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Abstract—To leverage the elastic nature of cloud computing, a
solution provider must be able to accurately gauge demand for
its offering. For applications that involve swarm-to-cloud interac-
tions, gauging such demand is not straightforward. In this paper,
we propose a general framework, analyze a mathematical model,
and present a prototype implementation of a canonical swarm-
to-cloud application, namely peer-assisted content delivery. Our
system – calledCYCLOPS – dynamically adjusts the off-cloud
bandwidth consumed by content servers (which represents the
bulk of the provider’s cost) to feed a set of swarming clients,
based on a feedback signal that gauges the real-time health of
the swarm. Our extensive evaluation ofCYCLOPS in a variety
of settings – including controlled PlanetLab and live Internet
experiments involving thousands of users – show significant
reduction in content distribution costs (by as much as two orders
of magnitude) when compared to non-feedback-based swarming
solutions, with minor impact on content delivery times.

I. I NTRODUCTION

Cloud computinghas emerged as a compelling paradigm for
deploying Information and Communication Technology (ICT)
solutions on the Internet, because it enables solution providers
to easily scale up or down, or migrate their offerings seam-
lessly across resources – compute servers, storage, platforms,
and services – offered by one or more cloud providers, yielding
significant cost savings due to economies of scale. More
importantly, the elasticity of the “pay-as-you-go” paradigm en-
ables solution providers to reign in operating costs, especially
when demand is highly dynamic, or unpredictable. For many
cloud-based ICT solutions, gauging demand is straightforward.
For instance, a cloud-based web hosting/caching solution can
easily gauge demand – and hence scale up or down its use of
elastic cloud resources – by observing the number (or average
response time) of its web transactions.

Increasingly, however, cloud-based solutions are evolving
from simple client-to-cloud interactions (reminiscent of the
traditional client-server model) intoswarm-to-cloudinterac-
tions, wherein the cloud-based solution is not merely respond-
ing to individual client requests, but rather to the collective
demand of a “swarm” of clients, making the determination
of what constitutes demand for cloud resources for purposes
of elastic resource allocation far more complicated. In this
paper, we propose a general framework and present a prototype
implementation that enable elasticity for a canonical “swarm-
to-cloud” application – namely peer-assisted content delivery.
Towards Elastic Cloud-Based, Peer-Assisted CDNs:Tra-
ditional Content Delivery Networks (CDNs) such as Akamai

[3] were conceived as special-purpose clouds catering almost
exclusively to large, highly-popular content providers such as
iTunes and CNN. Today, the advent of cloud-based storage and
delivery solutions such as Amazon S3 [1] and CloudFront [1]
make it possible for much smaller-scale content providers to
deploy and elastically provision their own cloud-based CDNs
in an almost real-time fashion. The major cost contributor for
such cloud-based CDNs isoff-cloud bandwidth: the bandwidth
consumed to deliver content from the CDN content servers
(in the cloud) to the CDN clients (off the cloud). To reduce
off-cloud bandwidth, an increasing number of CDN solutions
(including those offered by major market players such as Aka-
mai [3], Limelight [5], and Amazon [1]) rely on swarm-based,
peer-assisted approaches that leverage the uplink capacity of
end-users to reduce off-cloud bandwidth consumption. This
approach, which is particularly effective for highly-popular
content, can be seen as seamlessly bridging client-to-cloud and
swarm-to-cloud interactions: For less-popular content, acloud-
based, peer-assisted CDN behaves as a traditional (client-
server) CDN system, whereas for highly-popular content, it
behaves as a peer-to-peer system.

Existing cloud-based peer-assisted CDNs rely on swarm-
based protocols such as BitTorrent [4]. While such protocols
are quite efficient for exchanging content among peers (in
terms of download time, resource utilization, and fairness),
they are not designed to provide the content source with
the means to gauge the marginal utility of its contribution
to the swarm. Specifically, in our cloud-based peer-assisted
CDN setting, swarm-based protocols do not enable the content
server (in the cloud) to gauge and hence manage the inherent
tradeoffs between off-cloud bandwidth utilization and the
efficacy of content delivery. This is precisely the capability
that the work presented in this paper aims to provide.
Paper Scope and Contributions:We present a novel frame-
work for cloud-based peer-assisted CDN solutions in which
the content server (inside the cloud) is able to adjust the
off-cloud bandwidth it contributes to the swarm (the set of
clients outside the cloud) so as to achieve a specificobjective
based on afeedback signalrelated to the state of the swarm.
Our framework is general enough to allow for many possible
combinations of objectives and feedback signals. For instance,
the objective may simply be to keep the swarm alive based
on a feedback signal indicating the level of redundancy for
particular pieces of content in the swarm. Alternately, the
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objective may be to ensure a desirable level of service based
on a feedback signal gauging average delivery time to clients.

To establish a reference model for these as well as other
combinations of objectives and feedback signals, in Section
II, we develop an analytical model that quantifies the cost-
performance tradeoff for cloud-based, peer-assisted content
delivery. Our model relates off-cloud bandwidth utilization
(the cost incurred by the provider) to the average delivery
time (the performance observed by clients). Along these lines,
our findings suggest the existence of a quiescent (close to
optimal) operating point beyond which the marginal utility
from additional off-cloud bandwidth utilization is negligible.

Armed with this understanding, in Section III, we present
the design and prototype implementation of CYCLOPS, a peer-
assisted content delivery cloud service. The content server in
CYCLOPS is able to modulate its bandwidth contribution to the
swarm so as to remain in the vicinity of the aforementioned
quiescent operating point – thus minimizing its cost without
sacrificing performance. Our design relies on the feedback
signal provided through an on-line monitoring tool, which we
have implemented as part of CYCLOPS.

