targeting the platform 49.
For some reasons, this platform was down before the day 639 and some days after
day 645. The bottom plot represents its compositional observed cluster time series.
They are artificially correlated.

As we can see, they form some kinds of correlation that could eventually lead to
artificial micro and macro attack events. To mitigate such artifacts, we must ensure
that our platforms have experienced a limited amount of downtimes. Therefore, we
build our dataset with data coming from platforms that have limited downtime over
the whole experimental period.

5.5.1.2 Dataset Description

We have selected attack traces from 40 (out of 50) platforms for a period of 800
days. During this period, none of them has been down for more than 10 times and
each of them has been up continuously for at least 100 days at least once. They
all have been up for a minimum of 400 days over that period. Figure 5.19 offers
a synthetic view of the availability of those platforms by plotting the cumulated
distribution function of the cumulated uptimes of those platforms. The total amount
of sources observed, day by day, on all these 40 platforms can be denoted by the
initial time series TS over a period of 800 days. We can split that time series per
country 4 of origin of the sources. This gives us 231 time series TSX where the ith

point of such time series indicates the amount of sources, observed on all platforms,
located in country X. According to our definition, these are the aggregated time
series. And we represent by TS_L1 the set of all these aggregated time series.
To reduce the computational cost, we keep only the countries from which we have
seen at least 10 sources on at least one day. This enables us to focus on 85 (the
set of corresponding countries is called bigcountries), instead of 231, time series. We

4. The geographical location is given to us thanks to the Maxmind product, based on the IP
address. However, some IPs can not be mapped to any real country and are attached to labels not
corresponding to any country, e.g. EU,A1,..
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Figure 5.19 – CDF of the cumulated uptimes of 40 selected platforms

represent by TS_L1′ this refined set of Level 1 time series. Then, we split each of
these time series by cluster to produce the final set of observed cluster time series
Φ[0−800),ci,countryj

∀ci and ∀countryj ∈ bigcountries. As a reminder, the ith point of the
time series Φ[0−800),X,Y indicates the amount of sources originating from country
Y that have been observed on day i attacking any of our platforms thanks to the
attack defined by means of the cluster X. We represent by TS_L2 the set of all
these observed cluster time series. In this case |TS_L2| is equal to 436,756 which
corresponds to 3,284,551 sources.

As explained in Section 5.2, time series that barely vary in amplitude over the
800 days are meaningless to identify micro and macro attack events and we can
get rid of them. Therefore, we only keep the time series that highlight important
variations during the 800 days period. We represent by TS_L2′ this refined set of
Level 2 time series. In this case |TS_L2′| is equal to 2,420 which corresponds to
2,330,244 sources. Among them, we have 1,360 peaked time series, consisting of only
41,418 sources. As mentioned earlier, we tend to choose a conservative threshold in
the pre-processing step to avoid putting the strongly varying and peaked time series
in the class of stable time series, but we accept the false positive, i.e. to put the
stable time series to the peaked time series class. And finally, we have 1,060 strongly
varying time series, consisting of 2,288,826 sources.

We have done the very same splitting and filtering by looking at the traces on
a per platform basis instead of on a per country of origin basis. The corresponding
results are given in Table 5.4.

5.5.2 Analysis on the Detection Capacity

We want to analyze two factors that impact our capacity to detect micro and
macro attack events. The first aspect concerns the choice of the method used, na-
mely correlation sliding window, breakdown, or aggregated time series. We want to
evaluate how those approaches perform when applied on the same dataset. This is
the purpose of this section. The second factor to analyze is the impact of the obser-
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TS consists of 3,477,976 sources
OP country platform
|TS_L1| 231 40
|TS_L1′| 85 40

(94,4% TS) (100% TS)
|TS_L2| 436,756 395,712
|TS_L2′| 2,420 2,127
sources 2,330,244 2,538,922

(67% of TS) (73% of TS)
|TS_L2_P ′| 1,360 1,046
sources 41,418 47,673
|TS_L2_S ′| 1,060 1,081
sources 2,288,826 2,491,249

Table 5.4 – dataset description : TS : all sources observed on the period under study,
OP : observation viewpoint, TS_L1 : set of time series at country/platform level, TS_L1′ :
set of significant time series in TS_L1, TS_L2 : set of all cluster time series, TS_L2′

set of refined time series of TS_L2, TS_L2_P ′ set of peaked time series, TS_L2_S′ set
of strongly varying time series

vation viewpoints, namely what happens when we split the time series by country
or by platform. We present this analysis in 5.5.3.

To compare our different approaches, we apply all of them to the set of 1,060
strongly varying time series derived from platform viewpoint. The results are pre-
sented in Table 5.5. It is not a surprise that the correlation sliding window approach
has identified more macro attack events than the others. The aggregated time series
based approach has detected the least amount of macro attack events. The reason
would be that the impact of the attacks on the aggregated time series is not strong
enough to make the corresponding aggregated time series correlated. To verify this
explanation, we have counted the amount of sources for different approaches. The
result confirms our assumption. In fact, although the aggregated time series ap-
proach detects only 41.5% of the macro attack events detected by the correlation
sliding window approach, these macro attack events count for 78.4% number of
sources detected by the correlation sliding window approach. The conclusion is that
the aggregated time series approach can be used as long as we only are intended
in detecting large phenomena. The breakdown approach is much better than the
aggregated time series one. In fact, it detects 85.4% of the macro attack events dete-
tected by the correlation sliding window one, and in terms of number of sources, it
finds 95% of the sources. For illustrative purpose, Figure 5.20 shows an example of
macro attack event that the breakdown approach could not detect. In this particular
example, there are three different clusters on three different platforms. We can not
find any evidence that confirms the link between these attack traces. At this stage,
we can not draw any conclusion about the validity of this macro attack event. More
work needs to be done to clarify this. There are 92 macro attack events of this type.
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Figure 5.20 – Three clusters attack on three different platforms on three different
ports (135/TCP, 5900/TCP, 445/TCP)

Table 5.5 – Overview of Results from several Techniques
Correlation- Breakdown Aggregated-

Sliding Window Time Series
# macro attack events 631 539 262
# of sources 566,661 538,194 444,389

5.5.3 Impact of Observation Viewpoint

5.5.3.1 Results on Attack Event Detection

To evaluate the impact of the observation viewpoint, we have applied the correla-
tion sliding window technique and micro attack event detection technique presented
in Section 5.3.1 to our 2 distinct datasets, namely TScountry and TSplatform. The rea-
son we apply the micro attack event detection is that the correlation sliding window
can not detect phenomena that involve only one observed cluster time series. For
the sake of efficiency, we apply the micro attack event detection only on the time
interval of observed time series that do not belong to any macro attack events de-
tected by the correlation sliding window technique. For the time series in TScountry,
the detection of macro attack events by correlation sliding window M1 (resp. micro
attack event detection M2) has found 549 macro (resp. 43 micro) attack events. The
total amount of sources found in these attack events is 552,492 for the first method
and 21,633 for the second one. Thus, all in all, sources participating to identified
attack events account for 574,125 sources (corresponding to 16,5% of all sources
contained in our initial dataset). Similarly, when working with the time series found
in TSplatform, we end up with a total of 690 micro and macro attack events this
time, containing 578,372 sources. The results are given in Table 5.6.

