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Abstract—In this paper, we study the iterative weighted sum
rate (WSR) maximizing linear precoder algorithm proposed by
Christensen et al. in large correlated MISO broadcast channels.
We propose a novel approximation of the signal-to-interference
plus noise ratio (SINR) at every iteration. Moreover, for identical
distributed channels the proposed approximation of the WSR
maximizing precoder is of closed form and has the well known
regularized zero-forcing (RZF) structure. Simulation results show
that under correlated channels, the novel SINR approximation is
more accurate than previously proposed estimates based on the
RZF precoder.

I. INTRODUCTION

We consider the multiple-input single-output (MISO) broad-
cast channel (BC) with linear precoding at the transmitter. In
this case, the base station (BS) is endowed with M antennas,
whereas the K users have single-antenna receivers. The pre-
coding matrix that maximizes (local optimum) the weighted
sum rate (WSR) is obtained from an iterative algorithm [1].
Due to its iterative nature, this optimal precoder does not
lend itself to analytic optimization problems that might give
insightful results. Simple precoder such as zero-forcing (ZF)
or regularized ZF (RZF) [2] are much more attractive in this
regard. Therefore, it is important to understand the connection
between the optimal iterative precoder and the suboptimal
closed-form precoders. It has been shown in [3] that the
iterative optimal precoder has the RZF structure, only when
the channel is symmetric. Furthermore, it has been claimed
in [4] that for large dimensions M,K → ∞ with finite ratio
β , M/K and independent and identical distributed (i.i.d.)
channels, the optimal linear precoder has the RZF structure as
well.

In this contribution, we carry out a large system analysis
of the iterative precoder proposed in [1]. Hereby, we extend
the work in [5], [6] by deriving a novel approximation of
the signal-to-interference plus noise ratio (SINR) at every
iteration for large M . For per-user channel correlation, this
new approximation outperforms the one proposed in [5],
[6] and is identical to the RZF approximation for identical
distributed channels [4], [7], [9].

The analysis leads to the following results, (i) under per-
user channel correlation, the SINR approximation is iterative
as well and is more accurate than the estimate obtained by
a simplified RZF approach and (ii) for common user channel
correlation, the precoder is of closed-form and has the RZF
structure as proposed in [4]

Simulations show, that the proposed SINR approximation
offers a good performance and is close to optimal.

Notation: In the following, boldface lower-case and upper-
case characters denote vectors and matrices, respectively. The
operators (·)H, tr(·) and E[·] denote conjugate transpose, trace
and expectation, respectively. The N ×N identity matrix is
denoted IN and log(·) is the natural logarithm.

II. SYSTEM MODEL

Consider a transmitter endowed with M antennas commu-
nicating with K single-antenna receivers. Under narrow-band
transmission, the received signal yk, k=1, 2, . . . ,K, reads

yk = hH
kx + nk, (1)

where hH
k ∈ C1×M is the channel vector of user k, x ∈ CM

is the transmit vector and the nk are independent complex
Gaussian noise terms with zero mean and variance σ2.

We assume that hH
k is correlated as E[hkhH

k ]=Θk and thus
can be written in the form

hk =
√

MΘ1/2
k zk, (2)

where zk has i.i.d. complex entries of zero mean and variance
1/M and the Θ1/2

k is any Hermitian square-root of Θk.
The correlation matrix Θk is nonnegative Hermitian and of
uniformly bounded spectral norm w.r.t. to M .

Prior to transmission, the user symbols sk ∼ NC(0, 1) are
linearly precoded and form the transmit signal

x =
K∑

k=1

gksk, (3)

where gk ∈ CM is the precoding vector of user k. The
transmitter is subject to an average power constraint

E
[
xHx

]
= trGGH ≤ P, (4)



where G=[g1,g2, . . . ,gK ]∈CM×K is the precoding matrix
and P is the total available transmit power.

Under optimal single-user decoding, the achievable rate Rk

of user k is given by

Rk = log (1 + γk) , (5)

where γk is the SINR of user k and reads

γk =
|hH

kgk|2∑K
i 6=k hH

kgigH
i hk + σ2

. (6)

The precoding vectors are chosen to maximize the weighted
sum rate of all users and the optimization problem takes the
form

G? = arg min
G

K∑
k=1

−ukRk (7)

s.t. trGGH ≤ P,

where uk ≥ 0 is the weight of user k. The optimization
problem in (7) is hard to solve directly, since it is highly
nonconvex in the precoding matrix G. To solve the problem
in (7), consider the virtual linear receive filters ak ∈ C. The
error variance ek after the linear receive filtering reads

ek = E
[
(akyk − sk)(akyk − sk)H

]
. (8)

By introducing additional weighting scalars wk, the cost
function (7) can be modified and an equivalent optimization
problem can be formulated as [1]

{G?, a?
k, w?

k} = arg min
G,ak,wk

{
uk

[
wkek − log(u−1

k wk)− 1
]}

(9)

s.t. trGGH ≤ P.