To demonstrate the effectiveness of our approach, in Sec-
tions IV and V we report on a fairly extensive series of
Internet experiments, in which we compare the performance of
CYCLOPS to those of “open-loop” swarm-based protocols used
by cloud-based content delivery services. Our experimentsare
carried out both in a controlled environment (by delivering
content to PlanetLab clients) and in the wild (by delivering
content to a real Internet user population). These experiments
show that our feedback-based approach reduces drasticallythe
volume of data served from the cloud (and hence the cost
incurred by the content provider) with negligible performance
degradation. More to the point, in live experiments involving
more than 10,000 users exhibiting highly dynamic arrival
and departure patterns, we were able to document monetary
savings of up to two orders of magnitudes for our system.

II. M ODELING THE COST-PERFORMANCE TRADEOFF

In this Section we develop a model that relates off-cloud
bandwidth utilization by a content server in the cloud to the
average delivery time perceived by a set of swarming users
(clients) outside the cloud.

We consider a dynamic environment, where clients join a
swarm, download the content, and eventually leave the system.
The number of clients in the swarm is not knowna priori,
but it can be characterized by arrival and departure rates.
While these rates may fluctuate drastically,1 we assume that
for the content download timescale (say minutes) they remain
constant, allowing the system to reach a steady state in which
the arrival and departure rates equalize, and consequentlythe
average number of clients in the swarm is constant.

Let N be the steady-state average number of clients in the
swarm, and let the content be divided intoM independent

1Such fluctuations are typical for “hot” viral Internet content, which gets
published, gains significant popularity fairly quickly, but eventually dies off
over time.

pieces. If M ≫ 1 then a client holdsM/2 pieces on
average. For analytical tractability, we do not model network
bottlenecks or losses.

Consider abirth-death Markov chainwhose statesk rep-
resentsk, the number of replicas of a single (arbitrary) piece
of content.2 For a generic statesk, there are two possible
transitions: (1) either the piece is replicated, resultingin a
piece birth, and thus a transition from statesk to statesk+1,
or (2) a client holding a replica of the piece leaves the swarm
and is replaced by a new client that does not have the piece,
resulting in apiece death, and thus a transition from statesk
to statesk−1.

Let αk indicate theaveragerate at which the content server
injects a piece in the swarm at statesk. Let λ denote the
piece replenishment rate resulting from client contributions:λ
is computed by dividing the aggregate upload capacity of all
N clients by the total number of piecesM . Both αk and λ
are expressed in pieces per second.

We assume a random piece replication strategy.3 Thus, the
probability of choosing to replicate the particular piece (mod-
eled by the Markov chain) out of theM/2 pieces available at
the client, is2/M . The probability that no client will choose
to replicate that piece is(1−2/M)k, sincek is the number of
clients holding the piece in statesk. This yields a probability
of 1− (1− 2/M)k for going from statesk to statesk+1.

To compute the transition rate from statesk to statesk+1 we
must also account for the rateαk at which the content server
independentlyinjects the piece into the swarm. This yields a
transition rate ofλ · (1− (1− 2/M)k) +αk. Notice that state
s0 is a special state in which only the content server can inject
the piece. Thus, the transition rate from states0 to states1 is
equal to the server upload rateα0.

Let µ denote the client departure rate (measured in clients
per second). The probability of a death out of statesk is the
probability that any one of thek clients holding the piece
leaves the swarm. The probability that a given departure is by
one of thesek users isk/N . Thus, the transition rate from
statesk to statesk−1 is given byµk/N .

In summary, the transition rates from statesk to statesk′ ,
denoted bysk,k′ , can be expressed as follows:

sk,k′ =























α0 if k=0 andk′=1

λ·(1−(1−2/M)k)+αk if k′=k+1, 0<k<N

µk/N if k′=k−1, 0<k≤N

0 otherwise
(1)

We now compute the probabilityπ0 to be in states0. For
simplicity, we consider the case in which the content server
uploads a piece at an average rateαk = α, ∀k, irrespectively

2One can envision an identical, independently evolving Markov chain for
each one of theM pieces that make up the content.

3In contrast to more sophisticated replication strategies [7], random piece
selection simplifies analysis and provides conservative performance bounds.
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of its state; by solving the Markov chain we get:

π0 =

[

1 +
α

µ
N (1 + Φ)

]

−1

(2)

where
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(
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(
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M
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)
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]

We now proceed to finding the relationship between the
average server rateα and the mean download time. Each client
obtains1/N of the swarm’s upload capacity, which isM(λ+
α). Since the content is composed ofM pieces, the mean
download time can be computed asT = M/(M(λ+α)/N) =
N/(λ+α). This is true as long as the probability of being in
states0 is small enough. If this probability increases, then we
have an additional term for the mean time spent in states0:
this can be computed by multiplying the probability of state
s0 (π0) by the time spent in states0 (1/α). Hence, the mean
download time is bounded by:

T ≤
N

λ+ α
+

π0

α
, (3)

To illustrate the utility of this model, consider a swarm of
N = 100 clients downloading content consisting ofM =
2000 pieces, with a mean client upload rate ofλ = 10 pieces
per second, and a client departure rate ofµ = 0.5 clients
per second. Figure 1 shows the average download time as a
function of the server upload rate, as predicated by Equation 3.
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Fig. 1. Mean download time as a function of the server rate (N = 100,
M = 2000, µ = 0.5).

