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Abstract—Performance bounds provide a solid theoretical
ground for comparing different localization methods. Similarly to
the actual performance, they depend on two factors, namely the
accuracy of the available data that are used for localization and
the geometry of the network. While the impact of the accuracy of
the available data has been studied extensively, the literature on
the impact of network geometry is still poor. Specifically only a
limited number of papers examines hybrid methods and no paper
considers NLoS environments. This contribution is a first attempt
to fill this gap. Through straightforward derivations, meaningful
expressions for the Cramer-Rao bounds of a Hybrid method are
derived. Emphasis is given to the NLoS case, where the results
reveal the scenarios under which the accuracy is low1.

I. INTRODUCTION

Traditional geometrical localization methods require esti-

mates of one set of location dependent parameters (LDP) in

a certain number of base stations (BS) that depends on the

method. Two very common methods are the time-of-arrival

(ToA) based and the angle-of-arrival or departure (AoA and

AoD respectively) based. The former one uses the delays

estimated in at least 3 BS (for 2-D scenarios) and performs

trilateration to obtain the location of the mobile terminal (MT)

while the latter one uses angles estimated in at least 2 BS and

performs triangulation.

To overcome the need for a communication link between

the MT and several BS and/or to be able to localize with high

accuracy in multipath and non-line-of-sight (NLoS) environ-

ments, hybrid methods were introduced. In a hybrid method,

different sets of LDP estimates are combined. Introducing

more sets of LDP, some of which might come at the cost

of extra nuisance parameters (eg. received signal strength

might come at the cost of unknown path loss exponent),

will lead to an enhancement in performance, as long as the

total number of the newly introduced LDP is greater than the

number of the extra nuisance parameters and the matrix of the

partial derivatives of these LDP with respect to the nuisance

parameters has full rank [1, Theorem 1].

In this contribution, we evaluate the performance of a

ToA/AoA/AoD hybrid method in LoS and NLoS environments

1Eurecom’s research is partially supported by its industrial members:
BMW Group Research & Technology, Bouygues Telecom, Cisco, Hitachi,
ORANGE, SFR, Sharp, STMicroelectronics, Swisscom, Thales. The work
presented in this paper has also been partially supported by the European
FP7 projects Where and Newcom++.

with 1 or more BS. To do so, we compute and plot the Cramer-

Rao bound (CRB). In all geometrical localization methods, the

CRB (and the actual performance) depends on two factors:

the accuracy of the available LDP estimates and the network

geometry. The impact of the accuracy of the available LDP

estimates on the CRB has been studied extensively for both

LoS and NLoS environments. For a NLoS environment that

can be described by the single bounce model (SBM), it was

first studied in [2]. However, in that contribution, the impact

of network geometry on the accuracy of the hybrid method

was completely omitted. As a matter of fact, to the best of the

authors’ knowledge, there exist no publications that address

this topic. On the other hand, for LoS environments, there

are many publications that deal with the impact of network

geometry, especially for non-hybrid methods [3], [4], [5], [6].

For hybrid methods, the topic was studied in [7], [8].

In contrast to all of the aforementioned work, we derive

expressions for the CRB as a function of distances and angles,

which allow for easy interpretation of the impact of the

network geometry. We do so, not only for the trivial case

of a LoS environment, but also for a NLoS environment

that can be described by the SBM. In the latter case, the

location of the scatterers needs to be jointly estimated with

the location of the MT, thus, from the CRB in its initial form

(product of 3 matrices), it is impossible to understand the

impact of network geometry. However, after a straightforward

derivation, this becomes feasible. Finally, contour maps in the

numerical examples’ section, validate the conclusions drawn

from the CRB expressions and serve as indicators on how the

localization performance can be improved.

Notation: For any defined vector a, A = diag{a} and for

any defined matrix A, a = vec{A}. Extending this, ai will

denote the ith entry of a and the {i, i} entry of A. It therefore

suffices to define any of the above (a vector, a diagonal matrix

or just a scalar), to define all 3.