Denote ρ , P/σ2 the signal-to-noise ratio (SNR). From (9),
the optimal filters can be derived easily and read

a?
k = σgH

k hk

(
σ2 + hH

kGGHhk

)−1
(10)

e?
k = (1 + γk)−1 (11)

w?
k = uk(e?

k)−1 (12)

G̃? =
(
HHDH +

trD
ρ

IM

)−1

HHAHW, (13)

where G? = ξG̃? with ξ =
√

P/trG̃?G̃?H. Also we defined
W , diag(w?

1 , . . . , w?
K), A , diag(a?

1, . . . , a
?
K), D ,

AHWA and H , [h1, . . . ,hK ]H ∈CK×M is the compound
channel. For notational convenience, we drop the superscript
? in the sequel.

In this paper, we base our analysis on the iterative algorithm
called WSRBF-WMMSE2 proposed in [1]. Here, the precoding
matrix is initialized with the transmit matched filter (MF). Sub-
sequently ak and wk are computed, which then constitute the
new precoder G. This process is repeated until convergence
to a local optimum.

III. LARGE SYSTEM ANALYSIS

In this section we derive an approximation γ̄k of the SINR
γk in (6) such that γk − γ̄k

M→∞−→ 0, almost surely. This
approximation is independent of the channel realizations and
is referred to as deterministic equivalent.

At every iteration of the WSRBF-WMMSE2 algorithm, we
calculate γ̄k, a deterministic equivalent of the SINR γk. Since
the algorithm is iterative, γ̄

(j)
k at iteration j depends in a

non-trivial way on the channel H, making it difficult if not
impossible to calculate. Therefore, we study the following
precoder Ḡ(j) at iteration j,

Ḡ(j) = ξ(j) ˜̄G(j), (14)

where

˜̄G(j) =
(
HHD̄(j)H +

trD̄(j)

ρ
IM

)−1

HHĀH,(j)W̄(j), (15)

ξ(j) =
√

P/tr ˜̄G(j) ˜̄GH,(j) (16)

with D̄(j) = diag(d̄(j)
1 , . . . , d̄

(j)
K ), ĀH,(j) =

diag(ā(j)
1 , . . . , ā

(j)
K ) and W̄(j) = diag(w̄(j)

1 , . . . , w̄
(j)
K )

such that d
(j)
k − d̄

(j)
k

M→∞−→ 0, a
(j)
k − ā

(j)
k

M→∞−→ 0 and
w

(j)
k − w̄

(j)
k

M→∞−→ 0 almost surely, respectively. That is, at
iteration j, we use the channel independent approximations
ā
(j)
k and w̄

(j)
k to compute the precoding matrix Ḡ(j).

A. Deterministic Equivalent of the SINR for the MF

For the large system analysis, it is unimportant how we
initialize the filters gk, because after the first iteration, the
structure of the precoder is given by (14). As in the original
algorithm in [1], we choose the transmit MF, i.e., g(0)

k = ξ
M hk.

A deterministic equivalent γ̄MF
k of the SINR γMF

k under MF
precoding given by (6), such that γMF

k − γ̄MF
k

M→∞−→ 0, almost
surely, is given in the following theorem. We require γ̄MF

k to
compute γ̄

(1)
k in Theorem 2.

Theorem 1: Let γMF
k be the SINR of user k under MF

precoding, i.e., G= ξ
M HH. Then, γMF

k − γ̄MF
k

M→∞−→ 0, almost
surely, where

γ̄MF
k =

1
1

βρ + 1
M2

∑K
i 6=k trΘkΘi

. (17)

Proof: The normalization parameter is ξ =
√

P
1

M2 trHHH

and thus with (2) and [8, Lemma 2.7] we have ξ̄ such that
ξ − ξ̄

M→∞−→ 0 almost surely as

ξ̄ =

√
P

1
M2

∑K
k=1 trΘk

=
√

βP . (18)

Denote PS,k , |gH
k hk|2 the signal power of user k. Applying

[8, Lemma 2.7] we have 1
M hH

khk − 1 M→∞−→ 0 and hence

P̄S,k = ξ̄2 =βP. (19)