Figure 1 quantifies the tradeoff between the off-cloud band-
width utilization (i.e., the average upload rateα of the content
server) and the average delivery rate to clients involved in
a swarm with upload capacityλ. It shows three operating
regions. The first operating region (left-side of the plot) is
when α tends to zero, resulting in piece starvation, and a
corresponding increase in download time. The second oper-
ating region (right-side of the plot) is whenα tends to values
that far exceedλ, resulting in a client-server-like mode of
operation. The third and more interesting operating regionis
an intermediate one,4 within which an increase inα does not

4The “width” of this region depends on the health of the swarm,which is a
function of the content popularity captured by the client arrival/departure rate
µ, and the mean client upload bandwidthλ. For the particular settings used
in Figure 1, this intermediate region is given byα ∈ [10, 1000] piece/sec.

result in a corresponding decrease in download time.
The behavior predicted by our model suggests the existence

of a quiescent operating point (at the transition between the
first and second operating regions depicted in Figure 1),
beyond which the marginal utility from additional off-cloud
bandwidth utilization is negligible. A content server operating
around this quiescent point would be fully leveraging the
uplink bandwidth of its clients, while minimizing its own
cost: operating below this quiescent point would jeopardize
performance, and operating above this quiescent point would
be cost inefficient.

Armed with this observation, we are now ready to describe
the design and prototype implementation of a content server
that uses a feedback signal to adjust its bandwidth contribution
to the swarm so as to remain in the vicinity of a nominal
quiescent operating point. While our framework allows for
many combinations of objectives and feedback signals, in the
remainder of this paper we focus on the objective of maxi-
mizing the performance per unit cost, using the availability of
content in the swarm as the feedback signal.

III. SYSTEM DESIGN AND IMPLEMENTATION

We now present the design of CYCLOPS, our cloud-based peer-
assisted content delivery service.5

A. Overview ofCYCLOPS

As depicted in Figure 2, our CYCLOPS service consists of a
content serverand aswarm monitor, both residing in the cloud.
The swarm monitor interprets the signaling messages ex-
changed between swarming clients, and generates a feedback
signal that enables the content server to gauge the marginal
utility of its contribution to the swarm. The content server
participates in the swarming protocol to satisfy client requests,
but only feeds the swarm when its contribution is deemed
necessary (based on the feedback signal). In CYCLOPS, the
swarm feeding rate is set to maximize the swarm performance-
per-unit-cost, using the availability of content in the swarm as
the feedback signal. As established in our model in Section II,
the quiescent operating point for this objective is the minimum
rate that avoids swarm starvation.

CYCLOPS is conceived to work withany swarm-based
application/protocol that features (1) a coordinating entity that
tracks all swarm participants, enabling them to establish peer-
to-peer connections; (2) content that is divided into pieces
to be distributed/exchanged independently; and (3) a control
messaging scheme used by swarm participants to advertise
piece availability.

For practical reasons, we present our system and conduct
our experiments focusing on a single content server, used to
deliver a single content (file) to a set of clients. Problems
related to concurrent swarms are orthogonal to our approach,
and the solutions proposed in the literature,e.g., [17], can
be integrated independently. Similarly, issues related tothe

5Our CYCLOPS service can be seen as injecting bursts of content into a
swarm of clients, just as in Greek mythology the primordial one-eyed giant
Cyclopes were the source of Zeus’ thunderbolts.
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Fig. 2. Overview of CYCLOPS Architecture: The content server and swarm
monitor reside in the cloud in distinct virtual machines, with off-cloud
bandwidth used for data feed (to the swarm) and control feed (from the
swarm).

efficiency of the distribution process, solved using approaches
based on traffic locality, are complementary to our solution,
and previous work on this topic,e.g., [9], [10], can be
incorporated seamlessly.

CYCLOPS was conceived and implemented as a cloud
service that can be deployed on existing cloud platforms.
Specifically, we focused on the Amazon Web Services (AWS)
environment, and produced an Amazon Machine Image (AMI)
that supportsboth the content server and the swarm monitor
functionalities.6

B. TheCYCLOPS Swarm Monitor

Swarm monitoring in CYCLOPS is achieved using a set of
components residing in the cloud, called the On-line Feedback
(OF) nodes. OF nodes connect to a live swarm, but neither
download nor upload content: they monitorall clients in
the swarm and collect signaling messages they exchange.
Using this information, OF nodes construct snapshots in time
that characterize the health/performance of the swarm. In
our particular implementation, these snapshots are used to
derive the instantaneous piece availability, which constitutes
the feedback signal fed to the CYCLOPS content server using
a complementary protocol.

To ensure scalability (and seamless elasticity), we adopted a
distributed design for OF nodes, whereby new clients joining
the swarm are assigned to OF node to balance load. Accord-
ingly, a swarmS is partitioned intoNp non-overlapping sets,
whereNp is the number of OF nodes in the system. Swarm
partitioning is achieved using consistent hashing [13]: each OF
node is responsible for a fraction of the key-space, defined by
the client ID (e.g., IP address).

C. TheCYCLOPS Content Server

The main objective of the content server is to minimize off-
cloud bandwidth consumption without running the risk of
starving the swarm. Based on the feedback signal provided

6Upon publication of this work, we will release to the research community
the CYCLOPS AMI, along with set-up and configuration instructions.

by the swarm monitor, the content server feeds the swarm
only when necessary,i.e., when piece availability falls below
a desirable threshold. To that end, in our design we adopted an
ON/OFF control strategy, whereby the content server operation
oscillates between two states:servingand idle.

When in theserving state, the content server dedicates its
full uplink capacity to serve missing pieces of content. By
design, the server avoids injecting duplicate pieces into the
swarm. The rationale for doing so is that pieces can be quickly
replicated by the swarm participants themselves. All clients
connected to the content server are induced to request the set
of missing pieces,7 which constitute theserving setmaintained
by the content server. This serving set is partitioned intok
non-overlapping subsets that are announced as “available.” For
instance, if the serving set consists of pieces{1,2,3,4} and
k = 2, then k messages each announcing pieces{1,2} and
{3,4}, respectively, will be sent tok users that will eventually
issue download requests. Once a piece has been served, it is
removed from the serving set, provided that the swarm monitor
has confirmed the presence of the piece in the swarm. When
the server has finished injecting all missing pieces into the
swarm, it transitions to theidle state.

