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Abstract—When the transmission scenario includes a training
sequence or pilots, semi-blind channel estimation techniques have
shown a tendency to fully exploit the information available from
the received signal if they are correctly implemented. This feature
leads semi-blind channel estimation performance to exceed that
of the schemes based on the blind part or the training sequence
only. Moreover, in some situations they can estimate the channel
when the other techniques fail. Semi-blind channel estimation
techniques were developed and usually evaluated for a given
channel realization, i.e. with a deterministic channel model.
On the other hand, in wireless communications the channel is
typically modeled as Rayleigh fading, i.e. with a Gaussian (prior)
distribution expressing variances of and correlations between
channel coefficients. In recent years, such prior information on
the channel has started to get exploited in pilot-based channel es-
timation, since often the pure pilot-based (deterministic) channel
estimate is of limited quality due to limited pilots. In this paper
we explore a Bayesian approach to semi-blind channel estimation,
exploiting a priori information on fading channels. We mainly
focus on semi-blind joint ML/MAP estimation of channels and
symbols on one hand, and on semi-blind ML/MAP estimation of
channels with elimination of symbols on the other hand. As a
consequence, a unified framework along with three novel semi-
blind Bayesian estimators are introduced whose performance is
compared by simulations to three, one extended and another two
already existing semi-blind non-Bayesian estimators.

I. INTRODUCTION

Traditionally, the transmitter sends some known information

to the receiver to aid the latter in estimating the channel. How-

ever, in wireless communication the channel varies rapidly

with time and as a consequence more training sequence/pilots

are required. This process wastes a lot of bandwidth as a result

of augmenting the transmission rate to maintain the through-

put. In the last two decades a new branch of channel estimation

has emerged focusing on accomplishing this task blindly i.e.

without the need for a training sequence. Nevertheless, most

wireless standards that have evolved during that period are

still relying on the training sequence/pilots to estimate the

channel. This is due probably to the unsatisfactory results of

the blind channel estimation algorithms. On the other hand,

there are some powerful channel estimation algorithms that

take the advantage of both aforementioned techniques have

been also developed during the same era. These are known as

semi-blind where a superior performance is achieved although

few training sequence/pilots are transmitted [1], [2], [3]. We

will focus in this paper on the semi-blind maximum likelihood

(ML) and/or maximum a posteriori methods (MAP) [4],[5].

Two approaches exist in the literature on how to tackle the

problem. The first approach is based on the fact that the

unknown symbols are considered as deterministic to be jointly

estimated with the channel. Such algorithm is called Semi-

Blind Deterministic (or conditional) Maximum Likelihood

(SB-DML) method [6]. The second approach is based on

treating the unknown symbols as random quantities with

known prior information to be eliminated or jointly estimated.

When the unknown symbols are eliminated, the method is

called Semi-Blind Gaussian Maximum Likelihood (SB-GML)

[7], see also [8]. While when they are jointly estimated, we call

this method SB-GMAP-ML. This is because we use semi-blind

maximum a posteriori (MAP) for unknown symbols and semi-

blind ML for channels and noise variance. The corresponding

blind algorithm appeared first in [9]. Furthermore, in all

these approaches the channel was considered as deterministic

unknown however, in wireless communications the channel

is typically modeled as Rayleigh fading, i.e. with a Gaussian

(prior) distribution expressing variances of and correlations

between channel coefficients. The concept of Bayesian blind

channel estimation was introduced in [10], with in particular

some considerations on identifiability issues. However, there

were no algorithms/estimators proposed on how to implement

this concept. However, in [11] we discussed briefly some

classical Bayesian algorithms and introduced the concept of

variational Bayesian in the context of MIMO OFDM. Apart

from the variational Bayesian techniques, we have developed

in [12] classical Bayesian blind channel estimation algorithms

in the context of SIMO transmission systems. In this paper,

we extend the work done in [12] to the case of semi-blind.

