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Abstract—Explicit codes are constructed that achieve the
diversity-multiplexing gain tradeoff (DMT) of the cooperative-
relay channel under the dynamic decode-and-forward protocol
for any network size and for all numbers of transmit and receive
antennas at the relays. Along the way, we prove that space-
time codes previously constructed in the literature for the block-
fading and parallel channels are approximately universal, i.e.,
they achieve the DMT for any fading distribution. It is shown
how approximate universality of these codes leads to the first
DMT-optimum code construction for the general, MIMO-OFDM
channel.

I. INTRODUCTION

Cooperative relay communication is a promising means
of wireless communication in which cooperation is used to
create a virtual transmit array between the source and the
destination, thereby providing the much-needed diversity to
combat the fading channel. Consider a communication system
in which there are a total of N +1 nodes that cooperate in the
communication between source node S and destination node
D. The remaining (N−1) nodes thus act as relays. We assume
quasi-static fading, synchronous nodes, half-duplex operation
at each node and i.i.d., CN (0, σ2)-distributed receiver noise.

II. THE DDF PROTOCOL

Under the DDF protocol, the source transmits for a total
time duration of BT channel uses. This collection of BT
channel uses is partitioned into B blocks with each block
composed of T channel uses. Communication is slotted in the
sense that each relay is constrained to commence transmission
only at block boundaries. A relay will begin transmitting after
listening for a time duration equal to b blocks only if the
channel “seen” by the relay is good enough to enable it
to decode the signal from the source with negligible error
probability. We explain below. An expanded version of this
manuscript can be found in [1].

A. Notation and Expressions for the Received Signal

It will be convenient at times to regard the source as the
first relay, i.e., S ≡ R1 and the destination as the (N + 1)th
relay, i.e., D ≡ RN+1. The notation below is with respect
to a channel realization that for simplicity, stays fixed for the

B-block duration. The extension to the case where it stays
fixed for a single block differs only in the notation.

Let xb(n), 1 ≤ b ≤ B, n = 1, 2, · · · , N denote the T -
tuple transmitted by the nth node during the bth block. Since
all nodes do not transmit in all blocks, we will make the
assignment xb(n) = ϕ, where we regard ϕ as the “empty”
vector to handle the case of no transmission. In particular,
the vectors xb(1), b = 1, 2, · · · , B denote the B successive
transmissions by the source.

Let us assume that up until the end of the (b− 1)th block,
we know which relays began transmitting and when. We will
assume that once a relay has begun transmitting, it will keep
on transmitting thereafter until the end of the Bth block. Let
Ik denote the set of indices of the relays that transmit during
the kth block, k = 1, 2, · · · , B. We will refer to Ik as the kth
activation set. Clearly

I1 = {1} and Ik ⊆ Ik+1, 1 ≤ k ≤ (B − 1).

We next proceed to determine Ib given {Ik}b−1
k=1. Since I1 is

known, this procedure will allow us to recursively determine
the activation sets Ik for all 1 ≤ k ≤ B.

We will begin by first identifying the signal received by such
a relay during the (b− 1)th block. Let ζb, 1 ≤ b ≤ B, denote
the size of Ib i.e., | Ib | = ζb. Clearly, 1 = ζ1 ≤ ζ2 ≤ · · · ≤
ζb−1 ≤ N . Let the elements of Ik, 1 ≤ k ≤ (b− 1), be given
by Ik = {1 = m1, m2, · · · , mζk

}. We use h(m, n) to
denote the fading coefficient between the mth and nth nodes.
Let n 6∈ Ib−1 and

ht
k(n) = [h(m1, n), h(m2, n), · · · , h(mζk

, n)]

Xk =




xt
k(m1)

...
xt

k(mζk
)


 .

Let

yt
k
(n) = [y(k,1)(n) y(k,2)(n) · · · y(k,T )(n)]

wt
k(n) = [w(k,1)(n) w(k,2)(n) · · · w(k,T )(n)]



denote the received signal and noise vector at the nth node
during the kth block. Then we have

yt
k
(n) = ht

k(n)Xk + wt
k(n).