When in the idle state, the content server simply closes
all connections to remote clients, and refuses any incoming
connection. The content server remains in the idle state until
the feedback signal triggers a transition to theserving state.

IV. EXPERIMENTAL METHODOLOGY AND SETUP

In this section, we summarize the specifics of the CYCLOPS

instance we have experimented with, along with various de-
tails regarding deployment on a commercial cloud. We also
describe the three types of experiments we have conducted:
two were in a controlled environment (involving PlanetLab
clients under our control), and the third was in the wild
(involving thousands of real Internet users accessing content
we advertised and made available).
BitTorrent-based Swarming: As we alluded to in Section
III, C YCLOPS can be instantiated to work with any swarm-
based content distribution protocol, supporting a specificset of
features. For experimental purposes, we created an instance of
CYCLOPS that is compatible with the popular BitTorrent (BT)
client.8 This choice is partly motivated by the wide adoption
of BT by Internet users, as well as its adoption by many cloud-
based content delivery services (including Amazon S3 and
many others [2]) as an underlying swarming protocol. The
details of the BT protocol and algorithms are not essential to
understanding CYCLOPS, thus we refer interested readers to
[16] for a technical description of BT. Here we only mention
that the coordinating entity that maintains the list of clients
in the swarm is called the tracker, and that the two control
messages used by BT to advertise pieces available at a client
are the “have” and the “bitfield” messages: they indicate the

7This is possible since the server masquerades as a set of virtual clients
holding a fraction of all available pieces.

8In all experiments, clients execute unmodified BT code.
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availability at a client of a specific (single) piece, and of aset
of pieces, respectively [16].

In the remainder of this paper, we use open-loop-BT to refer
to an “open-loop” BitTorrent swarm-assisted content delivery
system, whereas we use CYCLOPS to refer to our “feedback-
controlled” BitTorrent swarm-assisted content delivery system.
Deployment Details: We used Amazon’s Elastic Computing
Cloud (EC2) to host, on separate virtual machines, the open-
loop-BT content server (called the seed) and tracker, and the
CYCLOPS content server and swarm monitor.9 To mitigate the
negative impacts on networking performance due to shared
resources (CPU and I/O) in a virtualized environment, we used
large EC2 instances, which were all located in asingle US-
based data center. Our open-loop-BT and CYCLOPS content
servers were well-provisioned, with an upload capacity of 2.4
Mbps.
Flash Crowd Experiments: To emulate a flash crowd arrival
process, we deployed a set of clients on PlanetLab machines,
whereby all clients initiate their requests as a result of a cen-
tralized trigger: clients start downloading the content within 1
minute of that trigger signal. Once a user is done downloading
the content it continues to serve other clients until the endof
the experiment. We conducted our experiments using two flash
crowd sizes ofL = 50 andL = 300 clients, respectively. In
order to minimize the resource utilization of PlanetLab nodes,
we used a homogeneous configuration with an application
level cap of160 Kbps for the client’s uplink capacity, which
is the default setting for BT. The content size was set to50
MB.
Waves of Arrivals Experiments: We synthesized extreme
swarm dynamics on PlanetLab, with the goal of studying
CYCLOPS under stress. The dynamics consisted of three
successive bursts of client arrivals: a first burst of 100 clients
arrive in a 10-minute span and leave after completing their
download (within 50 minutes of arrival); a second burst of
100 clients join the swarm just before the mass exodus of
the first wave of users. This process is then repeated for a
third burst of arrivals. The interval between the mass exodus
from one wave and the burst of arrivals from the next wave is
set up in such a way that there would not be sufficient time
for content pieces to propagate fully from the clients of one
wave to the next (which should cause the swarm monitor’s
feedback signal to trigger the CYCLOPS content server to rev
up its contribution to the swarm). As before, the client’s uplink
capacity was capped at160 Kbps, and the content size was
set to50 MB.
Live Internet Experiments: We conducted experiments to
evaluate our system under realistic CDN operating conditions,
including web-driven arrival and departure processes for users
drawn from a diverse set of ISPs and with diverse software
settings. To do so, we prepared a 350MB file that we named
after a popular TV-series. We created two distincttorrent
meta-files (one for distribution using CYCLOPS and the other

9In our experiments, a single OF node proved to be sufficient tomonitor
the entire swarm fed by CYCLOPS.

for distribution using open-loop-BT), and we publicized both
simultaneously on popular content search web-sites, including
isohunt, mininova and btjunkie. We took particular care in
publicizing the two torrents exactly on the day of their TV
broadcast. In these experiments, both the CYCLOPS and the
open-loop-BT content servers had no cap on their uplink ca-
pacity (beyond what is possible through a large EC2 instance),
and needless to say, we had no control on the settings (or even
the BT variants) of the clients.
Performance Metrics: In all of our experiments, we con-
sidered two main performance metrics. From the content
server perspective, we measured the aggregate volume of data
uploaded during an experiment,i.e., the off-cloud bandwidth
utilization. Since content servers are under our control, we can
measure their bandwidth utilization using local log files. From
the client side, we measured the content delivery times. For
PlanetLab experiments, we did that by collecting application-
level logs from the clients. For live experiments, where we
do not have access to client logs, we measured the content
delivery times using our swarm monitor, which aggregates
information provided by OF nodes. The accuracy of this
approach was validated using the PlanetLab experiments.10 To
assert the statistical significance of our results, our PlanetLab
experiments were performed five times for each configuration.

V. EXPERIMENTAL RESULTS

A. Flash Crowd Experiments

End-users’ performance in downloading content is expressed
in terms of individual download times. Figure 3 reports the
most important percentiles (25th, 50th and 75th) of the em-
pirical cumulative distribution function (ECDF) of download
times.
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Fig. 3. Flash Crowd: content download times (file size: 50MB).