The interference is ξ2

M zH
kΘ1/2

k HH
[k]H[k]Θ

1/2
k zk, where H[k] =

[h1, . . . ,hk−1,hk+1, . . . ,hK ]H. Now we apply again [8,



Lemma 2.7] since 1
M Θ1/2

k HH
[k]H[k]Θ

1/2
k has uniformly

bounded spectral norm w.r.t. M almost surely, and obtain

1
M

zH
kΘ1/2

k HH
[k]H[k]Θ

1/2
k zk −

1
M2

K∑
i 6=k

trΘkΘi
M→∞−→ 0,

(20)
almost surely. Substituting the terms in (6) by their respective
deterministic equivalents yields (17), which completes the
proof.

B. Deterministic Equivalent of the SINR of Proposed Precoder

For the precoder (14), a deterministic equivalent of the SINR
is provided in the following theorem.

Theorem 2: Let γk be the SINR of user k with the precoder
defined in (14). Then, a deterministic equivalent γ̄

(j)
k at itera-

tion j > 0 and under MF initialization Ḡ(0) = ξ(0)

M HH, such
that

γ
(j)
k − γ̄

(j)
k

M→∞−→ 0, (21)

almost surely, is given by

γ̄
(j)
k =

w̄
(j)
k (m̄(j)

k )2

Ῡ(j)
k + d̄

(j)
k

Ψ̄(j)

ρ (1 + m̄
(j)
k )2

, (22)

where

m̄
(j)
k =

1
M

trΘ̄(j)
k V(j), (23)

Ψ̄(j) =
1
M

K∑
i=1

w̄
(j)
i e

′,(j)
i

(1 + e
(j)
i )2

, (24)

Ῡ(j)
k =

1
M

K∑
i=1

w̄
(j)
i e

′,(j)
i,k

(1 + e
(j)
i )2

, (25)

with Θ̄(j)
k = d̄

(j)
k Θk and ā

(j)
k , w̄

(j)
k and d̄

(j)
k are given by

ā
(j)
k =

σ√
P̄

(j−1)
S,k

γ̄
(j−1)
k

1 + γ̄
(j−1)
k

(26)

√
P̄

(j−1)
S,k =

1

ā
(j−1)
k

√
P

Ψ̄(j−1)

m̄
(j−1)
k

1 + m̄
(j−1)
k

(27)

w̄
(j)
k = uk

(
1 + γ̄

(j−1)
k

)
(28)

d̄
(j)
k = w̄

(j)
k ā

2,(j)
k . (29)

Denoting V(j) ,
(
F(j) + ᾱ(j)IM

)−1
with ᾱ(j) , trD̄(j)

Mρ , three
systems of K coupled equations have to be solved. First, the
e
(j)
1 , . . . , e

(j)
K form the unique positive solutions of

e
(j)
i =

1
M

trΘ̄(j)
i V(j), (30)

F(j) =
1
M

K∑
i=1

Θ̄(j)
i

1 + e
(j)
i

. (31)

Secondly, the e
′,(j)
1 , . . . , e

′,(j)
K form the unique positive solu-

tions of

e
′,(j)
i =

1
M

trΘ̄(j)
i V2,(j)

(
F′,(j) + IM

)
, (32)

F′,(j) =
1
M

K∑
i=1

Θ̄(j)
i e

′,(j)
i

(1 + e
(j)
i )2

. (33)

Finally, the e
′,(j)
1,k , . . . , e

′,(j)
K,k are the unique positive solutions

of

e
′,(j)
i,k =

1
M

trΘ̄(j)
i V2,(j)

(
F′,(j)k + Θ̄(j)

k

)
, (34)

F′,(j)k =
1
M

K∑
i=1

Θ̄(j)
i e

′,(j)
i,k

(1 + e
(j)
i )2

. (35)

For j = 1, γ̄
(0)
k = γ̄MF

k , given by Theorem 1 and P̄
(0)
S,k = βP ,

cf. (19).
Proof: For j > 0, define Γ(j) , 1

M HHD̄(j)H + ᾱ(j)IM ,
where ᾱ(j) , trD̄(j)

Mρ . The precoder at the end of iteration j is
given by

Ḡ(j) =
ξ(j)

M
(Γ(j))−1HHĀH,(j)W̄(j), (36)

where ξ(j) is

ξ(j) =

√
P

1
M2 tr(Γ(j))−2HHĀH,(j)W̄2,(j)Ā(j)H

(37)

