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A General Cognitive Radio Network

Such devices must be able to:

1 sense the spectral environment over a wide bandwidth,

2 detect the presence/absence of primary users (PUs),

3 adapt the parameters of their communication scheme only if the communi-
cation does not interfere with PUs.
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Figure 2: Dynamic spectrum access in cognitive radio network.
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Recent trends

Ina ddition to the classical Primary-secondary networks co-existence scenario,
there are new applications where cognitive radio approach is not restricted to
the classical scheme mentionned above

1 Competitive and opportunistic way to access an open band (790− 862MHz
band opened by ARCEP in France, see SACRA project)

2 Interference management for femto cells, small cells networks

3 ...
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Challenges

Some challenges associated with the spectrum sensing for cognitive radio are:

1 Sensing time and complexity.

2 Blind detection.

3 Multi-path, shadowing, interference environment, etc: cooperation.

4 Performance in low signal to noise ratios (SNR) region.

Our approach is focused in desining low complexity blind spectrum sensing
techniques to fit the requirements of most of the target scenarios in cognitive
radio
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Spectrum Sensing Goal

The received signal at a sensor node, denoted by x, can be modeled as

x = As + n (1)

where A is the channel matrix whose columns are determined by the unknown
parameters associated with each signal. s is a PU transmitted signal and n is a
complex, stationary, and Gaussian noise with zero mean and covariance matrix
E{nnH} = σ2I.

The goal of spectrum sensing is to decide between the following two
hypothesizes:

x =

{
n H0

As + n H1
(2)
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Spectrum Sensing Goal

The probability of false alarm can be expressed as:

PFA = Pr(H1 | H0) = Pr(x is present | H0) (3)

and the probability of detection is

PD = 1− Pr(H0 | H1) = 1− Pr(x is absent | H1) (4)

The decision threshold is determined by using the required probability of false
alarm PFA given by (3). The threshold γ for a given false alarm probability is
determined by solving the equation

PFA = Pr(Υ(x) > γ|H0) (5)

where Υ(x) denotes the test statistic for the given detector.
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Model Selection using Kullback-Leibler distance

Model selection is based on the comparison of the properties of an analyzed
process with a set of candidates models.

Assuming that the received signal is distributed according to an original
probability density function f , called the operating model.

An approximating probability model must be specified using the observed
data, in order to estimate the operating model. The approximating model
is denoted as gθ.

The Kullback-Leibler distance describes the discrepancy between the two
probability functions f and gθ and is given by:

D(f ‖gθ) = −h(X )−
∫

fX (x) log gθ(x)dx (6)

where the random variable X is distributed according to the original but
unknown probability density function f , and h(.) denotes differential entropy.
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Kullback-Leibler distance vs Akaike Information Criterion (AIC)

By averaging the log-likelihood values given the model over N independent
observations x1, x2, ..., xN , we obtain

−
∫

fX (x) log gθ(x)dx ≈ − 1

N

N∑
n=1

log gθ(xn) (7)

The AIC criterion is an approximately unbiased estimator for (7) and is given
by:

AIC = −2
N∑

n=1

log gθ̂(xn) + 2U (8)

The parameter vector θ for each family should be estimated using the min-
imum discrepancy estimator θ̂, which minimizes the empirical discrepancy.
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Blind Sensing based on Signal Probability Distribution Analysis

The distribution of a sum of independent random variables is the convolution
of their distributions. ⇒ When the SNR is low, the noise distribution will
dominate and the resulting distribution will tend to become close to Gaussian
(the envelop distribution is close to Rayleigh distribution).

In the presence of a communication signal, due to the contribution of the
dominant propagation paths on the distribution of the communication sig-
nal, the envelop distribution of the received communication signal tends to
become close to Rician distribution.
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Figure 3: Histogram of the envelope of a captured noise block and data block using an UMTS signal.
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Model Selection Using Akaike Weight

The operating model f will be compared with Rice and Rayleigh probability
density functions.

