
Institut EURECOM
2229, route des Crêtes, B.P. 193,
06904 Sophia Antipolis Cedex

Research Report No 95-018

The Fast Subsampled-Updating Fast

A�ne Projection (FSU FAP) Algorithm

Karim Maouche Dirk T.M. Slock

December, 1994

Telephone: +33 93 00 26 26 E-mail:

Karim Maouche: +33 93 00 26 32 maouche@eurecom.fr
Dirk T.M. Slock: +33 93 00 26 06 slock@eurecom.fr

Fax: +33 93 00 26 27

Abstract

The Fast A�ne Projection (FAP) Algorithm is the fast version of the AP algorithm which is
a generalization of the well-known Normalized Least-Mean-Square (NLMS) algorithm. The
AP algorithm shows performances that are near to those of the Recursive Least-Squares al-
gorithms while its computational complexity is nearly the same as the LMS algorithm one.
Moreover, recent research has enlightened the strong tracking ability of the AP algorithm,
rendering it very interesting for adaptive systems that evolve within highly non-stationary en-
vironments. In order to reduce the O(2N) (N is the �lter length) computational complexity of
the FAP algorithm, we apply the Subsampled-Updating approach in which the �lter estimate
is provided at a subsampled rate, say everyM samples. Using the FFT technique when com-
puting the products of vectors with Toeplitz matrices leads to the Fast Subsampled-Updating
FAP (FSU FAP) algorithm which is mathematically equivalent to the AP algorithm. The
FSU FAP algorithm shows a low computational complexity for relatively large �lters while
presenting good convergence and tracking performances. This makes the FSU FAP algorithm
a challenging candidate for applications such as acoustic echo cancellation.

i

Contents

Abstract i

1 Introduction 1

2 The AP Algorithm 2

3 The FAP Algorithm 4

4 The SU FAP Algorithm 8

5 Fast computation using the FFT 9

6 The FSU FAP algorithm 10

7 Concluding remarks 12

ii

1

1 Introduction

There are two major classes of adaptive algorithms: one is the Least-Mean-Square (LMS)
algorithm which is based on a stochastic-gradient method [19] and the other is the Recursive
Least-Squares (RLS) algorithm which minimizes a deterministic sum of squared errors [7].
The 2N low computational complexity of the LMS algorithm (N is the �lter order) renders
it very popular. Nevertheless, the LMS algorithm shows a very slow convergence speed when
the adaptive �lter length is relatively large or when the input signal is correlated.
The RLS Algorithm shows a relatively important computational complexity of O(N2). How-
ever, with Finite Impulse Response (FIR) �ltering, consecutive regression vectors are related
through a shift operation. This allows for the derivation of fast RLS algorithms with a com-
plexity of O(N). The most popular between them is the Fast Transversal Filter (FTF) algo-
rithm because of its lowest computational complexity which is equal to 7N [2]. Unfortunately,
fast RLS versions su�er from round-o� error accumulation that leads to numerical instability.
Recently, a stabilized version of the FTF algorithm was derived which shows a computational
complexity of 8N [15]. RLS algorithm is much more e�cient than LMS algorithm since its
superiority in convergence and tracking [4] but its complexity (even in the fast versions) dis-
qualify it from being used in applications that are computationally demanding such as echo
cancellation applications where the �lter length turns around several hundreds in the case of
mobile-radio communications and several thousands for teleconference communications.
Recently, the Fast Newton Transversal Filter (FNTF) algorithm has been derived that is in-
termediate to the two families [12]. The FNTF algorithm departs from the FTF algorithm and
uses the approximation that when dealing with Auto-Regressive (AR) signals, the prediction
part of the FTF algorithm can be limited to prediction �lters and Kalman gain of length P ,
the order of the AR model. In fact, in the FNTF algorithm the inverse of the sample co-
variance matrix is approximated by a banded matrix of total bandwidth 2P + 1. This allows
the reduction of the complexity to O(2N). The FNTF algorithm has been implemented suc-
cessfully in a radio-mobile hands-free system [14]. It exhibited performances that are near to
those of the RLS algorithm. Nevertheless, the performances of the FNTF algorithm become
worst with longer �lters than those used in mobile-radio communications.
The A�ne Projection (AP) algorithm constitutes another intermediate to the LMS and RLS
adaptive �ltering algorithms families. The key ingredient of the AP algorithm is a L di-
mensional projection whereas the NLMS algorithm is based on a one dimensional projection
scheme. From this point of view, the AP algorithm constitutes a generalization to the Nor-
malized LMS (NLMS) algorithm. The AP algorithm is known to converge faster than the
NLMS even with white input signal. It has also a stronger tracking ability. The cost being
the inversion at each iteration of a L � L sample covariance matrix that is estimated over a
sliding rectangular window of length N . In [5], a fast version of the AP algorithm was derived
by using the Sliding Window Covariance RLS (SWCRLS) algorithm, leading to the Fast AP
(FAP) algorithm which computational complexity is 2N +O(L). A perticularity of this fast
version is the use of a pseudo-�lter of length N which allows the computation of the output
error without updating the �lter estimate.
When one deals with longer �lters than those used in the mobile-radio context (N > 256),
the FNTF, the FAP and even the NLMS algorithms can not be implemented because of to-
days technological limitations. In [16],[17],[10], we have pursued a way in order to reduce
the complexity of RLS adaptive �ltering algorithms. The approach consists of subsampling