Once the channel is treated as random, we are within the

framework of Bayesian semi-blind channel estimation and

there are are three cases to be handled. In the first case,

the unknown symbols are considered as deterministic to be

jointly estimated with channel. We call this method as SB-ML-

GMAP, for a similar reasoning discussed above. In the second

case, the unknown symbols are again to be jointly estimated

with the channel but this time they are considered as random

with known prior Gaussian distribution. We call this method

SB-GMAP-GMAP. In the third case, the unknown symbols

are again random with known prior Gaussian distribution but

they are going to be eliminated rather than estimated. We

call this method SB-GMAP-Elm-GMAP where Elm stands

for elimination of symbols to distinguish it from SB-GMAP-



GMAP where both the unknown symbols and the channel are

jointly estimated. Consequently, in section III we revisit two

already existing deterministic estimators and develop novel

ones, one deterministic and three Bayesian. Therefore, with

the introduction of the Bayesian semi-blind channel estimation

algorithms, the picture is broadened considerably and to sum

up we depict the current picture in Table 1.

Algorithm Unknown Channel Elm Novel
Sym of Sym

SB-ML-ML Det Det No No

SB-GMAP-ML Gauss Det No Yes

SB-GMAP-Elm-ML Gauss Det Yes No

SB-ML-GMAP Det Gauss No Yes

SB-GMAP-GMAP Gauss Gauss No Yes

SB-GMAP-Elm-GMAP Gauss Gauss Yes Yes

TABLE I
SUMMARY OF ALL ALGORITHMS

II. SIMO FIR TX SYSTEM MODEL

In (semi-)blind channel identification, a multichannel frame-

work can be obtained from oversampling a received signal and

leads to a Single Input Multiple Output (SIMO) vector channel

representation. The multiple FIR channels we obtain in this

representation can also be obtained from multiple received

signals from an array of antennas (in the context of mobile

digital communications [13] or from a combination of both.

To further develop the case of oversampling, consider a linear

digital modulation over a linear channel with additive noise

so that the received signal y(t) has the following form

y(t) =
∑

k

h(t− kT )a(k) + v(t). (1)

In (1) a(k) are the transmitted symbols, T is the symbol

period and h(t) is the channel impulse response. The channel

is assumed to be FIR with length NT . If the received signal

is oversampled at the rate m
T

(or if m different samples of the

received signal are captured by m sensors every T seconds, or

a combination of both), the discrete input-output relationship

can be written as:

y(k) =
N−1∑

i=0

h(i)a(k−i) + v(k) = HAN (k) + v(k) (2)

where y(k) = [yH1 (k) · · · yHm(k)]H ,h(i) =[
hH
1 (i) · · ·hH

m(i)
]H

, v(k) = [vH1 (k) · · · vHm(k)]H , H =

[h(N−1) · · ·h(0)], AN (k) =
[
a(k−N+1)H · · · a(k)H

]H
and superscript H denotes Hermitian transpose. Let

H(z) =
∑N−1

i=0 h(i)z−i = [HH
1 (z) · · ·HH

m(z)]H be the SIMO

channel transfer function, and h =
[
h
H(N−1) · · ·hH(0)

]H
.

Consider additive independent white Gaussian circular noise

v(k) with rvv(k−i) = Ev(k)v(i)H = σ2
vIm δki. Assume

we receive M samples:

YM (k) = TM (h)AM+N−1(k) + V M (k) (3)

where YM (k) = [yH(k−M+1) · · ·yH(k)]H and similarly for

V M (k), and TM (h) is a block Toepltiz matrix with M block

rows and [H 0m×(M−1)] as first block row. We shall simplify

the notation in (3) with k = M−1 to

Y = T (h)A+ V = TK(h)AK + TU (h)AU + V

= AKh+AUh+ V .
(4)

Where TK(h) and TU (h) represent respectively the portions

of T (h) that correspond to Ak (MK known symbols) and AU

(MU unknown symbols), see Figure 1. On the other hand, A is

a block Toeplitz matrix filled with the elements of A while AK

and AU are block Toeplitz matrices filled with the elements

of AK and AU respectively. It is worthy to note that the way

we split the received data, as in Figure 1, doesn’t permit to

fully exploit the information available, nevertheless it is still

capable of showing the superiority of semi-blind on one hand,

and allows for pursuing an analytical performance analysis. On

the other hand, though the formulation here is explained for

the time domain, it is actual general enough to allow handling

also OFDM, SC-CP, SC-ZP etc. And in the case of OFDM,

Y is composed of YK and YU only.

Fig. 1. Splitting the received signal into two parts containing only pure
known and unknown symbols.