It is important to highlight that the micro and macro attack event concepts are
introduced to facilitate the problem representation. They are, however, similar in
the sense that all the attacking machines in a micro and macro attack event are in
action with the same cause. Therefore, from now on, we use the term attack event
to refer to both micro and macro attack event.
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Table 5.6 – Result on Attack Event Detection
AE-set-I(TScountry) AE-set-II(TSplatform)

No.AEs No.sources No.AEs No.sources

M1 549 552,492 631 566,661
M2 43 21,633 59 11,711

Total 592 574,125 690 578,372

No.AEs : amount of attack events
M1,M2 : methods presented in Sections 5.3,5.4

5.5.3.2 Analysis

The table highlights the fact that depending on how we decompose the initial
set of traces of attacks (i.e the initial time series TS), namely by splitting it by
countries of origin of the attackers or by platforms attacked, different attack events
show up. To assess the overlap between attack events from two attack event sets
AE-set-I and AE-set-II detected from different observation viewpoints we use the
common source ratio, namely csr, measured as follows :

csr(e, AEop′) =

∑

∀e′∈AEop′
|e ∩ e′|

|e|

in which e ∈ AEop and |e| is the amount of sources in attack event e, AEop is
AE-set-I and AEop′ is AE-set-II (or vice versa).
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Figure 5.21 – CDF common source ratio

Figure 5.21 represents the two cumulative distribution functions corresponding
to this measure. The point (x, y) on the curve means that there are y∗100% of attack
events obtained thanks to Tcountry (resp Tplatforms) that have less than x ∗ 100% of
sources in common with all attack events obtained thanks to Tplatforms (resp Tcountry).
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The Tcountry curve represents the cumulative distribution obtained in this first case
and the Tplatforms one represents the CDF obtained when starting from the attacks
events obtained with the intial Tplatforms set of time series. As we can notice, around
23% (resp. 25%) of attack events obtained with the Tcountry (resp. Tplatform ) set
of time series do not have any source in common with any attack event obtained
when using the Tplatform (resp. Tcountry ) set of time series. This corresponds to 136
(16,919 sources) and 171 (75,920 sources) attack events not being detected. In total,
there are 288,825 (resp. 293,132) sources present in AE-Set-I (resp. AE-Set-II), but
not in AE-Set-II (resp. AE-Set-I). As a final note, there are in total 867,248 sources
involved in all the attack events detected from both datasets which correspond to
25% of the attacks observed in the period under study. It shows that the attacks on
the Internet are not totally random anymore but more coordinated and strategical.

5.5.3.3 Explanation

There are good reasons that explain why we can not rely on a single viewpoint
to detect all attacks events. They are described below.
Split by country : Suppose we have one botnet B made of machines that are
located within the set of countries {X,Y, Z}. Suppose that, from time to time,
these machines attack our platforms leaving traces that are assigned to cluster C.
Suppose also that this cluster C is a very popular one, that is, many other ma-
chines from all over the world continuously leave traces on our platforms that are
assigned to this cluster. As a result, the activities specifically linked to the bot-
net B are lost in the noise of all other machines leaving traces belonging to C.
This is certainly true for the cluster time series (as defined earlier) related to C

and this can also be true for the time series obtained by splitting it by platform,
Φ[0−800),C,platformi

∀platformi ∈ 1..40. However, by splitting the time series corres-
ponding to cluster C by countries of origins of the sources, then it is quite likely that
the time series Φ[0−800),C,countryi

∀countryi ∈ {X,Y, Z} will be highly correlated du-
ring the periods in which the botnet present in these countries will be active against
our platforms. This will lead to the identification of one or several attack events.
Split by platform : Similarly, suppose we have a botnet B′ made of machines
located all over the world. Suppose that, from time to time, these machines attack
a specific set of platforms {X,Y, Z} leaving traces that are assigned to a cluster
C. Suppose also that this cluster C is a very popular one, that is, many other ma-
chines from all over the world continuously leave traces on all our platforms that
are assigned to this cluster. As a result, the activities specifically linked to the bot-
net B′ are lost in the noise of all other machines leaving traces belonging to C.
This is certainly true for the cluster time series (as defined earlier) related to C

and this can also be true for the time series obtained by splitting it by countries,
Φ[0−800),C,countryi

∀countryi ∈ bigcountries. However, by splitting the time series cor-
responding to cluster C by platforms attacked, then it is quite likely that the time
series Φ[0−800),C,platformi

∀platformi ∈ {X,Y, Z} will be highly correlated during the
periods in which the botnet influences the traces left on the sole platforms concerned
by its attack. This will lead to the identification of one or several attack events.
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The top plot of Figure 5.22 represents the attack event 79. In this case, we see
that the traces due to the cluster 175309 are highly correlated when we group them
by platform attacked. In fact, there are 9 platforms involved in this case, accounting
for a total of 870 sources. If we group the same set of traces by country of origin
of the sources, we end up with the bottom curves of Figure 5.22 where the specific
attack event identified previously can barely be seen. This highlights the existence
of a botnet made of machines located all over the world that target a specific subset
of the Internet.

0 2 4 6 8 10 12 14
0

10

20

30

40

0 2 4 6 8 10 12 14
0

50

100

150

Figure 5.22 – top plot represents the attack event 79 related to cluster 17309 on 9
platforms. The bottom plot represents the evolution of this cluster by country. Noise
of the attacks to other platforms decreases significantly the correlation of observed
cluster time series when split by country

5.6 Summary

We have shown that it is possible to automatize the identification of the micro and
macro attack events. To achieve this, we have adopted the following key assumption.
The attacking sources acting under the same root cause have a particular distribution
in terms of time and geographical location. This leads us to the observation that the
attack events exist under form of peaks of activities or groups of correlated attack
traces. Since detecting macro attack events requires a huge computational cost, we
have discussed and implemented three alternative solutions for this purpose. The
solutions are the balance between computational cost and ability to identify the
attack events. All solutions were carefully designed to work with large datasets. We
have validated our detection techniques on a real dataset collected from a distributed
honeypot sensors. And the results conformed our expectations. Besides that, we have
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shown the impact of the clustering of the attack traces on our ability to detect micro
and macro attack events. Depending on whether we used the origin or the destination
of the attacks, we end up identifying different sets of attack events.
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Chapter 6

CHARACTERIZATION OF

ZOMBIE ARMIES

6.1 Introduction

We have shown in the previous Chapter how to detect the attack events existing
in the attack traces collected by a distributed honeypot infrastructure. We have also
discussed the impact of the observation viewpoints when detecting them. To justify
all these efforts, in this Chapter, we provide diverse lessons that can be learned from
the attack event concept. Concretely, in Section 6.2, we classify the attack events
into three classes and then analyze them according to several characteristics. As we
will show later, botnets are identified as the main cause of the attack events. We
show how attack events help in better analyzing the botnets by bringing forward
some important characteristics such as the lifetime of botnets, lifetime of infected
machines in botnets, the kind of attack tools that infected machines possess. This
is presented in Section 6.3.