Therefore the totality of the received signal at the nth node
up until the end of the (b− 1)th block is given by

[yt
1
(n) · · · yt

b−1
(n)] = [ht

1(n) · · · ht
b−1(n)]




X1

. . .
Xb−1


 + [wt

1(n) · · · wt
b−1(n)]. (1)

1) Signal at Destination: Since D ≡ RN+1, by replacing
n by (N +1) and b−1 by B in equation (1) above, we recover
the expression for the received signal at the destination during
the Bth block:

[yt
1
(N + 1) · · · yt

B
(N + 1)]

= [ht
1(N + 1) · · · ht

B(N + 1)]




X1

. . .
XB




+ [wt
1(N + 1) · · · wt

B(N + 1)]. (2)

2) Outage of Relay Node: From (1), we note that the
channel “seen” by the nth relay node over the course of the
first b − 1 blocks is the MISO (multiple-input single output)
channel characterized by the matrix equation

y = [ht
1(n) · · · ht

b−1(n)]x + w. (3)

The nth relay node can only hope to decode reliably at the
end of the (b − 1)th block if at that point, it has sufficient
mutual information to recover the transmitted signal whose
information content equals rBT log(ρ) bits. Here r denotes
the multiplexing gain, ρ the signal to noise ratio, and r log(ρ)
the rate of communication between source and destination [4].
If it does not have sufficient information, then we say that the
relay is in outage. Thus the probability of outage Pout,n,b−1(r)
of the nth relay node at the end of the (b− 1)th block equals

Pr

(
(1 + ρ

b−1∑

l=1

| ht
l(n) |2) <

rB

(b− 1)
log(ρ)

)
.

Under the DDF protocol, the nth relay node at the end of
block b− 1 uses this expression to decide whether or not it is
ready to decode. If it is ready to decode, then it will proceed
to do so and then begin transmitting from block b onwards,
i.e., n ∈ Ib.

B. Performance under the DDF Protocol

A lower bound on the probability of error of the DDF
scheme can be derived by making the assumption that when
the channel seen by a relay node is not in outage and the
relay proceeds to decode the signal transmitted by the source,
it will do so without error. Under this condition, the error
probability of the DDF scheme, will be lower bounded by
the probability of outage of the channel (2), seen by the

destination. In Section III-B, we will construct codes whose
error performance at large SNR is equal to this lower bound,
thereby establishing that this lower bound is indeed the error
probability associated with the DMG tradeoff of the DDF
protocol.

Let γ denote the vector composed of the
(
N+1

2

)
fading

coefficients
{

h(m,n) | n > m,
1 ≤ m ≤ N,

2 ≤ n ≤ (N + 1),

}

ordered lexicographically. We will use Γ to denote the random
vector of which γ is a realization. The activations sets Ik are
clearly a function of the channel realization γ. Writing Ik(γ)
in place of Ik to emphasize this, let us define

I(γ) = (I1(γ), · · · , IB(γ)).

Let A denote the collection of all possible activation sets. It
follows that the error probability of the DDF scheme satisfies

Pe(r) ≥
∑

I∈A

∫

γ∈R(I)

p Γ(γ) dγ

where

R(I) =

{
γ |

I(γ) = I(
1 + ρ

∑B
l=1 | ht

l(N + 1) |2
)

< r log(ρ)

}
.

C. Notation to Aid in Code Analysis

Returning to the expression for the signal at the nth relay
node up until the (b − 1)th block in (1), we extend the
vectors hk(n) and the matrices Xk to be of equal size with
a view towards the ST code construction to be presented in
Section III-B.

The vectors

{hk(n) | 1 ≤ k ≤ b− 1, 1 ≤ n ≤ (N + 1)}
will be extended by zero padding, while the matrices Xk, 1 ≤
k ≤ b − 1 will be padded with arbitrary row vectors. The
extra row vectors can be chosen arbitrarily since the extended
matrix X̂k will be left multiplied by row vectors ĥ

t

k(n) having
zeros in the locations corresponding to the indices of the row
vectors where padding of the matrix Xk takes place.

We thus define, for 1 ≤ k ≤ b− 1,

ĥ
t

k(n) = [ĥk(1, n) ĥk(2, n) · · · ĥk(N, n)]

where

ĥk(m,n) =
{

h(m,n) m ∈ Ik

0 else.

