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ABSTRACT

Color is an important and powerful cue in the distinction
and recognition of objects, however identifying or matching
the surface color of a moving object in a video surveillance
system is very critical. In this paper we describe a new ap-
proach aiming at providing a comparison of the more widely
used color spaces in identifying colors in motion sensors.
We employ a statistical approach by conducting extensive
data mining on video clips collected under various lighting
conditions and distances from several video-cameras. The
goal is to learn how individual colors can drift in different
illumination conditions and with different color spaces.

1. INTRODUCTION

In addition to shape, texture, and some other geometric prop-
erties, color is an important and powerful cue in the distinc-
tion and recognition of objects and for this reason it has been
widely used in several applications of image and video pro-
cessing. Being able to identify colors in video sequences
can help, for example, tasks of object tracking and object
search. One important application could be to track a given
person, based on the clothing colors, across the fields-of-
view (FOV) of multiple cameras. Another application could
be to search a person with a specific shirt color in a camera
network, such as to localize missing children in a crowded
amusement park. The color cue plays an important role in
enhancing the reliability of these tracking and search tasks.

Identifying or matching the surface color of a moving
object in a video surveillance system, however, is very crit-
ical. Traditional color models provide only little help, since
the surface of an object is usually not flat, the object’s mo-
tion can alter the surface’s orientation, and the lighting con-
ditions can vary when the object moves. To tackle this re-
search problem, many color constancy algorithms [1] have
been developed to reduce color variation from fluctuation in
source illumination. Despite decades of research in color
constancy algorithms, these algorithms cannot be used to
reliably identify colors in motion. The first issue is that

most algorithms assume scene illumination to be uniform
in the region of interest or changing gradually. Such an
assumption almost always fails in a surveillance scenario.
Second, most color-constancy algorithms depend on reli-
able estimates of parameters such as angles between light
sources and the object, reflection angles, and surface ma-
terials. These parameters can be unknown or difficult to
estimate in real-time when the object being observed is in
motion.

Instead of taking the route to model variations in surface
orientation, extended light, secondary reflection, and vary-
ing color sensitivity of cameras, another popular and simple
approach for color identification, widely used in color based
object tracking, is the introduction of color invariant mod-
els. The goal of color invariants, originally used in image
retrieval, is to recognize multicolored objects invariantto
substantial change in viewpoint, object geometry and illu-
mination.

Many works have been conducted in this direction and
many color spaces and distance metrics to evaluate the sim-
ilarity between colors have been introduced in the scientific
literature [2]. However, quite surprisingly, most of the pa-
pers does not provide strict justification of their color space
choice neither a comparison of the existing color spaces.
This is probably because of the possibility to obtain accept-
able results on limited dataset with almost any color space.

Even if it is generally agreed that there is no single color
system which is suitable for all color images, an analysis of
the performance of the most popular color spaces in identi-
fying colors in motion in video sensors would be a signifi-
cant help in some tracking and search tasks. This is the goal
of the proposed work.

In this paper we describe a new approach aiming at pro-
viding a comparison of the more widely used color spaces.
We employ a statistical approach by conducting extensive
data mining on video clips collected under various lighting
conditions and distances from several video-cameras. The
goal is to learn how individual colors can drift in differentil-
lumination conditions and with different color spaces. The
diversified samples of pixel colors collected in real condi-



tions will allow us to derive general conclusions on the per-
formance of the analyzed color spaces in identifying colors
in motion. This study can be considered as a preliminary
study for the development of a new robust color detection
framework in video.

2. RELATED WORKS

In this section a brief description of color constancy algo-
rithms is provided1.

Color constancy is the ability of a vision system to ac-
curately describe the color of an object in spite of variations
in illumination conditions. By ignoring atmospheric atten-
uation and scattering, which does not play a significant role
in color appearance, the critical elements in color constancy
are light sources, sensors, and how an object interacts with
the incident light. This interaction is often characterized as
the ratio of the reflected light and the incident light, whichis
commonly referred to as the bi-directional reflectance func-
tion, or the BDRF. The BDRF depends on many factors, the
most important ones are the geometric configuration (i.e.,
the surface orientation relative to the viewer and the light
source) and the wavelength. Measuring BDRF, however,
is a tedious and difficult task and usually certain reason-
able simplifications are made. The most common assump-
tion is that surfaces are isotropic, or that the BDRF does not
change significantly if a surface is rotated about its normal.