6.2 Attack Event Characteristics

6.2.1 Attack Event Classification

We believe that attack events are generated by different causes, for instance, one
may be generated by a self propagating worm, the other may be traces of a static,
remotely controlled botnet. As suggested in [129, 69], such coordinated attacks can
be due to activities of worms, botnets and network misconfiguration. Sharing the
same spirit, we classify the attack events that we have detected earlier into three
classes : botnet, worm, and others. We name the third class others since we are not
sure about the nature of this class of activities. We observe that there is a class of
attack events made of attacks hitting only one platform, and on only one single and
always the same IP address on that platform. A closer look at these attack events
reveals that their attacking sources target only high port numbers, and most of them
are used by clients of P2P networks. This somehow suggests that these attack events
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Table 6.1 – Result on Classification of Attack Events
AE-set-I AE-set-II

Botnet 532 597
Worm 18 36
Others 42 57

are not caused by worms or botnets. In fact, different worms and botnets may have
different strategies to choose their targets (hitlist, uniform, random mode...) but they
always try to increase their spreading efficiency by contacting several machines. As
mentioned in Chapter 3, our platform consists of three consecutive IP addresses. And
given a large amount of sources in each attack event (mean sizes of attack events
in AE-set-I and AE-set-II are 970 and 838 sources, respectively), we expect that
the attack events caused by botnets and worms hit all three IP addresses when they
target a platform. For this reason, we classify the attack events hitting only one IP
address into the class others. It is important to notice that, authors in [69] also used
the limited amount of IP addresses contacted to classify attacking sources in what
they called “event probes” to the class network misconfiguration. While it is easy to
differentiate attack events of class others from those of classes botnet and worm, it is
not straightforward to differentiate activities caused by worms and those caused by
botnets. In fact, we would expect that the source count of attacks left by a botnet
has a sharp raise and a sharp decay as botnet receives order to probe. Whereas
source count of attack traces left by a worm should have the exponential growing
trend. However, if a botnet uses the pull mode to receive command, for example as
it is the case of Phatbot, all the bots in that botnet do not start launching attacks
at the same time. In fact, as mentioned in [131], Platbots : “[...] wake up every 1000
seconds to check for new commands. Given this behavior, rather than a sharp onset
we instead might expect a steady rate of arrival over an interval of 10-20 minutes”.
In our case, we use the time step of one day, we hope this will eliminate the artifact
of the pull mode. So, in our analysis, we consider all the attack events having the
sharp growing and sharp decay as being generated by botnets. The remainders are
attributed to activities caused by worms. The final result of the classification of
attack events is represented in Table 6.1. As we can see, the majority of the attack
events are caused by botnets. It is interesting to see that there are more attack events
in class others than that in class worm, and this is true for the results obtained from
both attack event sets AE-set-I and AE-set-II.

Figure 6.1a represents an example of attack event from class others. This par-
ticular attack event, consisting of 4054 sources from several observed cluster time
series, targets port 50286/TCP on only one IP address of one platform located in
China. Figure 6.1b shows the attack event 27, AE27, in which the cluster 15238
targets Netbios service (port 139/TCP) on IP addresses of five different platforms.
With respect to the shape, the two attack events AE27 and AE59 look similar :
sharp increase and sharp decay, and in both cases, the attacks last for a very short
amount of time. However, AE27 hits several IP addresses on a well-known port and
the AE59 hits only one IP address on a high port number. AE27 is therefore classi-
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fied into the class botnet. Finally, Figure 6.1c represents the attack event 79, AE79,
in which sources of the cluster 65710 attack the Windows Messenger Service port
(1026/UDP) on six different platforms located in five /8 networks. The difference
from both two previous examples is that in AE79 the attacks last for a long period
of time.
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Figure 6.1 – a) 4054 sources (belonging to several clusters) coming from Spain
attack one IP address on high port number 50286/TCP b) Cluster numbered 15238
attacks against 5 platforms on Netbios Service (port 139/TCP) c) Cluster 65710
sends packets to 6 platforms against Windows Messenger Popup Service in a long
period of time.

6.2.2 Characteristics of Attack Events

We want to verify the validity, the meaningfulness of the attack events identified,
and, therefore see if other characteristics show their consistency. In the following,
we use two sets of attack events AE-set-I and AE-set-II identified in Section 5.5.3.

Attacked services : We observe that the attack events belonging to both classes
worm and botnet involve the similar list of services. In fact, in both cases, the at-
tack events target common services such as Netbios (139/TCP, 445/TCP), RPC
(135/TCP), Microsoft SQL Server (1443/TCP), VNC (5900/TCP), Symantec Sys-
tem Center Agent (2967/TCP), Windows Messenger Popup (1026-1028/UDP). For
instance, Table 6.2 gives a detailed distribution of the services attacked by the 18
attack events belonging to the class worm. The first (resp. second) column represents
the distribution of the services attacked by the attack events from AE-set-I (resp.
AE-set-II ). On the other hand, the attack events from the class others involve only
high port numbers. Most of them used by eMule and eDonkey client, e.g. 4662/TCP.
We actually do not have any good explanation for these phenomena. Tables 6.3 and
6.4 give a detailed distribution of ports attacked by the attack events of class others
obtained from AE-set-I (resp. AE-set-II ).

Lifetime of attack events : Lifetime of an attack event is defined as the time
interval between the start_at and end_at of that attack event. As expected, attack
events from both classes botnet and others have short lifetimes. In fact, almost all
attack events from the class others last less than 3 days. Figure 6.2a shows the
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Table 6.2 – Distribution of Attacked Services of Attack Events of Class Worm
AE-set-I AE-set-II service name

1 3 VNC (5900 TCP)
0 1 Scan, VNC (5900 TCP)
11 3 Symantec (2967TCP)
3 11 Microsoft Windows Messenger (1026/UDP-

1027/UDP-1028/UDP)
1 6 Scanning (ICMP)
0 3 Scan, Netbios (139/TCP, 445/TCP)
1 0 Netbios (139/TCP, 445/TCP)
0 4 RPC (135)
1 4 MS SQL Server (1443)
0 1 MySQL (3306TCP)

Table 6.3 – Distribution of Ports Attacked by Attack Events (from AE-set-I ) of
Class Others.

#of attack events Ports
28 eDonkey,eMule(4662/TCP 4672/TCP)
14 26912T 1755T 24653T 28238T 6342T 16661T

4857T 50286T 15264T 64264T 9763T 9661T
64783T 12293T

Table 6.4 – Distribution of Ports Attacked by Attack Events (from AE-set-II ) of
Class Others.

