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An Optimized Unitary Beamforming Technique for
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Abstract—This paper addresses the problem of linear beam-
forming design in MIMO broadcast channels. An iterative
optimization method for unitary beamforming is proposed, based
on successive optimization of Givens rotations. Under the as-
sumption of perfect channel state information at the transmitter
(CSIT) and for practical average signal-to-noise ratios (SNR),
the proposed technique provides higher sum rates than zero-
forcing (ZF) beamforming while performing close to minimum-
mean-squared-error (MMSE) beamforming when the number
of transmit antennas equals the number of scheduled users.
Moreover, it is shown to achieve linear sum-rate growth with the
number of transmit antennas. Interestingly, the proposed unitary
beamforming approach proves to be very robust to channel
estimation errors. In the simulated scenarios, it provides better
sum rates than ZF beamforming and even MMSE beamforming
as the variance of the estimation error increases. When combined
with simple vector quantization techniques for CSIT feedback
in systems with multiuser scheduling, the proposed technique
proves to be well suited for limited feedback scenarios with
practical number of users, exhibiting performance gains over
existing techniques.

Index Terms—MIMO systems, broadcast channel, linear beam-
forming, unitary beamforming, scheduling.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) systems
can significantly increase the spectral efficiency by

exploiting the spatial degrees of freedom created by multiple
antennas. The capacity can be boosted by exploiting the spatial
multiplexing capability of transmit antennas, transmitting to
multiple users simultaneously by means of space division
multiple access (SDMA), rather than maximizing the capacity
of a single-user link, as shown in [1], [2]. It has recently been
proven in [3] that the capacity region of the MIMO broadcast
channel coincides with the rate region of dirty paper coding
(DPC) [4]. However, the applicability of DPC is limited due to
its computational complexity and high sensitivity to channel
estimation errors.

Unitary beamforming (UBF) techniques have recently be-
come a focus of interest in MIMO broadcast channels, espe-
cially in scenarios where the amount of feedback available at
the base station is limited. Particularly, random beamforming

Manuscript received February 13, 2008; revised December 28, 2008 and
June 19, 2009; accepted November 28, 2009. The associate editor coordinating
the review of this paper and approving it for publication was S. Affes.

Parts of this work were presented at the Allerton Conference on Commu-
nication, Control and Computing, Monticello, IL, USA, September 2007.

This work was developed while R. de Francisco was with Eurecom Institute,
Sophia-Antipolis, France. He is now with IMEC, Holst Centre, Eindhoven,
The Netherlands (e-mail: ruben.defrancisco@ieee.org).

D. T. M. Slock is with Eurecom Institute, Sophia-Antipolis, France (e-mail:
slock@eurecom.fr).

Digital Object Identifier 10.1109/TWC.2010.080202

(RBF) [5] has been proposed as a simple technique that
achieves optimal capacity scaling in MIMO broadcast chan-
nels.

In [6], unitary basis stream user and rate control (PU2RC) is
proposed as a transmission technique in which the transmitter
has a codebook containing an arbitrary number of unitary
bases. In this approach, the users quantize the channel shape
(channel direction) to the closest codeword in the codebook,
feeding back the quantization index and expected signal-to-
interference-plus-noise ratio (SINR). PU2RC supports SDMA
and multiuser scheduling, as well as adaptive modulation and
coding. An extension to scenarios with a sum feedback rate
constraint is provided in [7], coined as orthogonal SDMA with
threshold feedback (TF-OSDMA).

Codebook-based unitary precoding is a solid candidate for
MIMO downlink transmission in future mobile communica-
tion standards, currently under study in 3GPP [8], [9], [10].
In fact, unitary precoding has been selected both in single
user and multiuser modes of operation for evolved universal
terrestrial radio access (E-UTRA) [11]. As reported in [6],
feedback from the mobile users in the form of a quantization
index and channel quality indicator are used for user schedul-
ing and beamforming design. Simple unitary codebooks have
been proposed, which yield smooth switching between single
user point-to-point MIMO operation and multiuser SDMA.
Besides its simplicity, another important advantage of unitary
beamforming is its robustness to channel estimation errors, as
we discuss later on in this paper. As it was shown in [12], [13],
the use of unitary beamforming enables exact calculation of
the SINR at the receiver, as long as the user knows its assigned
beamforming vector and channel perfectly. Another advantage
of unitary beamforming is the fact that each antenna transmits
with the same peak power. This results in simpler design
constraints for each RF chain, with efficient power amplifiers
working near saturation. In addition, unitary beamforming
is beneficial in multi-cellular systems, since the interference
experienced by other cells is spatially white.

In order to obtain good sum rates, the precoding matrices,
quantization codebooks and feedback strategies need to be
jointly designed. When constraining the precoding matrices to
be unitary, the performance of suboptimal schemes should be
evaluated by comparison with optimal unitary beamforming
in order to measure the degree of suboptimality introduced.
Conversely, limited feedback schemes relying on unitary
beamforming should be designed with low complexity and
reduced feedback, while approaching the performance of the
optimal unitary beamforming solution. However, optimal uni-
tary beamforming in MIMO broadcast channels - in the sense
of system sum-rate maximization - is not yet known. Thus,
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most limited feedback schemes with unitary beamforming
use low complexity as main design criterion, evaluating their
performances through simulations. Multiuser MIMO schemes
based on full channel knowledge at the transmitter and unitary
beamforming have been proposed in [14], exhibiting perfor-
mance gains over ZF beamforming approaches particularly at
low SNR. However, the beamforming matrices in [14] are
generated by following low-complexity design criteria with
the aim of simplifying the scheduling algorithms in scenarios
where the number of users is larger than the number of
transmit antennas.

In this paper, an iterative optimization method for unitary
beamforming in MIMO broadcast channels is proposed, based
on successive optimization of Givens rotations. Previous work
in the literature using Givens rotations in point-to-point MIMO
systems has been reported in [15], where Givens rotations are
used for the quantization of unitary matrices and the MIMO
channel is split into independent sub-channels by means of
singular value decomposition (SVD). In [15], the distortion
measure considered is the mean square error between quan-
tized and optimal unitary matrices. In our work, we focus
instead on the multiuser MIMO problem, using as optimization
criterion the sum rate. Initially, we consider a system with
perfect CSIT. As we show, the proposed technique provides
higher sum rates than ZF beamforming while performing close
to MMSE beamforming for practical average SNR values.
However, as the average SNR becomes large, the slope of
the sum-rate versus SNR curve converges to that of a system
with time division multiple access (TDMA) that selects the
best user, thus incurring a loss of multiplexing gain. Moreover,
it is shown to achieve linear sum-rate growth with the number
of transmit antennas.

The main advantage of the proposed unitary beamforming
approach is its robustness to channel estimation errors. As
shown through numerical simulations, it provides better sum
rates than ZF beamforming and even MMSE beamforming
as the variance of the estimation error increases. Hence, the
proposed beamforming technique can be seen as an interesting
alternative to other existing linear beamforming schemes,
such as ZF and MMSE. Note that the performance of DPC
is also very sensitive to imperfect channel knowledge at
the transmitter, as it was shown in [16], which occurs in
realistic systems with limited feedback from the users to the
base station. The proposed technique exploits the robustness
to estimation errors provided by unitary beamforming, but
optimizes the unitary basis as opposed to simpler unitary
beamforming approaches, such as RBF. In the last part of
this paper, the proposed technique is investigated in MIMO
broadcast channels with multiuser scheduling and limited
feedback, evaluating the performance of unitary beamforming
approaches with limited feedback, namely RBF and PU2RC.
A simple vector quantization technique is used, based on
random vector quantization (RVQ) with pruning. Our results
highlight the importance of linear beamforming optimization
in MIMO broadcast channels with limited feedback.

