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ABSTRACT

In this paper, blind channel estimation is considered

for Code-Division Multiple-Access systems employing

randomized spreading codes with periods longer than

a symbol duration. The motivation for such a study is

both current commercial as well as proposed military

wireless systems, where such signature sequences are

under consideration. This kind of spreading presents

particular challenges that render impossible the use

of existing techniques based on short signature wave-

forms. The proposed blind channel estimation method

is based on the second order statistics of the received

signal, in addition, the algorithm exploits knowledge of

the desired spreading code and its properties. The new

method uses the Toeplitz structure of the autocorrela-

tion matrix. A theoretical analysis of the mean squared

error is provided and the resulting approximations are

shown to be tight via simulation.

1. INTRODUCTION

Code-Division Multiple-Access (CDMA) is a multiuser

scheme that can improve the capacity of a cellular sys-

tem relative to other multiple access strategies. CDMA

enables desirable features such as soft capacity or soft

hando�. CDMA systems use pseudorandom codes to

expand the transmitted bandwidth of a user's signal.

Current commercial and proposed military Direct - Se-

quence CDMA (DS-CDMA) systems employ spreading

codes that have periods which are much longer than the

symbol duration. For the problem of channel estima-

tion, this kind of spreading can be viewed as linear time

varying �ltering.

Systems in which the period of the spreading se-

quence is the symbol duration are termed short code
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systems. Short code systems lead to an interference

structure that remains the same from symbol to sym-

bol. Thus, short code systems are amenable to adap-

tive multiuser algorithms for detection and estimation.

However, when using long code schemes, the interfer-

ence pattern will be varying randomly from symbol to

symbol.

In this paper, we explore a new blind channel iden-

ti�cation scheme for multi-user systems employing DS-

CDMA with long codes. The new technique exploits

the statistical properties of the autocorrelation matrix

obtained from the received signal after matched �lter-

ing. For delay spreads that are much smaller than the

symbol period, a moderate number of matched �lter

outputs form a set of statistics suitable for performing

blind channel identi�cation.

Past work in this arena required the knowledge of

all of the spreading codes of each of the active users

[1, 3, 2]. The current work exploits the asymptotic

statistics of the signals (as done in [4]) and as such,

only requires the spreading code and timing of the user

of interest.

The paper is organized as follows. Section 2 presents

the signal model for DS-CDMA using long codes. Sec-

tion 3 introduces the proposed blind technique for chan-

nel identi�cation. A theoretical mean-squared error

analysis is presented in Section 4. Section 5 provides

numerical results. Final conclusion are drawn in Sec-

tion 6.

2. SIGNAL MODEL

We shall presume a synchronous system1 where the ac-

tive users transmit DS-CDMA signals with spreading

gain N through a channel of length M . Considering a

1We consider this assumption for simplicity reasons in the ex-

position of the signal model. The proposed algorithm is directly

applicable to asynchronous systems and, in fact, the numerical

results will be based on an asynchronous system.



baseband representation of the received signal after co-

herent reception, an observation vector with aN+M�1

samples is

x(n) =

PX
p=1

ApCp(n)Hpbp(n) +w(n); (1)

where P is the number of users, x(n) = [x(n); � � � ; x(n+

aN +L� 2)]T , b(n) = [b
�
b
n
N
c � 1

�
; � � � ; b

�
b
n
N
c+ a

�
]T

is a (a + 2) � 1 vector of transmitted symbols and

w(n) = [w(n); � � � ; w(n+aN+L�2)]T is a aN+L�1�1

vector of noise samples. The operator, b�c is the 
oor

operator and returns the largest integer smaller than its

argument. The channel matrix for user p, of dimension

(a+ 2)M � a+ 2, is given by

Hp = hp 
 Ia+2 (2)

where hp = [hp(0); � � � ; hp(M � 1)] is a vector with
the channel impulse response, 
 denotes the Kronecker
product operator and Ia+2 is the identity matrix of di-
mension (a+2)� (a+2). The matrix Cp(n) of dimen-
sion (aN+M�1)� (a+2)M , is a time-varying matrix
that is a function of the spreading sequence of user p
only and incorporates the e�ects of the user delay,

C
T
p(n) = (3)

0
BBBBBB@

C2
p;M

(n�N) 0

C1
p;M

(n) C2
p;M

(n)

C1
p;M

(n+N)

. . .
. . .