#of attack events Ports
32 eDonkey,eMule(4662/TCP 4672/TCP)
25 18794T, 26912T, 24653T, 48080T,

21415T, 16661T, 19464T, 30491T, 4857T,
(13208T,25801T), 50286T, 15264T,
(33018T,64264T), 38266T, 5001T, 7690T, 6134T,
64783T, 64783T, 12293T, 12293T, 38009T,
64697T, 46030T, 10589T
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CDF of lifetimes of attack events belonging to the class botnet. As we can notice,
more than 90% of attack events from this class last less than 10 days. Whereas,
attack events belonging to the class worm last for a long period of time. As shown
in Figure 6.2b around 80% of attack events obtained from AE-set-II last for more
than 50 days. It is also interesting to see that only 50% of attack events of class worm
obtained from AE-set-I last more than 50 days. In other words, there is a difference
in the lifetime of attack events belonging to the class worm detected by different
observation viewpoints. More concretely, the lifetime of attack events detected by
using the destination of the attacks is longer than that detected by using the origin
of the attacking machines.
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Figure 6.2 – a) CDF of lifetimes of attack events from class botnet b) CDF of
lifetimes of attack events from class worm

Source and Target Distribution : Figure 6.3 shows the CDF of number of
countries/platforms involved in the attack events for the classes botnet and worm.
As we can observe, most attack events concern a limited number of observation
viewpoints. In fact, in 80% of the cases, attack events involve less than 5 countries
and platforms. In other words, attacking machines involved in attack events come
from and attack a very limited number of locations in the IP space.

Finally, as said earlier, each attack event in class others always targets the same
IP address. A closer look shows that 57 attack events in Table 6.4 attack only 5
distinct IP addresses from 3 platforms. As of now, we have no explanation for this
strange phenomena.

Source behavior : As we have shown earlier, an attack event, consisting of
several attacking sources, can involve more than one platform. It may be interesting
to see whether these attacking sources do redundant tasks or if there is some assigned
task for each source, or at least a mechanism that avoids the redundancy of work
done by different attacking sources. To find the answers for this question, we look at
the behavior of attacking sources through the following two aspects : the behavior of
the attacking sources within one platform and the behavior of the attacking sources
on several platforms. By behavior, we mean simply the number of honeypots and
platforms contacted for the first, and second case, respectively.

To examine the behavior of the attacking sources within the platform, we proceed
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Figure 6.3 – a) CDF of number of observation viewpoints from class worm. b) CDF
of number of observation viewpoints from class botnet

as follows. Suppose that S is the set of all sources in an attack event, a source s ∈ S

contacts a set of platforms Ps, and Ni is the number of honeypots that the source s

contacts on the platform pi ∈ Ps. We compute ms = 1
|Ps|

∑pi∈Ps Ni as the mean of
number of honeypots contacted by the source s per platform. The average number
of honeypots (IP addresses) within a platform contacted by sources is 1

|S|

∑s∈S
ms.

Figure 6.4a shows the CDF of the average number of IP honeypots for all the attack
events from the class worm. As we can see, in more than 80% the case, the sources
contact in average more than 1 IP address. And in around 36% the cases, the sources
contact all three IP addresses.

To examine the behavior of the attacking sources over several platforms, on the
attack event basis, we compute, this time, the average number of platforms contacted
by all the attacking sources from that specific attack event. Figure 6.4b shows the
CDF of the average number of platforms contacted by sources for all the attack
events from the class worm. As we can notice, in around 90% of the cases, attacking
sources have contacted less than two platforms.

This result suggests that objective of the individual attacking source is always
smaller than that of the attack event, and that there may be a mechanism that allows
the attacking sources to avoid doing the redundant task within an attack event, but
obviously, there are a lot of room to improve. This observation also holds with even
stronger evidence in the case of botnets as represented in the two corresponding
plots c and d of Figure 6.4.

As an example, attack event 79, as represented earlier in Figure 6.1b, consists of
the attacks of cluster 65710 against Microsoft Messenger Service (port 1026/UDP)
on six different platforms located in five /8 networks. In this particular attack event,
a source contacts only one platform. In other words, we have 6 set of sources, in
which sources in each set attack only one platform. Furthermore, all the sources hit
all the three honeypots on the platform they contact.
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Figure 6.4 – Plot (a) (resp. c) represents the CDF of average number of IP wi-
thin a platform contacted by the sources in case of class worm(resp. botnet). Plot
(b) (resp. d) represents the CDF of average number of platforms within an attack
event contacted by the sources in case of attack events belonged to class worm(resp.
botnet)

6.3 Clustering of Attack Events

In the previous Section, we have analyzed the characteristics of attack events
with respect to the class we had assigned them to, i.e. worm, botnet, and others. We
have shown several characteristics of these classes of activities. In this Section, we
want to go one step further on this process, i.e. to study the attack events that seem
to be generated by the same root cause, e.g., a particular botnet. We show that by
studying the attack events generated by such refined root cause, we can gain more
insight on the attack processes that have generated these attack traces.

6.3.1 Method

6.3.1.1 Similarity Measures

We believe that there are attack events that are generated by the same (or rela-
ted) root cause(s), e.g., the same botnet used to launch different attacks at different
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points in time. If we can find the prevalent characteristics of these attack events,
we can group them together. Intuitively, if two attack events share an important
amount of attacking machines, there is a large chance that they have the same root
cause. With this in mind, we use the common IP addresses to measure the distance
between the attack events. Of course, we do not expect this number to be very high.
In fact, given a botnet, as time passes, it is reasonable to expect members of botnet
to be cured while others join. So, if the same botnet attacks our honeypots twice over
distinct periods of time, one simple way to link the two attack events together is by
noticing that they have a large amount of IP addresses in common. More formally,
we measure the likelihood of two attacks events e1 and e2 to be linked to the same
root cause by means of their similarity defined as follows :

sim(e1, e2) =

{

max( |e1∩e2|
|e1|

,
|e1∩e2|
|e2|

) if |e1 ∩ e2| < 200

1 otherwise

We will say that e1 and e2 are caused by the same (or related) root cause(s) if
and only if sim(e1, e2) > δ. This only makes sense for reasonable values of δ. In fact,
the value of δ must ensure that sim(e1, e2) > δ is not due to the random factor.
To build the foundation for choosing δ, we want to determine the probability that
two given attack events e1 and e2 could share a certain number of IP addresses by
chance. We denote the corresponding sets of distinct IP addresses of e1 and e2 as
S1 and S2, in which e1 and e2 have n1 and n2 IP addresses, respectively. Suppose
that A is the set of all visible IP addresses, and N = |A|. Visible IP addresses are
the addresses that are globally accessible. The visible IP addresses are much smaller
than 232 due to firewalls and private networks [48]. We now try to compute the
probability for which S1 and S2 have the overlap of n IP addresses. To do so, for a
given S1, we count the number of ways to build S2 in general, and S2 having n IP
addresses in common with S1. In the first case, in theory, there are CN

n2
= N !

n2!(N−n2)!

ways to choose S2. For the second case, we divide A into two subsets : S1 and S̄1,
in which S̄1 is the complementary set of S1 in the space A, or (S1 ∪ S̄1 = A and
S1 ∩ S̄1 = ∅). As a consequence, the cardinal of S̄1 is N − n1. Since, for a set S2

having n IP addresses in S1, we have n2 −n IP addresses in S̄1, the number of ways
to choose such S2 is the product of the number of ways to choose n2−n IP addresses
from S̄1 and the number of ways to choose n IP addresses from S1. More precisely,
we have CN−n1

n2−n = (N−n1)!
(n2−n)!(N−n1−n2+n)!

ways to choose n2 − n IP addresses from S̄1.