Also, let

X̂k = [x̂k(1) . . . x̂k(N)]t

where

x̂k(m) =
{

xk(m) m ∈ Ik

arbitrary n-length vector else.



In terms of the extended vector and extended matrix nota-
tion, the received signal at the nth relay node, n 6∈ Ib−1 and
the destination can respectively be re-expressed in the form

[yt
1
(n) · · · yt

b−1
(n)] = [ĥ

t

1(n) · · · ĥ
t

b−1(n)]



X̂1

. . .
X̂b−1




+ [wt
1(n) · · · wt

b−1(n)], (4)

[yt
1
(N + 1) · · · yt

B
(N + 1)]

= [ĥ
t

1(N + 1) · · · ĥ
t

B(N + 1)]




X̂1

. . .
X̂B




+ [wt
1(N + 1) · · · wt

B(N + 1)]. (5)

In this representation, all vectors ĥ
t

l(n) are of the same size,
(1× T ). The same comment also applies to the matrices X̂l,
1 ≤ l ≤ b− 1, which are of size (N × T ) .

As will be shown in Section IV below, ST codes that are
approximately universal for an appropriate class of block-
fading channels will be the building blocks of codes for
the DDF protocol that attain the DMG performance of this
channel.

III. THE BLOCK-FADING CHANNEL

A. Outage Probability

Consider the block-fading MIMO channel with nt transmit
and nr receive antennas and B blocks, characterized by

y
b

= Hbxb + wb, 1 ≤ b ≤ B. (6)

Thus each matrix Hb is of size (nr × nt). The probability of
outage of this channel is given by

Pout(r)
.= Pr(

B∑

b=1

log det(Inr + ρHbH
†
b ) < rB log(ρ))

= Pr(log det(IBnt + ρΛ†HΛH) < rB log(ρ))

where ρ is the SNR and where ΛH is the (Bnr×Bnt) block
diagonal matrix Λ = diag(H1,H2, · · · ,HB). In the above, =̇
and ≤̇, ≥̇ corresponds to exponential equality and inequality.
For example, y =̇ ρx is used to indicate that lim

ρ→∞
log(y)
log(ρ) = x.

Let q = ntB and let

λ1 ≤ λ2 ≤ · · · ≤ λq (7)

be an ordering of the q eigenvalues of Λ†HΛH . Note that if
nr < nt, then λ1 = λ2 = · · · = λ(nt−nr)B = 0. Let δ =
([nt−nr]B)+ where (x)+ denotes max{x, 0}, and let the αi

be defined by

λi = ρ−αi , δ + 1 ≤ i ≤ q.

Then

Pout(r) = Pr(
q∑

i=δ+1

(1− αi)+ < rB).

We will now proceed to identify a ST code in the next
section, Section III-B, that is approximately universal for the
class of block-fading channels, i.e., a code that achieves the
D-MG tradeoff of the channel model in (6) for every statistical
distribution of the fading coefficients {[Hb]i,j}.

Similar construction of codes for such a setting have pre-
viously been identified in [7], [13] and independently in [9],
[10]. We adopt the code-construction technique of these papers
for the most part, although the construction presented here is
slightly more general, for example, we permit the individual
block codes to be rectangular and offer flexibility with respect
to number of conjugate blocks employed. Most importantly
though, our proof will establish the result that these codes
are approximately universal for the block-fading channel and
parallel channels. The results of the present submission also
answer a question raised in [14] and relating to the existence of
approximately universal codes for the parallel MIMO channel.

B. Approximately-Universal Codes for the Block-Fading
Channel

1) Constructing the Appropriate Cyclic Division Algebra:
Let T be an integer satisfying T ≥ nt. Let m ≥ B be
the smallest integer such that the gcd of m,T equals 1, i.e.,
(m,T ) = 1. Let K,M be cyclic Galois extensions of Q(ı) of
degrees m,T whose Galois groups are generated respectively
by the automorphisms φ1, σ1, i.e.,

Gal(K/Q(ı)) =< φ1 >, Gal(M/Q(ı)) =< σ1 > .

Let L be the composite of K, M. Then it is known that L/Q(ı)
is cyclic and that further,

Gal(L/Q(ı)) ∼= Gal(K/Q(ı))× Gal(M/Q(ı)).