,

√
P

Ψ(j)
. (38)

The derivation of the deterministic equivalents of the nor-
malization term ξ(j), the signal power |ḡH,(j)

k hk|2 and the
interference power

∑K
i 6=k hH

k ḡ(j)
i ḡH,(j)

i hk is made equivalent
to [5], [6] by replacing Θ̄(j)

k , d̄
(j)
k Θk and the user powers

by the MMSE weights, i.e., pk = w̄
(j)
k . This will be shown in

the following.
a) Power normalization ξ(j): The term Ψ(j) can be

written as

Ψ(j) =
1

M2
tr(Γ(j))−2HHĀH,(j)W̄2,(j)Ā(j)H (39)

=
1
M

K∑
k=1

w̄
(j)
k d̄

(j)
k zH

kΘ1/2
k (Γ(j))−2Θ1/2

k zk (40)

=
1
M

K∑
k=1

w̄
(j)
k zH

k Θ̄1/2,(j)
k (Γ(j))−2Θ̄1/2,(j)

k zk. (41)

Similar to [5], [6], a deterministic equivalent Ψ̄(j) such that
Ψ(j) − Ψ̄(j) M→∞−→ 0, almost surely, is given by

Ψ̄(j) =
1
M

K∑
k=1

w̄
(j)
k

1
M trΘ̄(j)

k (Γ(j))−2(
1 + 1

M trΘ̄(j)
k (Γ(j))−1

)2 (42)

=
1
M

K∑
k=1

w̄
(j)
k

m̄
′,(j)
k(

1 + m̄
(j)
k

)2 =
1
M

K∑
k=1

w̄
(j)
k e′k

(1 + ek)2
, (43)



where we denote m̄
(j)
k , 1

M trΘ̄(j)
k (Γ(j))−1 and m̄

′,(j)
k is the

derivative w.r.t. z at z=−ᾱ(j).
b) Signal power |ḡH,(j)

k hk|2: The square-root of the
signal power P

(j)
S,k , |ḡH,(j)

k hk|2 is√
P

(j)
S,k = ξ(j)ā

(j)
k w̄

(j)
k zH

kΘ1/2
k (Γ(j))−1Θ1/2

k zk (44)

=
ξ(j)

ā
(j)
k

zH
k Θ̄1/2,(j)

k (Γ(j))−1Θ̄1/2,(j)
k zk. (45)

Again, following [5], [6], a deterministic equivalent
√

P̄
(j)
S,k

of (44) such that
√

P
(j)
S,k −

√
P̄

(j)
S,k

M→∞−→ 0, almost surely, is
given by √

P̄
(j)
S,k =

ξ̄(j)

ā
(j)
k

m̄
(j)
k

1 + m̄
(j)
k

, (46)

where ξ̄(j) =
√

P/Ψ̄(j). From (10), we have a
(j)
k =

σ√
P

(j−1)
S,k

γ
(j−1)
k

1+γ
(j−1)
k

for which ā
(j)
k such that a

(j)
k − ā

(j)
k

M→∞−→ 0

almost surly is given by (26).
c) Interference power

∑K
i 6=k hH

k ḡ(j)
i ḡH,(j)

i hk: The inter-
ference power can be written as

K∑
i 6=k

hH
k ḡ(j)

i ḡH,(j)
i hk

=
ξ2,(j)

M2
hH

k (Γ(j))−1
K∑

i 6=k

ā
2,(j)
i w̄

2,(j)
i hihH

i (Γ(j))−1hk (47)

=
ξ2,(j)

d̄
(j)
k

zH
k Θ̄1/2,(j)

k (Γ(j))−1

×
K∑

i 6=k

w̄
(j)
i Θ̄1/2,(j)

i zizH
i Θ̄1/2,(j)

i (Γ(j))−1Θ̄1/2,j
k zk. (48)

Replacing pk by w̄
(j)
k , the term in (48) is equivalent to the one

in [5], [6]. Thus we have

K∑
i 6=k

hH
k ḡ(j)

i ḡH,(j)
i hk −

ξ̄2,(j)Ῡ(j)
k

d̄
(j)
k (1 + m̄

(j)
k )2

M→∞−→ 0, (49)

almost surely, where Ῡ(j)
k is given by (25), which completes

the proof.

C. Common Correlation Θk = Θ and Sum Rate U = IK

If the correlation of all user channels is identical and sum
rate is considered, the precoder in (14) is of closed form and
independent of iteration j.