II. CHANNEL MODEL

Let φi, ψi and di, 1 ≤ i ≤ Ns, denote the AoA, AoD

and length of the ith (N)LoS path respectively2. For a LoS

2The length of the path is just the product of the speed of light times the
corresponding estimated delay, thus we consider the path instead of the ToA.
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Fig. 1. Single Bounce model

environment, these LDP are equal to:

φi =
π

2
(1 − sgn{xmt − xbsi

}) + tan−1 ymt − ybsi

xmt − xbsi

(1)

ψi = φi ± π (2)

di =
√

(ybsi
− ymt)2 + (xbsi

− xmt)2. (3)

Based on the SBM we can also express these LDP explicitly

as a function of the MT coordinates, xmt and ymt, for a NLoS

environment:

φi =
π

2
(1 − sgn{xsi

− xmt}) + tan−1 ysi
− ymt

xsi
− xmt

(4)

ψi =
π

2
(1 − sgn{xsi

− xbsi
}) + tan−1 ysi

− ybsi

xsi
− xbsi

(5)

di = dbs,i + dmts,i (6)

where

dbs,i =
√

(ysi
− ybsi

)2 + (xsi
− xbsi

)2 (7)

dmts,i =
√

(ysi
− ymt)2 + (xsi

− xmt)2 . (8)

SBM can describe accurately a NLoS environment, despite

the fact that it is very simple. Its wide applicability stems

from the fact that in a physical propagation environment, the

more bounces, the larger the attenuation will be, not only

because the scatterer absorbs some of the signals energy

but also because more bounces usually implies a longer

path length. Therefore, if a limited number of NLoS signal

components with non-negligible energy arrive at the receiver,

it is reasonable to assume that they have bounced only once.

III. CRB FOR LOS ENVIRONMENTS

According to the CRB for an unbiased estimator p̂ of p,

the correlation matrix of the parameter estimation errors p̃ is

bounded below by the inverse of the Fisher Information Matrix

(FIM), i.e.3:

Rp̃p̃ = E{(p̂ − p)(p̂ − p)t} ≥ J−1 (9)

Let

θk =







d, k = 1
φ, k = 2
ψ, k = 3

(10)

3For matrices A and B, A ≥ B means that A−B is non-negative definite.

denote the vectors containing the LDP estimates4.It is well

known and can be easily shown, that the information contained

in uncorrelated data (in our case LDP) can be summed up, so

that the FIM for a hybrid localization method is given by:

J =
∑

k

Jθk
=

∑

k

∂θtk
∂p

C−1

θk

∂θk
∂pt

=
∑

k

1

σ2
θk

∂θtk
∂p

∂θk
∂pt

(11)

where the 3rd equality holds only if the entries of θk, ∀k, are

i.i.d. Gaussian with variance σ2
k. To simplify analysis we will

assume this to be true. If the AoA, AoD and delays have been

jointly estimated, some correlation amongst them could be

expected. This would lead to a different and more complicated

FIM expression, due to the non-zero cross-covariance matri-

ces. Since we are interested in studying solely the impact of

the geometric configuration and not that of the LDP accuracy

(and correlation), we consider this correlation to be weak and

ignore it. Due to (2), it can be shown that

σ2
φJφ = σ2

ψJψ (12)

Therefore the FIM for this case becomes

J =
1

σ2
d

Jd +
1

(σ2
φ + σ2

ψ)
Jφ (13)

Using eq. (1)-(3), we obtain for the 4 entries of the FIM

j11 = Ns

σ2

d

−
∑

i αi sin
2(φi) (14)

j12 = j21 =
∑

i αi sin(φi) cos(φi) (15)

j22 = Ns

σ2

d

−
∑

i αi cos2(φi) (16)

where

αi =
1

σ2
d

−
1

(σ2
φ + σ2

ψ)d2
i

. (17)

The FIM for the LoS scenario is a 2 × 2 matrix and thus it

can easily be inverted to get the CRB for the MT position

CRBpos. The derivation is simple and due to space limitation

we give only the result below:

CRBpos = tr{J−1} =
tr{J}

det{J}

=
2
∑

i
1

σ2

d

− αi

2

(

∑

i
1

σ2

d

− αi

2

)2

−
(

∑

i
αi cos 2φi

2

)2

−
(

∑

i
αi sin 2φi

2

)2
.

(18)

Introducing C2φ = diag{c2φ}, which follows the definitions

of the vectors given in (27)-(28) and A we can rewrite the

above formula to be able to compare it to the one for the

NLoS case

CRBpos =
21t( 1

σ2

d

I − 1

2
A)1

Ns

σ2

d

1t( 1

σ2

d

I − A)1 + 1tA(11t − C̆δ2φ)A1
(19)

where C̆δ2φ is a symmetric matrix whose {i, j} entry is equal

to cos(2φi − 2φj).

4For clarity, we omit ·̂ on the LDP quantities, despite the fact that they are
estimates.



