
Face Recognition with DAISY Descriptors

Carmelo Velardo
Eurecom

2229 Route des Cretes
06560, Sophia Antipolis, France

velardo@eurecom.fr

Jean–Luc Dugelay
Eurecom

2229 Route des Cretes
06560, Sophia Antipolis, France

dugelay@eurecom.fr

ABSTRACT
In this paper we propose a new face recognition approach
based on DAISY, a dense computed SIFT–like descriptor.
Our algorithm is designed to be fast for dense computation,
and useful for re–identification as it is able to distinguish
pairs of images as belonging to the same subject or not. The
descriptors are computed densely and matched with a new
strategy that represents an efficient trade off between accu-
racy and computational load; afterwards a Support Vector
Machine is used to classify the output of the matching to rec-
ognize if the pair of images belongs to the same person. An
analysis of performance will be conducted on two different
databases in order to compare our results with the already
existing ones. We show that better performance than SIFT
techniques can be achieved using our algorithm.
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Security
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1. INTRODUCTION
As the use of video surveillance systems becomes massive,

accurate methods for person re–identification are needed.
The intention of such a technique is to recognize all instances
of the same person at any given location and at any given
time instant. In a typical surveillance scenario a subject
crosses the field of view of one camera and the operator
wants to track him/her. Common approaches rely on sam-
ples of the appearance of the tracked person, those features
are taken at distance as the typical scenario is thought for
cameras placed in big public areas (squares, airport halls,
. . . ) far away from the target, and hence often unprecise.
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However a new scenario is nowadays appearing. Since
video surveillance cameras show already cutting edge per-
formances of more than one mega pixel, a sample of subject
face could show good characteristics, enough to be consid-
ered from a re–identification system. That is to say com-
puting a similarity score between two representations of the
same (or different) face. Such similarity score can be ex-
ploited to match all the previous or future appearances of
the same subject.

Many interesting algorithms exist that address the prob-
lem of face recognition. Among all, recently, several face
recognition techniques were presented which make intensive
use of Scale Invariant Feature Transform (SIFT) [7] descrip-
tors. This technique was originally conceived for object
recognition as its major characteristic is the extraction of
view–invariant representation of 2D patterns.

Bicego et al. pioneered the SIFT use in this field; in [1]
they apply SIFT keypoint extraction and comparison using
different methods. In their first approach they extract the
pair of descriptors that provides the minimum distance be-
tween the query and the template image. This value of dis-
tance is then used to compute the similarity between faces.
In a second approach, they use a regular grid to extract and
to compare the descriptors, the distances are then averaged
in order to compute a similarity score for the given images.

A similar technique is shown in [8] where faces are seg-
mented in 5 different areas (the two eyes, the nose, and the
two sides of the mouth). The features belonging to each
area on the query are compared with the ones present in the
corresponding area on the template image. Additionally a
full match strategy is performed that does not consider the
5 regions constraint. Both the scores for local and global
analysis are then considered for the identification.

Other approaches [4, 11] exploit the SIFT features to build
a connected graph that links all the features extracted from
a face. A graph–matching algorithm is then introduced to
compute the matching score. This approach arises the prob-
lem of multiple feature matches: due to the complexity of
faces, many local features may present similar descriptors.
Systems that do not take into account spatial constraints
may then present multiple matches for a single point.

In [3] the authors propose two modifications of SIFT. The
former involves the keypoints selection scheme: the distance
metric is modified in order to obtain more robust locations
for the computation of the descriptor; the latter introduces
the concept of partial descriptor in order to deal with the
boundaries of the image.

A different methodology exploits SIFT directly as input



features of the recognition system. In [5] a bag of words ap-
proach is exploited that creates clusters of SIFT words. A
face is then represented as a collection of those words, and
the recognition is performed using a Support Vector Ma-
chine (SVM) classifier. A Multi Layer Perceptron is trained
in [6] which uses the bootstrap technique. Each of the SIFT
features extracted from a face are given as input to the mul-
tilayer perceptron that provides as output a probability his-
togram representing the score for each subject previously
enrolled.