As a general trend, we observe that the median download
time of open-loop-BT swarms is lower than that of CYCLOPS

swarms, with the gap reduced in larger swarms.11 The reason
lies in the fact that an open-loop-BT seed keeps feeding the
swarm during the whole experiment, resulting in a larger

10We compared the download times computed using individual log files (of
PlanetLab clients) to those obtained from OF nodes, and verified the match
between the empirical cumulative distribution functions of download times
for the two methodologies.

11Aside from visible but relatively small variations, the download time for
CYCLOPS clients was less sensitive to the swarm size.
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fraction of users receiving data from the content server itself
(which is faster than the user), and hence the shorter content
delivery time.

TABLE I
FLASH CROWD : AVERAGE SERVER LOAD(FILE SIZE: 50MB)

BT CYCLOPS

L = 50 12.2 1

L = 300 15.36 1

The above explanation is further confirmed by the results
in Table I, which reports the average off-cloud resource
utilization expressed in volume of data served by both the
CYCLOPS and the open-loop-BT content servers, normalized
by content size. An open-loop-BT seed injects the swarm
with 10–15 times the size of the original content, whereas
CYCLOPS feeds the swarm only when necessary, which given
the static nature of this experiment is once. These results
corroborate the intuition discussed in Section II. A content
server that can gauge the marginal utility of its contribution
to a swarm can settle in the vicinity of an operating point
in which an additional expense of off-cloud resources has a
marginal effect on the swarm performance.

B. Waves of Arrivals Experiments

Figure 4 shows the key percentiles of the empirical cumulative
distribution function (ECDF) for the delivery times experi-
enced by clients in the successive waves of arrivals. In this
case, the difference between the delivery times achieved by
CYCLOPS and the open-loop-BT content servers is small: the
median value of the distribution indicates an advantage of
roughly 15% in favor of the latter.
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Fig. 4. Waves of Arrivals: content download times (file size: 50MB).

Table II shows the average volume of data served by both
schemes, as well as information on traffic overhead (namely,
volume of control messages involving off-cloud bandwidth
resources). For CYCLOPS, we show the aggregate overhead
incurred by the content server and the swarm monitor. For
completeness, we report the feedback traffic exchanged be-
tween the content server and OF node, noting that these
messages are exchanged within the confines of the cloud and
hence do not entail additional costs. The data in Table II
corroborates our conclusion that CYCLOPS achieves low off-
cloud resource utilization, even when the system is artificially
stressed by complex client dynamics.

TABLE II
WAVES OF ARRIVALS : SERVER LOAD& OVERHEAD (FILE SIZE: 50MB)

BT CYCLOPS

Normalized server load 39.86 1.5

Outgoing overhead 55 KB 52 KB

Incoming overhead 2560 KB 716 KB

Feedback overhead – 145 KB
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Fig. 5. Waves of arrivals: availability over time.

Next we examine the evolution in time of the feedback
signal (namely, system-wide piece availability) generated by
the CYCLOPS swarm monitor and the content server state
transitions it triggers. LetM be the number of pieces into
which a file is divided, and letI(i, t), i = 1, . . . ,M be the
indicator function for piecei at timet, i.e., I(i, t) = 1 if there
is at least one copy of piecei at timet, otherwiseI(i, t) = 0.
The availability feedback signalA(t) at time t is computed
as:

A(t) =

∑

i I(i, t)

M
(4)

Figure 5 shows the time-series for the swarm size, the avail-
ability feedback signal, and the content server state transitions
induced by this signal. It shows that as soon as the feedback
signal indicates piece starvation (i.e., availability is less than
1), the content server switches to the serving state and feeds
the swarm. Piece availability is zero when the swarm boot-
straps, and drops whenever clients holding the unique copy of
a particular piece depart from the system. The content server
switches from the idle state to the serving state only when
necessary to restore piece availability to 1. Note that in this
experiment we have purposefully created an extreme case of
swarm dynamics: in a real swarm, user behavior is not as
synchronous.

C. Live Internet Experiments

In the set of experiments we present in this Section, we do
not control the client arrival and departure processes, butrather
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we let these processes reflect the popularity of the content we
advertised. Furthermore, clients participating in our swarms
exhibit realistic uplink and downlink capacities, unlike our
PlanetLab experiments in which all clients have the same
uplink capacity.

For CYCLOPS, out of a total of 7633 users we tracked,
3509 obtained the full content. All other users departed before
finishing the download process. For the open-loop-BT content
server, 2486 out of a total of 5044 users completed the content
download. Figure 6 depicts the instantaneous number of users
for both swarms.12
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Fig. 6. Live Experiment: Evolution of swarm size over time.

Figure 7 shows the box-plot of the content delivery times
achieved by all users that were able to complete the download.
These results indicate that the median delivery time achieved
by both content servers is very similar. For the CYCLOPS

content server, the ECDF indicates longer tails: this is mainly
due to a larger swarm size, which included clients with poor
Internet connectivity. From the end-users’ perspective, the
difference in the download performance when they are served
by CYCLOPS or by open-loop-BT is negligible.
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Fig. 7. Live Experiment: content download times (file size: 357.5 MB).

The off-cloud bandwidth utilization, the associated volume
of data and related costs supported by content servers under-
score the superiority of CYCLOPS. Table III indicates that the
CYCLOPScontent server served a total of 731.6 MB of content
data, while the open-loop-BT seed injected a whopping 133.03
GB of content data! Table III also reports the overhead traffic,
as defined in the previous section.

These results13 support our conclusion that the framework

12In our experiments, after the transients of the first few hours have
subsided, the user arrival and departure rates within each swarm equalized,
with approximately 35-40 users joining each swarm per minute.