Another complication is that there exist two major re-
flection mechanisms: interface reflection and body reflec-
tion. Interface reflection occurs at the junction between an
object and the surrounding medium. In contrast, body re-
flection is usually considered Lambertian and wavelength
dependent. Most color constancy algorithms concentrate on
analyzing and modeling the body reflection component as it
carries the most discriminative information for inferringan
object true color.

Many algorithms for color constancy have been intro-
duced in the scientific literature in the last twenty years. The
simplest model that accounts for illumination variation isto
compute a single statistic, such as a mean, to estimate scene
illumination, which is assumed to be uniform in the region
of interest. This leads to the so-called greyworld algorithms
[4].

Gamut mapping colour constancy [5] attempts to deter-
mine the set of diagonal matrices taking the gamut of im-
age colours under an unknown illuminant into the gamut
of colours observed under a standard illuminant. While
the algorithm performs well on images of flat, matte, uni-
formly illuminated scenes, its performance on images of
more realistic scenes can be poor (it has a particular problem

1We do not aim to draw up a complete and exhaustive overview of all
color constancy methods but only to give the basic concepts. Acompre-
hensive survey and comparison of some popular ones is providedin [3].

with specularities) and furthermore the algorithm is compu-
tationally intensive.

Linear decomposition methods [6] model illumination
change using a linear transformation. This model is justi-
fied if illumination and surface reflectance can be expressed
as linear combinations of a small number of basis functions.
In particular, the diagonal linear model, which maps the im-
age taken under one illumination to another by simply scal-
ing each color channel independently, has been shown to be
effective in some application scenarios.

In summary, color perception and understanding is an
extremely complicated and nonlinear science. To simplify
the analysis, many color constancy models assume a single
camera, a frontal surface orientation or a spatially-invariant
illumination. In the reality, unluckily, we must account for
spatially-distributed surveillance cameras operating under
different lighting conditions and with varying color sensitiv-
ity. The complexity of such modeling for identifying color
in motion in video sensors, makes the task difficult, if not
impossible.

3. CULTURE COLORS DISTRIBUTION

As explained in the introduction, the goal of the proposed
work is to learn how colors can drift in different illumina-
tion conditions and with different color spaces. In order to
provide a very general approach, we have to collect pixels
describing different colors. To exploit the colors choice we
need to refer to the branch of color categorization. Color
categorization is intrinsically related to color naming, which
lies at the boundary between different fields of cognitive sci-
ences: visual perception and linguistics. Color naming is
about the labeling of a given set of color stimuli according
to their appearance in a given observation condition. Pio-
neering this field, the work of Berlin & Kay [7] traces back
to early 1970s, and have settled the ground for the prolifer-
ation of the next wave of cognitive studies. Based on this
work, the set of color terms that can be considered as uni-
versal constants (among the languages that have at least the
necessary number of color terms) are the following: black,
white, red, yellow, green, blue, brown, purple, pink, orange,
and grey.

Based on the above considerations we quantize the en-
tire color space into the above eleven bin. These colors are
usually referred to asculture colors, which have been used
in literature of different cultures in the past two thousand
years to refer to colors [7]. Moreover most of the video pro-
cessing applications are based on color quantization using
the previous categories. It is worth pointing out that in the
scientific literature many other color quantization schemes
have been proposed but the approach of the proposed algo-
rithm is equally applicable to them.

One might argue that having a finer quantization may



better discern different objects. Unfortunately, finer quan-
tization leads to less reliable color prediction, and can be
counter-productive in improving prediction accuracy.