II. SYSTEM MODEL

We consider a multiple antenna broadcast channel consist-
ing of a transmitter equipped with 𝑀 antennas and 𝐾 ≥ 𝑀

single-antenna receivers. Given a set of 𝑀 users scheduled for
transmission, the signal received at the 𝑘-th mobile is given
by

𝑦𝑘 =

√
𝑃

𝑀
h𝐻
𝑘 w𝑘𝑠𝑘 +

√
𝑃

𝑀

𝑀∑
𝑖=1,𝑖∕=𝑘

h𝐻
𝑘 w𝑖𝑠𝑖 + 𝑛𝑘 (1)

where h𝑘 ∈ ℂ𝑀×1, w𝑘 ∈ ℂ𝑀×1, 𝑠𝑘 ∈ ℂ, 𝑛𝑘 ∈ ℂ and 𝑃 are
the channel vector, beamforming vector, transmitted signal,
additive Gaussian noise at receiver 𝑘 and power, respectively.
The first term in the above equation is the useful signal, while
the second term corresponds to the interference. We assume
that the channels are i.i.d. block Rayleigh flat fading, the
variance of the transmitted signal 𝑠𝑘 is normalized to one and
𝑛𝑘 is circularly symmetric complex Gaussian with zero mean
and variance 𝜎2. Hence, the SINR of user 𝑘 is given by

𝑆𝐼𝑁𝑅𝑘 =
𝑃
𝑀 ∣h𝐻

𝑘 w𝑘∣2
𝑀∑

𝑖=1,𝑖∕=𝑘

𝑃

𝑀
∣h𝐻

𝑘 w𝑖∣2 + 𝜎2

(2)

A unitary beamforming matrix is considered at the transmitter
W = [w1 w2 . . .w𝑀 ] ∈ ℂ𝑀×𝑀 , and thus the average
transmitted power is equal to 𝑃 . In order to design the
bemforming matrix, perfect knowledge of the user channels
at the transmitter is assumed unless otherwise stated.

A. Imperfect CSIT Model

The robustness of the proposed approach to channel estima-
tion errors is evaluated through numerical simulations. When
imperfect knowledge of the user channel vectors is available
at the transmitter side, the estimation error is modeled as an
additive spatially white complex Gaussian noise. Hence, the
channel estimate of user 𝑘 is given by

h𝑘 = ĥ𝑘 + h̃𝑘 (3)

where h̃𝑘 has a distribution 𝒞𝒩 (0, 𝜎2𝑒). Imperfect CSIT can
be the result of a combination of channel estimation noise,
quantization errors, prediction errors, etc.

Notation: We use bold upper and lower case letters for
matrices and column vectors, respectively. (⋅)𝐻 stands for
Hermitian transpose. 𝔼(⋅) denotes the expectation operator and
𝑡𝑟(⋅) is the trace operator. The notation ∥x∥ refers to the Eu-
clidean norm of the vector x and ∥X∥𝐹 refers to the Frobenius
norm of the matrix X, defined as ∥X∥𝐹 =

√
𝑡𝑟 (XX𝐻). The

amplitude and phase of a complex scalar are denoted as ∣ ⋅ ∣
and ∠(⋅), respectively.

III. PROBLEM FORMULATION

The optimization criterion considered in our problem is sum
rate maximization, constrained to using linear unitary beam-
forming at the transmitter. Hence, the optimization problem
can be formulated as follows

argmax
W

𝑀∑
𝑘=1

log2 (1 + 𝑆𝐼𝑁𝑅𝑘)

𝑠.𝑡. W𝐻W = I𝑀

(4)
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where 𝑆𝐼𝑁𝑅𝑘 represents the SINR of user 𝑘. This optimiza-
tion problem is rather difficult to solve using this formula-
tion, since the problem is nonconvex and the constraints are
nonlinear. The problem can be reformulated by exploiting the
particularities of the 𝑆𝐼𝑁𝑅𝑘 expression when unitary beam-
forming is used. Let 𝜌𝑘 be the alignment between the 𝑘-th user
instantaneous normalized channel vector h𝑘 = h𝑘

∥h𝑘∥ (channel
direction) and the corresponding beamforming vector w𝑘,
defined as 𝜌𝑘 =

∣∣∣h𝐻

𝑘 w𝑘

∣∣∣. The problem can be reformulated by
exploiting the particularities of the 𝑆𝐼𝑁𝑅𝑘 expression when
unitary beamforming is used, which can be simplified as [12],
[17]

𝑆𝐼𝑁𝑅𝑘 =
∥h𝑘∥2 𝜌2𝑘

∥h𝑘∥2 (1− 𝜌2𝑘) +
𝑀𝜎2

𝑃

(5)

Define the vector 𝝆 = [𝜌1 𝜌2 . . . 𝜌𝑀 ]. Note that, when subtitut-
ing the 𝑆𝐼𝑁𝑅𝑘 expression shown in (5) into equation (4), the
𝑘-th term in the sum of logarithms becomes only a function
of the variable 𝜌𝑘. The difficulty now lies in determining the
feasible set of solutions for 𝝆, i.e. the set of values for which
a W matrix exists given that the user channels are known
and fixed. This can be done by incorporating the geometrical
structure of the problem into new constraints on 𝝆, which
is also a difficult task. Instead, in next section, we propose
a simple method to iteratively improve 𝝆, while ensuring its
feasibility by algorithm construction.

Another way to simplify the constrained optimization prob-
lem in equation (4) is to transform it into an unconstrained
problem. Define the initial matrix W0 as an arbitrary uni-
tary matrix. Let R𝑚𝑛 be the Givens rotation matrix in the
(w𝑚,w𝑛)-plane, which performs an orthogonal rotation of
the 𝑚-th and 𝑛-th columns of a unitary matrix while keeping
the others fixed, thus preserving unitarity. Assume without
loss of generality 𝑛 > 𝑚. The Givens rotation matrix in the
(w𝑚,w𝑛)-plane is given by

R𝑚𝑛(𝛼, 𝛿) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0
...

. . .
...

...
...

0 ⋅ ⋅ ⋅ cos𝛼 ⋅ ⋅ ⋅ sin𝛼𝑒𝑗𝛿 ⋅ ⋅ ⋅ 0
...

...
. . .

...
...

0 ⋅ ⋅ ⋅ − sin𝛼𝑒−𝑗𝛿 ⋅ ⋅ ⋅ cos𝛼 ⋅ ⋅ ⋅ 0
...

...
...

. . .
...

0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

where the non trivial entries appear at the intersections of
𝑚-th and 𝑛-th rows and columns. Hence, any unitary matrix
W can be expressed using the following parameterization

W = W0
𝑀∏

𝑚=1

𝑀∏
𝑛=𝑚+1

R𝑚𝑛 (7)

up to a global 𝑒𝑗𝜃 factor. Note that such global factor has no
importance for transmission purposes in the described system
model, since it does not have an impact on the resulting
SINR of the scheduled users. Each rotation matrix R𝑚𝑛 in
(7) is function of 2 rotation parameters, 𝛼 and 𝛿. Hence, by
imposing this structure, the optimization problem in equation
(4) becomes unconstrained and it boils down to finding the
optimal 2

(
𝑀
2

)
rotation parameters of the corresponding

(
𝑀
2

)

TABLE I
OUTLINE OF THE UNITARY BEAMFORMING OPTIMIZATION PROCEDURE

Initialization

∙ Initialize the UBF matrix W0

𝑖-th iteration step, 𝑖 = 1, . . . , 𝑁𝑃𝑅

∙ Select an index pair {𝑚,𝑛} from 𝒢
∙ Find optimal rotation parameters for the (w𝑚,w𝑛)-plane

{𝛼∗, 𝛿∗} = argmin
𝛼,𝛿

𝐹𝑚𝑛(𝛼, 𝛿)

∙ Update UBF matrix W𝑖 = W𝑖−1R𝑚𝑛(𝛼
∗, 𝛿∗)

rotation matrices. Since the resulting 𝜌𝑘 values, 𝑘 = 1, . . . ,𝑀 ,
are complicated non-linear functions of the rotation parame-
ters, we propose an iterative algorithm to compute the optimal
rotation matrix for a given plane, iterating along different
planes until convergence is reached. Hence, the algorithm we
propose is based on a divide-and-conquer type of approach.
The matrix W is divided into smaller instances that are solved
recursively in order to provide a solution to the optimization
problem in (4). However, convergence to a global optimum
can not be ensured for an arbitrary channel.

IV. ALGORITHM DESCRIPTION

The proposed unitary beamformer is designed on the basis
of the available user channels h𝑘, 𝑘 = 1, . . . ,𝑀 and balances
the amount of power and interference received by each user.
Given an initial unitary beamforming matrix W0 available
at the transmitter, we propose an iterative algorithm which
consists of rotating the beamforming matrix by performing
successive optimization of Givens rotations until convergence
is reached. At the 𝑖-th iteration, a refined unitary beamforming
matrix is computed by rotating the matrix W𝑖−1 - computed
at the previous iteration - in the plane defined by the complex
vectors (w𝑚,w𝑛), performing right multiplication with the
rotation matrix defined in equation (6). For each plane rotation,
the optimal 𝛼∗ and 𝛿∗ rotation parameters are found. Let 𝒢
be the set of all possible index pairs among the complete
index set {1, . . . ,𝑀}, in which each {𝑚,𝑛} index pair
satisfies 𝑛 > 𝑚. Define 𝑁𝑃𝑅 as the total number of plane
rotations performed by the proposed approach. An outline of
the proposed algorithm is provided in Table I.