Thus every element of Gal(L/Q(ı)) can be associated with a
pair (φi

1, σ
j
1) belonging to Gal(K/Q(ı))× Gal(M/Q(ı)). Let

φ, σ be the automorphisms associated to the pairs (φ1, id),
(id, σ1) respectively. Then φ, σ are the generators of the Galois
groups Gal(L/M), Gal(L/K) respectively.

Let γ ∈ K be a non-norm element of the extension L/K,
i.e., the smallest exponent e for which γe is the norm of an
element of L is T . Let z be an indeterminate satisfying zT =
γ. Consider the T -dimensional vector space

D = {zT−1`T−1 ⊕ zT−2`T−2 ⊕ · · · `0 | `i ∈ L}.
We define multiplication on D by setting `iz = zσ(`i) and
extending in a natural fashion. This turns D into a cyclic
division algebra (CDA) whose center is K and having L
as a maximal subfield. See [3], [5] for an exposition of
the relevant background on division algebras. Every element
x = zT−1`T−1 + zT−2`T−2 + · · · + `0 in D has the regular
representation



X =




`0 γσ(`T−1) . . . γσT−1(`1)
`1 σ(`0) . . . γσT−1(`2)
...

...
. . .

...
`T−1 σ(`T−2) . . . σT−1(`0)


 . (8)

The determinant of such a matrix is known to lie in K. Given
a matrix X with components Xi,j ∈ L, we define φ(X) to
be the matrix over L whose (i, j)th component is given by
[φ(X)]i,j = φ([X]i,j). Note that in this case,

m−1∏

i=0

det(φi(X)) =
m−1∏

i=0

φi
1(det(X)) ∈ Q(ı).

Hence if the elements `i underlying the matrix X are in
addition, restricted to lie in the ring OL of algebraic integers
of L, then we have

m−1∏

i=0

det(φi(X)) ∈ Z(ı) so that |
m−1∏

i=0

det(φi(X)) |2≥ 1.

2) Space-time Code Construction on the CDA: Let X be
the rectangular (nt × T ) ST code comprised of the first nt

rows of the regular representations of the elements
∑T−1

i=0 zi`i,
where `i are restricted to be of the form:

`i =
T∑

j=1

`i,jγj , `i,j ∈ OK

and where {γ1, · · · , γT } are a basis for L/K. Note that as a
result, we have ensured that `i ∈ OL. Also note that each code
matrix in X is of the row-deleted form

X =




`0 γσ(`T−1) . . . . . . γσT−1(`1)
...

...
. . . . . .

...
`nt−1 σ(`nt−2) . . . . . . γσT−1(`nt)


 .(9)

Let S be the (Bnt × BT ) ST code comprised of code
matrices having the block diagonal form:

S =





θ




X
. . .

φB−1(X)


 , X ∈ X





where θ accounts for SNR normalization. When this code
matrix is in use, the received signal over the block-fading
channel is given by

[Y1 Y2 · · · YB ] = [H1 H2 · · · HB ]S + (10)
[W1 W2 · · · WB ]. (11)

This can also be expressed in the form



Y1

...
YB


 = θ




H1

. . .
HB







X
...

φB−1(X)


 +




W1

...
WB


 ,

in which the channel matrix is of block-diagonal form. This
latter form is convenient when comparing the block-fading
channel with the parallel channel. The proof of approximate

universality, i.e., proof of DMT optimality for every statistical
characterization of the fading channel is skipped here for lack
of space, the interested reader is referred to [1] for the proof.

C. Analogous Results Hold for the Parallel Channel

By parallel channel we will mean the channel given by



Y1

...
YB


 =




H1

. . .
· · · HB


 S +




W1

...
WB


 ,

in which the channel matrix is of block-diagonal form. Con-
sider the (Bnt × T ) space-time code Spar given by

Spar =





θ




X
...

φB−1(X)


 , X ∈ X





which when used over the parallel channel leads to the
equation below for the received signal at the receiver,




Y1

...
YB


 = θ




H1

. . .
· · · HB







X
...

φB−1(X)


 +




W1

W2

...
WB


 .