And we have Cn1

n = n1!
n!(n1−n)!

ways to choose n IP addresses from S1. As a result we

have Cn1

n × CN−n1

n2−n ways to choose such S2. Finally, the probability that S1 and S2

share n IP addresses in common is :

Cn1

n × CN−n1

n2−n

CN
n1

=

n!
n1!(n−n1)!

× (N−n1)!
(n2−n)!(N−n1−n1+n)!

N !
n1!×(N−n1)!

=
n1!n2!(N − n1)!(N − n2)!

n!(n1 − n)!(n2 − n)!(N − n1 − n2 + n)!N !

To give an idea on how this number looks like in reality, we can use it with some
typical values. The mean size of attack events in AE-Set-I and AE-Set-II are 970
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and 838 IP addresses, respectively. According to [48] the number of the visible IP
addresses estimated is 108 millions IP addresses (corresponding to 3,6% of allocated
IP addresses (2.8 billions)). According to the formula above, the probability that
two attack events of size 1000 share one IP address by chance is 0.09% which is
supposed to be very low.

6.3.1.2 Clustering of Attack Events

We now use the sim() function to group together attack events into what we call
action sets. Action sets are sets of attack events that are believed to be generated
by the same root cause. To do so, we build a graph where the nodes are the attack
events. There is an arc between two nodes e1 and e2 if and only if sim(e1, e2) > δ.
All nodes that are connected by at least one path end up in the same action set. In
other words, we have as many action sets as we have disconnected graphs made of
at least two nodes ; singleton sets are not counted as action sets.

We note that our approach is such that we can have an action set made of three
attack events e1, e2 and e3 where sim(e1, e2) > δ and sim(e2, e3) > δ but where
sim(e1, e3) < δ. This is consistent with our intuition that a particular threat (e.g.
botnet, worm) can evolve over time in such a way that the machines associated to
that threat can, eventually, be very different from the ones found the first time we
have seen the same army in action.

6.3.2 Analysis of Attack Events From Class Botnet

We apply the method presented in Section 6.3.1 to cluster the attack events into
action sets. In our dataset, as we have more attack events from the class botnet, we
choose to focus mostly on this family in the rest of this Section. The basic behavior
of bots is to receive a command from their C&C channel and execute it. Since we
have no information regarding the C&C they obey to, we do not know if these
machines are part of a single botnet or if they belong to several botnets that are
coordinated. Therefore, to avoid any ambiguity, we write in the following that they
are part of an army of zombies. An army of zombies can be a single botnet or a
group of botnets the actions of which are coordinated during a given time interval.

To test the sensitivity of the threshold δ, we have computed the amount of
action sets for the two sets of attack events for different values of δ. The result is
represented in Figure 6.5. It is important to notice that when we increase the value
of δ, two processes are taking place. On one hand, for a small value of δ certain
nodes remain connected together but, as δ increases, the initial graph loses arcs
and more disconnected graphs appear, i.e., more action sets show up. In the other
hand, some action sets also disappear with a growing δ value. This is due to the fact
that some graphs are broken into isolated nodes that are not counted as attack sets
anymore. If the creation speed is greater than the extinction speed the curve will go
up, otherwise, it will go down.

As we can see, at first, for the value of δ from 1% to 6%, the amount of action
sets increases rapidly. After this point since the extinction speed is greater than the
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creation speed, the curve mostly goes down. One would suggest to use δ = 6% as
an ideal threshold, but it may not always be the good choice. Since at that value of
δ, the speed of creating action sets stays always high, it means that there may exist
the weak links within the action sets. As a consequence, we may merge two or more
unrelated action sets together. To be conservative, we choose the threshold δ a little
bit greater than this value (δ = 8%) in hoping that we can avoid merging unrelated
action sets together.
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Figure 6.5 – sensitivity check of threshold δ

With that value of δ, we have identified 30 (resp. 28) zombie armies from AE-set-
I (resp. AE-set-II). They contain a total of 181 (resp. 234) attack events. Figure 6.6
represents the distribution of size (in number of attack events) of the zombie armies.
Its top (resp. bottom) plot represents such distribution of armies obtained from AE-
set-I (resp. AE-set-II). We can see that the largest amount of attack events for an
army is 50 in both cases, whereas 20 (resp. 18) armies have been observed only two
times.

6.3.2.1 Lifetime of Zombie Armies

Figure 6.7 represents the cumulative distribution of lifetimes of the zombie ar-
mies obtained from AE-set-I and AE-set-II. According to the plot, around 20% of
zombie armies have lasted for more than 200 days. In the extreme case, two armies
seem to have survived for 700 days ! Such result seems to indicate that either i)
it takes a long time to cure compromised machines or that ii) armies are able to
stay active for long periods of time, despite the fact that some of their members
disappear, by continuously compromising new ones.



83

0 10 20 30 40 50 60
0

10

20

number of attack events

nu
m

be
r 

of
 z

om
bi

e 
ar

m
ie

s

0 10 20 30 40 50 60
0

10

20

number of attack events

Figure 6.6 – Distribution of Zombie Army Size

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

duration (days)

F
(x

)

Empirical CDF

 

 

AE−set−I
AE−set−II

Figure 6.7 – CDF duration

6.3.2.2 Lifetime of Infected Host in Zombie Armies

In fact, we can classify the armies into two classes as mentioned in the previous
Section. For instance, Figure 6.8a represents the similarity matrix of zombie army
27, ZA27. To build this matrix, we first order its 42 attack events according to their
appearance. Then we represent their similarity relation under a 42 × 42 similarity
matrix M . The cell (i,j) represents the value of sim() of the ordered attack events
ith and jth. Since M is a symmetric matrix, for the sake of visibility, we represent
only half of it. As we can see, we have a very high similarity value between almost
all the attack events, around 60%. This is also true between the very first and the
very last attack events. It is important to notice the time interval between the first
and the last activities observed from this army is 754 days ! Similarly, Figure 6.8b
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represents the similarity matrix of zombie army 24, ZA24. This zombie army has
also a very long lifetime (625 days), and all the attack events share an important
amount of IP addresses with each other. However, in ZA24, the similarity values are
much smaller than those in ZA27.
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Figure 6.8 – Renewal rate of zombie armies

Figure 6.8c represents the opposite case, the similarity matrix of the zombie army
28 (ZA28), consisting of 50 attack events. As we can notice, the important values
are near the main diagonal of M 1. It means that the attack event ith has the same
subset of infected machines with only few attack events happening not far from it
in terms of time. And the lifetime of this army is 536 days ! Finally, Figure 6.8d
represents a similar example (zombie army 11, ZA11) as ZA28, but as we can see,
the values near the diagonal of the similarity matrix are much higher. It is clear,
from these four cases, that the composition of armies evolves over time in different
ways. This can be seen thanks to the attack events and zombie armies identification
process developed in this thesis. More work remains to be done in order to unders-
tand the reasons behind these various strategies.