It can be seen from the structure of the matrix in (6) that
rotation in the (w𝑚,w𝑛)-plane does not change the directions
of the remaining beamforming vectors. Equivalently, since
𝑆𝐼𝑁𝑅𝑘 is only function of 𝜌𝑘 =

∣∣∣h𝐻

𝑘 w𝑘

∣∣∣, a rotation in

the (w𝑚,w𝑛)-plane only modifies 𝑆𝐼𝑁𝑅𝑚 and 𝑆𝐼𝑁𝑅𝑛.
Hence, the optimal rotation parameters are found by solving
the following optimization problem

{𝛼∗, 𝛿∗}=argmax
𝛼,𝛿

{
log2

(
1+

∥h𝑚∥2 𝜌2𝑚(𝛼, 𝛿)

∥h𝑚∥2(1−𝜌2𝑚(𝛼, 𝛿))+𝑀𝜎2

𝑃

)

+ log2

(
1+

∥h𝑛∥2 𝜌2𝑛(𝛼, 𝛿)
∥h𝑛∥2 (1− 𝜌2𝑛(𝛼, 𝛿)) +

𝑀𝜎2

𝑃

)}
(8)

where 𝜌𝑚(𝛼, 𝛿), 𝜌𝑛(𝛼, 𝛿) are the modified alignments between
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channels and beamfoming vectors after rotation, given by

𝜌𝑚(𝛼, 𝛿) =
∣∣∣h𝐻

𝑚

(
w𝑚 cos𝛼−w𝑛 sin𝛼𝑒

−𝑗𝛿
)∣∣∣ (9)

𝜌𝑛(𝛼, 𝛿) =
∣∣∣h𝐻

𝑛

(
w𝑚 sin𝛼𝑒𝑗𝛿 +w𝑛 cos𝛼

)∣∣∣ .
Defining the following variables

𝑟𝑚𝑚 =
∣∣∣h𝐻

𝑚w𝑚

∣∣∣ 𝑟𝑚𝑛 =
∣∣∣h𝐻

𝑚w𝑛

∣∣∣
𝑟𝑛𝑚 =

∣∣∣h𝐻

𝑛 w𝑚

∣∣∣ 𝑟𝑛𝑛 =
∣∣∣h𝐻

𝑛 w𝑛

∣∣∣
Δ𝑚𝑛 = ∠h𝐻

𝑚w𝑚 − ∠h𝐻

𝑚w𝑛 Δ𝑛𝑚 = ∠h𝐻

𝑛 w𝑛 − ∠h𝐻

𝑛 w𝑚

(10)
we have that

𝜌2𝑚(𝛼, 𝛿)=𝑟2𝑚𝑚 cos2 𝛼+𝑟2𝑚𝑛sin
2 𝛼−𝑟𝑚𝑚𝑟𝑚𝑛cos(Δ𝑚𝑛+𝛿)sin 2𝛼

𝜌2𝑛(𝛼, 𝛿)=𝑟2𝑛𝑚 sin2 𝛼+𝑟2𝑛𝑛cos
2 𝛼+𝑟𝑛𝑚𝑟𝑛𝑛cos(𝛿−Δ𝑛𝑚)sin 2𝛼.

(11)
Define the parameter 𝛽𝑘 = 𝑀𝜎2

𝑃∥h𝑘∥2 , 𝑘 = 𝑚,𝑛. Since the loga-
rithm is a monotonically increasing function, the optimization
problem in equation (8) can be transformed into

{𝛼∗, 𝛿∗} = argmin
𝛼,𝛿

𝐹𝑚𝑛(𝛼, 𝛿) (12)

where the function 𝐹𝑚𝑛 is defined as follows

𝐹𝑚𝑛(𝛼, 𝛿) =
(
1− 𝜌2𝑚(𝛼, 𝛿) + 𝛽𝑚

) (
1− 𝜌2𝑛(𝛼, 𝛿) + 𝛽𝑛

)
.

(13)
The solution is found by equating the gradient of 𝐹𝑚𝑛 to zero

∂𝐹𝑚𝑛(𝛼, 𝛿)

∂𝛼
= 0 (14)

∂𝐹𝑚𝑛(𝛼, 𝛿)

∂𝛿
= 0 (15)

In order to solve the above equations, we introduce the change
of variable 𝑡 = tan𝛼 to solve equation (14) and 𝑠 = tan 𝛿/2
to solve equation (15). After some algebraic manipulations the
problem is reduced to finding the roots of polynomials of the
form

𝑃𝛼(𝑡) = 𝑓4𝑡
4 + 𝑓3𝑡

3 + 𝑓2𝑡
2 + 𝑓1𝑡+ 𝑓0 (16)

𝑃𝛿(𝑠) = 𝑔4𝑠
4 + 𝑔3𝑠

3 + 𝑔2𝑠
2 + 𝑔1𝑠+ 𝑔0 (17)

where 𝑓𝑖, 𝑔𝑖, 𝑖 = 0, . . . , 4 are real coefficients involving
simple arithmetic and trigonometric operations, defined in
Appendix A. The roots of these 4-th degree polynomials can
be found by solving the respective quartic equations, for which
closed form solutions exist [18]. Once the real roots are found,
we invert the changes of variable introduced. The roots of
𝑃𝛼 correspond to the extremes of the function 𝐹𝑚𝑛(𝛼, 𝛿) for
fixed 𝛿, while those of 𝑃𝛿 are the extremes of 𝐹𝑚𝑛(𝛼, 𝛿) for
fixed 𝛼. Since up to 4 real roots may be found, the function
𝐹𝑚𝑛(𝛼, 𝛿) needs to be evaluated in the obtained roots in order
to find the minimizing value 𝛼∗. An equivalent operation is
performed for obtaining 𝛿∗. Since computing 𝛼∗ requires a
constant value for 𝛿 and computing 𝛿∗ requires a constant
value for 𝛼, the optimal values are found iteratively. Hence,
𝛼∗ is computed initially by considering a certain initial value
for 𝛿 (e.g. 𝛿 = 0) and the resulting 𝛼∗ is kept constant for
computation of 𝛿∗. This operation is iterated 𝐼𝑅 times until
convergence, which in practice occurs after 1 or 2 iterations.

Hence, although the unconstrained optimization problem in
(8) is nonconvex, it can be solved by finding the roots of

TABLE II
PROCEDURE TO OBTAIN THE ROTATION PARAMETERS FOR THE

(w𝑚,w𝑛)-PLANE

Input vectors: h𝑚, h𝑛, w𝑚, w𝑛

Initialization

∙ Compute auxiliary variables (Table III)
∙ Initialize rotation parameters: 𝛼0 = 0, 𝛿0 = 0

𝑖-th iteration step, 𝑖 = 1, . . . , 𝐼𝑅

∙ Computation of 𝛼𝑖

∙ Compute 𝜙1(𝛿
𝑖−1), 𝜙2(𝛿

𝑖−1)
∙ Compute polynomial coefficients of 𝑃𝛼(𝑡): 𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4
∙ Compute roots of 𝑃𝛼(𝑡): 𝑡1, 𝑡2, 𝑡3, 𝑡4
∙ Change of variable: 𝛼𝑗 = tan−1(𝑡𝑗), 𝑗 = 1, . . . , 4
∙ Evaluate 𝐹𝑚𝑛 for 𝛼𝑗 , 𝑗 = 1, . . . , 4, and 𝛿𝑖−1

𝐹𝑚𝑛(𝛼𝑗 , 𝛿
𝑖−1) =(

1− 𝜌2𝑚(𝛼𝑗 , 𝛿
𝑖−1) + 𝛽𝑚

) (
1− 𝜌2𝑛(𝛼𝑗 , 𝛿

𝑖−1) + 𝛽𝑛

)

∙ Choose minimizing value among the 4 obtained solutions
𝛼𝑖 = arg min

𝛼𝑗, 𝑗=1,...,4

𝐹𝑚𝑛(𝛼𝑗 , 𝛿
𝑖−1)

∙ Computation of 𝛿𝑖

∙ Compute 𝜑1(𝛼
𝑖), 𝜑2(𝛼

𝑖), 𝜑3(𝛼
𝑖)