III. A UNIFIED FRAMEWORK FOR DIFFERENT

ALGORITHMS

As we have shown in Table 1 there are six possible

estimators that can be classified into two categories. In the

first category the subject of the estimators is to estimate the

channel and the unknown symbols jointly by making some

assumptions on the channel and the unknowns symbols. If we

deonte by θ the unknown parameters to be estimated then it

is given by:

θ = [AH
U ,hH ]H (5)

The likelihood function is given by:

f(Y, θ) = f(Y/θ)f(θ) (6)

Where f(θ) stands for the probability density function (pdf)

of θ, f(Y, θ) stands for the joint probability density function

of Y and θ and f(Y/θ) stands for the pdf of Y conditioned

on θ is given or known. Once we substitute θ in (6) by its

elements we get:

f(Y,AU ,h) = f(Y/AU ,h)f(AU )f(h) (7)

Since the symbols and the channel are independent of each

other we can write f(θ) = f(AU )f(h). Of course on the basis

of how we treat the symbols and the channel both f(AU ) and

f(h) differs from one estimator to another as we shall see in

the sequel. Knowing that the cost function of the estimator is



derived by maximizing the joint probability density function,

hence we apply the log function on both sides of (7) to get:

ln[f(Y,AU ,h)] = ln[f(Y/AU ,h)] + ln[f(AU )] + ln[f(h)]
(8)

However, in the second category the subject of the estima-

tors is to estimate the channel and the noise variance only

while the symbols are supposed to be eliminated during the

estimation process. Thus

θ = [hH , σ2
v ]

H (9)

Once we substitute θ in (6) by its elements we get:

f(Y,h, σ2
v) = f(Y/h, σ2

v)f(h)f(σ
2
v) (10)

Again, since the cost function for the estimator is derived by

maximizing the joint probability density function, hence we

apply the log function on both sides of (10) to get:

ln[f(Y,h, σ2
v)] = ln[f(Y/h, σ2

v)]+ln[f(h)]+ln[f(σ2
v)] (11)

We will develop in the following sections the cost functions

of all the estimators that belong to both categories and provide

a closed form formula for both the estimated channel and

symbols where it is possible. It is worthy to note here that since

the channel is treated as random rather than deterministic in

some of the above mentioned estimators (SB-ML-GMAP, SB-

GMAP-GMAP, SB-GMAP-Elm-GMAP) in both categories,

these estimators are considered as an example of the Bayesian

semi-blind channel estimation.

A. SB-ML-ML (SB-DML)

We start with SB-ML-ML or what is called SB-DML in

the literature [6]. In this case both the unknown symbols

and the channel are considered as deterministic unknowns

to be estimated. Hence it belongs to the first category and

consequently the joint probability density function is given by

(8). Moreover, since both are deterministic we have f(h) =
hoδ(h − ho) and f(AU ) = Ao

Uδ(AU − Ao
U ). where ho

and Ao represent respectively the true values of the channel

and the symbols. It is obvious that the the pdfs of both the

unknown symbols and the channel have no influence on the

maximization of (8). Hence, we can derive the cost function

by maximizing ln[f(Y/AU ,h)] directly where f(Y/AU ,h) =
1

(πσ2
v
)Mm exp[− 1

σ2
v

(Y −T (h)A)H(Y −T (h)A)]. Thus, the cost

function is given by:

min
AU ,h

||Y −T (h)A||2 = min
AU ,h

||Y −TK(h)AK−TU (h)AU ||
2

(12)

However, our model allows for a simplification of this cost

function because YK and YU are decoupled in terms of noise.

On the other hand, the drawback of this model as we indicated

before is that it leads to a suboptimal solution because we are

neglecting the part that contains both known and unknown

symbols. Hence, (12) can be written as:

min
AU ,h

{
||YK − TK(h)AK ||2 + ||YU − TU (h)AU ||

2
}

(13)

The joint optimization of this cost function in both the

channel (h) and the symbols (AU ) is difficult. Fortunately,

the observation is linear in both the channel and the symbols.

In other words, we have a separable nonlinear LS problem,

which allows us to reduce the complexity considerably. The

nonlinear LS optimization can be done by iterating between

minimization with respect to AU and h. By doing so, we get

the following estimates:

ĥ = (AH
KAK +AH

U AU )
−1(AH

KYK +AH
U YU ) (14)

ÂU = (T H
U (h)TU (h))

−1T H
U (h)YU (15)

B. SB-GMAP-ML

This is the first novel estimator we introduce in this paper.