2 2 THE AP ALGORITHM

the �lter adaptation, i.e. the LS �lter estimate is no longer provided every sample but ev-
ery M � 1 samples (subsampling factor M). This strategy has led us to derive new RLS
algorithms that are the FSU RLS, FSU SFTF and FSU FNTF algorithms which present a
relatively small computational complexity when dealing with long FIR �lters. Here, we apply
the subsampled-updating strategy (SUS) to the FAP algorithm. In this approach, we keep
the computations of O(L) as they are and compute the pseudo-�lter and its corresponding
output from the pseudo-�lter that was available M instants before. The SUS makes appear
convolutions that are done with the Fast Fourier Transform (FFT) technique. This leads to
a new algorithm with a reduced computational complexity, rendering it especially suited for
adapting very long �lters such as in the acoustic echo cancellation problem.
The rest of this report is organized as follows. In sections 2 and 3, we briey recall the AP
and FAP algorithms. In section 4, we apply the SUS to the FAP algorithm and derive the SU
FAP algorithm. Section 5 deals with the fast computation of convolutions using the FFT in
order to reduce the computational complexity of the SU FAP algorithm. This technique leads
to the FSU FAP algorithm which is given in section 6. Finally, some concluding remarks are
presented in section 7.
In order to formulate the problem and to �x notation, we shall �rst recall the AP algorithm
and the FAP algorithm.

2 The AP Algorithm

An adaptive transversal �lterWN;k forms a linear combination of N consecutive input samples
fx(i�n); n = 0; : : : ; N�1g to approximate (the negative of) the desired-response signal d(i).
The resulting error signal is given by

�N (ijk) = d(i) +WN;kXN (i) = d(i) +
N�1X
n=0

W n+1
N;k x(i�n) ; (1)

where XN (i) =
h
xH(i) xH(i�1) � � � xH(i�N+1)

iH
is the regression vector at time i, WN;k is

the set of N transversal �lter coe�cients WN;k =
h
W 1

N;k � � �W
N
N;k

i
and superscript H denotes

Hermitian (complex conjugate) transpose.
The AP algorithm generalizes the NLMS algorithm and is given by8>><>>:

�pN;L;k = dL;k +XN;L;kW
H
N;k�1

WN;k = WN;k�1 � �k�
pH
N;L;k

�
XN;L;kX

H
N;L;k

��1
XN;L;k

(2)

where

dL;k =

2664
dHk
...

dHk�L+1

3775 ; �pN;L;k =

2664
�HN(kjk�1)

...
�HN(k�L+1jk�1)

3775 ; (3)

0 < �k < 2 is a step-size parameter called the relaxation factor and XN;L;k is the L � N
Hankel input data matrix

XN;L;k =

2664
XH
N (k)
...

XH
N (k�L+1)

3775 = [xL;k xL;k�1 � � �xL;k�N+1] ; (4)

3

xk

yk

byk

�k

+

+

�k

Wk

�W o

Figure 1: The identi�cation scheme of an unknown plant.

with the complex-conjugate regressor vector

xL;k = [xk xk�1 � � � xk�L+1]
H : (5)

The AP algorithm reduces to the NLMS algorithm when L = 1 and extends to the SWC RLS
algorithm when L = N . This leads to a set of algorithms that are intermediate to the LMS
and RLS adaptive �ltering algorithms families.
In fact, it appears that the AP estimate �lter at time k is the solution to the following
minimization problem

min
WN;k

kdL;k +XN;L;kW
H
N;kk

2
Pk
+ kWN;k �WN;k�1k

2 (6)

with Pk = �k(XN;L;kX
H
N;L;k)

�1 , �k = (1 + �k)�1 and kvk2P = vHPv.
Consider the classical identi�cation scheme as depicted in Fig.(2): one has

dL;k = �L;k �XN;L;kW
o H ; (7)

where �W o is the unknown FIR �lter to identify and �L;k = [�k � � � �k�L+1]
H , �k being an

i.i.d. centered sequence with �nite variance.
One �nd straightforwardly the following recursion of the deviation �lter fWN;k = WN;k �W o

fWN;k = fWN;k�1

�
I � �kX

H
N;L;k

�
XN;L;kX

H
N;L;k

��1
XN;L;k

�
� �k�

H
L;k

�
XN;L;kX

H
N;L;k

��1
XN;L;k :