IV. CRB FOR NLOS ENVIRONMENTS

In a NLoS scenario, we are again interested in estimating

the MT’s coordinates, pint = [xmt, ymt]
t, but this time in the

presence of nuisance parameters, which are the coordinates of

the scatterers pnui = [xts,y
t
s]
t. The set of all of the above

2Ns + 2 parameters compose the vector:

p = [ptint,p
t
nui]

t (20)

To compute the CRB, the (2Ns + 2)× (2Ns + 2) FIM needs

to be inverted. This is feasible even for large values of Ns, if

we rewrite the FIM as a 2×2 block matrix and use blockwise

inversion. Besides we only need to focus on the upper left

2 × 2 submatrix of its inverse, the trace of which gives the

best possible accuracy, i.e. the CRB for the MT position.

CRBpos = tr{[J−1]1:2,1:2} (21)

By substituting ∂θk

∂pt = [ ∂θk

∂pt

int

∂θk

∂pt

nui

] in (11), we get

J =





∑

k
1

σ2

θk

∂θt

k

∂pint

∂θk

∂pt

int

∑

k
1

σ2

θk

∂θt

k

∂pint

∂θk

∂pt

nui

∑

k
1

σ2

θk

∂θt

k

∂pnui

∂θk

∂pt

int

∑

k
1

σ2

θk

∂θt

k

∂pnui

∂θk

∂pt

nui





,

[

J11 J12

J21 J22

]

(22)

Using blockwise inversion we can obtain the upper left sub-

matrix of the inverse of J, given by the Schur complement of

J22

[J−1]1:2,1:2 = (J11 − J12J
−1
22 J21)

−1 , G−1. (23)

The entries of G are given by eq. (62)-(64), in the appendix.

The CRB for the position estimate is then given by

CRBpos = tr{G−1} =
tr{G}

det{G}

=
21tJ̄−1

det1

1tJ̄−1

det(Q
′

φ+ψ11tQφ+ψ − Sφ+ψ11tSφ+ψ)J̄−1

det1

=
21tJ̄−1

det1

1tJ̄−1

det(11t − C̆δφ+δψ)J̄−1

det1
(24)

where C̆δφ+δψ is a symmetric matrix whose {i, j} entry is

equal to cos(φi − φj + ψi − ψj) and the rest of the matrices

are given in eq. (65)-(69) of the appendix.

V. THE IMPACT OF NETWORK GEOMETRY ON THE CRB

First lets observe from eq. (19) and (24) that both CRB

depend on distances through the matrices A and J̄det. This

is no big surprise, since this hybrid method utilizes angles. In

contrast to ToA-based methods where distances do not impact

performance, in AoA methods, the greater the distances the

signal components cover, the worse the performance. Similarly

here, by taking the partial derivative of the LoS (NLoS)

CRB with respect to any di (dmts,i), it can be proved that

performance worsens when the MT moves away from the BS

(the scatterers). To demonstrate this, consider the following

example, where the MT communicates with 2 BS. In all our

examples, we consider the LDP variances to be constant. Their
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Fig. 2. LoS environment: CRB vs MT position
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Fig. 3. NLoS environment: CRB vs MT position

values are σ2
d = 25m and σ2

φ = σ2
ψ = 1o. The contour

maps show the CRB for a region of 104m2. The contour lines

are based on the c.d.f. of the CRB. Numbering the lines in

increasing order of the corresponding CRB, contour line j
encloses (j/10)100%, j ∈ {1, . . . , 9} of the total area, i.e.,

for a contour line j we have p(CRB < CRB(j)) = j/10.

Therefore, these plots also give the circular error probable

(CEP) [4] defined as the radius of the circle in which the

estimate lies with probability P , eg. in fig. 2, the 90% CEP

is 2.8m. Another important remark can be made by observing

the weighting factors of the distance matrices in eq. (65).

These factors are the variances of the angles. If AoD is much

more accurately estimated than AoA, i.e. if σ2
ψ << σ2

φ, then

only the distances between the MT and the scatterers impact

the performance. This was already observed in the numerical

example illustrated in [9]. In that work, AoA is not known

and thus assuming that the errors in all AoA are uniformly

distributed in [0 , 360o), σ2
φ > 103 >> 1 > σ2

ψ. The

AoD/ToA/Doppler-Shift hybrid method proposed therein, has

similar performance in pico-cells and macro-cells, because, if

elliptical scattering model is considered for the former and

circular for the latter, dmts can be considered approximately

the same (at least same order of magnitude), while dbs is

significantly different.