∙ Compute polynomial coefficients of 𝑃𝛿(𝑠): 𝑔0, 𝑔1, 𝑔2, 𝑔3, 𝑔4
∙ Compute roots of 𝑃𝛿(𝑠): 𝑠1, 𝑠2, 𝑠3, 𝑠4
∙ Change of variable: 𝛿𝑗 = 2 tan−1(𝑠𝑗), 𝑗 = 1, . . . , 4
∙ Evaluate 𝐹𝑚𝑛 for 𝛿𝑗 , 𝑗 = 1, . . . , 4, and 𝛼𝑖

𝐹𝑚𝑛(𝛼
𝑖, 𝛿𝑗) =(

1− 𝜌2𝑚(𝛼𝑖, 𝛿𝑗) + 𝛽𝑚

) (
1− 𝜌2𝑛(𝛼

𝑖, 𝛿𝑗) + 𝛽𝑛

)

∙ Choose minimizing value among the 4 obtained solutions
𝛿𝑖 = arg min

𝛿𝑗, 𝑗=1,...,4

𝐹𝑚𝑛(𝛼
𝑖, 𝛿𝑗)

TABLE III
AUXILIARY VARIABLES FOR THE COMPUTATION OF POLYNOMIAL

COEFFICIENTS

𝑟𝑚𝑚 =
∣
∣∣h

𝐻
𝑚w𝑚

∣
∣∣ 𝑟𝑛𝑚 =

∣
∣∣h

𝐻
𝑛 w𝑚

∣
∣∣

𝑟𝑚𝑛 =
∣
∣
∣h

𝐻
𝑚w𝑛

∣
∣
∣ 𝑟𝑛𝑛 =

∣
∣
∣h

𝐻
𝑛 w𝑛

∣
∣
∣

Δ𝑚𝑛 = ∠h𝐻
𝑚w𝑚 − ∠h𝐻

𝑚w𝑛 Δ𝑛𝑚 = ∠h𝐻
𝑛 w𝑛 − ∠h𝐻

𝑛 w𝑚

𝛽𝑚 = 𝑀𝜎2

𝑃∥h𝑚∥2 𝛽𝑛 = 𝑀𝜎2

𝑃∥h𝑛∥2
𝑏𝑚𝑛 = −(𝑟2𝑚𝑚 + 𝑟2𝑚𝑛) 𝑏𝑛𝑚 = −(𝑟2𝑛𝑛 + 𝑟2𝑛𝑚)
𝑐𝑚𝑛 = −(𝑟2𝑚𝑚 − 𝑟2𝑚𝑛) 𝑐𝑛𝑚 = −(𝑟2𝑛𝑛 − 𝑟2𝑛𝑚)
𝑑1 = 2𝑟𝑚𝑚𝑟𝑚𝑛 𝑎𝑚 = 1 + 𝛽𝑚

𝑑2 = 2𝑟𝑛𝑚𝑟𝑛𝑛 𝑎𝑛 = 1 + 𝛽𝑛

𝑑3 = −2𝑑1𝑑2 cos(Δ𝑛𝑚−Δ𝑚𝑛) 𝑒1 = 2𝑐𝑚𝑛𝑐𝑛𝑚

𝑑4 = − 𝑑1𝑑2
2

sin(Δ𝑛𝑚 −Δ𝑚𝑛) 𝑒2 = 𝑎𝑚
2

+ 𝑏𝑚𝑛
4

𝑑5 = 2𝑑1 cosΔ𝑚𝑛 𝑒3 = 𝑎𝑛
2

+ 𝑏𝑛𝑚
4

𝑑6 = 𝑑1 sinΔ𝑚𝑛 𝑒4 = 𝑐𝑛𝑚
4

𝑑7 = 2𝑑2 cosΔ𝑛𝑚 𝑒5 = 𝑐𝑚𝑛
4

𝑑8 = −𝑑2 sinΔ𝑛𝑚 𝑒6 = 4(𝑐𝑛𝑚𝑒2+𝑐𝑚𝑛𝑒3)

the polynomials 𝑃𝛼 and 𝑃𝛿, selecting among these roots the
maximizing values 𝛼∗ and 𝛿∗. The optimization procedure
proposed to obtain 𝛼∗ and 𝛿∗ for each plane rotation is
summarized in Table II.

A. Practical Considerations

Although closed form solutions exist for quartic equa-
tions, fast converging algorithms can be applied involving
much lower complexity. Since only real roots are sought, the
quotient-difference (QD) algorithm can be used to identify the
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roots followed by a fast converging algorithm like Newton-
Raphson (NR) [19]. The initial unitary beamforming matrix
W0 can be generated randomly, although more complex
initializations may yield faster convergence. For instance,
W0 can be constrained to have one of its vectors well
aligned with the user channel that has the largest channel
norm, as proposed in [14] as a suboptimal beamforming
approach. In practice, this can be implemented by storing
a number of unitary matrices (codebook), selecting the most
appropriate one for initialization at each slot. For simplicity,
in the remainder of the paper, we consider that the proposed
algorithm is initialized by choosing W0 randomly unless
stated otherwise. Note that the proposed algorithm provides
computational flexibility, since the number of plane rotations
𝑁𝑃𝑅 can be modified. In the most general case, all possible
combinations of plane rotations should be performed, i.e.(
𝑀
2

)
combinations. Moreover, the order in which these plane

rotations are performed has an impact on the convergence.
Hence, the total number of plane rotations can be expressed
as 𝑁𝑃𝑅 = 𝐼𝑇

(
𝑀
2

)
, where 𝐼𝑇 is a natural number.

V. CONVERGENCE

When optimizing the rotation along the (w𝑚,w𝑛)-plane,
the sum of the rates provided by the 𝑚-th and 𝑛-th beam-
forming vectors is maximized with respect to the rotation
parameters. Thus, defining 𝑆𝑅𝑚𝑛 = log2(1 + 𝑆𝐼𝑁𝑅𝑚) +
log2(1 + 𝑆𝐼𝑁𝑅𝑛), at each plane rotation optimization we
have that 𝑆𝑅𝑚𝑛(𝛼

∗, 𝛿∗) ≥ 𝑆𝑅𝑚𝑛(𝛼, 𝛿). In addition, as
discussed in the previous section, the SINR values associated
to the remaining beamforming vectors do not change. Hence,
at each iteration the resulting sum rate does not decrease,
i.e. 𝑆𝑅(W𝑖) ≥ 𝑆𝑅(W𝑖−1). On the other hand, since the
transmitted power is finite, the sum rate - which is the
objective function that the algorithm tries to maximize - is
bounded from above. Thus, local convergence is guaranteed in
the proposed optimization problem. The convergence behavior
of the proposed iterative algorithm is exemplified in Figure 1
for different number of transmit antennas. In this simulation,
Givens rotations are performed in all possible (w𝑚,w𝑛)-
planes, and a large number of plane rotations 𝑁𝑃𝑅 → ∞
is considered. The sum rate capacity [20][21] for different
number of transmit antennas is also shown for comparison.

A. Comparison with the Quasi-Optimal Unitary Beamformer

In order to evaluate the convergence of the proposed
algorithm, we present here a comparison with the quasi-
optimal UBF solution through numerical simulations. The
quasi-optimal solution is a brute-force approach, in which a
finite set of unitary matrices with very high cardinality is
generated, selecting the beamforming matrix that yields the
highest sum rate. In order to bound the error between the
optimal unitary matrix and the quasi-optimal unitary matrix,
the set of unitary matrices is generated using the matrix
parameterization of equation (7), setting W0 = I𝑀 . Each
rotation parameter in this parameterization takes the following
values (0, 2𝜋

𝐿−1 , 2 ⋅ 2𝜋
𝐿−1 , 3 ⋅ 2𝜋

𝐿−1 , . . . , 2𝜋), 𝐿 being the number
of finite values considered for each rotation parameter. Hence,
each unitary matrix in the set is generated from a given
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Fig. 1. Sum rate as a function of the number of plane rotations (algorithm
iterations) for the proposed algorithm, using different number of transmit
antennas, 𝐾 = 𝑀 users and average SNR = 10 dB. The sum rate capacity
for different values of 𝑀 is shown for comparison.

combination of the rotation parameter values involved in
the parameterization. For instance, in the case of 𝑀 = 3
transmit antennas, 6 rotation parameters are used to represent
a given unitary matrix. Hence, in this case, the total number of
unitary matrices generated to obtain the quasi-optimal unitary
beamformer is 𝐿6. In general, for an arbitrary number of
transmit antennas, the total number of matrices generated is
𝐿2(𝑀2 ).