The log-likelihood function for the Rayleigh distribution:

L∗Rayleigh(σ) =

p∑
i=1

log xi − p log σ2 −
1

2σ2

p∑
i=1

x2
i (9)

where the parameter θ = (σ). The MLE of the parameter σ is given by:

σ̂2 =
1

2p

p∑
i=1

x2
i (10)

The log-likelihood function for the Rice distribution:

L∗Rice(v , σ) = log

(∏p
i=1 xi

σ2p
exp

(
−
∑p

i=1

(
x2
i + v2

)
2σ2

)
p∏

i=1

I0
( xiv
σ2

))
(11)

Parameters v and σ are given by the solution of the following set of equations: v − 1
p

∑p
i=1 xi

I1

(
xi v

σ2

)
I0

(
xi v

σ2

) = 0

2σ2 + v2 − 1
p

∑p
i=1 x

2
i = 0

(12)
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Model Selection Using Akaike Weight

Akaike weights can be interpreted as estimate of the probabilities that the
corresponding candidate distribution show the best modeling fit:

WRice =
exp

(
− 1

2
ΦRice

)
exp

(
− 1

2
ΦRice

)
+ exp

(
− 1

2
ΦRayleigh

) (13)

WRayleigh =
exp

(
− 1

2
ΦRayleigh

)
exp

(
− 1

2
ΦRayleigh

)
+ exp

(
− 1

2
ΦRice

) (14)

where

ΦRice = AICRice −min (AICRice ,AICRayleigh) (15)

ΦRayleigh = AICRayleigh −min (AICRayleigh,AICRice) (16)

and

AICRice = −2LRice + 2URice (17)

AICRayleigh = −2LRayleigh + 2URayleigh (18)

A. HAYAR and B. Zayen 11/25



Context
Challenges
Challenges

Spectrum Sensing Goal
Model Selection Strategy

Distribution Analysis Based Detection
Dimension Estimation Based Detection

Performance Evaluation

Blind Sensing Based on Signal Space Dimension Estimation

The dimension of the signal is represented with the rank of a different
candidates matrix.
Considering N observations xn ∈ {x1, x2, ..., xN} received in a sequence, the
covariance matrix can be defined as

R̂ =
1

N

N∑
n=1

xnx
T
n (19)

Let p be the length of one observation and q the length of the transmitted
signal s and the additive noise n.
The AIC and minimum description length (MDL) criterions are given by:

AIC(k) = −2 log

 ∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i

(p−k)N

+ 2k(2p − k) (20)

MDL(k) = − log

 ∏p
i=k+1 λ̂

1
p−k

i

1
p−k

∑p
i=k+1 λ̂i

(p−k)N

+
k

2
(2p − k) logN (21)
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Distribution Analysis Detector (DAD)

Sub-bands Detection: The proposed method is based on the sliding window
technique.

PU Signal Detection: The DAD detector can be formulated as a binary
hypothesis test.

Theorem 1

The test statistic of the blind DAD algorithm is given by:

ΥDAD(x) =

{
WRice −WRayleigh < γDAD noise
WRice −WRayleigh > γDAD signal

(22)

According to the system requirement on PFA,DAD , we calculate a proper
threshold γDAD . If AICRice − AICRayleigh > γDAD , we declare that the PU is
present, otherwise, we declare the PU is absent.
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DAD False Alarm Probability

The false alarm probability for DAD detector can be expressed as

PFA,DAD = Pr (WRice −WRayleigh > γDAD |H0) (23)

Theorem 2

The probability of false alarm of the DAD algorithm can be approximated as

PFA,DAD = F

((
1 + γDAD
1− γDAD

)2

(4πK)−p exp (p − 2)

)
(24)

or, alternatively, the threshold can be expressed as

γDAD =

√
(4πK)p F−1 (PFA,DAD) exp (2− p)− 1√
(4πK)p F−1 (PFA,DAD) exp (2− p) + 1

(25)
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Model Selection Akaike Information Criteria
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Figure 4: Akaike information criterion and minimum description length of captured noise block samples and data
block samples using an UMTS signal.
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Dimension Estimation Detector (DED)

PU Signal Detection:

Theorem 3

The test statistic of the blind DED algorithm using AIC criteria is given by:

ΥDED−AIC (x) =

{
AIC(0)− AIC(1) < γDED−AIC noise
AIC(0)− AIC(1) > γDED−AIC signal

(26)

and using MDL criteria:

ΥDED−MDL(x) =

{
MDL(0)−MDL(1) < γDED−MDL noise
MDL(0)−MDL(1) > γDED−MDL signal

(27)

We define the two thresholds γDED−AIC and γDED−MDL in order to decide on
the nature of the received signal.
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DED-AIC False Alarm Probability

The false alarm probability for DAD detector can be expressed as

PFA,DED−AIC ≈ Pr

(
AIC(0)− AIC(1) > γDED−AIC |H0

)
(28)

Theorem 4

The probability of false alarm of the DED algorithm using AIC criteria can be
approximated as

PFA,DED−AIC = F2

Nexp
(

2−4p−γDED−AIC

2N

)
− µ

ν

 (29)

and the threshold

γDED−AIC = 2− 4p − 2N ln

(
νF−1

2 (PFA,DED−AIC ) + µ

N

)
(30)
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DED-MDL False Alarm Probability