(8)
At �rst glance, eq.(8) ressorts the projection process associated with the AP algorithm. In

fact, when �k = 1 , �AP
k = I � XH

N;L;k

�
XN;L;kX

H
N;L;k

��1
XN;L;k is the orthogonal projection

matrix onto the orthogonal subspace to the subspace spanned by the columns of XH
N;L;k. These

columns are the L most recent regressor vectors of the adaptive �lter. In the case of the NLMS
algorithm, the update of the �lter deviation has the same form and the projection matrix is

4 3 THE FAP ALGORITHM

�NLMS
k = I � 1

kXN (k)k2
XN (k)XN (k)H which is the projection onto the orthogonal subspace to

XN (k).
The AP algorithm is known to converge faster than the NLMS algorithm, even when the
input signal is white. This is explained from the projection scheme since applying �AP

k to a
given fWN;k�1 gives a smaller norm vector than the one which would be obtained by applying
�NLMS
k .

Another interesting property of the AP algorithm concerns the vector of a posteriori �ltering
errors which is

�N;L;k = dL;k +XN;L;kW
H
N;k =

2664
�HN(kjk)

...
�HN(k�L+1jk)

3775
= (1 � �k) �

p
N;L;k ;

(9)

as we can see, the vector of a posteriori �ltering errors gets nulled if �k = 1. This fact
constitutes also a generalization to the NLMS algorithm where the a posteriori �ltering error
is nulled when �k = 1.
The major drawback of the AP algorithm is its noise ampli�cation which at �rst instance can

be explained from eq.(8) where
�
XN;L;kX

H
N;L;k

��1
multiply �L;k. So, when the inverse of the

sample covariance matrix is large, the noise is ampli�ed and disturbs the projection scheme.
This is better seen by using the Singular Value Decomposition (SVD) of the data matrix
XN;L;k : XN;L;k = U � V with U a L � L matrix such that UUH = I , � a L � L diagonal
matrix where each diagonal element is called a singular value and V is a L �N matrix such
that V V H = I. Using the SVD, eq.(8) becomes

fWN;k = fWN;k�1�
AP
k � �k�

H
L;kU�

�HV ; (10)

hence, noise ampli�cation is related to the singular values of the data matrix XN;L;k and
becomes more important as singular values decrease.
In [5], [11] and [13] modi�cations in the covariance matrix estimation scheme are done in
order to reduce the noise ampli�cation. [5] replaces the original sample covariance matrix
XN;L;kX

H
N;L;k by XN;L;kX

H
N;L;k+�I (� being a small positive number) a biased but regularized

covariance matrix while [11] and [13] replaces the rectangular window of length N over which
the covariance matrix is estimated by an in�nite exponentially weighted window.
The computational complexity of the AP algorithm is 2N+O(L2) when computing recursively
the sample covariance inverse matrix. Fast versions of the AP algorithm have been derived
in [5] and [11] by using judiciously the shift-invariance present in the algorithm due to the
successive data-matrices XN;L;i. It uses also the SWCFTF algorithm which is a fast version of
the SWCRLS algorithm in order to compute recursively the sample covariance inverse matrix.
This is briey presented in the next section.

3 The FAP Algorithm

The FAP algorithm [5] in its relaxed form (�k 6= 1) is given in Table I where AL�1;k and
BL�1;k are respectively the forward and backward prediction �lters of order L � 1, �L�1(k)
and �L�1(k) are the corresponding prediction error variances (these quantities are computed

5

Table I : Non-Relaxed FAP Algorithm

Computations Cost per sample

1 sL�1;k = sL�1;k�1 � xk�NXL�1(k�N�1) + xkXL�1(k�1) 2L

2 b� pN (k) = dk + cWN;k�1XN(k) N

3 �
p
N (k) = b� pN (k)� �k (EL;k�1)

H
1:L�1 sL�1;k L

4 �
p

N;L;k =

26664 �
p
N (k)

(1� �k�1)�
p
N;L�1;k�1

37775 L

5 SWCFTF (prediction part) of order L� 1 :

Update of AL�1;k; �L�1(k); BL�1;k; �L�1(k) 10L

6 e
p
N;L;k =

26664 0

(1� �k�1)�
p
N;L�1;k�1

37775+ AH
L�1;k�

�1
L�1(k)AL�1;k�

p
N;L;k 3L

7

2666666664

�
p
N;L�1;k

0

3777777775
= e

p
N;L;k �BH

L�1;k�
�1
L�1(k)BL�1;k�

p
N;L;k 2L

8 EL;k =

26664 0

(EL;k�1)1:L�1

37775+ e
p
N;L;k L

9 cWN;k = cWN;k�1 � �kE
L
L;k

H
XH
N (k�L+1) N

10 WN;k = cWN;k � �k (EL;k)
H

1:L�1XN;L�1;k N(L�1)