Since this approach involves very high complexity, it is
not realizable in practice. In order to have a quasi-optimal
solution close to the theoretical optimum, we focus on the case
in which the transmitter has a reduced number of antennas,
𝑀 = 2 and 𝑀 = 3. For the case of 𝑀 = 2 antennas,
𝐿 = 4000 values per rotation parameter have been considered.
This yields a total of 1.6 ⋅ 107 unitary matrices. Note that in a
hypothetical system where these matrices would correspond to
a quantization codebook, a total of 24 bits would be necessary
for indexing all matrices. For the case of 𝑀 = 3 antennas,
𝐿 = 22 values per rotation parameter have been considered,
which results approximately in a total of 1.1 ⋅ 108 unitary
matrices. In this case, 27 bits would be necessary for indexing
all matrices.

A comparison between the proposed UBF approach and
the quasi-optimal UBF approach is given in Figure 2. As the
figure shows, the proposed algorithm converges to the quasi-
optimal solution after a few iterations, both for 𝑀 = 2 and
𝑀 = 3 transmit antennas. The sum-rate was averaged over
1000 channel realizations, and convergence was reached for
each of them. Note that convergence of the sum rate does not
imply that the resulting optimized UBF matrix converges to
the matrix obtained in the quasi-optimal solution.

B. Simplified Scenario

In order to better illustrate the convergence speed of the
proposed algorithm for different number of transmit antennas,
we study a simple case in the remainder of this section for
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Fig. 2. Sum rate as a function of the number of plane rotations for the
proposed algorithm and the quasi-optimal solution, 𝐾 = 𝑀 users and average
SNR = 10 dB.

which the optimal solution is known. Let H be the concate-
nation of the user channels H = [h1 . . .h𝑀 ]

𝐻 . Consider a
simple channel model in which the concatenated channel can
be factorized as H = ΛV𝐻 , where Λ is a diagonal matrix
with real entries ordered in descending order and V is a
unitary matrix. This is equivalent to a point-to-point MIMO
channel H in which, given its singular value decomposition
H = UΛV𝐻 , the receiver filters the received signal with the
matrix U𝐻 . If perfect channel state information is available
at the transmitter and equal power allocation per beam is
assumed, the optimal linear beamformer is known to be
W = V, yielding 𝑀 virtual parallel channels [22], [23]. In
order to evaluate the convergence of the proposed algorithm
to the optimal solution, we compute the following Frobenius
distance at each iteration

𝑑(W,V) =
∥∥W𝐻V − I

∥∥
𝐹
. (18)

Figure 3 shows the convergence behavior of the proposed
algorithm for different number of transmit antennas. In this
scenario, the proposed algorithm converges iteratively to the
optimal solution. Note that for each value of 𝑀 there are 2
differentiated regions with different convergence speed. The
1-st part converges faster, which corresponds to the 1-st

(
𝑀
2

)
iterations while the 2-nd part converges slower. This is due to
the fact that the order in which plane rotations are performed
matters, becoming more important as the size of the unitary
beamforming matrix increases.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed unitary beamforming approach and compare it to other
existing approaches. The proposed algorithm is initialized by
choosing W0 randomly. Plane rotations are performed in all
possible combinations, resulting in 𝑁𝑃𝑅 = 𝐼𝑇

(
𝑀
2

)
rotations,

with 𝐼𝑇 = 3. In the simulated scenarios, the algorithm ap-
proximately converges for this choice. The MATLAB function
roots is used to compute the polynomial roots, which involves
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Fig. 3. Convergence of unitary beamforming matrix for different number of
transmit antennas.

computing the eigenvalues of the companion matrix for each
polynomial. In Subsections VI-A and VI-B, a system with
𝐾 = 𝑀 is studied, hence assuming a given set of 𝑀 users
has been scheduled for transmission. While in VI-A perfect
CSIT is assumed to be available, a system with imperfect CSIT
is considered in VI-B. In the last subsection, a system with
multiuser scheduling is considered, comparing the proposed
approach to limited feedback techniques based on unitary
beamforming.

A. Case 𝐾 =𝑀 , Perfect CSIT

The performances of the proposed unitary beamforming
technique, ZF beamforming and MMSE beamforming are
compared in a system in which perfect CSIT is available, given
a set of 𝐾 = 𝑀 users scheduled for transmission. Both ZF
and MMSE beamforming matrices are computed on the basis
of the concatenated user channels H = [h1 . . .h𝑀 ]𝐻 . The ZF
beamformer is computed as follows

W𝑍𝐹 =
1

𝜆
H𝐻(HH𝐻)−1 (19)

where 𝜆 = 1√
𝑃
𝑡𝑟
[
(HH𝐻)−1

]
. The MMSE beamformer is

given by

W𝑀𝑀𝑆𝐸 = 𝛾H𝐻(𝜇I+HH𝐻)−1 (20)

where 𝛾 is chosen such that 𝑡𝑟
(
W𝑀𝑀𝑆𝐸W

𝐻
𝑀𝑀𝑆𝐸

)
= 𝑃 .

By setting 𝜇 = 𝑀𝜎2

𝑃 , the resulting SINR with MMSE
beamforming is maximized for large 𝐾 , as shown in [24]. In
addition, the performance of a system that performs TDMA
is also plotted for reference, selecting the user with largest
channel norm out of 𝑀 available users.

Figure 4 shows a performance comparison in terms of sum
rate versus number of transmit antennas 𝑀 , for SNR = 10
dB. As expected, the MMSE solution provides linear sum-
rate growth with the number of transmit antennas, while ZF
beamforming flattens out [24]. The proposed algorithm also
provides linear growth with 𝑀 , performing close to MMSE
beamforming.
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Fig. 4. Sum rate as a function of the number of antennas 𝑀 for 𝐾 = 𝑀
users and average SNR = 10 dB.
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Fig. 5. Sum rate as a function of the average SNR for 𝑀 = 8 transmit
antennas and 𝐾 = 𝑀 users.

In Figure 5, we compare the sum rate as function of the
average SNR in a system with 𝑀 = 8 transmit antennas.
As the SNR increases, the MMSE solution converges to ZF,
removing all multi-user interference. The proposed technique
provides considerable gains over ZF in the regular SNR
range, performing close to the MMSE solution. On the other
hand, the proposed algorithm does not completely eliminate
interference, since instead it balances the useful power and
undesired interference in the SINR expression. Suboptimal
techniques based on unitary beamforming have shown to
become interference limited at high SNR, thus providing zero
multiplexing gain [5], [25]. The multiplexing gain is defined
as follows

𝑚 = lim
𝑃→∞

∑𝑀
𝑘=1 𝔼 [log2 (1 + 𝑆𝐼𝑁𝑅𝑘)]

𝑙𝑜𝑔2(𝑃 )
. (21)

However, as it can be observed from Figure 5, the multi-
plexing gain of the proposed scheme converges to the one

of TDMA (same slope). A particular case of the proposed
approach corresponds to the case in which one of the unitary
beamforming vectors is aligned with the channel vector that
has largest norm. In that case, at least one of the users does
not see any interference from the other users and hence at
least 𝑚 = 1 is achieved. Thus, for the proposed approach we
obtain

𝑚𝑈𝐵𝐹 ≥ lim
𝑃→∞

𝔼

[
log2

(
1 + 𝑃

𝑀𝜎2 max
𝑖∈1,...,𝑀

∥h𝑖∥2
)]

𝑙𝑜𝑔2(𝑃 )
(22)

+

𝑀∑
𝑘=1,𝑘 ∕=𝑖

𝔼 [log2 (1 + 𝑆𝐼𝑁𝑅𝑘)]

𝑙𝑜𝑔2(𝑃 )
≥ 1

where the first term in the summation corresponds to aligning
a unit-norm beamforming vector along the channel direction
of the user with largest channel gain and the second term
corresponds to the remaining 𝑀 − 1 beamforming vectors.
The second inequality in the above equation follows from the
fact that if none of the 𝑀 − 1 beamforming vectors in the
second term is aligned with the remaining 𝑀 − 1 channels,
they exhibit zero multiplexing gain.

Figure 5 also shows a comparison with ZF and MMSE with
user selection. In these schemes, although the number of active
users in the cell equals the number of transmit antennas, the
base station schedules the subset of 𝑀∗ users that maximizes
the sum rate, with 1 ≤ 𝑀∗ ≤ 𝑀 . As it can be observed,
these approaches provide higher rates than the proposed UBF
technique, due to the fact that in the proposed scheme the
unitarity constraint forces the number of scheduled users to
coincide with the number of transmit antennas.