3.1. Mining testbed

Instead of taking a generative approach as discussed in Sec-
tion 2, we employ a discriminant approach to address the
complexity of the color identification. The idea is to col-
lect a big number of pixels whose colors correspond to cul-
ture colors, under various lighting conditions, from different
cameras and from several distances from the cameras. Such
a task could be not trivial, if not impossible, since it is very
time-consuming to carry-out the experiments and, above all,
it is almost impossible to test all the possible real conditions.
Some authors treat this problem by recording videos of peo-
ple wearing certain colored shirts and walking around in the
field-of-view of a camera network. In this case, however,
the results of the color detection system are limited to few
sensors and few illumination conditions.

Our idea to obtain a so diversified dataset is to associate
to each of the culture color a sport team (football teams, cy-
clist teams, rugby teams, etc.) with the color of the uniform
corresponding to that color, and to randomly collect from
the web video clips of the selected teams. Specifically, we
collected4 or 5 video clips for each team and around120
pixels for each color taken in different frames of the clips.
This procedure allows us to obtain1355 pixel samples col-
lected in real illumination conditions, different position of
the objects (the players) with respect to illumunitaion and,
with very high probability, taken from different cameras.

3.2. Color spaces

Colorimetry, computer graphics and video signal transmis-
sion standards have given birth to many colorspaces with
different properties. In this paper we take into account five
of the most popular and widely used color spaces: RGB,
normalize RGB, HSV, Lab, YUV. In the following, we briefly
review these color spaces2.

3.2.1. RGB

RGB is a colorspace originated from CRT display applica-
tions, when it was convenient to describe color as a com-
bination of three colored rays (red, green and blue). It is
one of the most widely used colorspaces for processing and
storing of digital image data.

RGB is a device-dependent color space. This fact, to-
gether with the high correlation between channels, the sig-
nificant perceptual non-uniformity, the mixing of chromi-
nance and luminance data, make RGB not a very favorable

2Please refer to [2] for details.

choice for color analysis and color based recognition algo-
rithms.

3.2.2. Normalized RGB

Normalized RGB is a representation that is easily obtained
from the RGB values by a simple normalization procedure:

r =
R

R + G + B
g =

G

R + G + B
b =

B

R + G + B
(1)

As the sum of the three normalized components is known
(r + g + b = 1), the third component does not hold any sig-
nificant information and can be omitted, reducing the space
dimensionality.

A remarkable property of this representation is that for
matte surfaces, while ignoring ambient light, normalized
RGB is invariant, under certain assumptions, to changes of
surface orientation relatively to the light source.

3.2.3. HSV

Hue-saturation based colorspaces (HSI, HSV, HSL) were
introduced when there was a need for the user to specify
color properties numerically. They describe color with intu-
itive values. Hue (H) defines the dominant color of an area,
saturation (S) is a combination of light intensity and how
much it is distributed across the spectrum of different wave-
lengths and value (V) is related to the color luminance, as
described in the following equation:

H = arccos
1

2
((R − G) + (R − B))

√

(

(R − G)
2

+ (R − B) (G − B)
)

(2)

S = 1 − 3
min (R,G,B)

R + G + B
(3)

V =
1

3
(R + G + B) (4)

The intuitiveness of the colorspace components, explicit
discrimination between luminance and chrominance proper-
ties and its invariant to highlights at white light sources,and
also, for matte surfaces, to ambient light and surface ori-
entation relative to the light source, made this colorspaces
widely used in image processing applications, such as skin
color segmentation.

3.2.4. Lab

The Lab color space is a color-opponent space with dimen-
sion L for lightness anda andb for the color-opponent di-
mensions. Lab is now more often used as an informal abbre-
viation for the CIE (International Commission on Illumina-
tion) 1976 color space (also called CIE LAB). CIE LAB is
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Fig. 1. Distribution of the culture colors: (a) HSV color space; (b) Lab color space; (c) YUV color space.

a perceptually uniform colorspace. Perceptual uniformity
means that a small perturbation to a component value is
approximately equally perceptible across the range of that
value. The price for better perceptual uniformity is complex
transformation functions from and to RGB space (for sake
of brevity we do not report these functions), demanding far
more computation than most other colorspaces.

