PRISM - Privacy-Preserving Search in MapReduce

Erik-Oliver Blass', Roberto Di Pietro?, Refik Molva®, and Melek Onen?

! Northeastern University, Boston, MA
2 Universita di Roma Tre, Rome, Italy
3 EURECOM, Sophia Antipolis, France

Abstract. We present PRISM, a privacy-preserving scheme for word search in
cloud computing. In the face of a curious cloud provider, the main challenge is
to design a scheme that achieves privacy while preserving the efficiency of cloud
computing. Solutions from related research, like encrypted keyword search or
Private Information Retrieval (PIR), fall short of meeting real-world cloud re-
quirements and are impractical. PRISM’s idea is to transform the problem of
word search into a set of parallel instances of PIR on small datasets. Each PIR
instance on a small dataset is efficiently solved by a node in the cloud during the
“Map” phase of MapReduce. Outcomes of map computations are then aggregated
during the “Reduce” phase. Due to the linearity of PRISM, the simple aggrega-
tion of map results yields the final output of the word search operation. We have
implemented PRISM on Hadoop MapReduce and evaluated its efficiency using
real-world DNS logs. PRISM’s overhead over non-private search is only 11%.
Thus, PRISM offers privacy-preserving search that meets cloud computing effi-
ciency requirements. Moreover, PRISM is compatible with standard MapReduce,
not requiring any change to the interface or infrastructure.

1 Introduction

Today, users take advantage of public clouds operated by large companies like Google
or Amazon. Instead of setting up and maintaining their own data centers, users reduce
their costs by outsourcing both storage and processing to a cloud. One prominent exam-
ple allowing cloud-based storage and processing is Hadoop MapReduce [3], a variant
of Google’s MapReduce system [17]. Hadoop MapReduce is widely used, and public
MapReduce clouds are offered by companies such as Amazon [2, 25].

The advantages of cloud computing unfortunately come with a high cost in terms of
new security and privacy exposures. Apart from classical security challenges of shared
services, outsourcing of data storage and processing raises new challenges in the face of
potentially malicious cloud providers. Privacy of outsourced data appears to be a major
requirement in this context. Some regulations are already provisioned as to the privacy
protection of outsourced governmental documents [11, 12, 18]: these regulations usu-
ally aim at assuring privacy against curious clouds or against clouds with data centers
located in “rogue” countries or with insufficient security guarantees; they also are de-
fined to avoid data leakage in case of operational failures in the cloud. Along these lines,
there is also a raising corporate concern about the privacy of sensitive business data
stored in the cloud [14]. Although cloud providers thrive to meet the increased privacy
demand by certifying their services [24], malicious insiders have still been identified as
one of the top threats in cloud computing [15].

While encryption of outsourced data by the users seems to be a viable protection
against most privacy problems, traditional data encryption does not suit the require-
ments of cloud computing: the cloud not only serves as high capacity memory, but is
also involved in data processing such as statistical data analysis, log analysis, index-
ing, data mining, and searching [25]. However, data processing performed by the cloud
would not be feasible or would be inefficient with encrypted data.

Among data processing primitives, word search, i.e., verifying, whether a certain
word is part of a dataset, is not only one of the most fundamental operations, but sur-
prisingly also one of the most demanded applications in, e.g., MapReduce cloud com-
puting [25]. Related work on search in encrypted data, e.g., Boneh et al. [6], Ogata
and Kurosawa [32], falls short of meeting cloud computing privacy and performance
requirements. These techniques are impractical as they are designed for centralized ex-
ecution models that are incompatible with today’s highly parallel cloud architectures.

In this paper, we present PRISM, a new scheme for privacy-preserving and efficient
word search for MapReduce clouds. PRISM pursues two specific objectives: 1.) pri-
vacy against potentially malicious cloud providers and 2.) high efficiency through the
integration of security mechanisms with the operations performed in the cloud.

In order to achieve efficiency, PRISM takes advantage of the inherent parallelization
akin to cloud computing: the word search problem on a very large encrypted dataset is
partitioned into several instances of word search in small datasets that are executed in
parallel (“Map” phase). The individual word search operations performed in the cloud
yield a result amenable to straightforward aggregation in the ultimate phase (“Reduce”
phase) of the word search operation. The word search operation builds on a Private
Information Retrieval (PIR) [29] technique which is extended in order to generate in-
termediate search results that are still encrypted and that can be combined through linear
operations to yield the global result of the word search over the entire dataset.