Comparing this equation with the alternate expression for the
block-fading channel given above we see that the expressions
are identical. There is one important difference though. In the
case of the block-fading channel, a rate requirement of R bits
per channel use translates into a space-time code S of size
2RBT = ρrBT , whereas in the case of the parallel channel,
the size of the corresponding ST code Spar is required to be
2RT = ρrT . It follows from this that by replacing rB by r,
one can similarly prove approximate universality of the code
Spar for the class of parallel channels. We omit the details.

D. DMT-optimal Codes for the General MIMO-OFDM Chan-
nel

The MIMO-OFDM channel can be regarded as a parallel
channel in which each parallel block corresponds to a different
subcarrier and can thus be represented in the form:

y
i

= θHlxl + wl, 1 ≤ l ≤ Q,

where where Q is the number of OFDM tones or sub-
carriers [8]. The matrices Hl are correlated in general, with
a correlation derived from the time-dispersion of the original
ISI channel. Since the code Spar is approximately universal,
this means that the code Spar is DMG optimal when used over
the MIMO fading channel. When the code Spar is used over
the MIMO-OFDM channel, the received-signal equation will
take on the form [Y t

1 Y t
2 · · ·Y t

Q]t =

θ




H1

. . .
· · · HQ







X
...

φQ−1(X)


 +




W1

...
WQ


 .

DMT-optimal codes for the OFDM channel have previously
been constructed in [7] and [11]. In [7], the authors provide a



proof only for the case when the matrices Hn appearing along
the diagonal are i.i.d. Rayleigh. The DMT-optimal construction
in [11] is for the SIMO-OFDM case. We thus believe the
results in [1] of which the present paper represents the first
conference submission, provides the first construction of DMT-
optimal codes for the general OFDM-MIMO channel.

IV. CODES ATTAINING THE DMG OF THE DDF PROTOCOL

We now show how ST codes constructed for the block-
fading channel can be used to construct optimal codes under
the DDF protocol. We consider the DDF protocol as it applies
to a communication system in which there are a total of N +1
nodes that cooperate in the communication between source
node S and destination node D.

As in Sections I,II, under the DDF protocol, the source
transmits for a total time duration of BT channel uses. This
collection of BT channel uses is partitioned into B blocks with
each block composed of T channel uses. Communication is
slotted in the sense that each relay is constrained to commence
transmission only at block boundaries. A relay will begin
transmitting after listening for a time duration equal to b blocks
only if the channel “seen” by the relay is good enough to
enable it to decode the signal from the source with negligible
error probability.

Our coding strategy runs as follows. The role played by nt

in the block-fading scenario is now played by the number
N which is the number of nodes in the network capable
of transmitting to the destination. Let X be the rectangular
(N × T ) ST code comprised of the first N rows of the
regular representations of the elements

∑T−1
i=0 zi`i, where `i

are restricted to be of the form:

`i =
T∑

j=1

`i,jγj , `i,j ∈ OK.

Let D be the (BN×BT ) ST code comprised of code matrices
having the block diagonal form:

D =





θ




X
. . .
· · · φB−1(X)


 , X ∈ X





(12)

where θ accounts for SNR normalization. The code to be used
then has the following simple description. The source S sends
the first row of each of the matrices X , φ(X), · · · , φB−1(X)
in successive blocks. Let us assume that relay node Rn, 2 ≤
n ≤ N , is not in outage for the first time at the conclusion of
the (b− 1)th block. Then Rn is ready to decode at the end of
the b−1th block. Thereafter, it proceeds to send in succession,
the nth rows of the matrices φb(X), φb+1(X), · · · , φB−1(X).
Thus the padded matrices X̂i appearing in (4), (5), correspond
to the matrices φi−1(X) in (12).

It is easy to show using the results stated earlier relating
to the block-fading channel that this coding strategy ensures
that whenever a relay node decodes, it does so with negligible
probability of error. The destination error probability is also

similarly guaranteed to have error probability that is SNR-
equivalent to the outage probability, thus proving DMG-
optimality of the constructed ST code.

This follows since each relay node Rn, n 6∈ Ib−1 “sees” a
block-fading channel (see (4)) and the coding strategy we have
adopted ensures that the code matrix carrying data from the
nodes in Ib−1 is DMT optimal for the corresponding block-
fading channel. A similar statement is true for the relay RN+1

that corresponds to the destination, since the corresponding
channel equation is of the same block-fading form see (5).
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