It is considered as an extension of the corresponding blind

one proposed in [9], [14]. In this estimator we treat the

unknown symbols as random with Gaussian distribution while

the channel is considered deterministic to be jointly estimated

with the unknown symbols. This estimator also belongs to

the first category, thus the joint probability density function

is given by (8). Moreover, f(AU ) = 1
(πσ2

a
)MU

exp[−
AH

U
AU

σ2
a

]

and f(h) = hoδ(h − ho). It is obvious here that ln[f(h)]
can be omitted without affecting the maximization of the joint

probability density function in (8). Hence, the cost function is

given by:

min
AU ,h

1

σ2
v

||YK−TK(h)AK ||2+
1

σ2
v

||YU−TU (h)AU ||
2+

||AU ||
2

σ2
a

(16)

Following the same methodology used in SB-ML-ML estima-

tor we get:

ĥ = (AH
KAK +AH

U AU )
−1(AH

KYK +AH
U YU ) (17)

ÂU = (T H
U (h)TU (h)+

σ2
v

σ2
a

IM+N−1−MK
)−1T H

U (h)YU (18)

C. SB-GMAP-Elm-ML (SB-GML)

This estimator belongs to the second category [7], hence

we are interested in estimating the channel and the variance

of the noise only while the unknown symbols are supposed

to be eliminated during the estimation process. Furthermore,

the joint probability density function is given by (11) where

we consider the channel and the noise variance to be de-

terministic while the unknown symbols have a Gaussian

distribution. Here again, ln[f(h)] and ln[f(σ2
v)] have no

influence on maximizing (11). Substituting f(YU/h, σ
2
v) =

1
(π)(M−MK )m|RYUYU

|
exp[−Y H

U R−1
YUYU

YU )] Where RYUYU
=

E YUY
H
U = σ2

aTU (h)TU (h)
H + σ2

vI(M−MK)m in (11) after

omitting ln[f(h)] and ln[f(σ2
v)] we get:

min
h,σ2

v

1

σ2
v

||YK−TK(h)AK ||2+ln |RYUYU
|+ tr (R−1

YUYU
R̂YUYU

)

(19)



This cost function can be minimized by resorting to the

method of scoring [15]. This method consists in an approxima-

tion of the Newton-Raphson algorithm which finds an estimate

θ(i) at iteration i from θ(i−1), the estimate at iteration i−1,

as:

θ(i) = θ(i−1) − µ
[
F

′′

|θ(i−1)

]−1

F
′

|θ(i−1) (20)

where F(θ) is the cost function in (19), F
′′

is the hessian,

F
′

is the gradient of the cost function nad µ is the step length

that should be appropriately chosen to guarantee convergence

to a local minimum. The method of scoring approximates the

Hessian by its expected value, which is here the Gaussian

Fisher Information Matrix (FIM). This approximation is jus-

tified by the law of large numbers as the number of data is

generally large.

D. SB-ML-GMAP

This estimator is novel where we introduce the con-

cept of semi-blind Bayesian channel estimation by treating

the channel as random with Gaussian distribution f(h) =
1

(π)mN |Co

h
|
exp[−hHCo−1

h h]. However, the unknown symbols

are considered as deterministic to be jointly estimated with

the channel hence, this estimator belongs to the first category

where the joint probability density function is given by (8).

Moreover, here again ln[f(AU )] has no effect on maximizing

(8) so it can be omitted. Therefore, the cost function is given

by:

min
AU ,h

1

σ2
v

||YK − TK(h)AK ||2 +
1

σ2
v

||YU − TU (h)AU ||
2

+hHCo−1
h h

(21)

Once again here, following the same methodology used in

SB-ML-ML estimator we get:

ĥ = (AH
KAK+AH

U AU+σ2
vC

o−1
h )−1(AH

KYK+AH
U YU ) (22)

ÂU = (T H
U (h)TU (h))

−1T H
U (h)YU (23)

E. SB-GMAP-GMAP

This estimator is also novel where both the channels and

the unknown symbols are assumed random with Gaussian

distribution and are supposed to be estimated jointly. Hence,

this estimator in its turn belongs to the first category and its

joint probability density is given by (8). By substituting the

terms in (8) by their corresponding functions we deduce the

cost function as follows:

min
AU ,h

1

σ2
v

||YK − TK(h)AK ||2 +
1

σ2
v

||YU − TU (h)AU ||
2 +

||AU ||
2

σ2
a

+ hHCo−1
h h

(24)