. . . C2
p;M

(n+ aN)

0 ~C1
p;M

(n+ (a+ 1)N)

1
CCCCCCA

We de�ne C1
p;M (n) and C2

p;M (n) to be the �rst N

rows and the last M � 1 rows, respectively, of a ma-

trix C(cp(n);M). C(cp(n);M) is a (N + M � 1) �

M Sylvester matrix representing the convolution of a

vector whose elements are the spreading code chips,

cp(n) = [cp(n); � � � ; cp(n+N � 1)]T , with another vec-

tor of length M . The matrix ~C1
p;M (n + (a + 1)N) is

composed of theM�1 �rst rows of C1
p;M (n+(a+1)N).

In order to more fully exploit the properties of DS-
CDMA signals, the identi�cation scheme presented in
this work manipulates matched �lter outputs synchro-
nized to the desired user's signals rather than the re-
ceived signal x(n) directly. Assume that the desired
user is the �rst user. Given M matched �lters per re-
ceived symbol, the matched �lter observation aM � 1
vector, y(n), is given by

y(n) = S1(n)x(n) (4)

= S1(n)

 
PX
p=1

ApCp(n)Hpbp(n)

!
+S1(n)w(n);

where S1(n) is the matched �ltering matrix of dimen-
sion aM � (aN +M �1) and is related to C1(n) in the
following manner:

C1(n) =

0
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3. IDENTIFICATION TECHNIQUE

The randomized spreading code model implies that the
ideal autocorrelation function of the desired user's se-
quence is a Kronecker delta function. Similarly, the
cross-correlation function between two distinct users is
ideally the zero function. Let us consider the aM � 1
matched �lter output vector y(n) of (4). With our as-
sumptions on the data symbols and the noise, we take
expectation with respect to the data symbols and the
noise to form the output vector covariance matrix,

Ry =
1

Ns

NsX
n=1

Eb;w
�
y(n)y(n)

H
�
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where �2p is the p-th user power, Rw = �2wS1(n)S1(n)
H

is the noise autocorrelation matrix and ~H1 = h1 
 Ia.

The contribution of the interfering users at time n is

thus

RI(n) =

PX
p=2

�2pS1(n)Cp(n)HpH
H
p Cp(n)

HSH1 (n)

Asymptotically, as the spreading length and the

number of symbols used to average increase (N;Ns "),

RI and Rw converge to Toeplitz matrices. As ~H1 is

a rank a matrix, the contribution of the desired user's

channel to Ry is rank a. Channel identi�cation can be

performed by noting that the Toeplitz contribution of

the channel noise and interference can be removed by

considering the following displacement operation:

Rh = Ry(2 : aM; 2 : aM)

�Ry(1 : aM � 1; 1 : aM � 1)

= R+
y �R

�

y ' ~H+
1
~H+H

1 � ~H�

1
~H�

H

1 (6)

where the matrix notation B(i : j; i : j) corresponds to

the submatrix of B formed by the appropriately trun-

cated i through j columns and i through j rows. ~H+
1

and ~H�

1 are the truncated versions of the matrix ~H1



formed by removing the last and the �rst row, respec-

tively. Note that Rh is a (aM � 1)� (aM � 1) matrix.