13Note that both experiments lasted 38 hours, and that the swarm sizes
allowed us to assume equivalent uplink capacity distributions for users in
each torrent.

discussed in Section II and the particular instance we presented
in this work are viable candidates for real Internet content
distribution systems. Since we deployed our content servers on
Amazon EC2 instances, we were able to quantify the economic
value of our proposed scheme: For the experiment we carried
out, the total cost (including overheads) for distributingthe
same content when using a legacy BT seed is roughly 180
times higher that of a CYCLOPS content server.

TABLE III
L IVE EXPERIMENT : SERVICE STATISTICS(FILE SIZE: 357.5 MB)

BT CYCLOPS

Total number of users
5044 7633

observed in the swarm

Normalized server load 381.04 2.05

Outgoing overhead 6.5 MB 0.2 MB

Incoming overhead 160.8 MB 24.6 MB

Cost of delivery $ 23.73 $ 0.13

VI. A DDITIONAL CONSIDERATIONS

We now discuss several points that complement the work
presented in this paper. We start by suggesting practical ideas
to implement a content server with alternative objectives and
feedback signals; then we address the case for multiple content
servers and conclude with a discussion of the robustness of our
framework against attackers aiming at thwarting the content
distribution process.
Dealing with alternative objectives and feedback signals:
The framework proposed in Section II is general enough to
allow many possible combinations of objectives and feedback
signals. For example, an alternative objective may be to ensure
some minimal level of service based on a feedback signal
regarding theaveragedelivery time of content to clients. The
swarm monitor described in Section III can readily measure
the average content delivery times, using the same swarm
signaling traffic we discussed earlier. Indeed, clients advertise
whenever they receive a new content piece, information that
can be simply used to compute the average download rate
of the swarm. Based on this information, the content server
can choose the appropriate level of off-cloud bandwidth (i.e.,
the cost it incurs) to complement the serving capacityλ of
the swarm, with the constraint of remaining in the vicinity
of the quiescent operating point discussed in Section II. With
reference to Figure 1, this approach corresponds to a content
server selecting to contribute bandwidth resources that move
across the various operating regions obtained for different
values ofλ.
Dealing with alternative ways to collect feedback signals:
The swarm monitor described in Section III is achieved using
a set of OF nodes that connect to all users. We show in
Section V that the cost of this solution, in terms of overheads,
is not significant. Nevertheless, maintaining many connections
may pose some challenges. An alternative solution is to use
periodic sampling of the swarm state: The OF nodes, instead of
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connecting to all the users in the swarm, periodically obtain
a subset of users from the tracker and connect temporarily
to this subset to collect the information about pieces owned
by the users. Using sampling statistics, it is possible toinfer
system-wide piece availability, subject to preset levels of
confidence. Clearly, the larger the sampling set, the more
precise the availability information: in practice, approximating
data availability may yield higher server load, since pieces may
not be detected even if they are in the swarm.

Dealing with multiple content servers: In this paper,
we conducted experiments in which a single content server
is deployed. There are many obvious reasons to consider a
more general scenario involving multiple content servers.For
example, a CDN operator may wish to use CYCLOPS on edge
servers positioned in several locations so as to serve clients
efficiently: in this scenario, end-users might be directed to
their geographically closest CYCLOPS content server. Traffic
locality to mitigate the impact on ISPs economics, calls for
a technique to create distinct swarms. This can be achieved
with techniques proposed in the literature without requiring
any modification to the design of CYCLOPS. Alternatively,
multiple CYCLOPS servers could be combined to contribute
to the same swarm. In this case, such content servers would
have to coordinate what content pieces they serve and when
to avoid inefficiencies. Our current implementation does not
have provisions for avoiding the overlap between theserving
setscompiled by different content servers. That said, standard
distributed algorithms could be easily used to manage such
situations for production-scale systems.

Dealing with adversarial workloads: Denial of Service
attacks as well as other improper behavior of end-users aiming
to exploit swarm resources is a concern that has to be
considered when embracing a peer-assisted CDN solution such
as ours. Although this is an important problem to address, here
we focus on deliberate attacks by a client (or a set of colluding
clients) targeting the specifics of our CYCLOPS framework.14

We recognize two possible adversarial exploits, where the aim
is to pollute the feedback signal computed by the CYCLOPS

swarm monitor.
In the first, an adversary may seek to consume as much off-

cloud bandwidth as possible. This can be done by inducing
the content server to detect piece starvation (when none truly
exists), thus causing the server to wastefully inject content.
Since CYCLOPS swarm monitor tracksall clients in a swarm,
such an attack would require a colluding set of malicious users
of a size approximately equal to the whole swarm size, which
can be safely assumed impractical.

In the second, a set of colluding users may engage in a
DoS-like attack to hinder content distribution, by inducing the
content server to conclude that the swarm is healthy (when the
contrary is true). This causes starvation of legitimate clients.
This can be solved by letting the swarm monitor to compute
the average download rate of the swarm (as explained before

14Other types of attacks typical of P2P systems, such as Sybil or
Eclipse attacks, can be solved using the techniques alreadypresented in the
literature[20].

Fig. 8. The Sampling-Serving-Idle scheme, with transitions among different
states.

in this Section). Based on this information, in case of content
starvation, the swarm monitor may trigger an alarm, indicating,
for instance, the less replicated pieces.

VII. A PPROACH SIMPLIFICATION

We now discuss a simplification of our approach to collect
swarm information. So far, we used continuous feedback
signals provided by the constant monitoring of OF nodes.
To simplify our architecture, we develop some of the con-
siderations in VI, preferring to the continuous monitoringa
periodic sampling strategy to check the swarm status. Using
this approach, there is no need of keeping several connections
open all the time, thus the system needs less resources, sparing
us from the deployment of the OF nodes. Indeed, in this
case the content server can absolve the OF nodes from the
swarm monitoring, adding to the serving and idle states a new
samplingstate.

