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Abstract

Base station cooperation is an attractive way of increasing the spectral efficiency in multiantenna

communication. By serving each terminal through several base stations in a given area, inter-cell

interference can be coordinated and higher performance achieved, especially for terminals at cell

edges. Most previous work in the area has assumed that base stations have common knowledge of

both data dedicated to all terminals and full or partial channel state information (CSI) of all links.

Herein, we analyze the case of distributed cooperation where each base station has only local CSI,

either instantaneous or statistical. In the case of instantaneous CSI, the beamforming vectors that

can attain the outer boundary of the achievable rate region are characterized for an arbitrary number

of multiantenna transmitters and single-antenna receivers. This characterization only requires local

CSI and justifies distributed precoding design based on a novel virtual SINR framework, which can

handle an arbitrary SNR and achieves the optimal multiplexing gain. The local power allocation

between terminals is solved heuristically. Conceptually, analogous results for the achievable rate

region characterization and precoding design are derived in the case of local statistical CSI. The
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benefits of distributed cooperative transmission are illustrated numerically, and it is shown that most

of the performance with centralized cooperation can be obtained using only local CSI.

Index Terms

Coordinated multipoint (CoMP), network MIMO, base station cooperation, distributed precoding,

rate region, virtual SINR.

I. INTRODUCTION

The performance of cellular communication systems can be greatly improved by multiple-input

multiple-output (MIMO) techniques. Many algorithms have been proposed for the single-cell downlink

scenario, where a base station communicates simultaneously with multiple terminals [1]. These

approaches exploit various amounts of channel state information (CSI) and improve the throughput

by optimizing the received signal gain and limiting the intra-cell interference. In multicell scenarios,

these single-cell techniques are however obliged to treat the interference from adjacent cells as noise,

resulting in a fundamental limitation on the performance [2]–[5]—especially for terminals close to

cell edges.

In recent years, base station coordination (also known as network MIMO [4]) has been analyzed as

a means of handling inter-cell interference. In principle, all base stations might share their CSI and

data through backhaul links, which enable coordinated transmission that manages the interference as

in a single cell with either total [6] or per-group-of-antennas power constraints [7]. Unfortunately,

the demands on backhaul capacity and computational power scale rapidly with the number of cells

[8], [9], which makes this approach unsuitable for practical systems. Thus, there is a great interest in

distributed forms of cooperation that reduce the backhaul signaling and precoding complexity, while

still benefiting from robust interference control [9]–[12]. Two major considerations in the design of

such schemes are to which extent the cooperation is managed centrally (requires CSI sharing) and

whether each terminal should be served by multiple base stations (requires data sharing).

We consider the scenario of base stations equipped with multiple antennas and terminals with a

single antenna each. In this context, the multiple-input single-output interference channel (MISO IC)

represents the special case when each base station only serves a single unique terminal, but can share

CSI to manage co-terminal interference. Although each base station aims at maximizing the rate

achieved by its own terminal, cooperation over the MISO IC can greatly improve the performance

[13]. The achievable rate region was characterized in [14] and the authors proposed a game-theoretic

precoding design based on full CSI sharing [13]. Distributed precoding that only exploits locally

available CSI can be achieved when each base station balances the ratio between signal gain at the
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intended terminal and the interference caused at other terminals [15]–[17]. Recently, this approach

has been shown to attain optimal rate points [17].

Herein, we address the problem of distributed network MIMO where the cooperating base stations

share knowledge of the data symbols but have local CSI only, thereby reducing the feedback load on

the uplink and avoiding cell-to-cell CSI exchange. The fundamental difference from the MISO IC is

that multiple base stations can cooperate on serving each terminal, which means that the achievable

rate region is larger [18]. In addition, the number of terminals is not limited by the number of base

stations. In this paper, we derive a characterization of the optimal linear precoding strategy, which

formally justifies a distributed approach that treats the system as a superposition of broadcast channels.

This leads to novel distributed beamforming and power allocation strategies. The major contributions

are:

• We characterize the achievable rate region for network MIMO with an arbitrary number of links

and antennas at the transmitters, and either instantaneous or statistical CSI. The optimal beam-

formers are shown to belong to a certain subspace defined using local CSI. This parametrization

provides understanding and a structure for heuristic precoding.

• We propose a distributed virtual SINR framework based on uplink-downlink duality theory [19].

This framework is used for distributed beamforming design and power allocation with local

instantaneous CSI, and handles an arbitrary number of links. It achieves the optimal multiplexing

gain and numerical examples show good and stable performance at all SNRs, which makes it

more practical than distributed maximum ratio transmission (MRT) and zero-forcing (ZF).

• We extend this framework to handle beamforming design with local statistical CSI, for cases

when instantaneous fading information is unavailable. A heuristic power allocation scheme is

also proposed under these conditions.

Preliminary results with two base stations and two terminals were presented in [18]. The perfor-

mance and complexity differences between centralized and distributed precoding are discussed in

[20]. An alternative approach based on superposition of ICs is analyzed in [21].

Notations: Boldface (lower case) is used for column vectors, x, and (upper case) for matrices,

X. Let XT , XH , and X∗ denote the transpose, the conjugate transpose, and the conjugate of X,

respectively. The orthogonal projection matrix onto the column space of X is ΠX = X(XHX)−1XH ,

and that onto its orthogonal complement is Π⊥
X = I−ΠX, where I is the identity matrix. CN (x̄,Q)

is used to denote circularly symmetric complex Gaussian random vectors, where x̄ is the mean and

Q is the covariance matrix.
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II. SYSTEM MODEL

The communication scenario herein consists of Kr single-antenna receivers1 (e.g., active mobile

terminals) and Kt transmitters (e.g., base stations in a cellular system) equipped with Nt antennas

each. The jth transmitter and kth receiver are denoted BSj and MSk, respectively, for j ∈ {1, . . . ,Kt}

and k ∈ {1, . . . ,Kr}. This setup is illustrated in Fig. 1 for Nt = 8. Let xj ∈ CNt be the signal

transmitted by BSj and let the corresponding received signal at MSk be denoted by yk ∈ C. The

propagation channel to MSk is assumed to be narrowband, flat and Rayleigh fading with the system

model

yk =
Kt∑
j=1

hH
jkxj + nk (1)

where hjk ∈ CN (0,Qjk) represents the channel between BSj and MSk and nk ∈ CN (0, σ2
k) is

white additive noise. The channel correlation matrix Qjk = E{hjkhH
jk} ∈ CnT×nT is positive semi-

definite. Throughout the paper, each receiver MSk has full local CSI (i.e., perfect estimates of hjk

for j = 1, . . . ,Kt). At the transmitter side, we will distinguish between two different types of local

CSI:

• Local Instantaneous CSI: BSj knows the current channel vector hjk and the noise power σ2
k,

for k = 1, . . . ,Kr.

• Local Statistical CSI: BSj knows the statistics of hjk (e.g., type of distribution and Qjk) and

the noise power σ2
k, for k = 1, . . . ,Kr.

Observe that in both cases, the philosophy is that transmitters only have CSI that can be obtained

locally (either through feedback or reverse-link estimation [22]). Hence, there is no exchange of CSI

between them, thus allowing the scalability of multicell cooperation to large and dense networks.