Summarizing our contributions, PRISM:

e is suited to cloud computing: PRISM is the first privacy-preserving search scheme
suited to cloud computing; it brings together storage and search privacy with high per-
formance by leveraging the efficiency of the MapReduce paradigm. PRISM is paral-
lelizable and also allows efficient combination of individual results. Its efficiency has
been evaluated through searching in DNS logs provided by an Internet Service Provider.
Although PRISM’s overhead within the core Map function is large compared to non-
privacy-preserving search (factor of 9), the total system overhead is only 11%.

e preserves privacy in the face of potentially malicious cloud providers: PRISM
allows carrying out these critical operations in the cloud without trusting the cloud.

e is compatible to standard MapReduce: PRISM only requires a standard MapRe-
duce interface without modifications in the underlying system. PRISM can thus be in-
tegrated on any cloud that provides a standard MapReduce interface such as Amazon.

e provides flexible search: In contrast to traditional encrypted keyword search
techniques, PRISM is not limited to searching for a fixed set of predetermined key-
words to be known in advance, but offers flexible search for any words.

2 Problem Statement and Adversary Model

Throughout this paper, we will use an application example to motivate our work. In-
spired by recent events [31], we envision a data retention scenario. Due to regulatory

matters, a small, residential Internet Service Provider (ISP) must retain logs of client
accesses. Due to the sheer amount of data to retain, the ISP outsources logfiles to the
cloud. Files are encrypted as they contain sensitive data. Still, e.g., law enforcement
authorities will contact the ISP to search for words (strings, text, ...) in outsourced files.

More concretely, assume service provider U (the cloud “user”) providing DNS ser-
vices to clients. I logs each client’s access, i.e., U logs the tuple (timestamp, client ID,
hostname queried). Due to the large amount of log data and cost reasons, U outsources
its logfiles into a cloud. Regularly, say each day 7, U/ creates a new logfile L,. At the end
of a longer period, U/ wants to (or is forced to) find out, whether there was an interest
in a suspicious host w. So, U checks, at which day, i.e., in which logfiles L;, word w
occurs. U queries the cloud for w, and the cloud responses with an answer R telling I/
which of the L; contain(s) w.

Note that ¢/ does not know in advance which word w it has to search for. This au-
tomatically disqualifies protocols for predefined keyword search, such as PEKS [6] and
derivatives. Also, data retention regulations require outsourced data to be fully recover-
able; storing only digests of data in the cloud, e.g., hash values, is insufficient.

The cloud is assumed to be untrusted, more precisely semi-honest (“honest-but-
curious”). Regulatory matters imply that the cloud must not learn any information about
the content it hosts and search queries performed. This implies both, the encryption of
data by U/ before outsourcing it to the cloud and “obliviously” processing queries on
encrypted data by the cloud.

Before we formalize our privacy requirements, we first define the main components
for a cloud word search scheme.

Definition 1 (Cloud Word Search). Let £ denote a sequence of files L := {L1,..., L}
and X the set of possible words. Each file L; consists of a sequence of words L; :=
{way, wi,2), - We L W) € 2.

A cloud word search scheme comprises the following algorithms:

1. KeyGen(s): using a security parameter s, this algorithm outputs a secret S.

2. Encrypt(S, L): uses the secret S to encrypt the content of files L; € L and outputs
the set of resulting encryptions €& := {Er,,...,EL,}. Here, Ey, denotes the
encryption of file L;.

Upload(E): uploads & to the cloud.

PrepareQuery(S,w): takes S, the word w to search for, and produces a query Q.
Process(E, Q): with encryptions £ and query Q, this algorithm produces result R.
Decode(S, R, w): taking result R, secret S, and word w, this algorithm outputs
the set of indices T := {iy,...,i,} such that¥Vi € T : L; € LANw € L; if
R = Process(&E, Q) with Q = PrepareQuery(S,w), and £ = Encrypt(S, L).

SR W

The basic interaction between user ¢/ and the cloud can be summarized as follows:
first, user U encrypts and uploads files. Then, U/ prepares a search query @) for word
w and sends @ to the cloud. The cloud processes this query using algorithm Process
and produces output R. This output is sent back to U/. Using output R and another
algorithm Decode, U can compute the list of files containing w. While describing
PRISM’s details later in Section 4, we will show how they map to these algorithms.

Note that, in a cloud setting, U executes K eyGen, Encrypt, Upload, PrepareQuery,
and Decode, while the cloud executes Process. The idea is that algorithms KeyGen,
Encrypt, Upload, PrepareQuery, and Decode are computationally very “lightweight”
for U compared to Process. The main computational burden lies on the cloud side.

Privacy Requirements

Intuitively, our application demands for two main types of privacy. The cloud (now
called “adversary A”) must neither be able to infer any details about stored files nor
learn details about U/’s queries and results delivered back to ¢/. This implies not only
the secrecy or confidentiality of the content, but also the inability to compute statistics
on the content. Informally, in our setting:

— given &, A must not learn the content of £ and must not discover whether files L;
contain a word w, e.g., multiple times;

— given a set of queries {Q; }, A must not learn the words {w;} U is looking for and
must not discover whether the same word is queried multiple times;

— given the result R; of a query @);, U/ must not learn which file(s) contain the word
corresponding to this specific query W;.