We denominate this content delivery policy as the Sampling-
Serving-Idle (SSI) scheme. The Content server can be in one
of the following three states: Sampling, Serving or Idle. In
the Sampling state, the server samples the swarm status. In
the Serving state the server injects required pieces. In theIdle
state the server does not upload content. Next, we describe
each state in detail.
Sampling: In the Sampling state the content server interacts
with a small set of peers, labelled thesampling set, currently
downloading the content, and infers an instantaneous measure
of content availability using a set of control messages specified
in the application protocol. With this information at hand,the
content server builds aserving set, i.e., the set of missing
pieces in the swarm. If the serving set is empty, the content
server switches to the Idle state, otherwise the Serving phase
is triggered.

In our BT compatible implementation the server collects
“have” and “bitfield” messages from a sampling set of 50
peers. The sampling set is obtained from the tracker each
time the content server enters in the Sampling state. Clearly,
the larger the sampling set, the more precise the availability
information: in practice, approximating data availability by
defect may yield higher server load, since pieces may not be
detected (and hence inserted in the serving set) even if they
are in the swarm.
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Serving: This state is identical to theserving state of CY-
CLOPScontent server described in III. When the server has
finished to upload all missing pieces, it goes to the Idle state.
Idle: here the content server simply closes all the connections
to remote peers and refuses any incoming connection. A server
remains in the Idle state forTIdle seconds, after which a
Sampling phase begins. The frequency at which the server
uploads missing pieces clearly depends on the time spent in
the Idle state (TIdle), since during the Serving phase each piece
is served at most once. Hence,TIdle and the upload bandwidth
of the content server determine the volume of data injected in
the swarm.

We now describe abaselinecontent serving policy that
adapts the volume of data served by the content source by
updating the value ofTIdle, which is achieved without the need
of any additional information on the system state. We set a
bootstrap value to the time spent in idle state toTmin

Idle . We
then adopt a multiplicative increase, multiplicative decrease
(MIMD) approach in updatingTIdle. Each time the content
server switches from the Sampling to the Idle state,TIdle is
multiplied by a factor of 2; the idle time cannot increase
aboveTmax

Idle . Each time the content server switches from the
Serving to the Idle state,TIdle is multiplied by a factor of 0.5.
Intuitively, as data availability is at risk, the content server
increases the sampling frequency. Instead, the more a swarm
appears to be in a “healthy” state, the less frequent the content
server is intervene. Such approach allows the content server
to adjust dynamically its sampling rate, offering a way to
spare greatly its resources compared to a fixed timing sampling
approach.

A. A comparison ofCYCLOPS and SSI

We repeated the same experiments described in IV to
compare the CYCLOPS and SSI performance.
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Fig. 9. Flash Crowd: content download times (file size: 50 MB).

Fig. 9 shows the download time in the flash crowd exper-
iment. We note the perfomance of both SSI and CYCLOPS

are comparable. The only notable difference is shown in
Table IV: the SSIcontent server has a slightly higher load
w.r.t. the CYCLOPS one. That is due to the accuracy of the
estimate of piece availability. Indeed, in SSI, since the seed
samples a subset of 50 peers only, it may happen that the
availability of some pieces, especially those recently uploaded,

is not detected: as a consequence, the seed re-injects them.In
CYCLOPS case, the knowledge of piece availability is more
precise: in this static scenario, it is not necessary to upload
more than one copy of the content.

TABLE IV
FLASH CROWD : AVERAGE SERVER LOAD(NORMALIZED TO CONTENT

SIZE: 50 MB)

BT SSI CYCLOPS

L = 50 12.2 1.16 1

L = 300 15.36 1.96 1

Also Fig. 10 indicates that perfomance of both SSI and
CYCLOPS are comparable when considering the download
time as metric. Again the the server load table (Table V)
reveals an important difference in load between SSI and
CYCLOPS. Note also that the SSI case shows a lower incoming
overhead when compared to CYCLOPS because the latter
monitors continuously more nodes: thus, this parameter grows
with the swarm size. However, the signaling traffic between
OF nodes and the content server is negligible.

Plotting the estimate, done by the SSI server, of the system-
wide piece availability is helpful to understand the different
load on both the two kind of content server.

Fig. 11 shows the results for the SSI scheme, where the
availability plot includes both the estimate computed by an
OF node (continuous line) and the one computed by the
SSI content server (the dashed line). Note that the OF node
does not supply any information to the content server in this
case. As long as the availability from the seed viewpoint
is less than 1, the seed injects pieces in the swarm. When
the availability equals 1, the Sampling intervals follow a
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Fig. 10. Waves of arrivals: content download times (file size: 50 MB).

TABLE V
WAVES OF ARRIVALS : AVERAGE OVERHEAD AND SERVER LOAD

(CONTENT SIZE: 50 MB)

BT SSI CYCLOPS

Normalized server load 39.86 2.08 1.5

Outgoing overhead 55 KB 52 KB 52 KB

Incoming overhead 2560 KB 212 KB 716 KB

Feedback overhead – – 145 KB
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Fig. 11. Waves of arrivals: availability over time in SSI.
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multiplicative increase pattern: transitions to the Sampling
state are less and less frequent. As soon as the availability
drops due to peer departures, the seed starts serving again.
Clearly, underestimating piece availability triggers frequent
transitions to the Serving state, even when it is not necessary.

In summary, the SSI policy ensures long-term piece avail-
ability only: this approach is less reactive to a highly dynamic
swarm. Instead, CYCLOPS constantly tracks piece-availability
and can respond promptly to peer dynamics: this feature
comes at the cost of an increased overhead due to OF nodes.
Moreover, on the one end SSI reduces the complexity of
system deployment, while CYCLOPS requires a set of OF
nodes to work. On the other hand, the CYCLOPS parameters
which regulate the SSI transition must be tuned in order to
adapt the server reactivity to the users behavior in a particular
content distribution scenario. Tuning these parameters per each
content is a difficult and tedious operation that evidence the
practical advantage of adopting CYCLOPS over SSI.