More interesting is the impact of the various angles. The

NLoS CRBpos depends solely on the sums and the differences

of AoA with the corresponding AoD. This is no big surprise

either, since due to symmetry in a 1 BS scenario, we would

expect to obtain the same performance if we exchange the
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Fig. 4. LoS: CRB vs MT position for collocated BS

position of the BS with that of the MT. Furthermore, one can

observe how similar the 2 CRB expressions are, by replacing

ψ in the NLoS CRBpos, using the LoS condition (2). The

differences of AoA with AoD do not depend on the angles

anymore and the sums are equal to two times the AoA plus a

constant c ∈ {−2π, 0, 2π} so that C̆δφ+δψ = C̆δ2φ. One last

important comment for the CRB final expressions concerns

the matrices denoted by C̆. Due to the terms involving

these matrices, the denominators decrease and thus the CRB

increases. Both CRB are maximized with respect to angles if

C̆δ2φ = C̆δφ+δψ = 11t. This corresponds to collocated BS

for the LS case and collocated scatterers for the 1 BS NLoS

case. While for the LoS the CRB remains finite(localization

with this hybrid method is possible even with 1 BS), for the

NLoS case the CRB goes to infinity and thus it is impossible to

estimate the MT location. The significance of these matrices

is demonstrated with the following contour maps for 1 and

2 BS scenarios. Comparing fig. (2) with fig. (4), we observe

that indeed, in a LoS environment, performance decreases for

closely located BS, but not significantly due to the first term

in the denominator that depends only on distances. In fig. (5),

we can observe the huge impact of collocated scatterers in a 1

BS environment. The CRB of this scenario is compared to that

of fig. (3) and to the other two possible combinations (2 BS

with collocated scatterers and 1 BS with distant scatterers)

in fig.(6). It is shown that while for collocated scatterers it

is preferable to have communications with more than 1 BS,

in environments with distant scatterers communication with

just 1 BS via multiple paths can sometimes lead to better

performance.

VI. CONCLUSIONS

In this contribution we investigated the impact of network

geometry and evaluated hybrid localization methods in both

LoS and NLoS environments. We based our analysis on the

single bounce model and derived meaningful expressions for

the CRB in an attempt to explain how the actual location of

the MT and the scatterers can affect the accuracy of the local-

ization method. Comparison of the CRB using contour maps

and c.d.f. plots for different scenarios, provided a graphical

demonstration of the conclusions reached by interpreting the

CRB expressions. The results presented herein are prelimi-
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nary and could be extended in various directions, including

investigating more scenarios, introducing dynamic instead of

static channels, deriving and illustrating the optimal geometric

configurations and comparing different hybrid methods.

APPENDIX

To compute the entries of G lets introduce some key

quantities

Dmts , ((Ys − ymtI)
2 + (Xs − xmtI)

2)
1

2 (25)

Dbs , ((Ys − Ybs)
2 + (Xs − Xbs)

2)
1

2 (26)

cz , [cos(z1), . . . , cos(zNs)]
t (27)

sz , [sin(z1), . . . , sin(zNs)]
t (28)

where the last two vectors are defined for any vector

z = T (φ) + T (ψ) (29)

that is a linear transformation of the vectors containing AoA

and AoD and thus contains angles. If the MT communi-

cates only with 1 BS through a multipath environment, then

Ybs = ybsI and Xbs = xbsI. Lets further define the vectors

and matrices containing partial derivatives

Dxs
, ∂dt

∂xs

= Cφ + Cψ (30)

Dys
, ∂dt

∂ys

= Sφ + Sψ (31)

dtx , ∂dt

∂xmt

= −ctφ = −1tCφ (32)

dty , ∂dt

∂ymt

= −stφ = −1tSφ (33)



Φxs
,

∂φt

∂xs

= −SφD
−1
mts (34)

Φys
,

∂φt

∂ys

= CφD
−1
mts (35)

φtx ,
∂φt

∂xmt

= stφD
−1
mts = 1tSφD

−1
mts (36)

φty ,
∂φt

∂ymt

= −ctφD
−1
mts = −1tCφD

−1
mts (37)

Ψxs
,

∂ψt

∂xs

= −SψD−1

bs (38)

Ψys
,

∂ψt

∂ys

= CψD−1

bs (39)

ψtx ,
∂ψt

∂xmt

= 0t (40)