The aforementioned systems rely on a number of key-
points that may appear insufficient as a good feature present
in one pose can disappear or be considered unstable in an-
other one. This exposes those techniques to the risk of de-
creasing performance in the case of pose variations or in
case other factors cause the occlusion of some of the points
needed for the recognition.

We believe that a dense computation of descriptors could
address this issue since if some points will lack, others will
take their places. For this reason our new face recognition
system is conceived to exploit DAISY [14], a recent descrip-
tor particularly efficient for dense computation. Nonetheless
a high number of points can represent a challenge as we need
to compare all of them. A new matching procedure is then
presented that allows an efficient feature–to–feature match-
ing computation.

Given a pair of face images our system classifies them as
a Client match if the two images belong to the same person,
otherwise they are marked as an Impostor pair.

In [13] the mechanism of face recognition is described as
twofold: holistic or feature based. Nevertheless the study
shows that even when feature based, the recognition mech-
anism has to be considered holistically, that is to say all
the features have to be considered together in the compu-
tation. The algorithm we present follows this statement as
all the features are locally extracted and then evaluated as
a whole via a Support Vector Machine classifier. Our idea is
based on the use of DAISY descriptor and a local analysis of
the points based on a recursive grid approach. The former
technique manages the dense computation of the descriptors
(potentially for each pixel of the image), the latter allows to
prune the search for the best match, without incurring in
the curse of dimensionality.

As from [12] the face of an individual can be affected from
a series of slight variations, those variations may affect the
performance of face recognitions systems, this can be partic-
ularly present in the video surveillance scenarios. We devel-
oped our system in order to be robust to those variations,
the descriptor should provide the robustness to light varia-
tion, and the search algorithm robustness to changes in the
pose and expression of the subject.

The remaining part of the paper will be firstly devoted
to DAISY, the descriptor used for features extraction, then
in Section 3 the face matching approach will be explained.
Sections devoted to experimental results and the conclusions
will then follow.

2. FAST DESCRIPTOR FOR DENSE COM-
PUTATION

Scale invariant features (SIFT) were introduced in [7] as
keypoints descriptors for detecting and extracting distinc-

tive local features from images, and lately many applications
exploited them for object recognition and tracking.

The main drawback of such technique lays on the amount
of resources required and for this reason, other descriptors
as GLOH from Mikolajczyk and Schmid [10] and DAISY of
Tola et. al [14], were designed to have better performance.

Although DAISY has been used in case of strong appear-
ance changes (e.g. wide baseline stereo matching problem),
such descriptor has never been applied in other problems
dealing with high non linear transformation of the target
like in face recognition. Particularly, the design of DAISY
has shown promising performance independently in [14] and
[15]. The authors of both works point out the outperforming
results of several possible combinations of the same descrip-
tor against SIFT.

Because of this reason, and since the design of our face
identification algorithm requires a dense representation of
face feature descriptors, we chose to use DAISY. Besides
giving results that are comparable to the one of SIFT and
GLOH [14, 15], DAISY is perfectly appropriate for dense
computation. As from the work of Tola et al. [14] the new
descriptor performs 66 times faster than SIFT in the dense
scenario, that makes it suitable for our work.

Figure 1: DAISY descriptor shape. The size of the
circle represents the size of the Gaussian kernel con-
sidered when computing the histogram.

DAISY shape is depicted in Fig.1. It is based on convolu-
tion of gradients in specific directions. An image is converted
into a series of orientation maps (one for each quantized di-
rection). Given an image I and a direction o such orientation
maps are defined as Mo = ( ∂I

∂o
)+ and represent the positive

values of the image gradient norm for each pixel position.
Subsequently the orientation maps are multiplied by Gaus-

sian kernels of increasing standard deviation values GΣ
o =

NΣ ∗Mo. Each of these represents a different level of image
content and is kept for further computations.

For all the pixels, the neighborhood of radius δ is divided
in a series of intersecting circles displaced as in Fig.1. The
radii of the circles are proportional to their distance from
the center of the descriptor (i.e. the pixel for which we are
computing the descriptor). Each circle represents the loca-
tion where a histogram is computed from all the values of the
GΣ

o belonging to that particular orientation. Histograms are
computed similarly to what happens with SIFT and GLOH.