Total cost per sample 2N + 20L

6 3 THE FAP ALGORITHM

via the prediction part of an SWCFTF algorithm) and

EL;k =

26666666666664

ep 1N;L;k

ep 2N;L;k + ep 1N;L;k�1

...

ep LN;L;k + � � � + ep 1N;L;k�L+1

37777777777775
; (11)

with

epN;L;k =

2664
ep 1N;L;k
...

ep LN;L;k

3775 =
�
XN;L;kX

H
N;L;k

��1
�pN;L;k ; (12)

and �nally

�pN;L�1;k =
�
XN;L�1;kX

H
N;L�1;k

��1
�pN;L�1;k : (13)

When there is no need in the computation of the �lter estimate coe�cients W i
N;k (hence,

eq.(10) of Table I and eq.(7) of table II are not computed) the complexity of the relaxed FAP
algorithm is 2N+20L. Such situation where one does not need to update the �lter coe�cients
arises in applications such as acoustic echo cancellation where one is mainly interested in the
computation of the a priori output error signal.
The non-relaxed form of the FAP is obtained by setting �k = 1, in this case simpli�ca-
tion occurs that leads to the non-relaxed FAP algorithm which computational complexity is
2N + 14L when the �lter estimate WN;k is not evaluated. Note that eq.(1) in Table I and
II can be computed in L operations instead of 2L operations if one stores the N products
xk�N+iXL�1(k�N+i�1) ; i = 1; : : : ; N�1. Note also that the update of the �lter estimate
WN;k needs N(L�1) operations but the product (EL;k)

H

1:L�1XN;L�1;k corresponds to a convo-
lution and can be computed by using fast convolution techniques that will reduce the amount
of operations to O (N log2 L=L). This kind of computational reduction will be seen later.
In order to reduce the amount of computations in the FAP algorithm, we use the SUS. This
idea comes from the fact that when one deals with relatively long adaptive �lters, it is not
necessary to update the �lter at each new input sample because there is not a signi�cant
change in the �lter coe�cients after one update. The SUS does not necessarily involve ap-
proximations and the key ingredient is that even the adaptive �lter is not updated all the
time, it can be possible to compute e�ciently the �ltering errors that should be given if the
�lter estimate was updated at the sampling signal rate. The SUS leads to SU algorithms that
are equivalent to the original algorithms, except for the fact that some quantities like the �lter
estimate are not provided at all the time instants. Moreover, fast convolution techniques can
help to reduce the complexity of the SU algorithms and will give FSU algorithms. In the FAP
algorithm, the prediction part SWCFTF algorithm is not computationally demanding and
hence remains unchanged. This is also the case for all the computations which complexity is
O(L). Henceforth, the objective is to reduce the 2N computational complexity that appears
when updating the pseudo-�lter cWN;k and when computing the corresponding output errorb� pN(k).

7

Table II : Relaxed FAP Algorithm

Computations Cost per sample

1 sL�1;k = sL�1;k�1 � xk�NXL�1(k�N�1) + xkXL�1(k�1) 2L

2 b� pN (k) = dk + cWN;k�1XN (k) N

3 �
p
N (k) = b� pN (k)� (EL;k�1)

H

1:L�1 sL�1;k L

4 SWCFTF (prediction part) of order L�1 :

Update of AL�1;k; �L�1(k) 10L

5 EL;k =

26664 0

(EL;k�1)1:L�1

37775+ �
p
N (k)A

H
L�1;k�

�1
L�1(k) L

6 cWN;k = cWN;k�1 �EL H
L;k X

H
N (k�L+1) N

7 WN;k = cWN;k � (EL;k)
H

1:L�1XN;L�1;k N(L�1)

Total cost per sample 2N + 14L

8 4 THE SU FAP ALGORITHM

4 The SU FAP Algorithm

In what follows, we consider that the relaxation parameter is constant: �k = �. We want to
compute at time k the pseudo-�lter cWN;k from its value at time k�M . Using the pseudo-�lter
update equation (see TableI or II), one �nds straightforwardly

cWN;k = cWN;k�M � �EHM;kXN;M;k�L+1

EM;k =
h
EL H
L;k � � � EL H

L;k�M+1

iH
:

(14)

Note that the computation of the di�erentEL;k�M+i requires the computation of the b� pN(k�M+i)
that are the successive output errors corresponding respectively to the successive pseudo-�lterscWN;k�M+i (see Table I or II). In fact, it turns out that the successive b� pN (k�M+i) can be

computed without using the corresponding pseudo-�lters cWN;k�M+i . Consider for this the
following vector of multistep a priori output errors

b�N;M;k = dM;k +XN;M;kW
H
N;k�M =

2664
�HN(kjk�M)

...
�HN(k�M+1jk�M)

3775 : (15)

Using (14), one can show that the one-step a priori output errors b� pN(k�M+i), for i = 2; : : : ;M
are obtained from the corresponding multistep a priori output errors as follows

b� pN(k�M+i) = b�N(k�M+ijk�M+i�1)