ψtx ,
∂ψt

∂ymt

= 0t . (41)

Based on this we can compute each of the submatrices in

(23). J22 is a 2× 2 block matrix, each Ns×Ns submatrix of

which is diagonal as long as the paths are distinct. Thus, we

can again use block inversion and the solution is very simple

since it resembles the solution of the 2 × 2 matrix inversion

problem. Let

J22 =

[

J22a J22b

J22b J22d

]

. (42)

Then

J−1
22 =

[

J22dJ
−1

det −J22bJ
−1

det

−J22bJ
−1

det J22aJ
−1

det

]

(43)

where Jdet = J22aJ22d−J2
22b and the 3 different submatrices

composing J22 are given by:

J22a = σ−2

d D2
xs

+ σ−2

φ Φ2
xs

+ σ−2

ψ Ψ2
xs

(44)

J22b = σ−2

d Dxs
Dys

+ σ−2

φ Φxs
Φys

+ σ−2

ψ Ψxs
Ψys

(45)

J22d = σ−2

d D2
ys

+ σ−2

φ Φ2
ys

+ σ−2

ψ Ψ2
ys

(46)

J21 = Jt12 can also be expressed as a 2 × 2 block matrix

J21 =

[

j21a j22b
j22c j22d

]

. (47)

The elements of this block matrix are the following vectors

j12a = σ−2

d Dxs
dx + σ−2

φ Φxs
φx (48)

j12b = σ−2

d Dys
dx + σ−2

φ Φys
φx (49)

j12c = σ−2

d Dxs
dy + σ−2

φ Φxs
φy (50)

j12d = σ−2

d Dys
dy + σ−2

φ Φys
φy (51)

Last,

J11 =

[

σ−2

d dtxdx + σ−2

φ φtxφx σ−2

d dtxdy + σ−2

φ φtxφy

σ−2

d dtxdy + σ−2

φ φtxφy σ−2

d dtydy + σ−2

φ φtyφy

]

.

(52)

Substituting the 4 submatrices given by (43),(47),(52) into (23)

we obtain after some algebraic computations the 4 entries of

G:

g11 = dtxFDdx + φtxFΦφx + 2dtxFφx (53)

g22 = dtyFDdy + φtyFΦφy + 2dtyFφy (54)

g21 = g12 = dtxFDdy + φtxFΦφy + dtxFφy + dtyFφx (55)

where we have introduced the matrices

FD = σ−2

d I − σ−4

d

(

D2
xs

J22a

+D2
ys

J22d − 2Dxs
Dys

J22b

)

J−1

det (56)

FΦ = σ−2

φ I − σ−4

φ

(

Φ2
xs

J22a

+Φ2
ys

J22d − 2Φxs
Φys

J22b

)

J−1

det (57)

F = −σ−2

d σ−2

φ (Dxs
Φxs

J22a + Dys
Φys

J22d

−(Dxs
Φys

+ Dys
Φxs

)J22b)J
−1

det (58)

Replacing the vectors that contain partial derivatives into the

entries of G, we obtain

g11 = 1t(C2
φFD + D−2

mtsS
2
φFΦ − 2D−1

mtsCφSφF)1 (59)

g22 = 1t(S2
φFD + D−2

mtsC
2
φFΦ + 2D−1

mtsCφSφF)1 (60)

g12 = 1t
(

CφSφFD − D−2
mtsCφSφFΦ

+D−1
mts(C

2
φ − S2

φ)F
)

1 (61)

Finally, replacing the matrices that contain the partial deriva-

tives from (30)-(39) into the submatrices of J22 and the

matrices F, FΦ, FD and subsequently the results into the

entries of G, we obtain

g11 = 1t(Q′

φ+ψJ̄
−1

det)1 (62)

g22 = 1t(Qφ+ψJ̄
−1

det)1 (63)

g12 = −1t(Sφ+ψJ̄
−1

det)1 (64)

where

J̄det = (σ2
dσ

2
φσ

2
ψ)D2

bsD
2
mtsC

−1

I Jdet

= ((σ2
ψD

2
bs + σ2

φD
2
mts)Qφ−ψ + σ2

dQ
′

φ−ψ) (65)

and we have introduced

Qφ−ψ = I + Cφ−ψ (66)

Q′

φ−ψ = I − Cφ−ψ (67)

Qφ+ψ = I + Cφ+ψ (68)

Q′

φ+ψ = I − Cφ+ψ . (69)
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