3.2.5. YUV

In the YUV color space, the Y component determines the
brightness of the color (referred to as luminance or luma),
while the U and V components determine the color itself
(the chroma). It is defined, with respect to the RGB color
space, by the following equation:





Y

U

V



 =





0.299 0.587 0.114
−0.147 − 0.288 0.436
0.615 − 0.515 − 0.1









R

G

B



 (5)

One aspect of YUV is that it is possible throw out the U
and V components and get a grey-scale image. Since human
eye is more responsive to brightness than it is to color, many
image compression formats throw away half or more of the
samples in the chroma channels to reduce the amount of
data to deal with, without severely destroying image quality.

3.3. Visual distribution

We want now to analyze how individual colors can drift
from the real color in different conditions and in the de-
scribed color spaces. In Fig.1 the plots of the colors distri-
butions for each culture color in different color spaces are
shown3. Ideally, each color should appear as one point in
the color space. However, as expected, with the interfer-
ences of various enviromental factors, the pixel colors of a

3For sake of brevity only three of the five plots are reported, the ones
showing more interesting results.

culture color spread out like a cloud. While this effect is
present in all the analyzed color spaces, it changes drasti-
cally from one color space to another and for the different
colors, as we can notice by observing the plots. Obviously,
the more the cloud of a color spreads in the space, the more
difficult will be the color identification. This means, in fact,
that the color changes too much its value in different illu-
mination conditions. In the same way, overlapping distri-
butions shows a difficulty of the color space in discriminat-
ing different colors. Based on these two main observations,
some preliminary considerations can be done by observing
the plots.

From a general point of view, the more dispersive color
space seems to be the HSV color space. In this case, in fact,
the clouds of the distribution of almost all the colors are
quite spread in the space, as we can see looking at the plot
in Fig.1.(a). On the other side, we expect that the Lab or the
YUV color space provide a good tool to identify the eleven
culture colors because the distribution, for almost all the
colors, is usually restricted on a specific area of the space,
as we can see looking at the plot in Fig.1.(b) and Fig.1.(c).
The HSV color space is widely used in different applica-
tions of image and video processing (color segmentation,
skin detection, shadow removing, etc.) thanks to its prop-
erty to be robust against change in illumination and shadow.
Thus the colors distribution we obtained for the HSV space
is quite surprising. On the other hand, it is well known that
the Lab color space provides good results in color identifi-
cation since it is perceptually uniform.

Analyzing more in details the plots in Fig.1, we can also
observe that the most difficult task for all the color spaces is
discriminating grey and white. These two colors, in fact, are
always overlapped thus no distance metric4 will be able to
robustly identify the two colors. Some problems appear also
in discriminating red and orange in the HSV color space,
since these two colors can drift each other changing the il-

4Some popular distance metrics usually used in color detectionalgo-
rithms are the euclidean, cylindric and angular metrics.



lumination condition.
The above considerations are confirmed by evaluating

the first and second order statistics of the distributions, which
provide, respectively, an indication of the overlap of the col-
ors and their spread in a specific color space. For sake of
brevity, the plots of the statistics are not reported.

4. FUZZY CLUSTERING

In the previous section we have seen how the culture colors
spread in different color spaces and drift from one color to
other colors changing sensors and illumination conditions.
While the spreading factor is reasonable and intuitive to un-
derstand the tricky problem of color identification, the most
important aspect is the possibility to design a detector able
to partition the colors, thus we need to refer to the problem
of data clustering.

Data clustering is the process of dividing data elements
into classes or clusters so that items in the same class are
as similar as possible, and items in different classes are as
dissimilar as possible. While in hard clustering data is di-
vided into distinct clusters where each data element belongs
to exactly one cluster, in fuzzy clustering data elements can
belong to more than one cluster, and associated with each el-
ement is a set of membership levels. These values indicate
the strength of the association between that data element
and a particular cluster. Fuzzy clustering is the process of
assigning these membership levels, and then using them to
assign data elements to one or more clusters.