1. The diagonal itself, of course, is not computed since sim(i,i)=1 ∀i.
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6.3.2.3 Attack Tools Analysis

We want now to study the attack tools used by the infected hosts. Our fundamen-
tal assumption is that all behaviors of the infected machines are pre-programmed.
Therefore, we can derive the nature of attack tools by observing the behavior of the
attacking machines. We classify them into the following five classes : Single attack
vector attack tool, variant signature attack tools, fingerprint attack tools, multi-
attack vector attack tools, multi-headed attack tools. They are described hereafter.

1. Single attack vector
Some IP addresses observed, always show the same behavior every time. For

instance, attack event 102, represented in Figure 6.9, consists of 142 attacking
machines that have launched 471 attacks against the four platforms 21, 27, 32,
and 49. All these 471 attacks belong to the cluster 150691. According to our
definition, an attacking machine in this case, can be observed, at maximum,
four times. It means that a majority of these 142 attacking machines have
launched the same attack, against more than one platform. Besides that, 47
out of these 142 attacking machines have been observed in another attack event
(in a different time period), namely AE108, and there they have launched 89
attacks, all belonging to cluster 150691 by our clustering algorithm, targeting
4 platforms.
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Figure 6.9 – Cluster 150691 targets four platforms 21, 27, 32, and 49

In total, we have observed the single attack vector behavior from attacking
machines from 17 (out of 28) armies obtained from AE-set-II. The detail is
presented in Table 6.5.
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Army-Id Single- FingerPrint Variant- Multi Multi-
Attack Vector Signature Attack Vectors Headed

1 X
2 X
3 X
4 X
5 X
6 X
7 X
8 X
9 X
10 X
11 X X
12 X
13 X
14 X
15 X
16 X
17 X
18 X
19 X
20 X
21 X
22 X
23 X
24 X X
25 X
26 X
27 X X
28 X X X

Table 6.5 – Analysis of attack tool of armies obtained from AE-set-II
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Figure 6.10 – Example variant worm

2. Variant signature attack tools
Our clustering algorithm classifies sources into clusters on a basis of a set of
attributes such as the number of packets sent by the sources to our platforms,
the ports sequences, the number of virtual hosts contacted,etc. Not all attack
tools have a deterministic behavior. Some may probe ports in a random order,
a variable number of times, etc. As a result, traces left by such tools will
appear in distinct clusters that will appear in correlated groups. In this specific
dataset, we found three reasons for which clusters can be “split”.

The first one is that they have contacted a different number of targets. One
cluster contacts only 1 honeypot and the other cluster contacts two honeypots.
By our observation, two-honeypot-contacted clusters have a smaller number
of sources than the one-honeypot-contacted clusters. It can be explained as
follows : if one source randomly chooses its target in a network, the probability
for it to hit only one of our machines is much higher than to hit two (or
even three) of them. As an example, the left plot of Figure 6.10 represents
the attacks of all cluster time series related to AE26. The middle plot of
Figure 6.10 represents only the attacks of two clusters 15611 and 60943 on
platform 5. Cluster 15611 contacts 1 honeypot and cluster 60943 contacts two
honeypots.

The other case is that the attack tool sends different amount of packets each
time it attacks our platform. The right plot of Figure 6.10 represents the
attacks of three clusters 75851, 75853 and 136323 also on platform 5. The
three clusters have the same ports sequence :

ICMP |445T |139T |445T |139T |445T . The difference resides in the number of
packets sent by the sources in each of these clusters.

In total, we have observed the variant signature behavior from attacking ma-
chines from 5 (out of 28) armies obtained from AE-set-II. The detail is pre-
sented in Table 6.5.

3. Fingerprint attack tools
OS fingerprint is a well-known attack tactic. The idea is that before laun-
ching the attack, the attacker checks the type of target system it faces and
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Figure 6.11 – Example Fingerprint worm

then launches, or not, the appropriate attack. We have found attack tools
that automatized this idea. We call them “fingerprint attack tool”. If a fin-
gerprint attack tool learns that it is attacking a non vulnerable host (w.r.t
its attack model), it gives up. On our platforms, we have deployed two kinds
of virtual machines : Windows and Linux, the fingerprint attack tools will
leave different traces on these two platforms if they adapt their behavior
as a function of response received to previous packets. In terms of ports
sequences, fingerprint attack tools may leave two different ports sequences
on two kinds of virtual machines. One ports sequence may be the prefix of
the other. For instance, we plot 4 clusters 75851, 75853, 136323, and 17718
of platform 5 from, again, attack event 26 on Figure 6.11. The three clus-
ters numbered 75851,75853 and 136323 (resp. 17718) have the correspon-
ding ports sequence ICMP |445T |139T |445T |139T |445T (resp. ICMP |445T ).
Cluster 17718 is mostly observed on the Linux machine (296 sources). There
are only 64 sources that sent packets to the other two windows machines. The
three other clusters however, are only observed on the two windows machines
(251 sources in total). The explanation is that since port 445TCP is closed on
the Linux machine, the attack tool is "intelligent enough" not to try port 139
TCP since it knows that the target is not vulnerable w.r.t its attacks. The fact
that 64 sources have contacted the two Windows machines but have given up
can probably be explained by packet losses, either in the network (e.g, packet
losses, firewall filters,etc..) or at the host (e.g, congestion while launching too
many scans in parallel).

In total, we have observed the fingerprint behavior from attacking machines
from 6 (out of 28) armies obtained from AE-set-II. The detail is presented in
Table 6.5.

4. Multi-attack vector attack tools
These sophisticated attack tools can break into target machines using several
different techniques. This, by itself, is not new. The Morris worm [118], in
1988, already had this feature. It was propagating using attacks against three
different services : rshd, fingerd and sendmail. The Morris worm, after having
selected a target, was trying all three attacks, one after another, interrupting
the process only in the case of a successful intrusion. Several other worms have,
since then, used the same strategy. They all are fairly easy to identify thanks
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to the known sets (or sequences) of attacks they try against their targets.
That leads to idea of having dynamic behavior for the attack tools. This idea
has been proposed by Nazario et al in [79] in 2001. And by monitoring the
botnet activities, authors of [40] have observed that it is quite frequent that
“[...] the bots are instructed to download a piece of software from the Internet
and then execute it”. We term this class of attack tools as multi-attack vector
attack tools. We have observed this at several occasions. For instance, attack
event 195 targets only port 9661/TCP and attack event 299 targets only port
6211/TCP, and they share 77 IP addresses in common. It means that these 77
attacking machines are capable of attack with multiple attack vectors.
In total, we have observed the multi-attack vector behavior from attacking
machines from 4 (out of 28) armies obtained from AE-set-II. The detail is
presented in Table 6.5.