Once those computations are over, the full descriptor is
built as concatenation of all the other small histograms.
Then, for each pixel position, we obtain a sequence of num-
bers representing the normalized histograms coming from
the orientation maps on the neighborhood of the given pixel.



As distance metric for computing the dissimilarity of two
features, we followed the suggestion of DAISY authors of
using a straightforward Euclidean distance. The choice is
also due to the preservation of speed that such metric allows.

3. FACE MATCHING
This section introduces our matching strategy that ex-

ploits the dense computation of DAISY descriptors and a
recursive approach for matching the two images. Our inten-
tion is to produce a similarity mask for the data and use
such mask to classify the pairs of images exploiting an SVM
classifier.

Computation

of DAISY

descriptors

Matching

of the images

descriptors

Vectorize

SVM

classification

CLIENT

IMPOSTOR

Figure 2: Scheme that provide an overview of the
proposed approach.

A high level description of our approach is proposed in
Fig.2. The algorithm takes as input two images to be evalu-
ated. Those images can come from two different cameras of
a surveillance scenario, or being a query image to be checked
and a template image coming from a database of enrolled
persons.

The system firstly initializes DAISY computation in or-
der to extract the descriptors, then the recursive grid search
extracts the local distances between query and template for
each grid location. Afterwards the series of local distances
is vectorized and passed through an SVM classifier that dis-
tinguishes between a client or an impostor match in case the
two images represent the same subject or two different ones.

This set up is useful for both the re–identification scenario
and the face recognition one. In the former the images come
from two different cameras, while in the latter the first is
the enrollment picture, the other is the query image.

3.1 Recursive grid
In [1] a grid of intersecting squared areas is used to com-

pute SIFT features. Those sub images are of 1/4 and 1/2
of image width and height respectively. The keypoints ex-
tracted are matched using corresponding areas in query and
template images. Our matching strategy also considers a
grid in the query and template image, but both the gran-
ularity and the computation of the matching differ a lot.
In [1] the keypoints selection scheme does not allow con-
trol on where the descriptor is computed (i.e. the authors

have to accept as good the selection performed by SIFT). In
our case, instead, the dense computation of DAISY poten-
tially allows the matching at each pixel location, hence we
are not bound to any keypoint selection scheme. Moreover,
its computational speed ensures the division of the image in
smaller areas and then allows to consider a higher number
of sub images. Nevertheless having a large number of de-
scriptors can also represent a drawback. The time required
for the computation increases proportionally to the number
of keypoints to be matched (in the worst case quadratically
to the number of features).

Figure 3: A graphical example of the concept of
recursive search in a grid. The size of the circle rep-
resents the magnitude of the distance value. We can
notice the strong similarity with three step search
performed in block matching for motion estimation.

For this reason we introduce here a recursive grid search
that is able to extract the local distances for each point of
the grid. The recursive approach is used to prune the search
tree considering only the portion of the area that seems to
have small distance w.r.t. the original keypoint. A graphical
example of the algorithm is shown in Fig.3.

A fixed grid is superimposed to the query image, for each
grid point in the query we compute the corresponding de-
scriptor as explained in the previous section. We compute
then its distance with the corresponding point on the tem-
plate grid in a recursive way.

Algorithm 1 Procedure that computes the array of local
scores
Require: Query and Template images.

for all i in grid(Query) do
Take j, corresponding point into the grid(Template)
Compute distance between the two descriptors

ld ← Euclidean( DAISY(i), DAISY(j) )
Extract min value from the neighborhood

nd ← NeighDistance(i,j,δ)
Min between local and neighbors distances

outResult(i) ← min(ld, gd)
end for
Return the array of local minima

return outResult

The distance is computed taking into account also the
neighborhood (at distance δ) of the current point. After-
ward, the point showing the minimum distance is consid-
ered for further analysis, the algorithm takes it as center,
halves the distance, and the computation continue until the
smallest radius is reached.