Fuzzy clustering is particular suited to color quantiza-
tion since color boundaries are not well defined (as we can
noticed by the plots in Fig.1). In the proposed system we
adopt thefuzzy k-nearest neighbors algorithm (KNN) in-
troduced by Keller & al. [8], which works as follows. Let us
assume that a training set ofm samples vectorsZ1, Z2, ..., Zm

is available. LetX be a new vector considered as the input
to be classified. Fixed a value ofk, the first step consists
in identifying, among these sample vectors, thek nearest
neighborsY1, Y2, ..., Yk of the inputX. Then the member-
ship vectors of the selected labeled samplesY are combined
to find the membership vector of the inputX, where the
membership vector describes the probabilities of the mem-
bership to the possibleC classes. Letui(X) be the mem-
bership of the inputX to the ith class (withi ≤ C), and
wij the membership of itsjth neighborYj to the same class
(wij = ui(Yj)), then (withm > 1):

ui (X) =

k
∑

j=1

wij

(

1

‖X−Yj‖

)
2

(m−1)

k
∑

j=1

(

1

‖X−Yj‖

)
2

(m−1)

(6)

In the above formula, the inverse distance is used to

RGB norm RGB HSV Lab YUV

Accuracy 91.3 89.9 86.8 94.1 91.4

Table 1. Accuracy of the proposed color space.

O
U

T
P

U
T

C
LA

S
S

Red 97 10 0 0 0 0 0 0 0 0 0
Orange 1 90 0 0 0 0 0 0 0 0 0
Black 0 0 96 0 0 1 1 7 1 0 1
Pink 1 0 0 99 0 1 0 0 0 0 0

White 0 0 0 0 88 19 0 0 0 0 0
Gray 0 0 0 1 12 79 0 0 0 0 0

Purple 0 0 0 0 0 0 102 0 2 0 0
Brown 1 0 4 0 0 0 0 96 0 0 0

Blu 0 0 0 0 0 0 1 0 101 0 0
Yellow 0 0 0 0 0 0 0 0 0 96 0
Green 0 0 0 0 0 0 0 1 0 0 95

Red Orange Black Pink White Gray Purple Brown Blu Yellow Green
TARGET CLASS

Table 2. Confusion matrix of the Lab color space.

weight the memberships degrees of the samples by assign-
ing a higher weight to closest vector.

We tested the above classifier on a new dataset of1104
samples collected as described in Sec.3.1. It is quite usualto
describe the performance of a classifier in terms oftrue pos-
itive rate (TPR) andfalse positive rate (FPR), where TPR is
the proportion of positive instances that were correctly re-
ported as being positive and FPR is the proportion of nega-
tive instances that were erroneously reported as being pos-
itive. These values are commonly depicted in the form of
a receiver operating characteristic (ROC) curve, as reported
in Fig.2 for all the culture colors (for a better comparison
the curves are zoomed in the upper left part). By observing
the plots we can notice how the HSV color space provides
the worst results, while the Lab color spaces show good per-
formances in color identification task. These consideration
are confirmed by the values of the accuracy reported in table
1. To investigate more in details the performance of the Lab
color space for all the culture colors, we can have a look at
the confusion matrix reported in table 2. The system is able
to perfectly recognize yellow, pink, green or purple (which
have a correct classification rate of respectively 100%, 99%,
99% and 98.1%), while it has some problems, as expected,
in identifying gray and white (correct classification rate of
88% and 79% respectively).

5. CONCLUSIONS

In this paper we describe a new statistical approach to pro-
vide a comparison of the color spaces in describing and
identifying colors in motion in video sensors. The proposed
approach allow us to test the system for different colors
in real illumination conditions in order to draw very gen-
eral considerations on the performances of different color
spaces. Even if we believe that it is almost impossible to de-
fine a single color system suitable for all color images and
for all images and video processing applications, the pro-
posed analysis is a contribution for the comprehension of
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Fig. 2. ROC curves: (a) RGB; (b) Normalized RGB; (c) HSV; (d) Lab; (e) YUV.

the performance of some popular color spaces in represent-
ing the surface color of a moving object in video. The pro-
posed work could be an useful tool for the development of a
new robust and general purpose color detection framework
that can find application in searching and tracking tasks in
video surveillance system.
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