For simplicity, each transmitter has CSI for its links to all receivers, which is non-scalable when the

resources for CSI acquisition are limited. However, it is still a good model for large networks as most

terminals will be far away from any given transmitter and thus have negligibly weak channel gains.

A. Cooperative Multicell Precoding

Let sk ∈ CN (0, 1) be the data symbol intended for MSk. Unlike the MISO IC [13]–[17], we

assume that the data symbols intended for all receivers are available at all transmitters. This enables

cooperative precoding techniques, where each receiver is served simultaneously by all the transmitters

in the area2. Herein, we will consider distributed linear precoding where each transmitter selects its

1The results herein also apply to simple multi-antenna receivers that fix their receive beamforming (e.g., antenna selection)

prior to base station optimization.
2This assumption will ease the exposition, but in practice the subset of terminals served by a given base station will be

determined by a scheduler. This scheduling problem is however beyond the scope of this paper.
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Fig. 1. The basic scenario with Kt base stations and Kr terminals (illustrated for Nt = 8 transmit antennas).

beamforming vectors independently using only local CSI, as defined above. Proper transmission

synchronization is however required to avoid inter-symbol interference. The signal transmitted by

BSj is

xj =
Kr∑
k=1

√
pjkwjksk (2)

where the beamforming vectors wjk have unit norms (i.e., ‖wjk‖=1) and pjk represents the power

allocated for transmission to MSk from BSj . BSj is subject to an individual average power constraint

of Pj ; that is, E{‖xj‖2} =
∑Kr

k=1 pjk ≤ Pj . Thus, the main differences between the scenario at hand
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and the MISO broadcast channel (BC) is that in the latter all antennas are controlled by a central

unit with CSI of all links and a joint power constraint.

When the receivers treat co-terminal interference as noise, the instantaneous SINR at MSk is

SINRk =

∣∣∣∣Kt∑
j=1

√
pjkhH

jkwjk

∣∣∣∣2
Kr∑̄
k=1
k̄ 6=k

∣∣∣∣Kt∑
j=1

√
pjk̄h

H
jkwjk̄

∣∣∣∣2 + σ2
k

for k = 1, . . . ,Kr. (3)

The maximal achievable instantaneous transmission rate is accordingly Rk = log2(1 + SINRk).

In the case of local statistical CSI at each transmitter, we introduce the notation ak̄k ,
∑Kt

j=1
√

pjk̄h
H
jkwjk̄,

Sk ,
∑Kt

j=1 WH
j QjkWj , and Wj , [√pj1wj1 . . .

√
pjKr

wjKr
]. The collective beamforming matrix

Wj is statistically independent of the instantaneous channel realizations hjk, since it is only based on

statistical CSI. Then, the stochastic behavior of the SINR in (3), seen by the transmitters, is clarified

by the alternative expression

SINRk =
|akk|2

Kr∑̄
k=1
k̄ 6=k

|ak̄k|2 + σ2
k

with ak = [a1k . . . aKrk]H ∈ CN (0,Sk).

(4)

When the transmitters only have statistical CSI, they can only optimize an average performance mea-

sure. Herein, we therefore consider the expected achievable transmission rate, E{Rk} = E{log2(1 +

SINRk)}. Using the notation introduced above, it can be calculated using the next theorem. The

results will be used for precoding design in Section IV-B.

Theorem 1. Let S̃k be the matrix obtained by removing the kth column and kth row of Sk. Then,

E{log2(1 + SINRk)} =
rank(Sk)∑

m=1

e
σ2

k
µm E1

(
σ2

k

µm

)
log(2)

∏
l 6=m

(1− µl

µm
)

−
rank(S̃k)∑

m=1

e
σ2

k
λm E1

(
σ2

k

λm

)
log(2)

∏
l 6=m

(1− λl

λm
)

(5)

where µ1, . . . , µrank(Sk) and λ1, . . . , λrank(S̃k) are the non-zero distinct eigenvalues of Sk and S̃k,

respectively. Here, E1(x) =
∫∞
1 e−xu/u du is the exponential integral.

Proof: The proof is given in Appendix A.

As stated in Theorem 1, a requirement for the expressions in (5) is that all non-zero eigenvalues

of Sk and S̃k are distinct. In the unlikely event of non-distinct eigenvalues, general expressions can

be derived using the theory of [23] and [24].
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III. CHARACTERIZATION OF THE PARETO BOUNDARY

In this section, we analyze the achievable rate region for the scenario at hand, which will provide

a precoding structure that is used for practical precoding design in Section IV. Since the receivers

are assumed to treat co-channel interference as noise (i.e., not attempting to decode and subtract

the interference), the achievable rate region will in general be smaller than the information theoretic

capacity region. This limiting assumption is however relevant in the case of simple receiver structures.

In the case of instantaneous CSI, we define the achievable rate region as

Rinstant =
⋃

{wjk∈CNt ∀j,k; ‖wjk‖=1}
{pjk ∀j,k; pjk≥0,

∑Kr

k=1
pjk≤Pj}

(R1, . . . , RKr
) (6)

while in the case of statistical CSI we define the achievable expected rate region as

Rstatistic =
⋃

{wjk∈CNt ∀j,k; ‖wjk‖=1}
{pjk ∀j,k; pjk≥0,

∑Kr

k=1
pjk≤Pj}

(E{R1}, . . . , E{RKr
}). (7)

Observe that all rates are functions of all wjk and pjk, although not written explicitly. The above rate

regions characterize, respectively, all rate tuples (R1, . . . , RKr
) and expected rate tuples (E{R1}, . . . , E{RKr

})

that are achievable with feasible precoding strategies, regardless of how these strategies are obtained.

Our assumption of local CSI at the transmitters determines which rate tuples can be reached by

practical algorithmic selection of wjk and pjk, since it restricts the latter to be functions of the local

knowledge alone, as opposed to being functions of the whole channel knowledge as traditionally

assumed (see Section IV).

The outer boundary of R is known as the Pareto boundary. The rate tuples on this boundary are

Pareto optimal, which means that the rate achieved by MSk cannot be increased without decreasing

the rate of any of the other receivers. Each Pareto optimal rate tuple maximizes a certain weighted

sum rate. We have the following definition of the Pareto boundary in the case of instantaneous CSI:

Definition 1. Consider all achievable rate tuples (R1, . . . , RKr
). The Pareto boundary consists of all

such tuples for which there exist no non-identical achievable rate tuple (S1, . . . , SKr
) with Sk ≥ Rk

for all k = 1, . . . ,Kr.

The corresponding definition with statistical CSI is achieved by replacing all rates by their ex-

pectations. Next, we will parameterize the Pareto boundary of Rinstant by showing that beamformers,

wjk, that can be used to attain the boundary lie in a certain subspace defined by only local CSI and

that full transmit power (
∑Kr

k=1 pjk = Pj) should be used by all base stations. In Section III-B, we

derive a similar characterization of the Pareto boundary of Rstatistic for systems with statistical CSI.
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A. Characterization with Instantaneous CSI

Two classic beamforming strategies are maximum ratio combining (MRT) and zero-forcing (ZF),

which maximizes the received signal power and minimizes the co-terminal interference, respectively.