VIII. R ELATED WORK

Peer-Assistance:Peer assisted content distribution have been
the subject of many recent studies. Of these, the work of
Huang, Wang, and Ross [12] could be seen as similar in nature
to the work presented in this paper. In that work, the authors
advocate the use of peer-assisted content distribution by eval-
uating the potential gain from peer-assisted video distribution
using real-world traces of two large CDN companies, Akamai
and Limelight (the underlying architecture of both of which
they characterized). Their approach uses the model in [11] to
obtain bounds on the server load and download times, should
swarming among end-users be allowed. They also quantify
the potential reduction in ISP peering traffic, resulting from
traffic localization. In the same vein, our work is based on
an analytical model that gives key insights as to the benefits
of peer-assisted content distribution (although, our focus is on
bulk as opposed to video transfers). Beyond a “proof of con-

cept” using a tractable mathematical formulation, we go one
step further by presenting practical feedback-control content
injection policies that aim to satisfy performance objectives
while minimizing provider’s costs. Our implementation is
evaluated in realistic contexts, and our results go beyond a
purely theoretic estimation of the benefits of peer-assisted
content distribution.
Frugal Seeding:To the best of our knowledge, the only work
that has a similar objective to ours – in terms of reducing the
load/cost on a content source, albeit in a very different setting
– is Sanderson and Zappala’s work [19]. In that work, once the
seed has determined a subset of pieces that should be injected
in a swarm, it will satisfy any number of requests for those
pieces. As a consequence, their technique does not offer the
same level of control on the seed workload as the policies we
study in this work. Indeed, we observe that for experiments
carried out in similar settings, our content servers injectorders
of magnitude less traffic than what was documented in [19].
Additionally, our system does not require any parameter to be
empirically set.

Chenet al. [8] study the “SuperSeeding” mode introduced
by an alternative BT client to help peers with slow Internet
connections perform initial content seeding. The objectives of
“SuperSeeding” are different from ours. Moreover, a number
of problems due to multiple peers using “SuperSeeding”
have been reported. The work in [6] proposes a “Smartseed”
policy, which advocates serving just one copy of each piece.
Besides the fact that Smartseed does not take into account
dynamic scenarios, it requires the modification of clients,
while our system involves changes only to the server with
no modification to the client.
Models and Bounds: The literature is rich with analytical
models that dissect many aspects of P2P content distribution.
In [14] and [21], the authors derive lower bounds for the
minimum content distribution time of a swarm-based P2P
application: we build upon those works, but focus instead on
the relation between the content server upload rate and the
download rate achieved by peers. The work in [18] belongs
to the family of fluid models of BitTorrent-like applications:
however, in this model it is the number of peers (as opposed
to traffic) in the system that is taken as fluid. The authors in
[18] develop a differential equation for the fluid model, from
which they determine the performance of the dynamic system.
We also model content replication in a dynamic setting, but
instead consider the number of piece replicas as the dynamic
variable modeled using a Markov process.
Bandwidth Allocation in P2P Systems:While the study of
alternative mechanisms that improve the bandwidth allocation
in P2P systems is orthogonal to our work, results from such
studies could clearly have positive implications on content
server utilization. In [17], the authors design a content distri-
bution system with the objective of maximizing the download
rate of all participants in a managed swarm. This work stems
from the observation that, in steady state, a swarm can be
in three different states: if the upload bandwidth allocated by
content servers is insufficient, peers will not be able to fill
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their uplink capacity and the aggregate download rate will
suffer; by increasing the amount of bandwidth awarded to
a single swarm, the content server can guide the system to
operate in a regime where the uplink capacity of peers is
gradually filled, up to a point in which also the downlink
capacity of all peers is filled; at this point, server capacity
can be diverted to other swarms. The system design in [17] is
based on a wire protocol that induces peer participation (using
virtual currency) to achieve a global system optimization.In
our work, we focus on a different objective: we try and address
the question of whether it is possible to optimize the bandwidth
utilization by content servers, without negatively impacting the
performance perceived by clients. We note that the model we
use in this work can also explain, though in more general
terms, the key intuition behind the Antfarm work [17].

The problem of devising efficient uplink allocation algo-
rithms for swarm-based P2P bulk data transfers is addressed
in [15]. Instead of using empirically set parameters, as done
in BT, to determine the amount of uplink capacity dedicated
to each remote connection, they cast uplink allocation as a
fractional knapsack problem, and design a simple heuristic
utility function to decide the amount of bandwidth a peer
should dedicate to each remote connection. The focus of their
work is on a cooperative P2P setting, in which peers are
assumed to fully abide to the prescribed algorithms.

IX. CONCLUSION

In this paper, we have demonstrated that peer-assisted content
distribution could be leveraged tosupplant as opposed to
supplementthe content provider’s resources for purposes of
efficient and scalable content distribution,without negatively
impacting the performance perceived by clients. Our approach
is based on a feedback-controlled swarm feeding mechanism,
which we have modeled analytically and evaluated empirically
using CYCLOPS – a full-fledged service that we have imple-
mented and deployed on the Amazon EC2 cloud.

Our extensive experimental results – including thelive
distribution of content to thousands of real Internet users–
show that CYCLOPS achieves enormous cost savings for the
provider (as high as two orders of magnitude when compared
to non-feedback-controlled BitTorrent-based services) without
noticeably impacting the performance perceived by end-users.
By deploying our servers on Amazon EC2 servers we were
able to show that the mechanisms we developed as part of this
work have a clear impact on content distribution economics,
including significant reduction of costs for content providers,
and much more efficient resource utilization for content hosts
and distributors.

Our on-going work is focused on exploring alternative
objectives and alternative feedback signaling processes in
CYCLOPS, as well as extensions that take into account multiple
(possibly competing) content servers involved in the distribu-
tion of content from multiple sources.
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