5. Multi-headed attack tools
Multi-headed attack tool is a special case of multi-attack vector attack tool. In
fact, as defined in [93], a multi-headed attack tool has many attack vectors and
uses them dynamically. The services targeted are usually different. The multi-
headed attack tools allow the malwares to have a large chance to propagate.
Actually, the malwares can still propagate even if some of the vulnerabilities
they exploit are patched. Furthermore, since multi-headed attack tools exhibit
varying activities it makes it harder for IDS to detect them. As an example,
Figure 6.12a represents attack events 89. We have observed “three groups” of
attacking machines that attack three different services. i.e., Netbios Service
(139/TCP), Microsoft SQL Server (1443/TCP), and VNC (5900/TCP). Fi-
gure 6.12b represents the attack event 221. There too, we observe the same
set of services attacked, and Microsoft SQL Server and VNC are also more
attacked than Netbios Service. Attack event 89 and attack event 221 share
55 IP addresses in common, in which 28 IP addresses are observed keeping
their behavior. In fact, 12 machines always attacked port 1443/TCP and the
other 16 always attacked port 5900/TCP, and 27 machines have changed their
behavior. More precisely, 16 machines have attacked port 1443/TCP in attack
event 89, turned to attack port 5900/TCP in attack event 221, and 11 ma-
chines do the opposite. We actually do not see the machines attacking Netbios
Service in the first place (on attack event 89) coming back in the attack event
221. This may be explained by some bias in the probability of choosing this
attack vector.
We have observed the multi-headed behavior from attacking machines from
only one (out of 28) armies obtained from AE-set-II. The details are presented
in Table 6.5.

6.3.2.4 Attack Capacity of Zombie Armies

Earlier, we have studied the attack tools launched by the infected machines
individually. In this Section, we focus on a broader perspective, i.e., the attack
capacity of the zombie armies. By attack capacity, we refer to the amount of different
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Figure 6.12 – a) attack event 89, b) attack event 221

attacks that a given army is observed launching over time. The top (resp. bottom)
plot of Figure 6.13 represents the distribution of the amount of distinct clusters per
zombie army detected in attack event set AE-set-I (resp. AE-set-II ). In both cases,
we observe that most of zombie armies exhibit multiple attack traces (corresponding
to multiple clusters). In the extreme case, one zombie army has more than 100
distinct clusters. The large amount of distinct clusters can be due to the side-effect
of the multi-signature of the attack tools, and the fingerprint attack tools. But it
is more likely due to the update behavior of botnets. In fact, as observed in [69],
“[...] The botmasters appear to ask most of the bots in a botnet to focus on one
vulnerability, while choosing a small sub-set of the bots to test another vulnerability”.
Figure 6.14 represents the evolution of the number of distinct clusters over time of
ZA27 and ZA28. In both cases, the point (x,y) on the curve means that up to the
xth attack event, we observe in total y distinct clusters. As we can see, in both cases,
the bots keep trying new cluster during their whole lifetime. More specifically, when
observing closely curve “zombie army 27” in Figure 6.14 we see that ZA27 tries a
new cluster in each attack event, almost. The corresponding list of port sequences
it has tried is

5900/TCP, 135/TCP, 2967/TCP, 139/TCP, ICMP, 80/TCP, 445/TCP, 1433/TCP,
4899/TCP, 5901/TCP,18886T, 1026/UDP, 445T139T445T139T445T. This is a clear
case of multi-attack vector tool that we see evolving over time.
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Figure 6.13 – Attack capacity of zombie armies
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Figure 6.14 – Renewal rate of infected host of zombie armies
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6.3.2.5 Illustrated Examples

Example 1 : Zombie army 24, ZA24, is an interesting example which has been
observed attacking a single platform. However, 16 distinct attack events are linked
to that army ! Figure 6.15a presents its two first activities corresponding to the two
attack events 56 and 57. Figure 6.15b represents four other attack events. In each
attack event, the army tries a number of distinct clusters such as 13882, 14635,
14647, 56608, 144028, 144044, 149357, 164877, 166477. These clusters try many
combinations of Windows ports (135 TCP, 139 TCP, 445 TCP) and Web server (80
TCP). The time interval between the first activities and the last activities is 625
days !
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Figure 6.15 – 6 attack events from ZA24

Example 2 : The zombie army 27, ZA-27, is another large army we have detected.
In fact, it consists of 42 attack events (already mentioned in Section 6.3.2.2). As an
example to show its activities, the top left plot of Figure 6.16 represents the attack
event 12 left by this army. The target is the platform 26, and in this example, 85
attacking machines send the ICMP scan on three honeypots. The top right plot
shows the attack event 307 that sends ICMP packets to the two platforms 26 and
41. In this particular attack event, every source hits only 1 single IP address. As a
side note, the two attack events share 48 IP addresses in common. The bottom left
plot of Figure 6.16 shows the attack events 454, this attack event hits 4 platforms
(26, 13, 50, and 57) and the last one hits 26, 45, 53, 56, 57. To show how close these
attack events are, Table 6.6 shows the number of common IP addresses between
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Table 6.6 – Common IP addresses of four attack events 12, 307, 454, and 483
12 307 454 483

12 85 48 60 36
307 48 93 63 37
454 60 63 370 47
483 36 37 47 108

these four attack events. For instance, attack event 483 shares 37 IP address with
AE 307, and 454 and 483 share 47 IP addresses... Last but not least, the interval
between the first and the last attack event issued by this zombie army is 753 days.
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Figure 6.16 – 4 attack events from zombie army 27

6.3.3 Analysis of Attack Events from Class Worm

Clustering of attack events : Applying the clustering techniques as described
earlier in Section 6.3.1, we obtain three action sets, in which two attack sets have
3 attack events and the last one has 2 attack events. As an example, one of the
groups consists of three attack events 229, 243 and 328 that target ports 1433/TCP
(MS SQL Server), 2967/TCP (Symantec service) and 5900/TCP (VNC service).
The three attack events share the same lists of targets, i.e., platforms 25 and 64. As
a reminder, since these attack events belong to an action set, they must share an
important amount of sources in common. In fact, attack events 229 and 243 have
462 sources in common. Attack events 243 and 328 share 209 sources in common.
This suggests that there is something in common in the attack processes that have
generated these attack events.

Activity Discrimination : an attack tool may be exploited by different groups
of attackers. We show that by correlating the attack traces, we can differentiate the
activities associated to a particular attack tool. As an example, Figure 6.17a repre-
sents attack event 243 that shows the activities of cluster 175309 against Symantec
Agent (port 2967/TCP). In this particular attack event, we observe that the activi-
ties involve only two platforms namely 25 and 64, and they both belong to the same
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class A. Whereas, Figure 6.17b represents the attack event 576, AE567 that targets
the same two platforms (25 and 64) and also platform 53. Figure 6.17c represents
the activities of cluster 175309 against three platforms 25, 53, and 64 on a sub period
of attack event 243. As we can see, during this period, there is almost no activity of
cluster 175309 on the platform 53. This is why cluster 175309 against platform 53
was not included within AE243, as opposed to AE567. We have checked that this
phenomena was not a side-effect of the fact that the corresponding platform was
down. The possible reason could be that the traffic has been filtered before reaching
our platforms [22]. This could also be an indication of the fact that the two attack
events have different root causes.
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Figure 6.17 – Plot (a), Plot (b), Plot (c)

6.3.4 Analysis of Attack Events from Class Others

Similarly to the previous case, we apply the technique as described in Sec-
tion 6.3.1 to two attack event sets AE-set-I and AE-set-II. When starting from
the platform viewpoint, we obtain two action sets made of 2 and 8 attack events
respectively. Whereas in the case of the country viewpoint, we obtain one action
set of 7 attack events. This suggests the existence of stable processes that are the
root causes of these attack events. However, it is impossible for us to infer the root
cause of these phenomena. It may be due to the misconfiguration of P2P networks.
Another potential cause could be the application of concepts described in [78, 35], in
which authors show how to abuse P2P networks to generate DDoS attacks against
an arbitrary victim. Due to the lack of concrete evidence, we can not draw any
conclusion about these phenomena.