In the special case of Kr = 2, these beamforming vectors are aligned with hjk and Π⊥
hjk̄

hjk,

respectively, for k̄ 6= k. It was shown in [14] that the Pareto boundary of the MISO IC and BC with

Kt = Kr = 2 can only be attained by beamformers that are linear combinations of MRT and ZF.

This optimal strategy is interesting from a game theoretical perspective, since it can be interpreted

as a combination of the selfish MRT and the altruistic ZF approach.

The system defined in Section II represents cooperative multicell precoding with data sharing. This

scenario is fundamentally different from the MISO IC as the data sharing enables terminals to be

served by multiple transmitters, and thus the achievable rate region can be considerably larger. The

following theorem derives the optimal precoding characterization for this scenario, which turns out

to be a conceptually similar combination of MRT and ZF. It also constitutes a novel extension to an

arbitrary number of transmitters/receivers.

Theorem 2. For each rate tuple (R1, . . . , RKr
) on the Pareto boundary it holds that

i) It can be achieved by beamformers wjk that fulfill

wjk ∈ span

(
{hjk}

⋃
k̄ 6=k

{Π⊥
hjk̄

hjk}
)

for all j, k; (8)

ii) If hjk 6∈ span(
⋃

k̄ 6=k{hjk̄}) for some k, then a necessary condition for Pareto optimality is that

BSj uses full power (i.e.,
∑

k pjk = Pj) and selects wjk that satisfy (8) for all k.

Proof: The proof is given in Appendix A.

The theorem implies that to attain rate tuples on the Pareto boundary, all transmitters are required to

use full transmit power (except in a special case with zero probability) and use beamforming vectors

that can be expressed as

wjk = γ
(k)
jk hjk +

Kr∑
k̄=1
k̄ 6=k

γ
(k̄)
jk Π⊥

hjk̄
hjk, for all j, k, (9)

for some coefficients γ
(1)
jk , . . . , γ

(Kr)
jk ∈ C. This is a linear combination of Kr−1 zero-forcing vectors

Π⊥
hjk̄

hjk (each inflicting zero interference at MSk̄) and the following MRT beamformer:

Definition 2 (Maximum Ratio Transmission).

w(MRT)
jk =

hjk

‖hjk‖
for all j, k.

Complete ZF beamforming that inflicts zero interference on all co-terminals exists if Nt ≥ Kr

and can be defined in the following way, but observe that it can also be expressed as the linear

combination in (9).
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Definition 3 (Zero-Forcing Beamforming). If Nt ≥ Kr,

w(ZF)
jk =

(
I−

mjk∑
l=1

Πe
(l)
jk

)
hjk∥∥∥∥(I−

mjk∑
l=1

Πe
(l)
jk

)
hjk

∥∥∥∥
where e(1)

jk , . . . , e(mjk)
jk is an orthogonal basis of span(

⋃
k̄ 6=k{hjk̄}), for all j, k.

Several important conclusions can be drawn from the theorem. Firstly, the precoding characteriza-

tion reduces the precoding complexity if Nt > Kr (since the beamforming vectors we are looking for

each lie in a Kr-dimensional subspace3), especially if Nt is large. Secondly, the optimal beamforming

approach can be interpreted as a linear combination of the selfish MRT approach and altruistic

interference control towards each co-terminal. This behavior has been pointed out in [14] for the

MISO IC, but not for multicell precoding systems. Thirdly, the characterization is defined using only

local CSI, while global information is required to find the optimal coefficients γ
(k̄)
jk . In Section IV,

we discuss heuristic approaches for distributed computation of the coefficients and evaluate their

performance in Section V. Apart from selecting beamforming vectors, it is necessary to perform

optimal power allocation to attain the Pareto boundary. Some power allocation strategies that exploit

local CSI are also provided in Section IV.

B. Characterization with Statistical CSI

Next, we characterize the Pareto boundary in a similar manner as in Theorem 2, but for the case of

statistical CSI. It was shown in [25], for the MISO IC, that an exact parametrization can be derived

when the correlation matrices are rank deficient. This is however rarely the case in practice and

therefore we concentrate on general spatially correlated channels and characterize their correlation

matrices, Qjk. Depending on the antenna distance and the amount of scattering, the channels from

transmit antennas to the receiver have varying spatial correlation; large antenna spacing and rich

scattering correspond to low spatial correlation, and vice versa. High correlation translates into large

eigenvalue spread in Qjk and low correlation to almost identical eigenvalues. The existence of strongly

structured spatial correlation has been verified experimentally, in both outdoor [26] and indoor [27]

scenarios, and we will show herein how to exploit these results in the context of multicell precoding.

In particular, these results suggest the existence of a dominating subspace.

Similar to [28], we partition the eigenvalue decomposition Qjk = UjkΛjkUH
jk of the correlation

matrix Qjk in signal and interference subspaces based on the size of the eigenvalues. Assume that the

3In practice, this dimension can be further reduced by ignoring inactive receivers and those with negligible link gains to

the transmitter.
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eigenvalues in the diagonal matrix Λjk are ordered decreasingly with the corresponding eigenvectors

as columns of the unitary matrix Ujk. Then, we partition Ujk as

Ujk = [U(D)
jk U(0)

jk ] (10)

where U(D)
jk ∈ CNt×Nd spans the subspace associated with the Nd ≤ Nt dominating eigenvalues. The

transmit power allocated to these eigendirections will have large impact on the SINR. Consequently,

data transmission should take place in the range of eigendirections included in U(D)
jk , while one

should avoid receiving interference in these directions. Assuming that the non-dominating eigenval-

ues associated with the remaining eigenvectors in U(0)
jk ∈ CNt×Nt−Nd are much smaller than the

dominating ones, the interference in this subspace will be limited. The design parameter Nd depends

strongly on the amount of spatial correlation, and can be a small fraction of Nt in an outdoor cellular

scenario. In completely uncorrelated environments, the partitioning can be ignored since Nd = Nt.

Feedback of instantaneous channel norms and receive beamforming (in the case of multi-antenna

receivers) can increase the effective spatial correlation and thereby decrease Nd [23]. In practice,

careful measurements are necessary to determine the value that maximizes the average throughput.

Now, we will characterize the Pareto boundary of the achievable expected rate region for cooperative

multicell precoding. It will be done in an approximate manner, using the eigenvector partitioning in

(10). The following theorem is more general than its counterpart for the MISO IC in [25] as it

considers an arbitrary number of transmitters/receivers and correlation matrices of full rank.

Theorem 3. Let the sum of non-dominating eigenvalues in Q1k, . . . ,QKtk be denoted εk ,
∑Kt

j=1 tr((U(0)
jk )HQjkU

(0)
jk ),

for all k. For each expected rate tuple (E{R1}, . . . , E{RKr
}) on the Pareto boundary, there exists with

probability one another achievable tuple (E{R̃1}, . . . , E{R̃Kr
}) that fulfills E{Rk} = E{R̃k}+o(εk)

for all k, where the small o function means that E{Rk}−E{R̃k}→ 0 as εk→ 0. For the rate tuple

(E{R̃1}, . . . , E{R̃Kr
}) it holds that

i) It can be reached using beamforming vectors

wjk ∈ span

(
{U(D)

jk }
⋃
k̄ 6=k

{Π⊥
U

(D)
jk̄

U(D)
jk }

)
for all j, k; (11)

ii) If span(
⋃Kr

k=1{U
(D)
jk }) 6= CNt for some j, it can be reached when BSj uses full power.