B. Case 𝐾 =𝑀 , Imperfect CSIT

The impact of imperfect channel knowledge at the trans-
mitter in a system with 𝐾 = 𝑀 users is investigated. The
beamforming matrices are computed on the basis of noisy
channel estimates, modeled as described in equation (3), which
produces a performance degradation in terms of system sum
rate. Figure 6 shows a sum-rate comparison between the pro-
posed approach, ZF beamforming, MMSE beamforming and
TDMA as a function of the variance of the channel estimation
error, for 𝑀 = 4, 8 antennas and average SNR of 10 dB.
In the simulated scenarios, the proposed unitary beamforming
approach appears to be more robust to CSIT errors than ZF or
MMSE beamforming. Indeed, in the simulations shown here,
a small error variance suffices for unitary beamforming to
outperform MMSE beamforming, even for large number of
transmit antennas. However, TDMA provides higher rates in
scenarios with reduced number of transmit antennas and very
low quality of CSIT.

C. Case 𝐾 ≥𝑀 , Limited Feedback

The proposed technique is evaluated in a MIMO broadcast
channel where limited feedback is available from the user ter-
minals to the base station. Most existing techniques with joint
linear beamforming and multiuser scheduling designed for
limited feedback scenarios are based on simple beamforming
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Fig. 6. Sum rate as a function of the channel estimation error variance for
𝑀 = 4, 8 transmit antennas, 𝐾 = 𝑀 users and average SNR = 10 dB.

designs. While the design of feedback measures is carefully
taken into account, suboptimal beamforming techniques are
often considered, such as the well known RBF [5] and
PU2RC [6] techniques. In these techniques, the base station
has precise SINR information from the users, but on the
other hand, non-optimized linear beamformers are used. In
the remainder of this section, we highlight the importance
of beamforming design in limited feedback scenarios. By ex-
ploiting the robustness to channel estimation errors exhibited
by the proposed approach, we show that optimization of the
linear beamformers is crucial in MIMO broadcast channels
with imperfect CSIT. Since we focus on the optimization
of the linear beamformers rather than on the design of the
quatization codebooks, a simple quantization technique based
on random vector quantization (RVQ) is used. In a practical
system, the proposed unitary beamforming technique could
be combined with other quantization codebooks previously
proposed in the literature for MIMO systems with limited
feedback, such as [26][27][28].

A scenario with 𝐾 ≥ 𝑀 is considered and thus the need
for multiuser scheduling arises. For simplicity, exhaustive
user search is performed, i.e. the base station evaluates the
estimated sum rate of all possible user sets with cardinality
𝑀 and selects the one that provides higher estimated sum
rate. Thus, the user set scheduled for transmission is found as
follows

𝒮∗ = argmax
𝒮∈𝒢

∑
𝑘∈𝒮

log2

[
1 + 𝑆𝐼𝑁𝑅𝑘(𝒮)

]
(23)

where 𝑆𝐼𝑁𝑅𝑘 is the estimated SINR for user 𝑘 computed
at the base station and 𝒢 is the set of all possible subsets of
cardinality 𝑀 of disjoint indices among the complete set of
user indices 𝒦 = {1, ⋅ ⋅ ⋅ ,𝐾}. In a more practical system,
less complex user selection algorithms could be employed.
An example of such algorithms is the greedy semi-orthogonal
user selection introduced in [29]. In this algorithm, the first
selected user is chosen such that a certain metric is maximized,
for instance the estimated channel norm. Each user added to

the selected set of users must be semi-orthogonal to the users
already selected, i.e. the correlation between their channels
cannot exceed a predetermined threshold. This can greatly
reduce the pool of users considered for transmission in the
set 𝒢. Another way to further decrease complexity would
be to use a less complex linear beamforming technique to
perform user selection, such as ZF beamforming, and use
the proposed unitary beamforming technique for transmission,
since it provides better performance in systems with imperfect
CSIT, as shown previously. In this case, the estimated SINR
measure for each user in the set, 𝑆𝐼𝑁𝑅𝑘(𝒮), would be
computed on the basis of ZF beamforming vectors. In the
reminder of this section, we assume that exhaustive user search
is performed, since user selection algorithms are beyond the
scope of this paper.

In the proposed scheme, each user quantizes its channel
vector based on a quantization codebook 𝒱 that is common
to all users in the system. The vector quantizer maps the user
channel to the codeword in 𝒱 with the smallest Euclidean
distance. Each user sends the corresponding quantization index
back to the transmitter through an assumed error-free, and
zero-delay feedback channel using 𝐵 bits. At the transmitter
side, the estimated channel norm and channel direction are
computed on the basis of the quantized user channels, which
in turn are used to compute the proposed unitary linear beam-
former. An RVQ channel quantization codebook is considered,
complemented with simple codeword pruning as described
in [30, pp. 359]. Pruning consists of starting with an initial
training set of candidate codewords (randomly generated),
and selectively eliminating (pruning) training vectors until
obtaining a final set of 2𝐵 vectors. The codebook is generated
recursively, adding a new codeword to the codebook at each
step. When a codeword is added, it must satisfy that the
distortion measure - in our case given by the Euclidean
distance - between the newly added codeword and the nearest
neighbor in the codebook is greater than some threshold. In
our case, this threshold has been set empirically in order to
provide good performances.

The limited feedback approaches we consider for compari-
son are RBF and PU2RC, both based on unitary beamforming.
These techniques involve much lower computational complex-
ity than the proposed algorithm, since the beamformers are
generated randomly. In addition, an advantage of RBF and
PU2RC is that the exact SINR can be computed at the receiver
side without additional training. In the case of PU2RC, a
codebook with 𝑁 random unitary matrices is considered (each
with 𝑀 unit-norm vectors), known both to the base station
and mobile users. In the PU2RC scheme proposed in [6], the
users feed back a codeword index using 𝐵 = 𝑙𝑜𝑔2(𝑀𝑁) bits
together with the expected SINR, which in the case of unitary
beamforming can be precisely determined without knowledge
of the beamforming vectors intended to other users. In the
scenario under study, the data rate on the feedback link is
limited to 𝐵 = 10 bits/transmission. In order to make a fair
comparison between the schemes, the SINR feedback of the
PU2RC algorithm is also quantized. Thus, the PU2RC algo-
rithm has to share the available 𝐵 bits between the CDI, i.e.,
the index of the preferred beamforming vector, and the CQI,
i.e., the SINR of the preferred beamforming vector. In our sim-



DE FRANCISCO and SLOCK: AN OPTIMIZED UNITARY BEAMFORMING TECHNIQUE FOR MIMO BROADCAST CHANNELS 9

4 6 8 10 12 14 16 18 20
3

4

5

6

7

8

9

10

11

12

13

Users, K

S
um

 R
at

e 
[b

its
/s

/H
z]

UBF − Full CSIT
UBF − RVQ w/ pruning
PU2RC w/ quantized SINR
RBF w/ quantized SINR
MMSE BF − RVQ w/ pruning
ZF BF − RVQ w/ pruning

Fig. 7. Sum rate as a function of the number of users in a system with joint
beamforming and user scheduling, 𝑀 = 4 transmit antennas, SNR = 10 dB,
and 𝐵 = 10 feedback bits.

ulations, we simulate the performance of all possible CDI/CQI
bit allocations, and finally select the allocation that results in
the highest sum rate. The codebook to quantize the scalar
CQI is designed with the generalized Lloyd algorithm [30],
using the mean square error as distortion function. While
CDI quantization incurs in loss of multiplexing gain, CQI
quantization leads to a degradation of the multiuser diversity
benefit. This means that as the average SNR increases, more
feedback bits are allocated on channel direction information.
On the other hand, as the number of users increases, more
feedback bits are allocated on channel quality information.
In the case of RBF, the amount of bits for CDI feedback is
given by log2𝑀 , since only a single beamforming matrix is
generated at each time slot. The remaining bits are used for
SINR quantization, following the same quantization criterion
as for PU2RC.

Figure 7 depicts the performance for different numbers of
users with a fixed SNR of 10 dB, in a system with 𝑀 = 4
transmit antennas and 𝐵 = 10 bits available for feedback.
The performance of the proposed UBF approach with perfect
CSIT is also provided. The performance of MMSE and ZF
beamforming with limited feedback is provided for compari-
son, using the same RVQ channel quantization codebooks as
the proposed UBF approach. The proposed UBF technique
clearly outperforms ZF beamforming in the simulated sce-
nario, providing moderate gains over MMSE beamforming.
The proposed approach performs very similarly to MMSE
beamforming in this particular scenario with 𝐵 = 10 quan-
tization bits, outperforming ZF beamforming in the low-
to-moderate SNR region. The proposed approach combined
with simple RVQ and pruning outperforms RBF and PU2RC,
especially in systems with reduced number of users, providing
sum-rate gains over 1.5 bps/Hz. Note that the performance of
RBF, which was shown to achieve the optimal capacity scaling
in [5], is a pessimistic lower bound on the performance of
PU2RC when random unitary codebook bases are used. As the
number of users increases, the simplicity of the quantization
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Fig. 8. Sum rate as a function of the average SNR in a system with joint
beamforming and user scheduling, 𝑀 = 4 transmit antennas, 𝐾 = 10 users,
and 𝐵 = 10 feedback bits.

codebook used in the proposed unitary beamforming approach
does not allow to capture all multiuser diversity gain and the
sum rate curve flattens out. On the other hand, PU2RC exhibits
optimal sum-rate growth in the simulated range, thanks to an
optimal bit allocation for CDI/CQI information.