Also here, following the same methodology used in SB-

ML-ML estimator we get:

ĥ = (AH
KAK+AH

U AU+σ2
vC

o−1
h )−1(AH

KYK+AH
U YU ) (25)

ÂU = (T H
U (h)TU (h) +

σ2
v

σ2
a

IMU
)−1T H

U (h)YU (26)

F. SB-GMAP-Elm-GMAP

This is the last novel estimator we are going to introduce

in this paper. It belongs to the second category since the

symbols are supposed to be eliminated. It can be considered

as an extension of SB-GMAP-Elm-ML by exploiting the prior

information exists about the channel. Its joint probability

density function is given by (11) but this time ln[f(h)] can’t be

omitted. Substituting the terms in (11) by their corresponding

functions we get the cost function as follows:

min
h,σ2

v

1

σ2
v

||YK − TK(h)AK ||2 + ln |RYUYU
|+

tr (R−1
YUYU

R̂YUYU
) + hHCo−1

h h

(27)

This cost function can be minimized using the scoring

method discussed in case of SB-GMAP-Elm-ML estimator.

IV. SIMULATIONS

In this section we try to shed light by means of Monte-

Carlo simulations on the advantages of semi-blind Bayesian

compared to the semi-blind non-Bayesian channel estimation.

In each MonteCarlo simulation we generate a Rayleigh fad-

ing channel with exponentially decaying power delay profile

(PDP) for the channel between each transmitting and receiving

antenna pair as follows: e−wn where n = 0 : N−1 and w = 1
except otherwise stated. Hence, Co

h
is the diagonal matrix

Co
h
= Im ⊗ C where C = diag {e−wn, n = 0 : N − 1}. As

for the symbols, we generate random 8PSK symbols to reflect

the real world case. The performance of the different channel

estimators is evaluated by means of the Normalized MSE

(NMSE) vs. SNR. The SNR is defined as: SNR = ||T (h)A||2

mM σ2
v

.

The NMSE is defined as
avg ||h−

ˆh||2

avg ||h||2
. All the simulations

are initialized by the Subchannel Response Matching (SRM)

estimate [16] where the scalar ambiguity of the latter has

been fixed by a least squares constraint. In Figure 2 we

compare the performance of SB-ML-ML estimator with SB-

ML-GMAP, we can notice how the latter exceeds the former

by around 5 dB along the medium SNR range while their

performances are congruent at high SNR. In Figure 3 we

take a look at the considerable gain (7 dB) offered by SB-

GMAP-GMAP over SB-GMAP-ML along the medium SNR

range. However, in Figure 4 both SB-GMAP-Elm-ML and SB-

GMAP-Elm-GMAP are plotted on the same figure. Also in

this case, where the symbols are eliminated, we can obviously

observe the indispensable role that the prior information about

the channel plays in enhancing the estimation quality at the

receiver, especially at low (≈ 5 dB gain) and medium SNR.
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Fig. 2. NMSE vs. SNR for SB-ML-ML and SB-ML-GMAP.
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Fig. 3. NMSE vs. SNR for SB-GMAP-ML and SB-GMAP-GMAP.

V. CONCLUSION

We have shown in this paper that there is still a consider-

able room to enhance the performance of semi-blind channel

estimation. This is true when we take into consideration the

a priori information that exists about the channel power delay

profile. Hence, we have introduced in this paper the concept

of Bayesian semi-blind channel estimation and proposed three

new Bayesian semi-blind estimators. On the other hand, we
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Fig. 4. NMSE vs. SNR for SB-GMAP-Elm-ML and SB-GMAP-Elm-GMAP.

have also extended one existing deterministic blind estimator

to the semi-blind case. Furthermore, we have presented a

unified framework from which we can derive both determin-

istic and Bayesian estimators. As our simulations show, the

proposed Bayesian estimators have a superior performance

compared to the deterministic ones. The main disadvantage

of the algorithms introduced in this paper is that they require

a large number of iterations to converge. However, we believe

that this topic could be further investigated to provide more

practical algorithms.
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