Proof: The proof is given in Appendix A.

Observe that in the special case of zero-valued eigenvalues within each non-dominating eigenspace

U(0)
jk (i.e., εk = 0), the theorem gives an exact characterization since E{Rk} = E{R̃k}.

There are clear similarities between the precoding characterization in (8) for instantaneous CSI,

and its counterpart in (11) for statistical CSI. In both cases, all interesting beamforming vectors are

linear combinations of eigenvectors that (selfishly) provide strong signal gain and that (altruistically)
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limit the interference at co-terminals. These eigenvectors are defined using local CSI, which enables

distributed precoding in a structured manner (see Section IV). The results with statistical CSI are

however weaker, which is natural since each channel vector belongs (approximately) to a subspace of

rank Nd while the channels with instantaneous CSI are known vectors (i.e., rank one). In the special

case of Nd = 1, the characterization in Theorem 3 becomes essentially the same as in Theorem 2.

From these observations, it is natural to consider the two extremes that satisfy the beamforming

characterization, namely MRT and ZF. Analogously to the MRT and ZF approaches with instantaneous

CSI in Definitions 2 and 3, we propose extensions to the case of statistical CSI. The straightforward

generalization of MRT is to use the dominating eigenvector of Qjk as beamformer in wjk. We denote

the normalized eigenvector associated with the largest eigenvalue of Qjk by u(D)
jk . The generalization

of ZF is to maximize the average received signal power under the condition that the beamformer

lies in the non-dominating eigen-subspace U(0)

jk̄
of all co-terminals. Formally, we have the following

precoding approaches.

Definition 4 (Generalized MRT).

w(G-MRT)
jk = u(D)

jk for all j, k.

Definition 5 (Generalized ZF).

w(G-ZF)
jk = vjk

where vjk is the normalized dominating eigenvector of Π⊥
Sjk

QjkΠ⊥
Sjk

with Sjk = span(
⋃

k̄ 6=k{U
(D)

jk̄
}),

for all j, k.

Observe that generalized ZF only exists for certain combinations of Nd and Kr as it is necessary

that rank(Sjk) < Nt. The generalizations in Definition 4 and 5 are made for multicell precoding. For

broadcast channels, and in general, other generalizations are possible.

IV. DISTRIBUTED PRECODING WITH LOCAL CSI

In the previous section, we characterized the beamforming vectors that can be used to attain the

Pareto boundary of the achievable rate region. These are all linear combinations of MRT and ZF,

the two extremes in beamforming. Intuitively, MRT is the asymptotically optimal strategy at low

SNR, while ZF works well at high SNR or as the number of antennas increases. In general, the

optimal strategy lies in between these extremes and cannot be determined without global CSI. Next,

we use these insights to solve distributed precoding at an arbitrary SNR using only local CSI. The

proposed beamforming approach is inspired by uplink-downlink duality for broadcast channels [19]

and the transmit power is allocated heuristically by solving local optimization problems. The approach

is asymptotically optimal at high SNR and the numerical evaluation in Section V shows a limited

performance loss at all SNRs.
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A. Transmission design with Local Instantaneous CSI

In general, we would like the precoding to solve

maximize
wjk∈CNt ,pjk≥0 ∀j,k

Kr∑
k=1

log2(1 + SINRk) (12)

subject to ‖wjk‖ = 1 and
∑Kr

k=1 pjk ≤ Pj for all j and k. Unfortunately, none of the transmitters

or receivers have sufficient CSI to calculate the sum rate, which makes the optimization problem

in (12) intractable in a truly distributed scenario. Thus, we will look for distributed design criteria

that allow approximated beamforming vectors, wjk, and power allocation coefficients, pjk, of BSj to

be determined locally at the transmitter. The goal will still be to achieve performance close to the

maximum sum rate. An important feature of the precoding characterization in Theorem 2 is that the

optimal wjk fulfills

wjk ∈ span

(
{hjk}

⋃
k̄ 6=k

{Π⊥
hjk̄

hjk}
)

(13)

where all the spanning vectors are known locally at BSj . In other words, the beamforming design

consists of determining the coefficients of the linear combination in (9). To find heuristic coefficients,

we exploit the following result based on the uplink-downlink duality theory of [19]:

Theorem 4. Assume that BSj is the only active base station. Then, each Pareto optimal rate tuple of

the corresponding achievable rate region is achieved by beamforming vectors

wjk = arg max
‖w‖2=1

βjk|hH
jkw|2

σ2
k

Pj
+
∑̄

k 6=k

βjk̄|hH
jk̄

w|2
(14)

for some positive coefficients βjk with
∑Kr

k=1 βjk = 1.

Proof: The proof is given in Appendix A.

Thus, in the special case of a MISO broadcast channel, the optimal beamforming vectors are

achieved by maximizing the SINR-like expression in (14) where the signal power that BSj generates

at MSk is balanced against the noise and interference power generated at all other receivers. We call

it a virtual SINR as it originates from the dual virtual uplink [19] and does not directly represent the

SINR of any of the links in the downlink. However, it is easy to show4 that solutions to (14) are of

the type described in (9) and (13). In fact, by varying the coefficients βjk, different solutions within

the span of Theorem 2 can be achieved. In general, the coefficients that provides the largest sum rate

can only be found using global CSI.

Network MIMO can be seen as a superposition of Kt broadcast channels. We propose to exploit

this fact for distributed precoding by letting each base station optimize its performance based on

4Observe that w should lie in the span of hjk, for all k, as no other directions will affect (14). We achieve (13) by

rewriting this span following the approach in the proof of Theorem 2.
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Theorem 4. In the superposition case, the noise term of (14) should be modified to compensate

for the interference from other base stations, or equivalently the coefficients βjk should be increased

beyond what is allowed for pure broadcast channels. To account for stronger interference we therefore

select βjk = 1 (i.e., equal to its upper bound) and arrive at a novel distributed virtual SINR (DVSINR)

beamforming approach:

Strategy 1. BSj should select its beamformers as

w(DVSINR)
jk = arg max

‖w‖2=1

|hH
jkw|2

σ2
k

Pj
+
∑̄

k 6=k

|hH
jk̄

w|2
for all k. (15)

Observe that the virtual SINR in (15) is a Rayleigh quotient and thus the maximization can be

solved by straightforward eigenvalue techniques. For example,

w(DVSINR)
jk =

C−1
jk hjk

‖C−1
jk hjk‖

where Cjk ,
σ2

k

Pj
I +

∑
k̄ 6=k

hjk̄h
H
jk̄.