In Figure 8, a sum-rate comparison as function of the
average SNR is shown in a system with 𝑀 = 4 transmit
antennas, 𝐾 = 10 users and 𝐵 = 10 bits. As expected,
the limited feedback approaches become interference limited
at high SNR. The proposed approach performs very simi-
larly to MMSE beamforming in this particular scenario with
𝐵 = 10 quantization bits, outperforming ZF beamforming in
the low-to-moderate SNR region. In the simulated scenario,
the proposed technique provides performance gains of up 2-
bps/Hz over RBF and PU2RC for a given SNR. Note that
the simulation parameters here used reflect realistic scenarios
of practical importance, often encountered in indoor wireless
systems.

In order to further clarify the comparison between PU2RC
and the proposed UBF approach, an additional scenario is
simulated. In this scenario, we consider a system in which the
CQI information is transmitted unquantized over the feedback
channel, and thus all the available feedback bits are used for
CDI quantization. In the proposed UBF approach, RVQ with
pruning is used for CDI quantization, while each user feeds
back its channel norm unquantized. In the PU2RC scheme,
unquantized SINR feedback is sent along with quantized CDI
information. Figure 9 shows a performance comparison be-
tween these schemes for the described scenario. The proposed
approach outperforms PU2RC as the number of feedback bits
increases. Hence, in the moderate-large B regime the proposed
technique provides higher sum rates than PU2RC. On the
other hand, in the low resolution regime, PU2RC provides
higher rates. In addition, in the simulated system with 𝑀 = 4
transmit antennas and 𝐾 = 10 users, increasing the amount of
CDI bits does not increase the throughput of PU2RC. This is
due to the fact that an increase in the codebook size reduces
the probability of finding users with large channel gains that
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Fig. 9. Sum rate as a function of the average SNR for different number
of CDI quantization bits, and unquantized CQI. The schemes perform joint
beamforming and user scheduling, in a system with 𝑀 = 4 transmit antennas
and 𝐾 = 10 users.

are also associated with the same orthonormal basis in the
codebook. This adverse effect in PU2RC, as discussed in [25],
diminishes as the number of users increases.

VII. CONCLUSIONS

An iterative optimization method for unitary beamforming
in MIMO broadcast channels has been proposed, based on
successive optimization of Givens rotations. In a scenario
with perfect CSIT and for practical average SNR values,
the proposed technique provides higher sum rates than ZF
beamforming and performs close to MMSE beamforming
when the number of transmit antennas equals the number of
scheduled users, achieving linear sum-rate growth with the
number of transmit antennas. The proposed unitary beam-
forming approach exhibits robustness to channel estimation
errors, providing better sum rates than ZF beamforming and
even MMSE beamforming as the variance of the estimation
error increases. In addition, the proposed technique has been
evaluated in scenarios with multiuser scheduling and limited
feedback. As simulations have shown, our approach provides
gains when compared to other existing techniques based on
unitary beamforming and the same amount of feedback. A
simple vector quantization technique has been used, based on
RVQ with pruning. Hence, our work highlights the importance
of linear beamforming optimization in limited feedback sce-
narios. While the random beamforming technique introduced
in [5] enables perfect SINR knowledge of all users at the
base station, the generation of the beamforming vectors is
clearly suboptimal. Instead, as we have shown in this work, the
system performance can be improved by performing simpler
feedback design through direct channel vector quantization
and optimization of the linear beamformers.

APPENDIX A
COMPUTATION OF POLYNOMIAL COEFFICIENTS

This appendix describes a procedure to obtain the coeffi-
cients of the polynomials 𝑃𝛼 and 𝑃𝛿 of equations (16) and

(17), respectively. Although the procedure to obtain these
coefficients can be described in different ways, here we present
it in a simple and sequential fashion for straightforward
software implementation. For each plane rotation, the auxiliary
variables defined in Table III are computed and used for the
computation of the coefficients of both 𝑃𝛼 and 𝑃𝛿. These
auxiliary variables are functions of h𝑚, h𝑛, w𝑚, and w𝑛.

A. Computation of the polynomial coefficients of 𝑃𝛼

The coefficients of 𝑃𝛼 are functions of the rotation param-
eter 𝛿. For clarity of exposition, the following functions are
defined

𝜙1(𝛿) = 𝑑1 cos(Δ𝑚𝑛 + 𝛿)
𝜙2(𝛿) = −𝑑2 cos(𝛿 −Δ𝑛𝑚)

(24)

The coefficients of the polynomial 𝑃𝛼 are given by

𝑓4 = −2𝜙1(𝛿)(𝑒3 − 𝑒4)− 2𝜙2(𝛿)(𝑒2 − 𝑒5)
𝑓3 = −2𝜙1(𝛿)𝜙2(𝛿) + 𝑒1 − 𝑒6
𝑓2 = −12 [𝜙1(𝛿)𝑒4 + 𝜙2(𝛿)𝑒5]
𝑓1 = 2𝜙1(𝛿)𝜙2(𝛿)− 𝑒1 − 𝑒6
𝑓0 = 2𝜙1(𝛿)(𝑒3 + 𝑒4) + 2𝜙2(𝛿)(𝑒2 + 𝑒5)

(25)

B. Computation of the polynomial coefficients of 𝑃𝛿

The coefficients of 𝑃𝛿 are functions of the rotation param-
eter 𝛼. The following functions are defined

𝜑1(𝛼) = 𝑒2 sin 2𝛼+ 𝑒5 sin 4𝛼
2

𝜑2(𝛼) = 𝑒3 sin 2𝛼+ 𝑒4 sin 4𝛼
2

𝜑3(𝛼) =
1−cos 4𝛼

4

(26)

The coefficients of the polynomial 𝑃𝛿 are given by

𝑔4 = −𝑑8𝜑1(𝛼) + 𝑑6𝜑2(𝛼) + 𝑑4𝜑3(𝛼)
𝑔3 = 𝑑7𝜑1(𝛼) − 𝑑5𝜑2(𝛼) + 𝑑3𝜑3(𝛼)
𝑔2 = −6𝑑4𝜑3(𝛼)
𝑔1 = 𝑑7𝜑1(𝛼) − 𝑑5𝜑2(𝛼)− 𝑑3𝜑3(𝛼)
𝑔0 = 𝑑8𝜑1(𝛼) − 𝑑6𝜑2(𝛼) + 𝑑4𝜑3(𝛼)

(27)

REFERENCES

[1] G. Caire and S. Shamai (Shitz), “On the achievable throughput of a
multi-antenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory,
vol. 49, no. 7, pp. 1691–1706, July 2003.

[2] N. Jindal and A. Goldsmith, “Dirty paper coding vs. TDMA for MIMO
broadcast channels,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp. 1783–
1794, May 2005.

[3] H. Weingarten, Y. Steinberg, and S. Shamai (Shitz), “The capacity region
of the Gaussian MIMO broadcast channel,” in Proc. 38th Conf. Inform.
Sciences and Systems (CISS’04), Princeton, NJ, USA, Mar. 2004.

[4] M. H. M. Costa, “Writing on dirty paper,” IEEE Trans. Inf. Theory,
vol. 29, no. 3, pp. 439–441, May 1983.

[5] M. Sharif and B. Hassibi, “On the capacity of MIMO broadcast channel
with partial side information,” IEEE Trans. Inf. Theory, vol. 51, no. 2,
pp. 506–522, Feb. 2005.

[6] S. J. Kim, H. J. Kim, C. S. Park, and K. B. Lee, “On the performance of
multiuser MIMO systems in WCDMA/HSDPA: beamforming, feedback
and user diversity,” IEICE Trans. Commun., vol. E98-B, no. 8, pp. 2161–
2169, Aug. 2006.