Proposition 1: Let Θk = Θ and U = IK , the the precoder
in (14) is given by

Ḡ = ξ

(
HHH +

K

ρ
IM

)−1

HH, (50)

where ξ=
√

P/trḠḠH.
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Fig. 1. Sum rate vs. SNR with M = K = 30, Θk 6= IM , error bars
indicating the standard deviation.

Proof: From Theorem 2, observe that both ā(j) , ā
(j)
k

and w̄(j) , w̄
(j)
k are identical for all users and thus D̄(j) =

ā2,(j)w̄(j), Therefore, (14) takes the form

˜̄G(j) =
ξ

ā(j)

(
HHH +

K

ρ
IM

)−1

HH (51)

ξ2 =
ā2,(j)P

tr
(
HHUH + K

ρ IM

)−2

HHH
, (52)

which completes the proof.
Corollary 1: [5], [9] Let Θk = Θ and U = IK then

γ̄
(j)
k , γ̄k takes the form

γ̄ = m̄ =
1
M

trΘ
(

Θ/β

1 + m̄
+

1
βρ

IM

)−1

(53)

Corollary 2: [5], [6] Let Θ=IM and U = IK , then γ̄
(j)
k ,

γ̄k is of closed form an reads

γ̄
(j)
k , γ̄ =

1
2

[ρ(β − 1) + χ− 1] , (54)

where χ is given by

χ =
√

(β − 1)2ρ2 + 2(1 + β)ρ + 1. (55)

IV. NUMERICAL RESULTS

The Monte-Carlo (MC) simulations are carried out over
independent Rayleigh block-fading channels zk. We use the
WSRBF-WMMSE2 algorithm in [1] with 10 iterations and MF
initialization and compare it to the large system approximation
in Theorem 2. In all simulations, the approximated SINR in
Theorem 2 at iteration j =3 is computed and an approximated
sum rate R̄sum =

∑K
k=1 log(1 + γ̄

(3)
k ) is obtained.

The channel correlation matrix is modeled as [10]

[Θk]ij =
1

θk,max − θk,min

∫ θk,max

θk,min

e j 2π
λ dij cos(θ)dθ, (56)



where j ,
√
−1, λ denotes the signal wavelength and dij is

the distance between antenna i and j. As a simple example
we choose the range of azimuth angle θk of user k as θk,min =
−π and θk,max = ϕk − π, where ϕk = 2πk/K (uniform user
distribution). The transmitter is endowed with a uniform linear
array (ULA) of antennas. We assume that dij is independent
of M so that the spectral norm of Θk remains bounded as M
grows large.

In Figure 1 we compare the optimal iterative linear pre-
coders to the closed-form RZF precoder, in both MC simula-
tions and their respective approximations under the correlation
model (56) (indicated Θk 6= IM ). It can be observed that (i)
WSRBF-WMMSE2 is superior to RZF and (ii) the approxima-
tion for RZF [6] is more accurate than the proposed approx-
imation for the WSRBF-WMMSE2. The first observation is
expected, since the RZF is suboptimal. The second observation
is explained by the fact that, for RZF it has been proved [6]
that the approximation of the SINR is almost surely exact as
M → ∞. Still, the proposed approximation outperforms the
RZF approximation and is not too far from optimal.

Moreover, other simulations suggest, that to be more pre-
cise, the approximation in Theorem 2 requires larger dimen-
sions than the RZF equivalent.

Figure 2 compares the WSRBF-WMMSE2 precoder and
its approximation for correlated channels (Θk 6= IM ) and
i.i.d. channels (Θk =IM ). In [4], it has been claimed that for
Θk =IM the approximation of the SINR of RZF in Corollary
2 is almost surly optimal as M → ∞. It can be observed
that for i.i.d. channels the approximation in Corollary 2 is
accurate for low SNR, but very imprecise at high SNR. This
observation suggests that at least significantly higher dimen-
sions are required to close the gap between approximation and
simulation at high SNR. The reason is, that the regularization
term in the inverse of (15) is going to zero for ρ →∞ and the
maximum eigenvalue of the inverse is fluctuating significantly
leading to large standard deviations in the simulations as well
as to less accurate approximations. As Figure 2 suggests, this
effect is diminished when the channel is correlated resulting
in an increased accuracy of the approximation for high SNR.

V. CONCLUSION

This paper investigated the behavior of the optimal linear
precoder in large correlated MISO broadcast channels. We
derived a novel iterative approximation of the SINR and
showed that it outperforms the closed-form RZF precoder. The
novel approximation is independent of a particular channel
realization and thus allows for less complex performance
evaluation.
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