The solution to (15) is non-unique, since the virtual SINR is unaffected by phase shifts in w. However,

the expression above was selected to make hH
jkw positive and real-valued, which means that the

signals arriving at a given terminal from different base stations will do so constructively. By its

very definition, maximization of a virtual SINR effectively balances between the useful signal power

at a target terminal and the interference generated at others; along with judicious power allocation

coefficients pjk for all j, k, this can be shown to provide good performance at all SNRs (see Section

V). Observe that (15) gives solutions similar to MRT and ZF in the SNR regimes where these

methods perform well (i.e., low SNR and high SNR, respectively). Asymptotic optimality conditions

are provided by the following theorem.

Theorem 5. Assume an arbitrary power allocation which guarantees that each terminal is allocated

non-zero total transmit power (i.e.,
∑Kt

j=1 pjk > 0 for all k). If Nt ≥ Kr
5 and each pjk > 0 increases

with Pj , then with probability one DVSINR beamforming achieves the full multiplexing gain of Kr

asymptotically in P = minj Pj .

Proof: The proof is given in Appendix A.

This means that the sum rate behaves as Kr log2(P ) + constant at high P . Thus, the absolute

performance loss compared with optimal centralized precoding is bounded at high SNR and the

relative loss goes to zero. The absolute loss is primarily due to the fact that distributed beamforming

limits the magnitude of interference from each transmitter to every terminal, while the global solution

can coordinate and cancel out the sum of interference from different transmitters. However, such

centralized interference coordination is practically questionable even under optimal conditions [29].

5The constraint Nt ≥ Kr can be removed if each BSj have non-negligible channel gain to at most Nt terminals.
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The power allocation has a clear impact on the practical performance, although Theorem 5 holds

for any allocation. Next, we propose a heuristic power allocation scheme for BSj . This is based on

the observation that with proper beamforming, the interference is negligible at both low and high

SNR. Assuming constructive signal contributions from all base stations, the sum rate then becomes
Kr∑
k=1

log2(1 + SINRk)

≈
Kr∑
k=1

log2

1 +

∣∣∣∣∣√pjk

hH
jkwjk

σk︸ ︷︷ ︸
=cjk

+
∑
j̄ 6=j

√
pj̄k

hH
j̄k

wj̄k

σk︸ ︷︷ ︸
=djk

∣∣∣∣∣
2
 (16)

where |cjk|2 denotes the channel gain between BSj and MSk and |djk|2 is the signal gain from the

other transmitters (including power allocation). All cjk and djk can be taken as positive real-valued,

due to the assumption of transmission synchronization. For fixed values on all cjk and djk, the power

allocation at BSj is solved by the following lemma.

Lemma 1. For a given j and some positive constants cjk, djk, the optimization problem

maximize
pj1≥0,...,pjKr≥0

Kr∑
k=1

log2

(
1 + (

√
pjkcjk + djk)2

)

subject to
Kr∑
k=1

pjk ≤ Pj

(17)

is solved by

√
pjk = max

3

√
ajk +

√
a2

jk + b3
jk

− bjk

3

√
ajk +

√
a2

jk + b3
jk

− 2djk

3cjk
, 0

,

(18)

ajk =
18djk + 2d3

jk + 9αc2
jkdjk

54c3
jk

, bjk =
3− d2

jk

9c2
jk

− α

3
.

If djk = 0, this reduces to √pjk = max(α− 1/c2
jk, 0). The Lagrange multiplier α ≥ 0 is selected to

fulfill the power constraint with equality.

Proof: The maximization of a concave function can be solved by standard Lagrangian methods,

using the Karush-Kuhn-Tucker (KKT) conditions [30, Chapter 5.5]. In this case, the optimal power

allocation follows from straightforward differentiation, solving of a third-order polynomial equation

with respect to √pjk, and identifying the two false roots.

The local channel gains cjk are known at each BSj , while the contributions djk from other

transmitters are unknown when having local CSI. Thus, BSj needs to estimate these parameters.
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To avoid that all transmitters believe that someone else serves a given terminal, the estimate should

be pessimistic. In a symmetric environment, the selection

dsymmetric
jk =

√√√√√Pj

Nt

Kr∑
k̄=1

|hH
jk̄

wjk̄|2

Krσ2
k̄

(19)

represents that one other transmitter uses 1/Nt of its power to serve the terminal (the channel gain

is estimated as the average gain from BSj to all terminals). In other cases, the worst-case selection

dworst-case
jk = 0 (20)

can give better performance or robustness. In practice, djk should be considered design parameters

and tuned based on measured properties of the actual propagation environment. For given djk and

beamforming vectors wjk, we use Lemma 1 to propose the following power allocation scheme.

Strategy 2. Using local CSI, an efficient power allocation at BSj for Nt ≥ Kr is given by Lemma

1 using cjk = |hH
jkwjk|/σk and some djk that reflects the propagation environment.

In the case Nt < Kr, the interference can in general not be considered negligible as was assumed in

the heuristic power allocation. Thus, alternative power allocation schemes should be considered—for

example, the simple scheme pjk = Pj‖hjk‖2/
∑

j ‖hjk‖2 evaluated in [20] and [21].

Observe that the power allocation in Strategy 2 has the waterfilling behavior, which means that

zero power is allocated to weak terminals. Thus, terminals far from the base station are disregarded

automatically, which limits the computational complexity as Kt and Kr increases.

B. Transmission design with Local Statistical CSI

Next, we extend the precoding design in the previous subsection to the case of local statistical

CSI. As in the previous case, maximizing a virtual SINR will balance the generated signal and

interference powers. We propose the following novel extension where the Rayleigh quotient represents

maximization of an SINR where expectation has been applied to the numerator and denominator (using

that E{|hH
jkw|2} = wHQjkw).

Strategy 3. For given power allocation coefficients, BSj should select its beamformers as

w(G-DVSINR)
jk = arg max

‖w‖2=1

wHQjkw
σ2

k

Pj
+
∑̄

k 6=k

wHQjk̄w
for all k. (21)

Unlike the case of instantaneous CSI, beamforming design with statistical CSI cannot guarantee

coherent arrival of useful signals at a given receiver, but an increase in signal power will improve

the average rate. The distributed SINR beamforming vectors of (21) satisfy (approximately) the

beamforming characterization in Theorem 3.
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Finally, we derive a distributed power allocation scheme. Since the expected rate expression in (5)

is complicated, we simplify it by neglecting the interference. For MSk, the expected rate in Theorem

1 becomes

E{ log2(1 + SINRk)} ≈
eσ2

k/µ1E1
(
σ2

k/µ1
)

log(2)

≈ log2

1 + pjk

wH
jkQjkwjk

σ2
k︸ ︷︷ ︸

=fjk

+
∑
j̄ 6=j

pj̄kw
H
j̄k

Qj̄kwj̄k

σ2
k︸ ︷︷ ︸

=gjk

 (22)

using the upper part of the bound 1
2 log(1 + 2µ1/σ2

k) < eσ2
k/µ1E1

(
σ2

k/µ1
)

< log(1 + µ1/σ2
k). Here,

fjk denotes the average channel gain between BSj and MSk and gjk is an estimation of the average

signal gain from the other transmitters (including power allocation). For fixed values on all gjk, the

power allocation at BSj is solved by the following lemma.

