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Abstract -In this paper, our aim is to evaluate the performance of Reed Solomon (RS) codes when used to
protect Asynchronous Transfer Mode (ATM) cells (424 bits) over fading channels. The well-known Gilbert-
Elliott model (GE) represents the memory-fading channel. Its parameters like transition probabilities are related
to physical quantities associated with fading statistics (Doppler normalized frequency, fading margin,..).
Analytical expressions for code-word error probability (

cwP ), residual error rate (
erR ) and cell loss ratio (

LRC )
are derived. The GE channel model is used to compare the performance of a large set of codes including those
lengths that are 7,15,31,63 and 127. Contrarily to situations where binary symmetric channel is applied, the
performance obtained is improved using short codes and imperfect interleaving. The Doppler normalized
frequency and the variation of signal-to-noise ratio affect noticeably performance parameters. Also, theoretical
and simulation results are compared to verify and to validate the accuracy of the GE model. In fact, simulation
results obtained for a certain class of parameters seem to be in excellent agreement with analytical formulas.

I. Introduction

Since ATM has been internationally accepted as
transport technique for broadband integrated services
digital networks (B-ISDN), the interconnection
between wireless systems and wired ATM networks
becomes a critical issue.
Wireless ATM (WATM) is viewed as mandatory
access technology to broadband networks in order to
provide users with performed integrated services. In
fact, users become more and more greedy; they intend
to access to new multimedia services which require
flexible bandwidth allocation, service type selection
for a wide range of applications, high speed
transmission and Quality of Service (QoS) on
demand. WATM seems to possess all the capabilities
required to successfully providing a networking
platform [1][2][3]. In fact, the most important benefit
of ATM is its flexibility.
Nevertheless, the integration of wireless networks
into B-ISDN/ATM networks introduces a number of
issues which arise from the inherent mismatch
between wired and wireless links in terms of
transmission speed and bit error rates (BER). In fact,
wireless links are notorious for their unreliability and
poor BER in the range of 10-4 and 10-5, which varies
considerably in time and space contrarily to ATM
networks where the BER is around 10-9 [4].
The performance of wireless links is characterized by
the inherent problems: 1) limited bandwidth, 2) high
error rates and 3) high variation of 1 and 2.
Indeed, error control for high speed wireless ATM
networks is an important research topic even wireless

communication channels are highly affected by
unpredictable factors like co-channel interference,
adjacent channel interference, propagation path loss
and multipath fading. Channel coding is used in
communication systems to reduce the effect of noise
introduced by the channel. To cope with this
limitation, basic techniques should be used. In the
case of WATM, FEC (Forward Error Correction)
mechanism, convolutional coding, interleaving, multi-
carrier modulation, diversity reception and ARQ
(Automatic Repeat reQuest) retransmission are
considered to target BER of service requirements. In
fact, the challenge is to design efficient error control
techniques that satisfy different QoS with the best use
of available resources. In this context, we focus on
FEC mechanism to achieve error control tasks based
on using RS codes.
Actually, studies of the performance of error-
correcting codes are most often based on situations
where the channel is assumed to be memoryless.
The received signal envelope in wireless systems is
Rayleigh distributed. It is described as a correlated
Rayleigh signal. Due to the correlation, deep fades
usually cause bursts of bit errors in a packet [5]. More
realistic models for such kind of channels are those
which capture memory as fading models, Markov
models, etc. Among these models, GE model provides
a useful discrete model where its parameters can be
calculated from statistics of fades [6]. The simplicity
of this model allows making performance analysis of
error correcting codes through both simulations and
exact or approximate calculations.
Our paper is organized as follows. Section 2 provides
a description of GE model. Section 3 outlines the
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performance analysis where analytical expressions for
code-word error probability ( cwP ), residual error rate

( erR ) and cell loss ratio ( LRC ) are derived for RS

error correcting codes. In section 4, the GE channel
model is used to compare the performance of a large
set of RS codes. Furthermore, simulation results are
compared with analytical ones to evaluate the
accuracy of the theoretical model. Finally, Section 5
provides concluding remarks and perspectives.

II. Wireless channel model or
System model

Obviously, the error control technique that should be
used is dependent on wireless channel characteristics.
Furthermore, studies of the performance of error-
correcting codes are most often based on situations
where the channel is assumed to be memoryless. This
allows performing easily theoretical analysis. In
situations where memory is considered, the analytical
results, which are very complicated, are few and
performance tasks are then often achieved via
simulations.
In this study, we assume that the channel error
behaviour can be described by the well-known
Gilbert-Elliott model. It is one of the simplest models
proposed to capture the effects of memory channels.
It has been defined by Gilbert [7] and Elliott [8].
In the GE model, the channel is viewed as a Binary
Symmetric Channel (BSC) with memory determined
by a two state Markov chain. It is a first-order
discrete-time and stationary Markov chain. This
model describes the channel error statistics and is
shown schematically in Figure 2.1.