A facial expression can be seen as a displacement of the
feature points over the face surface; the design of the search
algorithm guarantees robustness to this kind of variations.
In fact each feature descriptor can be searched in a neigh-



Algorithm 2 Function that recursively computes the local
matching score

Require: Points i, j and radius δ
function NeighDistance(i, j, δ)
if δ is 1 then

Return the biggest number available in the system

return BIG
end if
For all the j neighbors at distance δ

for all k in Neighborhood(j, δ) do
Compute the distance between k and i

d(k) ← Euclidean( DAISY(k), DAISY(i) )
end for
Select the point with minimum distance from i

kmin ← argmink(d)
Return the real minima

return min(d(kmin), NeighDistance(kmin, i, δ/2))

borhood that varies according to the magnitude of the local
search distance δ. Moreover, even if the size of the descrip-
tor is smaller than the local search distance the multi–step
algorithm allows a small overlap ensuring stability against
features displacement.

Using the grid search allows us to exploit the dense com-
putation of the descriptors without incurring into the curse
of dimensionality. That is to say we compute the descriptors
at each pixel position, but we perform the comparison for
the portions of the Template image that show similarities
with the Query ones.

An additional consideration has to be done on the com-
putational load of our algorithm. A system exploiting a
full dense computation would need to consider a number of
matches far away bigger than our approach. For the numer-
ical comparison we will consider a coarse grid dimensions
of 11 × 9 points and a search depth of 3 steps. In case
of full dense matching approach the number of matches to
be evaluated is equal to 9 × 8 × 8 × 99 = 57024. Using
the recursive grid search, instead, allows to focus the search
on the portion of the image patch that looks more simi-
lar to the original patch. From a numerical point of view:
(9 + 8 + 8) × 99 = 2475, that means exploiting our match-
ing design allows 23 times faster performances w.r.t. the
complete dense approach.

3.2 Data representation and classification
Data are processed in pairs using our recursive grid search

algorithm. It computes the local minimum for a given grid
location using a recursive approach and exploiting the dense
computation of the DAISY descriptor. The computation is
dense as the descriptor can be potentially needed at each
pixel location.

An example of the recursive grid search output is shown
in Fig.4, two pairs are shown belonging to a client and an
impostor match. As from the scheme in Fig.2, at the end of
the features extraction block, data are provided to a Support
Vector Machine that analyzes and classifies the image pair
as belonging to the Client or Impostor class.

4. EXPERIMENTAL RESULTS
This section is dedicated to the experimental results that

validate our face identification system. A comparison with

(a)

(b)

Figure 4: A graphical example of the recursive grid
search output. In the client (a) and impostor (b)
pairs, each small square represents the local distance
value associated to the grid point.

other similar techniques will be presented showing the in-
crease of performance of our system w.r.t. the others. In
order to compare our results with the techniques that shares
similarities with our study we consider the well–known Oli-
vetti Research Lab (ORL) and the FERET databases.

After the local minima are computed for the given pair of
images, all the values are vectorized and normalized in the
range [−1, +1], such normalization is needed for the classifi-
cation of the data. In our case the grid size is fixed to 11×9
points, this means 99 values feature vectors that are elabo-
rated from our classifier. For the SVM classification the tool
provided by [2] was used. The classification was performed
using a k–fold methodology (k equal to 5) in order to assure
that all the available data could be used for training and
testing, and to avoid overtraining. The outcome of the cross
validation is obtained averaging the results of each fold.

For the sake of clarity the presentation of the results will
be divided per database.

4.1 Olivetti Research Lab database
The ORL database is a general collection of faces com-

posed by 40 subjects and 10 pictures per subject. No con-
straints where imposed at collection time, so that it shows
different facial expressions and pose. The images size is 112
pixel for the height and 92 for the width.

Regarding the ORL database the methodology used is the
following: for each person all the possible pairs of images are
considered so that a total of 1800 pairs of Clients are gen-
erated. The same number of Impostors is generated using
random couples of subjects. A total of 3600 different output
vectors are then analyzed using the SVM classifier.