Lemma 2. For a given j and some positive fjk, gjk, the optimization problem

maximize
Kr∑
k=1

log2(1 + pjkfjk + gjk)

subject to
Kr∑
k=1

pjk ≤ Pj , pj1 ≥ 0, . . . , pjKr
≥ 0

(23)

is solved by pjk = max (α− (1 + gjk)/fjk, 0), where the Lagrange multiplier α ≥ 0 is selected to

fulfill the power constraint with equality.

Proof: The solution to this convex optimization problem follows from straightforward Lagrangian

methods, see the proof of Lemma 1 for details.

Using only local statistical CSI, the average local channel gains fjk are known at BSj , while the

contributions gjk from other transmitters are unknown. Thus, BSj needs to estimate these parameters,

which can be done similarly to (19) and (20):

gsymmetric
jk =

Pj

Nt

Kr∑
k̄=1

wH
jk̄

Qjk̄wjk̄

Krσ2
k̄

,

gworst-case
jk = 0.

(24)

For given gjk and beamforming vectors wjk, we use Lemma 2 to propose the following power

allocation scheme.

Strategy 4. Using local CSI, an efficient power allocation at BSj is given by Lemma 2 using fjk =

wH
jkQjkwjk/σ2

k and some gjk that reflects the propagation environment.

V. NUMERICAL EXAMPLES

In this section, the performance of the distributed beamforming and power allocation strategies in

Section IV will be illustrated numerically. The DVSINR approach in Strategy 1 will be compared
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Fig. 2. Achievable rate regions with different beamforming and power allocation for Kt =Kr =2, Nt =3, and a random

realization with Q11 = Q22 = I, Q12 = Q21 = 0.5I, and SNR 5 dB. The sum rate point and the points achieved by

MRT, ZF, and DVSINR with the power allocation in Strategy 2 are shown for comparison.

with what we call distributed MRT and distributed ZF. These two approaches use the beamforming

vectors in Definition 2 and 3, respectively. Observe that there are major differences from regular

MRT and ZF for broadcast and interference channels, namely that the same message is sent from

multiple transmitters with individual power constraints. When used, distributed MRT and ZF need to

be combined with some power allocation, for example the one proposed in Strategy 2.

A. Transmitter-Receiver Pairs with Varying Cross-Links

First, consider the case of two transmitter-receiver links where the strengths of the cross-links are

varied. The environment is spatially uncorrelated with Nt = 3, Q11 = Q22 = I, and Q12 = Q21 = βI,

where β is the average cross link power. This represents a two-cell scenario where β determines how

close the terminals are to the common cell edge. The SNR is defined as SNR = Pjtr(Qjj)/Nt (with

normalization σ2
k = 1) and represents the average SNR for beamforming to the own terminal.

In Figure 2, the Pareto boundary with β = 0.5 and an average SNR of 5 dB is given for a random

realization of hjk drawn from CN (0,Qjk), for all j, k. As a comparison, we give the Pareto boundary

of the MISO IC [14] and show the outer boundaries of the achievable rate regions with the DVSINR
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approach in Strategy 1, distributed MRT, and distributed ZF. The rate tuples achieved with the power

allocation in Strategy 2 (with djk = 0) and the sum rate maximizing point are given as references. For

the selected realization there is a clear performance gain of allowing cooperative multicell precoding

as compared with forcing each transmitter to only communicate with its own receiver. As expected,

MRT is useful to maximize the rate of only one of the terminals, while ZF and DVSINR are quite

close to the optimal sum rate point. The proposed power allocation scheme provides performance

close to the boundary of each achievable rate region.

In Figure 3, the average sum rates (over channel realizations) are given with optimal linear precoding

(i.e., sum rate maximization through exhaustive search) and with the DVSINR approach in Strategy 1,

distributed MRT, and distributed ZF (all three using the power allocation in Strategy 2 with djk = 0

to ensure robustness), and the VSINR approach in [17] for the MISO IC. The performance is shown

for varying cross link power β and at an SNR of 0 or 10 dB. We observe that MRT is good at low

SNR and/or weak cross link power, while ZF is better at high SNR and/or strong cross link power.

However, the DVSINR approach is the most versatile strategy as it provides higher performance at

low SNR and combines the benefits of MRT and ZF at high SNR. The three cooperative approaches

clearly yield better performance than the non-cooperative VSINR approach.

In practice, two common terminal locations are close to a base station (i.e., high SNR with weak

cross link power) and close to the cell edge (i.e., low SNR with strong cross link power). From Figure

3 it is clear that DVSINR is the only of the distributed schemes that provides good performance in both

cases, which is an important property as both types of terminals appear simultaneously in practice.

Thus, although distributed MRT and ZF achieve performance comparable to DVSINR in special cases,

it is fair to say that the DVSINR scheme is the most versatile. Due to the distributed nature of the

schemes, there is some performance loss compared with sum rate maximizing precoding. However,

we argue that the backhaul and computational demands required to achieve the optimal solution may

not be motivated in light of the small performance loss.

B. Quadratic Multicell Area

Next, we evaluate a scenario with terminals located in both cell centers and at cell edges. The

scenario consists of four uniformly distributed terminals in a square with base stations in each of the

corners. The power decay is proportional to 1/r4, where r is the distance from a transmitter, the SNR

is defined as SNR = Pjtr(Qjk)/Nt (with normalization σ2
k = 1), and its value in the center of the

square represents the cell edge SNR. This represents a scenario where terminals are moving around

in the area covered by four base stations. We will illustrate the performance with both instantaneous

and statistical CSI.

In Figure 4, the average sum rate (over terminal locations and channel realizations) with instanta-
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neous CSI and no spatial correlation is shown as a function of the SNR. In the case of Nt = 4, the

DVSINR approach is superior to MRT and ZF at most SNRs, although ZF approaches DVSINR at

very high cell edge SNR. The performance loss compared with optimal precoding is at most 15-20

percent, depending on the SNR, and will asymptotically approach zero since DVSINR achieves the

optimal multiplexing gain (see Theorem 5). This raises the question of whether the high backhaul

demands for achieving the optimal solution are justifiable in practice. In the case of Nt = 2 (with

the power allocation in [20, Eq. (10)]), the performance of both DVSINR and MRT saturates at high

SNR since Kr > Nt, but DVSINR still constitutes a major performance improvement compared with

MRT. Distributed ZF does not exist for this number of antennas.

In Figure 5, the expected sum rate (over terminal locations) with Nt = 6, statistical CSI, and an

angular spread of 10 degrees (as seen from a transmitter) is shown as a function of the SNR. The G-

DVSINR approach in Strategy 3, G-MRT, and G-ZF (all using the power allocation in Strategy 4 with

gsymmetric
jk ) are compared with equal time sharing between the terminals and an upper bound consisting

of the broadcast GZF approach in [28] that requires both statistical CSI and perfect instantaneous norm

feedback. In this scenario, the G-DVSINR approach is clearly the better choice among the distributed

methods; it even beats the upper bound at high SINR, since the performance GZF approach saturates

at around 15 dB SNR. All the cooperative approaches outperform time sharing.