Figure 2.1: Gilbert-Elliott Model

The GE model contains two states, one state (state ‘G’
in Figure 2.1) is considered the ‘good’ state with low
Additive White Gaussian Noise (AWGN) distributed
error probability Pe(G)  and the other state (state ‘B’
in Figure 2.1) is considered the ‘bad’ state where the
error rate Pe(B)  is high. The transition probabilities
are denoted α  and β . β  is the transition probability
from state ‘G’ to state ’B’ and α  is the transition
probability from state ‘B’ to state ‘G’. In each state,

the channel is represented by a BSC with bit error
probabilities Pe(G) and Pe(B).
Error bursts are generated with an average length
Burst-Length = E(Burst-length) and are separated by
long gaps.
The channel evolution is completely specified by the
channel state transition matrix.
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The steady-state probabilities are denoted:

[ ]










+
=

+
=

=∏

βα
β

π

βα
α

π
ππ

B

G

BG with        
          (2.2)

The average BER is given by:
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Under assumption that the channel fades vary slowly
during bit interval, GE parameters can be related to
physical statistics of fading channel [6][9].
We consider that Rayleigh fading follows an
exponential distribution. The probability density
function of Signal-to-Noise Ratio (SNR) γ is given

by [10].
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where γ  is the average SNR.
The channel is considered in the good state when the
SNR is above a threshold thresholdγ . When SNR is

below thresholdγ , the channel is in the bad state.

The transition probabilities can be calculated as
follows [6]:









=

−
=

πρβ

πρ
α

ρ

2

1

2
2

SD

sD

Tf

e

Tf (2.5)

γ
γ

ρ thresholdwith =2   

Ts is the symbol interval. SDTf is the Doppler

normalized frequency where 
C
vfv

f D ==
ω

. v is the

vehicle speed, f  is the carrier frequency and C the
speed of light (3*108 m/s).
The bit error rates in each state are determined for a
given modulation scheme. In our study, we used a
Binary Phase Shift Keying (BPSK) modulation.

III. Performance analysis

T-error correcting non-binary Reed-Solomon codes
( )dtknRS ,,,  are block codes defined over GF (2m)

and are characterized by four parameters: ‘n’as the
codeword length, ‘k’ as the number of information
symbols, ‘t’ as the error-correcting capability and ‘d’
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as the minimum Hamming distance. Bits are grouped
into ‘m’ bit-symbols. This characteristic makes this
kind of code particularly powerful to combat
transmission bursts errors.
A RS(n,k,t,d) code is a non-binary BCH(n,k,t,d)  code
built over GF(q) with [11]:
Information block size  n=q-1
Redundancy  bits number r=n-k
Minimum Hamming distance d=n-k+1 =2*t+1

This code is capable of correcting any error pattern
that affects t or fewer m-bit symbols with

=t ( ) 1*2/1 −d . Each error concerns one symbol

containing one or many erroneous bits.
For a RS code with block length n, code rate k/n  and
error correction capability t, the average residual bit
error rate can be calculated by:

∑
=
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n
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PiA
R         (3.1)

iA  represents the number of weight-h codewords and

is given by (3.2) [12] [13].
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Using GE channel, the cwP  of a BCH code as a

function of the channel parameters and of the
interleaving depth has been evaluated in [14][15]
based on the above expressions.

The probability that a block of  n symbols contains m
errors is calculated using (3.3) and (3.4) equations.
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)(kφ  represents the unconditional probability of

k visits to bad state B.

Consequently, the probability to have more than t
errors, is given by :
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Assuming that there are L blocks in a cell, LRC  is

easily calculated by the expression:
L

cwLR PC )1(1 −−=      (3.6)

We propose to extend theoretical results [15] to RS
codes. We notice two cases.

First case
We consider two assumptions: 1) the channel state
doesn’t change during a symbol transmission, 2) bit
errors within a symbol are independent and are
uniformly distributed.
The bit error probabilities are then simply substituted
by symbol error probabilities as follows:
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Second case

If the channel changes state throughout a symbol’s
duration, then we have to take dependencies between
information bits within the same symbol into account.

Given that there are i  bits in good state G and j bits

in bad state B, we will consider all possible

combination ( m2 ) of error sequences between states
G/B illustrated by probabilities

( )( ) ( )ji BPeGPe )(1 * )(11 −−− .

Only the first case is concerned by the work
accomplished in this paper.

The impact of interleaving on transmission delay is
also studied. For a given code, the delay D is
calculated by formula : λτnDDelay 2==     (3.8)

where 
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IV. Numerical results

We concentrate our work on handling BPSK
modulation technique. Related simplified expressions
for Pe(B)  and Pe(G) are provided in [10]. A data rate
of 240 kbit/s and a delay constraint of 20 ms are
chosen.
Following the analysis described in Section III, we
investigate the performance of a set of RS error
correcting codes operating at approximately half rate
but having different block lengths (see Table 4.1).