The eigenvalues of this matrix have the following prop-

erties: a are positive, a are negative and the rest are

equal to zero. The eigenvectors associated with the

non-zero eigenvalues de�ne a subspace �tting problem

to determine the unknown channel,

ĥ1 = arg min
jjhjj1=1

Trace
�
H
HPH

	
= arg min

jjh1jj=1
hH1 Qh1 (7)

where P = I � VVH , V is a matrix whose columns

are the eigenvectors associated to non-zero eigenvalues,

H = [~H+
1
~H�

1 ] and Q is de�ned as

Q =

2aX
i=1

DiPD
H
i (8)

whereDi areM�aM�1 permutation matrices de�ned
as follows

Di(l;m) =

8><
>:

1 m� l = (i�1)M �1

for 1 � l �M

and 1 � m � aM �1

0 otherwise

Di+a(l;m) =

8><
>:

1 m� l = (i�1)M

for 1 � l �M

and 1 � m � aM �1

0 otherwise

for i = 1; � � � ; a

In practice, the matrix in (6) is estimated (R̂h) from

the sampled averagedmatrix R̂y =
1
Ns

PNs
n=1 y(n)y

H (n).

Usually, the exact channel order is not known a priori.

However, the algorithm still works when the channel

order is overestimated since the channel vector to be

estimated will be a larger vector with null elements.

With respect to the choice of the number of symbols

considered in the observation vector, a, in the subspace

�tting problem in (7) there are 2a(a(M � 2)� 1) equa-

tions, since the noise subspace dimension is equal to

a(M � 2) � 1, and M unknowns. Therefore, in order

to obtain a solution, the following condition must be

satis�ed

2a2(M � 2)� 2a�M > 0: (9)

Note that there is no positive value of a that satis�ed

(9) when M = 1; 2. However, for M = 3; 4; 5 and

M � 6 values of a � 2 and a � 1, respectively, are

su�cient.

The recognition of the Toeplitz interference matrix

was also made in [4]. However, instead of working with

the Toeplitz displacement ofRy, the di�erence between

the covariance matrices before and after code matched

�ltering was manipulated. Under ideal spreading code

assumptions, it can be shown that this di�erence is,

in principle, h1h
H
1 . Thus the principal eigenvector of

the di�erence between the matched �ltered covariance

matrix and the non-matched �ltered covariance ma-

trix will yield the desired channel estimate. While the

work in [4] focused on equalization, there is the allusion

to a corresponding identi�cation scheme as just noted.

We shall compare the proposed channel identi�cation

scheme to that of [4] in the simulations section.

4. ANALYSIS OF MSE

A theoretical approximation of the mean squared er-

ror (MSE) can be found by using a perturbation tech-

nique [5] that exploits the property Q̂ĥ � 0, where

Q̂ = Q+�Q and ĥ = h+�h. Note that we have re-

moved the subindex 1 of the desired user vector channel

. Therefore

Q̂ĥ = (Q+�Q)(h+�h) � 0: (10)

Since Qh = 0 and assuming that second order terms

are negligible (�Q�h � 0) we obtain the following

approximation

Q�ĥ � ��Qh (11)

and therefore

�ĥ � �QyQ̂h (12)

where Qy is the left pseudoinverse of Q. By exploiting

properties of the estimate of (8), it can be shown that

the k-th component of �h is given by

�h(k) = �TracefQH
k P̂Hg (13)

where P̂ is the estimated noise subspace projection ma-

trix, Qk = [D1qk; � � � ;D2aqk] and qk is the k-th col-

umn of Qy
H

.

Based on the results of [6] and the fact that the

eigenvalues associated to the noise subspace are ideally

zero, we obtain

�h(k) = ĥ(k)� h(k)

= TracefQH
k PR̂hV�

�1VH
Hg (14)

where � is a diagonal matrix whose elements are the

2a eigenvalues of (6) associated to the signal subspace

(i.e., the eigenvalues di�erent from zero).