The false alarm probability for DAD detector can be expressed as

PFA,DED−MDL ≈ Pr

(
MDL(0)−MDL(1) > γDED−MDL|H0

)
(31)

Theorem 5

The probability of false alarm of the DED algorithm using MDL criteria can be
approximated as

PFA,DED−MDL = F2

Nexp

(
γDED−MDL+(p− 1

2 ) log N

N

)
− µ

ν

 (32)

and the threshold is given by

γDED−MDL =

(
p − 1

2

)
logN − N ln

(
νF−1

2 (PFA,DED−MDL) + µ

N

)
(33)
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Evaluation and Simulation Framework

Three different scenarios with different properties have been chosen to evaluate
the spectral detection performance using a DVB-T OFDM signal:

1 Scenario 1: OFDM signal in AWGN channel.

2 Scenario 2: OFDM signal in Rayleigh multipath fading with shadowing.

3 Scenario 3: OFDM signal in Rician multipath fading with shadowing.

Bandwidth 8MHz
Mode 2K
Guard interval 1/4
Channel models Rayleigh/Rician (K=1)
Maximum Doppler shift 100Hz
Frequency-flat Single path
Sensing time 1.25ms
Location variability 10dB

Table 1: The transmitted DVB-T primary user signal parameters.
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PU Signal Detection: Scenario 1
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(a) PD vs. SNR: Scenario 1 (b) ROC curves: Scenario 1

Figure 7: Monte Carlo simulation results assessing detection performance using an DVB-T OFDM primary user
system in AWGN channel: Probability of detection versus SNR curves with PFA = 0.05 and ROC curves with SNR
= −7dB and sensing time = 1.12ms.
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PU Signal Detection: Scenario 2
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(a) PD vs. SNR: Scenario 2 (b) ROC curves: Scenario 2

Figure 8: Monte Carlo simulation results assessing detection performance using an DVB-T OFDM primary user
system in Rayleigh multipath fading with shadowing: Probability of detection versus SNR curves with PFA = 0.05
and ROC curves with SNR = −7dB and sensing time = 1.12ms.
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PU Signal Detection: Scenario 3

−40 −35 −30 −25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
D

 

 

CD
DED−AIC
DAD
DED−MDL
ED
KLD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PFA
P

D

 

 

CD
DED−AIC
DAD
DED−MDL
ED
KLD

(a) PD vs. SNR: Scenario 3 (b) ROC curves: Scenario 3

Figure 9: Monte Carlo simulation results assessing detection performance using an DVB-T OFDM primary user
system in Rician multipath fading with shadowing: Probability of detection versus SNR curves with PFA = 0.05 and
ROC curves with SNR = −7dB and sensing time = 1.12ms.
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Cooperative Sensing

SU 1 is shown to be shadowed by a high building over the sensing channel
⇒ the CR cannot reliably sense the presence of the PU due to the very low
SNR of the received signal (hidden node problem).

Step 1: Every SU performs local spectrum measurements independently and
then makes a binary decision.
Step 2: All the SUs forward their binary decisions to a FC.
Step 3: The FC combines those binary decisions and makes a final decision
to infer the absence or presence of the PU in the observed band.

SU BS

SU 1

SU 2

SU 3

PU Tx PU Rx

Figure 10: Cooperative spectrum sensing in cognitive radio networks.
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DAD: Cooperative Sensing Evaluation
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(a) PD vs. SNR: Scenario 1 (b) PD vs. SNR: Scenario 2

Figure 11: Performance evaluation of the DAD detector in terms of PU signal detection in cooperative way using an
DVB-T OFDM primary user system: Probability of detection versus SNR curves with PFA = 0.05 and the required
SNR versus the number of collaborating users M.
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DED: Cooperative Sensing Evaluation

−18 −16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]

P
D

 

 

DED−AIC: 4 SUs
DED−AIC: 2 SUs
DED−AIC: 1 SU

−30 −25 −20 −15 −10 −5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dB]
P

D

 

 

DED−AIC: 4 SUs
DED−AIC: 2 SUs
DED−AIC: 1 SU

(a) PD vs. SNR: Scenario 1 (b) PD vs. SNR: Scenario 2

Figure 12: Performance evaluation of the DED detector in terms of PU signal detection in cooperative way using an
DVB-T OFDM primary user system: Probability of detection versus SNR curves with PFA = 0.05 and the required
SNR versus the number of collaborating users M.
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