Code Size Original Code Min.
dist.

Code
Rate

7  (7,4,1)         GF(8) 4  57%

15  (15,7,4)       GF(16) 9  46%
31  (31,16,7)     GF(32) 16  51%

63  (63,31,16)   GF(64) 33  47%

127  (127,64,31) GF(128) 64  50%

108  (108,53,27) GF(256) 59  48%

Table 4.1: Analyzed RS codes

Figure 4.1 illustrates the variation of codeword error
probability as a function of mean SNR of the received
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signal for different Doppler normalized frequencies

SDTf  in the case where a perfect interleaving is

considered. A threshold of SNR is set to 10 dB.
Improvement in performance by increasing speed of
mobile is clearly seen. This phenomenon can be
explained by the fact that fast fading cause short burst
errors which are easy to correct while slow fading
cause long burst errors.

Figure 4.1: cwP  vs. mean SNR γ  for different

Doppler normalized frequencies

Then, we compare the performance of different codes.
Figure 4.2 shows visibly the improvement of the
performance proportionally to code power. The
results agree with those obtained by using binary
symmetric channel model.

Figure 4.2: cwP  vs. mean SNR γ  for five RS codes

with BPSK modulation and SDTf =0.001

To study the impact of the relevant parameter SDTf
on coding performance in the case of imperfect
interleaving, Figure 4.3 and Figure 4.4 contain a plot
of cwP  as a function of mean SNR with SNR

threshold of 10 dB and 15 dB respectively. A set of

SDTf  values (0.001, 0.0001, 0.0005, 0.00005) is

considered representing a large class of mobile
environments.
We notice that increasing SDTf  implies performance

improvement. In fact, interleaving works better thanks
to the nature of errors that become more and more
random.

Figure 4.3: cwP  vs. mean SNR γ  with SNR

treshold=10 dB

Figure 4.4: cwP vs. mean SNR γ  with SNR

treshold=15 dB

Also, we observe that curves for the three values

SDTf =0.0001, SDTf =0.0005 and SDTf =0.00005

are quite identical.
Figure 4.5 shows cwP as a function of average SNR

for codes with different error correcting capabilities
(1,4,7,16,27,31). We can see the degradation of
powerful codes comparatively to short ones.

Figure 4.5: cwP vs. mean SNR γ  for six RS code

with code rate R=50%

Finally, we investigate the validity of analytical
expressions derived in section III. Figure 4.6
illustrates a comparison between simulation and
numerical results. We consider RS (15,7,4) code,
SNR threshold of 10 dB and SDTf  of 0.001.

Therefore, for a given set of parameters and delay
constraint of 20 ms, the theoretical results agree with
simulation results. Further, as depicted in the same

Pcw, RS(7,4,1), SNR threshold=10 dB
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figure, better performance is obtained in the case of
memoryless channel.

Figure 4.6: Comparison between numerical results
and simulation results

Figure 4.7 reveals that the code BCH (7,4,1) is more
powerful than RS (7,4,1) code. This result can be
explained by the fact that when transition
probabilities α  and β  increase, errors tend to

become independent. In this case, applying
interleaving leads BCH code to take maximum of
benefit from correlation diminution existing between
errors. RS code shows then a lowest reaction and
provides less performance. We can conclude that
BCH codes exhibit a higher robustness in relation to
channel parameter variations in the case of wireless
systems.

Figure 4.7: Performance comparison between BCH
and RS codes

V. Conclusion

This paper presents an analysis of RS error-correcting
codes over a fading channel modeled by the well-
known Gilbert-Elliott model. We make an extension
of theoretical results to burst error RS codes by
deriving expressions for codeword error probability,
residual error rate and cell loss ratio taking into
account two main assumptions. We have applied this
method to analyze cwP . Similar conclusions are

expected for other performance parameters such as

erR and LRC . The GE channel model has been used

to compare the performance of a large set of codes
including those that lengths are 7, 15, 31, 63 and 127.
We studied the impact of many parameters (Doppler
normalized frequency, SNR,..). The main conclusions

of the study are the following. Contrarily to situations
where binary symmetric channel is applied, the
performance obtained is improved using short codes
and imperfect interleaving. SNR and Doppler
normalized frequency affect particularly the
performance of such FEC mechanisms. Also, we
notice that a dynamic variation of SNR leads to the
necessity of designing of adaptive error control
schemes suited to wireless systems. Based on some
channel parameters values, simulation results verify
the good accuracy of our analytical results. For
further work, we intend to examine heavily the
second case cited in section III to take into account
the dependence between bit errors within each
information symbol.
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