= b�N(k�M+ijk�M) +
i�1X
j=1

EL�1 H
L;k�M+j�j(k�M+i) ;

(16)

where
�j(k�M+i) = XH

N (k�M+i)XH
N (k�M �N+j+1) ; (17)

now as this was done in [1], one can compute e�ciently the inner products �j(k�M+i) that
appears in (16) as

for i = 2; : : : ;M

�1(k�M+i) = �1(k�2M+i) +
MX
l=1

(xk�M+i�lxk�M�N+2�l � xk�2M+i�l�Nxk�2M�2N+l+3)

for j = 1; : : : ; i�1

�j+1(k�M+i+1) = �j(k�M+i) + xk�M+i�1xk�M�N+2+j � xk�M+i�N+2xk�M�2N+3+j :
(18)

The computational complexity associated with the procedure described in (18) is 3M2 per M
samples while (16) takes 0:5M2 operations per M samples. Eqs.(14), (15), (16) and (18) with
the other O(L) operations of the FAP algorithm give the SU FAP algorithm. Eqs.(14) and
(15) are computationaly expensive but computational complexity of the new algorithm can
be further reduced by using the FFT as is shown in the next section.

9

5 Fast computation using the FFT

It is possible to reduce the computational complexity of SU FAP by introducing FFT tech-
niques as explained in [18]. In what follows, we shall assume for simplicity that M is a power
of two and that K = N=M is an integer.
In order to get b� pN;L;k in (14), we need to compute the product XN;M;k

cWH
N;k�M . Consider the

Hermitian transpose of this last product: it has the form �N;k XH
N;M;k where �N;k is a row

vector of N elements.
Consider a partitioning of �N;k in K subvectors of length M :

�N;k =
h
�1N;k � � � �KN;k

i
; (19)

and a partitioning of XN;M;k in K submatrices of order M �M :

XN;M;k = [XM;M;k XM;M;k�M � � �XM;M;k�N+M�1] ; (20)

then

�N;k X
H
N;M;k =

KX
j=1

�jN;kX
H
M;M;k�(j�1)L =

KX
j=1

�
�jN;kJ

��
JXH

M;M;k�(j�1)L

�
; (21)

where J is the reverse matrix

J =

266666664

0 0 � � � 0 1
0 0 � � � 1 0
... . .

. ...
... . .

. ...
1 0 � � � 0 0

377777775 : (22)

Here we use the reverse matrix in order to transform the Hankel data matrix into a Toeplitz
one. This is just for notational convenience. Hence, we have essentially K times the product
of a vector of length M with a M �M Toeplitz matrix. Such a product can be e�ciently
computed in basically two di�erent ways [18]. One way is to use fast convolution algorithms
which are interesting for moderate values of M . Another way is to use the Overlap-Save
method. We can embed the M �M Toeplitz matrix JXH

M;M;k into a 2M � 2M circulant
matrix, viz.

X
H

M;M;k =

264 � JXH
M;M;k

JXH
M;M;k �

375 = C
�
xH2M;kJ

�
; (23)

where C(cH) is a right shift circulant matrix with cH as �rst row. Then we get for the vector-
matrix product

�jN;kX
H
M;M;k�(j�1)M =

h
01�M �jN;k

i
C
�
xH2M;k�(j�1)MJ

� " IM
0M�M

#
: (24)

Now consider the Discrete Fourier Transform (DFT) Vj
N;k of �

j
N;k

Vj
N;k = �jN;k FM ; (25)

10 6 THE FSU FAP ALGORITHM

FM is the M �M DFT matrix whose generic element is (FM)p;q = e�i2�
(p�1)(q�1)

M , i2 = �1.

The inverse of FM is 1
M
FH
M . It de�nes the inverse DFT transformation (IDFT)

�jN;k = Vj
N;k

1

M
FH
M : (26)

The product of a row vector v with a circulant matrix C(cH) where v and c are of length m
can be computed e�ciently as follows. Using the property that a circulant matrix can be
diagonalized via a similarity transformation with a DFT matrix, we get

v C(cH) = v Fm diag
�
cHFm

� 1
m
FH
m =

h
(vFm) diag

�
cHFm

� i 1

m
FH
m ; (27)

where diag(w) is a diagonal matrix with the elements of the vector w as diagonal elements.
So the computation of the vector in (24) requires the padding of v with M zeros, the DFT
of the resulting vector, the DFT of Jx2M;k�(j�1)M, the product of the two DFTs, and the
(scaled) IDFT of this product. When the FFT is used to perform the DFTs, this leads to
a computationally more e�cient procedure than the straightforward matrix-vector product
which would require M2 multiplications. Note that at time k, only the FFT of Jx2M;k needs
to be computed; the FFTs of Jx2M;k�jM; j = 1; : : : ;M�1 have been computed at previous
time instants.
This procedure is used for the product of XN;M;k with WN;k�M in (16). This reduces the N
computations per sample that are needed to

N

"
FFT(2M)

M2
+

2

M

#
+
2FFT(2M)

M
(28)

computations per sample (FFT(M) signi�es the computational complexity associated with a

FFT of length M) or basically O
�
N log2(M)

M

�
operations.