6.4 Conclusion

In this Chapter, we have shown, by looking at the attack events that our method
can generate semantically meaningful results. We have validated this experimentally
by using the two sets of attack events detected earlier in Chapter 5. More precisely,
with respect to the cause of attack events, we have shown that we can classify them
into three classes of activities : namely worm, botnet, and others. On the basis of
class of activities, we have studied several characteristics of its attack events such as
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the lifetime of attack events, behavior of attacking sources, attacked services, distri-
bution of platforms and countries involved in attack events. For instance, attacking
and attacked machines involved in attack events are very location specific, i.e. each
attack event concerns a few countries and platforms. Also, lifetime of attack events
belonging to class botnet is very short in comparison to that belonging to class worm.
Besides that, in taking advantage of data mining techniques, we have proposed a
method to group together related attack events into what we called action sets. We
have shown that studying the action sets indeed brings deeper understanding about
the threats. For instance, in the case of botnets, we have discovered that botnets
may exist for a very long period of time, over 700 days ! It is interesting to see that
botnets adopt several strategies for renewing their zombie machines. Also, some bot-
nets managed to survive for a very long period of time even though the renewal rate
of their zombie machines is extremely high. We have also shown that we can deduce
the kind of attack tools employed by the zombie machines in botnets. Indeed, we
have shown that there are several kinds of advanced and sophisticated behaviors
infected machines can have such as fingerprint, multi-attack vector, multi-headed.
We have also observed that botnets frequently change their attack vectors in dif-
ferent attack campaigns. It is important to highlight that our solutions are easy to
deploy and do not rely on any assumption about the communication protocol used
by botnets. Our hope is to provide insights into the bigger picture of today’s (and
yesterday’s) botnets activities. This kind of knowledge will help us to have a more
precise perception on the current threats our computers are facing, and thus, to
build a better countermeasure.
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Chapter 7

CONCLUSION AND

PERSPECTIVES

7.1 Conclusion

This thesis started by stating that it is important to understand the modus ope-
randi of the attack processes from the attack traces, and that this task is difficult.
The challenges we face when addressing this problem are due to the lack of know-
ledge about how and when the attacks are launched. It is therefore difficult to know
whether two attacking sources are related (or launched by the same attack process)
or not. While we need to study the attacking sources in their context in order to
figure out how the attack process behind them operates. Ideally, we can classify the
attacking machines into groups with respect to their root cause, i.e. the attack pro-
cess triggering the attacks. In this thesis, we termed the groups of related attacking
sources as micro and macro attack events. To identify and analyze such micro and
macro attack events, we proposed to use classical signal processing and data mining
techniques.

With respect to the thesis statement that opened this work, we have shown
that it is possible to automatize the identification of the micro and macro attack
events. To achieve this, we have adopted the following key assumption : The at-
tacking sources acting under the same root cause have a particular distribution in
terms of time and geographical location. This leads us to the observation that the
attack events exist under form of peaks of activities or groups of correlated attack
traces. As shown in Chapter 5, detecting macro attack events requires a huge com-
putational cost, we have discussed and implemented three alternative solutions for
this purpose. The solutions express the tradeoff between computational cost and
ability to identify the attack events. All solutions were carefully designed to work
with large datasets. Since the detection of macro attack events is based on the time
series correlation technique, we have studied several similarity measures to identify
the most appropriate technique for our application context. We have validated our
detection techniques on a real dataset collected from a distributed honeypot sensors.
And the results conformed our expectations.

As a validation of our approach in understanding the attack traces, we have
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proved that the attack traces can be classified into the following three families based
on their activity level. The first family consists of attack tools that are almost
constantly used in time. The second family consists of attack tools that are used
from time to time over a period of couple of days. The last family consists of attack
tools that are rarely used more than once and always during one or two days only.
Besides that, studying the attack events detected by our techniques, we have shown
that we can identify the cause and several characteristics of the attack events. In
fact, with respect to the cause, attack events can be classified into the following three
categories : worm, botnet, and others. We have also analyzed several characteristics
of attack events (w.r.t. the classes we have assigned to them) such as the attacked
services, their life time, behavior of attacking sources, and distribution of number of
platforms and countries involved in the attack events. As a step further in analyzing
the attack events, taking advantage of data mining techniques, we have proposed
a method to group together related attack events into what we called action set.
Studying those action sets reveals several interesting aspects of the threats. For
instance, in the case of botnets, we have observed that some botnets last as long as
700 days. It is interesting to see that botnets adopt several strategies for renewing
their zombie machines. Also, some botnets managed to survive for a very long period
of time even though the renewal rate of their zombie machines is extremely high. We
have also shown that we can deduce the type of attack tools employed by the zombie
machines in botnets. Indeed, we have shown that there are several kind of advanced
and sophisticated behaviors infected machines can have such as fingerprint, multi-
attack vector, multi-headed. We have also observed that botnets frequently change
their attack vectors in different attack campaigns. It is important to highlight that
our solutions are easy to deploy and do not rely on any assumption about the
communication protocol used by botnets. Our hope is to provide insights into the
bigger picture of today’s (and yesterday’s) botnets activities. This kind of knowledge
will help us to have a more precise perception on the current threats our computers
are facing, and thus, to build a better countermeasure.

7.2 Future Work

We have shown that the analysis of attack events can indeed cast more light
on the attack phenomena we observe. Given the first promising results, it would be
interesting to carry out more works around the attack event concept. Indeed, there
are at least three research directions that can follow these works :

1. We have observed that in starting from different viewpoints namely country
and platform, we ended up identifying different sets of attack events. We be-
lieve that exploiting more dimensions may help us to identify more attack
events. For instance, we could analyze the impact of time step granularity on
the detection of attack events. Also, instead of splitting the attacks by country,
we could split them by IP block...

2. We have shown that by analyzing the attack events we can understand more
about the attack tools, the modus operandi of certain attack classes as well as
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several other characteristics. The second research direction could be to apply a
more systematical analysis framework to analyze the attack events and extract
more knowledge from them. It is important to highlight the fact that the attack
events generated as an output of our approach can be and, actually, have been
used by other researchers in the context of their own work in this research
direction [122, 123]

3. There are several open questions left in this work. For instance, as we men-
tioned earlier, we do not have a valid explanation for the existence of attack
events of class others. The main reason may be that, with low interaction ho-
neypot, we can not have a full understanding on the motivation of the attacks.
The third research direction could be to use the external sources of information
to enrich our knowledge about different attack phenomena we observe.
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