Taking into account that2 R̂h = R̂+
y �R̂

�

y , (14) can
be expressed as follows:

�h(k) =

2
R̂
+
y = R̂y(2 : aM; 2 : aM) and R̂�y = R̂y(1 : aM � 1; 1 :

aM � 1)



= TracefQH
k P(̂R
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where the super-index � , with � = �;+, represents the

kind of displacement in the matrix R̂y, uki = (qHk DiP)
H

and gi = V��1VHDH
i h. The mean-squared error

(MSE) for the k-th element is

E[�h(k)�h�(k)] = (16)

2aX
i=1

+X
�=�

2aX
j=1

+X

=�

�
E[uHkiR̂
�
ygig

H
j R̂



yukj ];

where �
 represents a sign that is positive when � = 


and negative when � 6= 
. The autocorrelation matrix

given � is de�ned as follows

R̂�
y =

1

Ns

NsX
l=1

y�(l)y�
H

(l) (17)

where y+(l) = y(l + 2 : l + aM) and y�(l) = y(l + 1 :

l + aM � 1).
By exploiting the fourth order statistics of binary

and Gaussian random variables and the independence
between users and noise, and after a cumbersome de-
velopment [7], we can obtain a �nal expression for the

MSE de�ned asE[�hH�h] =
PM

k=1 E[�h(k)�h
�(k)],

where

E[�h(k)�h
�
(k)] = (18)

=
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H

p
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H
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H
S
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Uk = [uk1; � � � ;uk2a]

G = [g1; � � � ;g2a]
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J
aN+M�1

N(m�l)

Sl � S1(l)

J
M

k
= M �M matrix whose element (i; j)

=

n
1 if (i� j) = k and jkj � M � 1

0 otherwise

5. SIMULATIONS

In order to show the performance of the proposed algo-

rithm, the calculated and the simulated MSE are stud-

ied. The MSE found via simulation for the desired user,

user 1, is determined as follows:

MSE =
1

Nr

NrX
i=1

�������ĥ1(i)� h1������2 ; (19)

where Nr is the number of Monte Carlo runs simu-

lations and � =
hT1 h1

hT
1
ĥ1(i)

is a complex scalar used to

remove the e�ect of the phase ambiguity inherent in

estimates stemming from second order statistics [8].
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Figure 1: Performance comparison of LZ algorithm ver-

sus TOEP algorithm as a function of the number of

symbols.

We �rst compare the performance of the new algo-

rithm with the one alluded to in [4] (labeled as LZ) in

Figure 1. This �gure shows the time evolution of the

MSE for both algorithms. A 10 asynchronous user en-

vironment with a SNR = 15dB is considered . Plots

are made considering 20 simulations averaged over dif-

ferent random sets of channels and codes. We have

used random codes with a spreading gain of 50 and the

multipath channels have length M = 5. For the new

algorithm, a = 2 is employed. It is clear that both

algorithms provide near equivalent performance.

Figure 2 shows the accuracy of the theoretical MSE

analysis of (18). An environment with K = 8 asyn-

chronous DS-CDMA users employing spreading gain



N = 30 is considered. The channel length is M = 5

while the SNR was 20dB. It is observed that the an-

alytical approximation is quite tight even for a small

number of symbols.
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Figure 2: Comparison of simulated and analytically ap-

proximated MSE as a function of the number of sym-

bols.

Finally, we consider performance as a function of

the number of symbols in the observation vector, a.

Figure 3 plots the theoretical MSE versus a for three

di�erent channel lengths in an environment withK = 8

asynchronous users, SNR = 20dB, spreading gainN =

30. 200 Monte Carlo simulations were run. Note that

the results support condition (9) since for a channel

length M = 4 a value of a � 2 is necessary, but for

M = 6 the MSE is almost constant for a � 1.
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Figure 3: MSE versus the number of symbols in the

observation vector, a.

6. CONCLUSIONS

We have introduced a new blind multipath channel

identi�cation scheme suitable for DS-CDMA systems

where long randomized spreading codes are employed.

The estimation method exploits the asymptotic statis-

tics of the spreading codes and is based on the Toeplitz

structure of the autocorrelation matrix. A tight ana-

lytical approximation of the mean squared error was

derived employing perturbation techniques. Simula-

tions show that the proposed method o�ers perfor-

mance which is comparable to a previously proposed

algorithm [4], and they corroborate the theoretical ap-

proximation of the MSE.
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