6 The FSU FAP algorithm

Using the results of the previous section, we can reduce the computational complexity of the
SU FAP algorithm by reducing the amount of operations needed for the computation of the two
products in (14) and (15) that involve the two Hankel data matrices XN;M;k�L+1 and XN;M;k.
For data storage considerations, it is better to use the data matrix XN;M 0;k ; M

0 = M+L�1
which contains the two previous data matrices. By using XN;M 0;k, we reduce the the amount
of data storage because we just need to store N=M 0 vectors of length 2M 0. This corresponds
to a total of 2N data while 4N data need to be stored when considering the two data ma-
trices XN;M;k�L+1 and XN;M;k. Moreover, it appears that the computational complexity for

performing the matrix products involved are
�
4 + 2N

M

�
FFT (2M) + 4N when using the two

data matrices and
�
3 + 2 N

M 0

�
FFT (2M 0) + 4N when using XN;M 0;k. Both complexities are of

the same order. Now, since we use the same data matrix, we have to compute the following
vector of multistep output errors

b�N;M 0;k = dM 0;k +XN;M 0;kW
H
N;k�M (29)

11

and the vector of a priori errors at time k which is used in the FAP algorithm is obtained by
taking the �rst M components of b�N;M 0;k

b� pN;M;k =
�b� pN;M 0;k

�
1:M

: (30)

The vector of M 0 a priori errors is computed as was explained in the previous section by
sharing the product XN;M 0;kW

H
N;k�M into N=M 0 subproducts that are computed via the FFT.

Doing like this, the product (29) takes
�
1 + N

M 0

�
FFT (2M 0)

M
+ 2N

M
operations per sample.

On the other hand, (14) is computed as follows

cWN;k = cWN;k�M � �
h
0L�1 E

H
M;k

i
XN;M 0;k ; (31)

we can further reduce the NM 0 multiplications per M samples which are needed for the
computation of

h
0L�1 EHM;k

i
XN;M 0;k, by using the FFT technique. Consider the following

decomposition of XN;M 0;k in K submatrices of order M 0 �M 0

JXN;M 0;k = [JXM 0;M 0;k � � � JXM 0;M 0;k�N+Mk
] ; (32)

and hence, the product in (31) becomesh
0L�1 E

H
M;k

i
XN;M 0;k

=
h h �

EHM;kJ
�

0L�1
i
JXM 0;M 0;k � � �

h �
EHM;kJ

�
0L�1

i
JXM 0;M 0;k�N+M 0�1

i
; (33)

where every subproduct in (33) is computed as follows:

h �
EHM;kJ

�
0L�1

i
JXM 0;M 0;k =

h
0M 0

�
EHM;kJ

�
0L�1

i
X

H

M 0;M 0;k

"
IM 0

0M 0�M 0

#

=
h�h

0M 0

�
EHM;kJ

�
0L�1

i
F2L

�
diag(xH2M 0;kJF2M 0)

i 1

2M 0
FH
2M 0

"
IM 0

0M 0�M 0

#
; (34)

As it is shown in (34), the product
h
0L�1 EHM;k

i
XN;M 0;k in (31) is done by adding M 0 zeros

to
h
0L�1 EHM;k

i
, computing the corresponding DFT, computing its product with the di�erent

DFTs of Jx2M 0;k�jM 0 ; j = 1; : : : ;M 0 � 1 , applying the IDFT to the di�erent products
and �nally taking the �rst M 0 elements of the results. Note that the di�erent DFTs of
Jx2M 0;k�jM 0 have been already computed at previous instants and that the DFT of Jx2M 0;k

has been computed in (29). Hence, (31) is done in
�
N

M 0
+ 1

�
FFT (2M 0)

M
+ 2N

M
multiplications

per sample.
Now, in the case where one needs to compute the �lter estimate coe�cients, it is better for
reducing the memory storage requirement to use the data matrix XN;M 0;k instead of XN;L�1;k

WN;k = cWN;k � �
h
(EL;k)

H

1:L�1 0M
i
XN;M 0;k ; (35)

Eq.(35) is done as eq.(31) in
�
1 + N

M 0

�
FFT (2M 0)

M
+ 2N

M
operations per sample.

The resulting FSU FAP algorithm is summarized in Table III and IV, where we give respec-
tively the non-relaxed and relaxed forms.