[7] K. Huang, R. W. Heath, Jr., and J. G. Andrews, “Space division multiple
access with a sum feedback rate constraint,” in Proc. IEEE Int. Conf.
Acoust., Speech and Sig. Proc. (ICASSP’07), Hawaii, USA, Apr. 2007.

[8] R. Samsung, “Downlink MIMO for EUTRA,” in 3GPP TSG RAN WG1
Meeting 43, Seoul, SK, Nov. 2005.

[9] R. Huawei, “Precoding and multiuser-MIMO,” in 3GPP TSG RAN WG1
Meeting 44bis, Athens, Greece, Mar. 2006.

[10] R. Ericsson, “System level comparison between MU- and SU-MIMO
for downlink precoding systems with four transmit antennas,” in 3GPP
TSG RAN WG1 Meeting 47, Riga, Latvia, Nov. 2006.



DE FRANCISCO and SLOCK: AN OPTIMIZED UNITARY BEAMFORMING TECHNIQUE FOR MIMO BROADCAST CHANNELS 11

[11] G. T. 36.213, “Evolved Universal Terrestrial Radio Access (E-UTRA);
physical layer procedures.”

[12] N. Jindal, “Finite rate feedback MIMO broadcast channels,” in Workshop
on Inform. Theory and its Applications (ITA’06), UC San Diego, USA
(invited paper), Feb. 2006.

[13] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna broadcast channels
with limited feedback and user selection,” IEEE J. Sel. Areas Commun.,
vol. 25, no. 7, pp. 1478–1491, Sept. 2007.

[14] R. de Francisco, M. Kountouris, D. T. M. Slock, and D. Gesbert,
“Orthogonal linear beamforming in MIMO broadcast channels,” in
Proc. IEEE Wireless Commun. and Networking Conf. (WCNC’07), Hong
Kong, Mar. 2007.

[15] M. A. Sadrabadi, A. K. Khandani, and F. Lahouti, “Channel feedback
quantization for high data rate MIMO systems,” IEEE Trans. Wireless
Commun., vol. 5, no. 12, pp. 3335–3338, Dec. 2006.

[16] S. Yang and J.-C. Belfiore, “The impact of channel estimation error on
the DPC region of the two-user Gaussian broadcast channel,” in Proc.
43rd Allerton Conf. on Commun., Control and Comput., Monticello, IL,
USA, Sept. 2005.

[17] T. Yoo, N. Jindal, and A. Goldsmith, “Finite-rate feedback MIMO
broadcast channels with a large number of users,” in Proc. IEEE Int.
Symp. Inform. Theory (ISIT’06), Seattle, WA, USA, July 2006, pp.
1214–1218.

[18] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, 10th Edition. New
York: Government Printing Office, 1972.

[19] C. J. Small and J. Wang, Numerical Methods for Nonlinear Estimating
Equations, 1st Edition. Oxford University Press, 2003.

[20] P. Viswanath and D. N. Tse, “Sum capacity of the vector Gaussian
broadcast channel and uplink-downlink duality,” IEEE Trans. Inf. The-
ory, vol. 49, no. 8, pp. 1912–1921, Aug. 2003.

[21] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2658–2668, Oct. 2003.

[22] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ.
Trans. Telecommun., vol. 10, pp. 585–595, Nov. 1999.

[23] G. J. Foschini and M. J. Gans, “On limits of wireless communication in
fading environment when using multiple antennas,” Wireless Personal
Commun., vol. 6, pp. 311–335, Mar. 1998.

[24] C. B. Peel, B. M. Hochwald, and A. L. Swindlehurst, “A
vector-perturbation technique for near-capacity multiantenna multiuser
comunication—part I,” IEEE Trans. Commun., vol. 53, no. 1, pp. 195–
202, Jan. 2005.

[25] K. Huang, J. G. Andrews, and R. W. Heath, Jr., “Performance of
orthogonal beamforming for SDMA with limited feedback,” IEEE Trans.
Veh. Technol., vol. 58, pp. 152–164, Jan. 2009.

[26] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use
of side information in multiple-antenna data transmission over fading
channels,” IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1423–1436,
Oct. 1998.

[27] D. Love, R. W. Heath, Jr., and T. Strohmer, “Grassmannian beamforming
for multiple-input multiple-output wireless systems,” IEEE Trans. Inf.
Theory, vol. 49, no. 10, pp. 2735–2747, Oct. 2003.

[28] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beam-
forming with finite rate feedback in multiple-antenna systems,” IEEE
Trans. Inf. Theory, vol. 49, no. 10, pp. 2562–2579, Oct. 2003.

[29] T. Yoo and A. Goldsmith, “On the optimality of multiantenna broad-
cast scheduling using zero-forcing beamforming,” IEEE J. Sel. Areas
Commun., vol. 24, no. 3, pp. 528–541, Mar. 2006.

[30] A. Gersho and R. M. Gray, Vector Quantization and Signal Compress-
ing. Kluwer Academic Publishers, 1995.

Ruben de Francisco was born in Barcelona, Spain,
in 1979. He received the Telecommunication En-
gineering degree from Universitat Politècnica de
Catalunya (UPC), Barcelona, Spain, in 2003, and
the Ph.D. degree in Electrical Engineering from
École Nationale Supérieure des Télécommunica-
tions (ENST), Paris, France, in 2008.

During the academic year 2002-2003, he did his
Master Thesis at the Center for Wireless Communi-
cations and Signal Processing Research (CWCSPR),
at the New Jersey Institute of Technology (NJIT),

Newark, NJ. From September 2003 to December 2004, he was a Systems
Engineer at Auna TLC, working on design of service-providing systems for
telecommunication networks. From January 2005 to January 2008, he was
a Research and Teaching Assistant at the Eurécom Institute, Mobile Com-
munications Department, in Sophia-Antipolis, France. During the summers
of 2006 and 2007 he was a visiting researcher at the Intitute for Infocomm
Research (I2R), Singapore, and at the Delft University of Technology, Delft,
The Netherlands, respectively. He is currently a research scientist at IMEC,
Holst Centre, in Eindhoven, The Netherlands. His research interests are in
the area of communication theory and signal processing, including MIMO
systems and wireless sensor networks, particularly for medical and low-power
applications.

Dirk T.M. Slock received an engineering degree
from the University of Gent, Belgium in 1982. In
1984 he was awarded a Fulbright scholarship for
Stanford University USA, where he received the
MS in Electrical Engineering, MS in Statistics, and
PhD in Electrical Engineering in 1986, 1989 and
1989 resp. While at Stanford, he developed new
fast recursive least-squares (RLS) algorithms for
adaptive filtering. In 1989-91, he was a member of
the research staff at the Philips Research Laboratory
Belgium. In 1991, he joined the Eurecom Institute

where he is now professor. At Eurecom, he teaches statistical signal processing
and signal processing techniques for wireless and wireline communications.
His research interests include DSP for mobile communications (antenna arrays
for (semi-blind) equalization/interference cancellation and spatial division
multiple access, space-time processing and coding, channel estimation, di-
versity analysis, information-theoretic capacity analysis, terminal localization,
cognitive radio), and DSP techniques for audio processing. He has worked
in particular on receiver design and downlink antenna array processing for
third generation systems, introducing spatial multiplexing (MIMO) in existing
wireless systems, fading channel modeling and estimation, and OFDM sys-
tems. He invented semi-blind channel estimation, the chip equalizer-correlator
receiver used by 3G HSDPA mobile terminals, spatial multiplexing cyclic
delay diversity now part of LTE, and his work led to the Single Antenna
Interference Cancellation (SAIC) concept used in GSM terminals.

In 2000, he cofounded SigTone, a start-up developing music signal process-
ing products. He has also been active as a consultant on xDSL, DVB-T and
3G systems. He is the (co)author of over 250 technical papers. He received
one best journal paper award from the IEEE-SP and one from EURASIP
in 1992. He is the coauthor of two IEEE Globecom98, one IEEE SIU’04
and one IEEE SPAWC’05 best student paper award, and a honorary mention
(finalist in best student paper contest) at IEEE SSP’05, IWAENC’06 and IEEE
Asilomar’06. He was an associate editor for the IEEE TRANSACTIONS ON
SIGNAL PROCESSING in 1994-96. He is an editor for the EURASIP JOUR-
NAL ON ADVANCES IN SIGNAL PROCESSING (JASP), EURASIP SIGNAL

PROCESSING and IEEE SIGNAL PROCESSING LETTERS. He has also been a
guest editor for JASP, IEEE SIGNAL PROCESSING MAGAZINE and for IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. He was the General
Chair of the IEEE-SP SPAWC’06 workshop. He is a Fellow of the IEEE.