VI. CONCLUSION

We have considered cooperative multicell precoding in a system with an arbitrary number of multi-

antenna transmitters and single-antenna receivers. The outer boundary of the achievable rate region

was characterized for transmitters with either instantaneous or statistical CSI. At each transmitter, the

spans of beamforming vectors that can attain this boundary only depend on local CSI, and can be

interpreted as linear combinations of MRT and ZF vectors. This enables distributed precoding in a

structured manner that only requires local CSI and processing. By viewing the multicell system as a

superposition of broadcast channels, we propose a novel framework of distributed virtual SINR (DVS-

INR) beamforming that satisfies the optimal beamforming characterization and achieves the optimal

multiplexing gain. It was applied for distributed beamforming with instantaneous and statistical CSI,

along with two heuristic power allocation schemes. The performance of this approach was illustrated

and shown to combine the benefits of conventional MRT and ZF, and outperform them at most SNRs.

Finally, the loss in performance of having only local CSI is rather small, compared with the backhaul

and computational demands of sharing and processing global CSI.
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APPENDIX A

COLLECTION OF LEMMAS AND PROOFS

Lemma 3. Let bk ∈ CN (0, µk) be independent random variables with distinct variances µk > 0 for

k = 1, . . . ,K, and let σ2
k ≥ 0. Then,

E
{

log2

(
σ2

k +
K∑

k=1

|bk|2
)}

= log2(σ
2
k) +

K∑
k=1

e
σ2

k
µk E1

(
σ2

k

µk

)
log(2)

∏
l 6=k

(1− µl

µk
)

(25)

where E1(x) =
∫∞
1 e−xu/u du is the exponential integral.

Proof: Let z =
∑K

k=1 |bk|2/σ2
k and observe that

E
{

log2

(
σ2

k +
K∑

k=1

|bk|2
)}

= log2(σ
2
k) +

∫ ∞

0

log(1 + z)
log(2)

K∑
k=1

σ2
ke
−

σ2
k

µk
z

µk
∏
l 6=k

(1− µl

µk
)
dz

(26)

using the PDF expression for z in [23, Eq. 5]. The integrand that contains z is∫ ∞

0
log(1 + z)e−

σ2
k

µk
z
dz =

∫ ∞

1
log(z̃)e−

σ2
k

µk
(z̃−1)

dz̃

= e
σ2

k
µk

([
− µk

σ2
k

log(z̃)e−
σ2

k
µk

z̃
]∞
1︸ ︷︷ ︸

=0

+
µk

σ2
k

E1

(
σ2

k

µk

)) (27)

where the first equality follows from the variable substitution z̃ = 1+z and the second from integration

by parts. Substitution into (26) gives the final expression.

Proof of Theorem 1

Using the notation for the SINR in (4), the expected rate can be divided as

E{log2(1 + SINRk)} =E
{

log2

( Kr∑
k̄=1

|ak̄k|2 + σ2
k

)}

− E
{

log2

( Kr∑
k̄=1
k̄ 6=k

|ak̄k|2 + σ2
k

)}
.

(28)

Observe that ‖ak‖2 =
∑Kr

k̄=1
|ak̄k|2 and since the Euclidean norm is invariant under unitary transfor-

mations,
∑rank(Sk)

k̄=1
|bk̄|2 has identical distribution for independent variables bk̄ ∈ CN (0, µk̄). Using

these variables, we can apply Lemma 3 and achieve the first term in (5). The second term is achieved

by a similar transformation based on eigenvalues of S̃k.
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Proof of Theorem 2

Consider a rate tuple (R1, . . . , RKr
) on the Pareto boundary that is achieved by beamforming

vectors wjk and power allocation pjk for all j, k. The following approach can be taken (for each j, k)

to replace wjk with a beamformer that fulfills (8) and reduces the power usage, while achieving the

same rate tuple. Let Ajk = {hjk}
⋃

k̄ 6=k{Π⊥
hjk̄

hjk} and observe that the vector wjk can be expressed

as the linear combination

wjk = γkhjk +
Kr∑
k̄=1
k̄ 6=k

γk̄Π
⊥
hjk̄

hjk +
Nt∑

l=rank(Ajk)+1

γlvl (29)

for some complex-valued coefficients γk and some orthogonal basis {vl}Nt

l=rank(Ajk)+1 for the orthog-

onal complement to Ajk. Now, observe that

hjk̄ =
‖hjk̄‖

‖Πhjk̄
hjk‖

(
hjk −Π⊥

hjk̄
hjk

)
for all k̄ that are non-orthogonal to hjk (while orthogonal channels can be removed from Ajk, since

these directions only create interference). Thus, hH
jk̄

vl = 0 for k̄ = 1, . . . ,Kr and l = rank(Ajk) +

1, . . . , Nt. Since wjk only appears in the SINR expression in (3) as inner products with hjk and hjk̄,

the identical rate tuple is achieved by the beamforming vector

w̃jk =
γk√

1−
∑Nt

l=rank(Ajk)+1 |γl|2
hjk

+
Kr∑
k̄=1
k̄ 6=k

γk̄√
1−

∑Nt

l=rank(Ajk)+1 |γl|2
Π⊥

hjk̄
hjk

(30)

and transmit power p̃jk = pjk(1 −
∑Nt

l=rank(Ajk)+1 |γl|2) ≤ pjk. Thus, we have proved that all rate

tuples on the Pareto boundary can be achieved by beamforming vectors w̃jk ∈ span(Ajk).

Next, we will show that if hjk 6∈ span(
⋃

k̄ 6=k{hjk̄}) for some j, k, then BSj needs to use full

power to reach the Pareto boundary. The given property corresponds to that
∑mjk

l=1 Πe
(l)
jk

hjk 6= hjk,

where e(1)
jk , . . . , e(mjk)

jk is an orthogonal basis of span(
⋃

k̄ 6=k{hjk̄}). Consequently, there should exist

a zero-forcing vector u = (I−
∑mjk

l=1 Πe
(l)
jk

)hjk 6= 0 that satisfies hH
jk̄

u = 0 for all k̄ 6= k.

Now, assume for the purpose of contradiction that the Pareto boundary is attained for a set of

beamforming vectors {wjk} and power allocations {pjk} that fulfills
∑Kr

k=1 pjk < Pj . Then, we can

replace wjk and pjk by

pnew
jk = Pj −

Kr∑
k̄=1
k̄ 6=k

pjk̄ and

wnew
jk =

√
pjk

pnew
jk

wjk + αuei arg(hH
jkwjk)

(31)

for some positive parameter α that makes ‖wnew
jk ‖ = 1. This corresponds to increasing the power in the

zero-forcing direction and making sure that the signal powers add up constructively at the intended
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receiver. Thus, BSj can increase the signal power at MSk as pnew
jk |hH

jkw
new
jk |2 = pjk(|hH

jkwjk| +

αhH
jku)2 > pjk|hH

jkwjk|2, without affecting the co-terminal interference. In other words, Rk has

been increased without affecting Rk̄ for k̄ 6= k, which is a contradiction to the assumption that the

initial rate tuple belonged to the Pareto boundary. Thus, full transmit power is required to attain the

Pareto boundary. The condition in (8) also becomes a necessary condition, because otherwise we can

decrease the power by the approach in the first part of the proof and then increased it again using

(31).