Regarding the results over the ORL dataset, Table 1 shows
the recognition rates. We can clearly see that using our sys-
tem increase the recognition performance w.r.t. the others.
The similar results of the techniques based on SIFT can
be explained as a limitation of the technique itself and es-
pecially on the number of features they use. The number
of descriptors used for the recognition process by the three
methods is comparable, that validates our idea about the



Table 1: Performance over ORL database. The first
two results are taken from [9] while the third one
from [3].

Methods Recognition rate
SIFT GRID 95.2
Fisher Ratio SIFT 95.5
PDSIFT 95.5

Proposed approach 98.2

need of a descriptor suitable for dense computation in face
recognition.

4.2 FERET database
The FERET database is well known as it became the stan-

dard de facto for face recognition techniques. Although it is
composed of several galleries, in this work we consider the
first two (fafb and fafc) as they are useful for comparison
purposes. The first gallery is a collection of 1195 images
with expression variations and the second contains 194 im-
ages with illumination variation, both the probes are com-
pared with an original gallery of 1196 pictures from 1196
different persons.

The same strategy was adopted for the two galleries of
the FERET database. In the first case a number of 1195
clients and impostors was created and for the second gallery
194 pairs where matched. Each image was downscaled to
92 × 112 from its original size for the sake of comparison.
FERET images are normally bigger and the rescaling may
affect our recognition system, in any case still the results are
better than the previous approaches.

Table 2: Performance over FERET database. The
results where taken from [8].

Methods FERET fafb FERET fafc
SIFT GRID 94 35
Local/Global SIFT 97 47
Local Binary Pattern 97 79

Proposed approach 97 70

Table 2 shows the performance of our algorithm using the
FERET database. Here our algorithm is comparable with
the one of [8] for the analysis on the first probe gallery (fafb),
however is in the second one that our algorithm shows bet-
ter performance than the others based on SIFT and it ap-
proaches the good results of the Local Binary Pattern tech-
nique.

Our system performs a search in the full image spaces;
this explain the clear gap between our result and the ones of
SIFT techniques. Indeed the recursive grid search algorithm
allows the comparison of all the patches that compose the
two images (since we compute the descriptor densely), at the
contrary the tecniques exploiting SIFT analyze only some of
the descriptors present in the image (i.e. the ones of the most
stable keypoints). Additionally the illumination variations
(present in the fafc gallery) affect the appearance of the face,
and by reflex also the keypoint selection scheme of SIFT.

4.3 Intra–database cross validation
For further validation of our algorithm an intra–database

cross validation was performed. In other words our system
was trained using alternatively one of the databases and
tested on the second one. Such methodology, not always ex-
ploited, may represent a solution to assure that the results
are not biased by the use of a single database. It guaran-
tees indeed that the training and testing steps are done on
completely different data populations. Additionally it ap-
proximates better real case scenarios where the enrollment
is not done in the same conditions (usually different people
and different cameras, i.e. the typical video surveillance sce-
nario). The results of such analysis are reported in Table 3.
The stability of our system is then validated as the results
are coherent between the two tests.

Table 3: Intra–database cross validation. For the
FERET database the fafb gallery was used.

Methods Rate
Train Test
ORL FERET 96.1

FERET ORL 96.5

This result shows how both the models of the Client and
the Impostor are learned correctly from the SVM. It shows
that a system could be set up where the enrollment is given
a priori and only the test has to be performed, increasing
then the speed of the system itself.

5. CONCLUSIONS
A new face recognition approach was presented that clas-

sifies a pair of images as client or impostor pair. The system
exploits DAISY a novel keypoint descriptor originally con-
ceived for stereo matching via dense computation. DAISY
is used in this paper for the dense extraction of the features
exploited for face matching as its performance overwhelms
for speed the well–known SIFT.

The experiments were conducted through the ORL and
FERET database; they show better results compared to
similar approaches using SIFT, validating the exploitation
of the new descriptor and the design of the matching. Fu-
ture works may concern the use of the matching techniques
introduced by [14] together with DAISY in order to make it
robust in occlusion handling that can occur in strong pose
variation.
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