12 7 CONCLUDING REMARKS

7 Concluding remarks

We have derived a new algorithm that is equivalent to the FAP algorithm. The computational
complexity of the FSU FAP algorithm is O

��
3 + 2 N

M 0

�
FFT (2M 0)

M
+ 4N

M
+ 3:5M + 20L

�
oper-

ations per sample for the non-relaxed form and O
��
3 + 2 N

M 0

�
FFT (2M 0)

M
+ 4N

M
+ 3:5M + 14L

�
for the relaxed form. This can be very interesting for long �lters. For example, when
(N;M;L) = (4096; 256; 16); (8192; 256; 16) and the FFT is done via the split radix (FFT (2m) =
mlog2(2m) real multiplications for real signals) the multiplicative complexity is respectively
0:39N and 0:23N (we consider the non-relaxed form) compared to 7N for the FTF algorithm,
the currently fastest RLS algorithm and 2N for the FNTF algorithm. Moreover, it seems that
the O(L) computational complexity of the FSU FAP (and FAP) may be reduced by using a
batch processing. This is the object of ongoing research. The cost we pay to achieve such
complexity is a processing delay which is of the order of M samples. The low computational
complexity of the FSU FAP when dealing with long �lters and its performance capabilities
render it very interesting for applications such as acoustic echo cancellation. Nevertheless, the
AP algorithm presents a drawback that is the noise ampli�cation which originates from the
short recangular window of length N over which a L�L covariance matrix is estimated. Re-
placing the rectangular window by an exponentially weighted window will solve the problem of
the noise ampli�cation but unfortunately will attenuate the tracking ability of the algorithm.
In order to reduce the noise ampli�cation while keeping the tracking ability, we propose to
replace the rectangular window by a generalized window which consists of two parts: �rst part
is a rectangular window of lengh L and second part is an exponentially weighted window that
constitutes a tail to the �rst window and has smaller amplitude. Moreover, the amplitude
of the exponential window can be time-varying. This idea seems to be very promising and
can bring an answer to the classical tracking vs. noise ampli�cation compromise in adaptive
�ltering.

13

Table III : Non-Relaxed FSU FAP Algorithm

Computations Cost per sample

1 sL�1;k = sL�1;k�1 � xk�NXL�1(k�N�1) + xkXL�1(k�1) 2L

2 �
p
N;M;k =

�
dM 0;k +XN;M 0;k

cWH
N;k�M

�
1:M

�
2 + N

M0

�
FFT(2M0)

M + 2 NM

3 Computation of the �j(k�M+i) i = 1; : : : ;M ; j = 1; : : : ; i�1 3M

4 b� pN (k�M+i) = b�N (k�M+ijk�M) +
i�1X
j=1

EL H
L;k�M+j�j(k�M+i) :5M

5 �
p
N (k) = b�pN (k)� � (EL;k�1)

H

1:L�1 sL�1;k L

6 �
p
N;L;k =

2664 �
p
N (k)

(1� �)�pN;L�1;k�1

3775 L

7 SWCFTF (prediction part) of order L :

Update of: AL�1;k; �L�1(k); BL�1;k; �L�1(k) 10L

8 e
p
N;L;k =

2664 0

(1� �)�pN;L�1;k�1

3775+AH
L�1;k�

�1
L�1(k)AL�1;k�

p
N;L;k 3L

9

26666664
�
p
N;L�1;k

0

37777775 = e
p
N;L;k �BH

L�1;k�
�1
L�1(k)BL�1;k�

p
N;L;k 2L

10 EL;k =

2664 0

(EL;k�1)1:L�1

3775+ e
p

N;L;k
L

11 cWN;k = cWN;k�M � �
h
0L�1 E

H
M;k

i
XN;M 0;k

�
1 + N

M0

�
FFT(2M0)

M + 2 NM

12 WN;k = cWN;k � �
h
(EL;k)

H

1:L�1 0M
i
XN;M 0;k

�
1 + N

M0

�
FFT(2M0)

M + 2 NM

Total cost per sample
�
3 + 2 N

M0

�
FFT(2M0)

M + 4 NM + 3:5M+ 20L

14 7 CONCLUDING REMARKS

Table IV : Relaxed FSU FAP Algorithm

Computations Cost per sample

1 sL�1;k = sL�1;k�1 � xk�NXL�1(k�N�1) + xkXL�1(k�1) 2L

2 �
p
N;M;k =

�
dM 0;k +XN;M 0;k

cWH
N;k�M

�
1:M

�
2 + N

M0

�
FFT(2M0)

M + 2 NM

3 Computation of the �j(k�M+i) i = 1; : : : ;M ; j = 1; : : : ; i�1 3M

4 b� pN (k�M+i) = b�N (k�M+ijk�M) +
i�1X
j=1

EL H
L;k�M+j�j(k�M+i) :5M

5 �
p
N (k) = b� pN (k)� (EL;k�1)

H
1:L�1 sL�1;k L

6 SWCFTF (prediction part) of order L�1 :

Update of: AL�1;k; �L�1(k) 10L

7 EL;k =

2664 0

(EL;k�1)1:L�1

3775+ �
p
N (k)A

H
L�1;k�

�1
L�1(k) L

8 cWN;k = cWN;k�M �
h
0L�1 EHM;k

i
XN;M 0;k

�
1 + N

M0

�
FFT(2M0)