Proof of Theorem 3

Consider an expected rate tuple (E{R1}, . . . , E{RKr
}) on the Pareto boundary that is achieved by

beamforming vectors wjk and power allocation pjk for all j, k. The beamformers wjk can in general

be expressed as the linear combination

wjk =
m∑

l=1

γlvl +
Nt∑

l=m+1

γlul (32)

where {vl}m
l=1 is an orthogonal basis of the m-dimensional given by span(

⋃Kr

k=1{U
(D)
jk }) and {ul}Nt

l=m+1

is an orthogonal basis of the orthogonal complement. The coefficients γl are complex-valued and fulfill∑Nt

l=1 |γl|2 = 1, since wjk is expanded in terms of an orthonormal basis. To avoid allocating power

to the weak eigenvalues in the orthogonal complement, we can replace wjk by

w̃jk =
1√∑m

l=1 |γl|2
m∑

l=1

γlvl (33)

and reduce the transmit power to p̃jk = pjk
∑m

l=1 |γl|2 ≤ pjk. This new precoding satisfy (11) and will

achieve a new rate tuple (E{R̃1}, . . . , E{R̃Kr
}). Next, we show that the difference in performance is

bounded by o(εk). With the new precoding, the change in the covariance matrix Sk in (4) is limited

since Sk =
∑Kt

j=1 W̃H
j QjkW̃j +E, where W̃j = [

√
p̃j1w̃j1 . . .

√
p̃jKr

w̃jKr
] and the elements of the

symmetric perturbation matrix E are bounded as o(εk). By applying the eigenvalue perturbation result

in [31, Theorem 7.2.2] when deriving E{R̃k} in (5), the eigenvalues µm and λm can be replaced by

µ̃m = µm + o(εk) and λ̃m = λm + o(εk), respectively. Observe that each term in (5) has the structure

e
σ2

k
µm+o(εk) E1

(
σ2

k

µm+o(εk)

)
log(2)

∏
l 6=m

(1− µl+o(εk)
µm+o(εk))

=
e

σ2
k

µm E1

(
σ2

k

µm

)
log(2)

∏
l 6=m

(1− µl

µm
)

+ o(εk) (34)

where the equality follows from straightforward appliance of l’Hospital’s rule. Thus, by applying this

result to each term in (5), we achieve E{Rk} = E{R̃k}+o(εk). To finalize the proof of the first part,

observe that for arbitrary covariance matrices it holds with probability one that span(ΠU
(D)
jk̄

U(D)
jk ) =

span(U(D)

jk̄
) for all k̄. Since,

ΠU
(D)
jk̄

U(D)
jk = (I−Π⊥

U
(D)
jk̄

)U(D)
jk
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it follows that

span(
Kr⋃
k=1

{U(D)
jk }) = span({U(D)

jk }
⋃
k̄ 6=k

{Π⊥
U

(D)
jk̄

U(D)
jk }).

Finally, consider the case when span(
⋃Kr

k=1{U
(D)
jk }) 6= CNt for some j. If

∑
k pjk < Pj , we propose

the following way of increasing the power usage while guaranteeing the same type performance. We

assume that the beamforming vector wjk fulfills (11), otherwise we can follow the approach in first

part of the proof to decrease the power usage, retain the performance, and fulfill (11). Select a unit

vector d 6∈ span(
⋃Kr

k=1{U
(D)
jk }). If we replace the beamformer and the power allocation with

pnew
jk = Pj −

Kr∑
k̄=1,k̄ 6=k

pjk̄ and

wnew
jk =

√
pjk

pnew
jk

wjk +
√

1− pjk

pnew
jk

d,

(35)

the difference in signal and interference variance yields a perturbation in Sk on the order of o(εk)

and we can use the approach above to show that resulting rate tuple fulfills E{Rk} = E{R̃k}+o(εk).

Hence, full transmit power can be used to achieve (E{R̃1}, . . . , E{R̃Kr
}).

Proof of Theorem 4

Let Ropt
k = log2(1 + SINRopt

k ) represent an arbitrary Pareto optimal rate tuple. Observe that this

rate tuple is achieved by solving

maximize
wjk∈CNt ,pjk≥0 ∀j,k

min
1≤k≤Kr

Rk

Ropt
k

subject to
Kr∑
k=1

pjk ≤ Pj , ‖wjk‖2 = 1 for all k

(36)

since [19, Lemma 1] shows that all solutions to (36) must satisfy R1/Ropt
1 = . . . = RKr

/Ropt
Kr

.

Thus, with Ropt
1 , . . . , Ropt

Kr
as rate constraints for the different terminals, the uplink-downlink duality

result of [19, Theorem 1] can be applied. This means that the optimal beamforming vectors for the

downlink problem in (36) should also maximize the virtual uplink SINRs in (14) for each user, and

the parameters βjk represents the optimal power allocation in the virtual dual uplink.

Proof of Theorem 5

Let the arbitrary power allocation be denoted pjk = Pj p̃jk with (normalized) coefficients p̃jk. As

P = minj Pj , we let Pj = Pαj for some parameters 0 < αj < 1 for all j. Using the SINR expression
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in (3) and the given power allocation, the sum rate becomes

Kr∑
k=1

log2

1 +

∣∣∣∣Kt∑
j=1

√
Pαj p̃jkhH

jkw
(DVSINR)
jk

∣∣∣∣2
Kr∑̄
k=1
k̄ 6=k

∣∣∣∣Kt∑
j=1

√
Pαj p̃jk̄h

H
jkw

(DVSINR)
jk̄

∣∣∣∣2 + σ2
k


= Kr log2(P )

+
Kr∑
k=1

log2


1
P

+

∣∣∣∣Kt∑
j=1

√
αj p̃jkhH

jkw
(DVSINR)
jk

∣∣∣∣2
Kr∑̄
k=1
k̄ 6=k

∣∣∣∣Kt∑
j=1

√
Pαj p̃jk̄h

H
jkw

(DVSINR)
jk̄

∣∣∣∣2 + σ2
k

.

(37)

If Nt ≥ Kr, then with probability hjk 6∈ span(
⋃

k̄ 6=k{hjk̄}) for all j, k. By analyzing the expression

w(DVSINR)
jk̄

= C−1
jk̄

hjk̄/‖C
−1
jk̄

hjk̄‖ it is straightforward to show that
√

PhH
jkw

(DVSINR)
jk̄

→ 0 as P →∞.

Thus, the last term of (37) is bounded as P →∞ and the multiplexing gain is Kr.
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Fig. 3. Average sum rate (over channel realizations) in a system with local instantaneous CSI, Kt =Kr =2, Nt =3, and

a varying average cross link power: Q11 = Q22 = I, Q12 = Q21 = βI.
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Fig. 4. Average sum rate (over terminal locations and channel realizations) in a system with local instantaneous CSI and

Kt =Kr = 4. The scenario considers uniformly distributed terminals within a square with base stations in each corner.
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Fig. 5. Expected sum rate (over terminal locations and channel statistics) in a system with local statistical CSI, Kt =

Kr = 4, Nt = 6, and an angular spread of 10 degrees (as seen from each base station). The scenario considers uniformly

distributed terminals within a square with base stations in each corner.
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