M + 2 NM

9 WN;k = cWN;k � �
h
(EL;k)

H

1:L�1 0M
i
XN;M 0;k

�
1 + N

M0

�
FFT(2M0)

M
+ 2 N

M

Total cost per sample
�
3 + 2 N

M0

�
FFT(2M0)

M + 4NM + 3:5M+ 14L

REFERENCES 15

References

[1] J. Benesty, P. Duhamel, \A Fast Exact LMS Adaptive Algorithm". IEEE Trans. on
ASSP, ASSP-29(3):2904{2920, Dec. 1992.

[2] J.M. Cio� and T. Kailath, \Fast, recursive least squares transversal �lters for adaptive
�ltering". IEEE Trans. on ASSP, ASSP-32(2):304{337, April 1984.

[3] J.M. Cio� and T. Kailath, \Windowed Fast Transversal Filters Adaptive Algorithms
with Normalization". IEEE Trans. on ASSP, ASSP-33(3):607{625, June 1985.

[4] E. Eleftheriou and D. Falconer, \Tracking properties and steady state performance of
RLS adaptive �lter algorithms". IEEE Trans. on ASSP, ASSP-34(5):821{823, July 1987.

[5] S. L. Gay, \A Fast Converging, Low Complexity Adaptive Filtering Algorithm". int. rep.
AT&T, 1993.

[6] E. H�ansler, \The hands-free telephone problem. An annotated bibliography" Signal
Processing, Vol. 27, pp. 259{271.

[7] S. Haykin, \Adaptive Filter Theory", Second edition, Prentice Hall, Englewood Cli�s,
NJ, 1991.

[8] T. Kailath, Linear Systems. Prentice-Hall, Englewood Cli�s, NJ, 1980.

[9] T. Kailath, S.Y. Kung, and M. Morf, \Displacement ranks of matrices and linear equa-
tions". J. Math. Anal. Appl., 68(2):295{407, 1979. (See also Bull. Amer. Math. Soc., vol.
1, pp. 769{773, 1979.).

[10] K. Maouche and D. T. M. Slock, \The Fast Subsampled-Updating Fast Newton Transver-
sal �lter (FSU FNTF) Algorithm for Adaptive Filtering Based on on a Schur procedure
and the FFT". Research Report No 94-014, Institut Eur�ecom.

[11] M. Montazeri and P. Duhamel, \Fast Modi�ed Projection Algorithms for Acoustic Echo
Cancellation ". Submitted to IEEE Trans. on ASSP, 1994.

[12] G.V. Moustakides and S. Theodoridis, \Fast newton transversal �lter {A new class of
adaptive estimation algorithms". IEEE Trans. on ASSP, ASSP-39(10):2184{2193, Oct.
1991.

[13] C. B. Papadias and D. T. M. Slock, \New Adaptive Blind Equalization Algorithms for
Constant Modulus Constellations". International Conference on Acoustics, Speech and
Signal Processing (ICASSP-94), pp. 321-324, Adelaide, Australia, April 19-22, 1994.

[14] T. P�etillon, A. Gilloire and S. Thedoridis, \The Fast Newton Transversal �lter: An
E�cient Scheme for acoustic Echo Cancellation in Mobile Radio ". IEEE Trans. on
ASSP, ASSP-42(3):2184{2193, March 1994.

[15] D.T.M. Slock and T. Kailath, \Numerically Stable Fast Transversal Filters for Recursive
Least-Squares Adaptive Filtering". IEEE Trans. Signal Proc., ASSP-39(1):92{114, Jan.
1991.

[16] D.T.M. Slock and K. Maouche, \The Fast Subsampled-Updating Recursive Least-Squares
(FSU RLS) Algorithm for Adaptive Filtering Based on Displacement Structure and the
FFT". Signal Processing, Vol. 40, No. 1, Oct. 1994, pp. 5{20.

[17] D.T.M. Slock and K. Maouche, \The Fast Subsampled-Updating Stabilized Fast
Transversal Filter (FSU SFTF) RLS Algorithm". In Proc. EUSIPCO 94, VIIth European
Signal Processing Conference, pages 740-743, Edinburgh, Scotland, U.K. Sep. 13-16 1992.

[18] M. Vetterli, \Fast Algorithms for Signal Processing". In M. Kunt, editor, Techniques
modernes de traitement num�erique des signaux. Presses Polytechniques et Universitaires
Romandes, Lausanne, Switzerland, 1991. ISBN 2-88074-207-2.

[19] B. Widrow et al., \Stationary and nonstationary learning characteristics of the LMS
adaptive �lter", Proc. IEEE, vol. 64, No. 8, August 1976, pp. 1151{1162.

16