Instead, the adversary should only learn “trivial” properties, such as the total number
of files, the file size, and the total number of queries. Along the same lines as traditional
indistinguishability [23], A should not be able to infer any additional information from
encrypted files, queries, and results. We formally define privacy for a cloud word search
scheme using a game between adversary A (the cloud) and a challenger (user If).

Definition 2 (Privacy). Let W denote a sequence of words W := {w1, ..., w,}. The
game GAME is played as follows.

1. The challenger executes K eyGen(s) to derive secret S.
2. A selects a distinct pair of sequences of files and words (Lo, Wo) and (L1, W1),
where |£0| = |£1 , V(L? S ,C(),LZ1 S ﬁl) : |L?‘ = |L11 , and |W0| = |W1|
A sends (Lo, Wy) and (L1, W) to the challenger.
3. The challenger randomly selects b € {0,1} and
— executes Encrypt(S, Ly), i.e., the challenger computes encrypted files &, =
— executes Upload(&yp) to send encrypted files back to A.
— executes PrepareQuery(S,w) for each w in W, This results in the sequence
of queries Qp := {Q1, ..., Q)w,|} that the challenger also sends to A.

4. Aoutputs b € {0,1}. The outcome of GAME is “1” iff t/ = b.

A cloud word search scheme is called privacy-preserving iff

Pr(GAME(A) = 1) < % +e(s)

for all probabilistic polynomial-time adversaries A. Here, €(s) is a negligible function,
e(s) < % for every polynomial P with sufficiently large security parameter s.

The specification of the (£;, ;) in step 2. of Definition 2 reflects the fact that A can
learn the total number of files, the size of each file, and the number of queries.
Limitations: We consider semi-honest clouds. Fully malicious clouds might per-
form DoS-attacks or deviate from protocol execution. Similar to “reaction attacks” [26],
the cloud might return garbage to U/, to observe U’s reaction (e.g., sending the same
query). Although realistic, we leave such attacks for future work. Also, our privacy
definition does not capture trivial privacy properties, e.g., the size of outsourced files.
Mitigation strategies (e.g., padding files) might be contradictory to cloud efficiency. We
conjecture that, for many applications, losing “trivial” privacy properties is acceptable.

3 Background
3.1 MapReduce

We target a system suited for the MapReduce [3] paradigm. We will now give a con-
densed overview of MapReduce, focusing on aspects necessary to understand PRISM.

Upload. A MapReduce cloud comprises a set of “slave” node computers and a
“master” computer. While ¢/ uploads files into the MapReduce cloud, each file is au-
tomatically split into blocks called InputSplits. InputSplits have a fixed size Stputsplit
which is a pre-configured system parameter. If Sg;. denotes the size of an uploaded file,
the number of InputSplits c computes to ¢ = % For each InputSplit, a workload
sharing algorithm selects a slave node and places the InputSplit on it.

In addition to data, the MapReduce also allows I/ to upload “operations”, i.e., com-
piled Java classes. These classes represent the implementation of three functions.

1.) Scan(INPUTSPLIT) — [(k,v)]), a functions that takes an InputSplit as an input,
parses it, i.e., scans it and generates a set of key-value pairs [(k, v)] out of it.

2.) Map(k,v) — [(k',v")], a function that takes as an input a single key-value pair
(k,v) and outputs a set of “intermediate” key-value pairs [(k’, v")].

3.) Reduce([(k’,v")]) — FILE, a function that takes as an input a set of intermediate
key-value pairs [(k’, v")] and writes arbitrary output into a file.

Uploaded Java classes are sent to all slave nodes storing an InputSplit.

Map Phase. After data and implementations have been uploaded, I/ specifies one
uploaded file and triggers MapReduce operations on that file. The first phase of oper-
ation is the “Map” phase. Each slave node becomes a “mapper” node. Each mapper
executes U’s Scan function on the InputSplit it stores locally. This generates a set of
key-value pairs on each mapper. Furthermore, the mapper node executes ¢/’s M ap func-
tion on this generated key-value pairs to produce a set of intermediate key-value pairs.

Reduce Phase. MapReduce starts the “Reduce” phase. Slave nodes are scheduled
to become “reducers”. For each of the intermediate pairs (k’, v’), MapReduce selects a
reducer and sends (&', v’) to this reducer. MapReduce selects the same reducer for all
pairs (k’,v") having the same key. Each reducer executes {/’s reduce function on its set
of intermediate key-value pairs and writes the output to a file. This file is sent to /.

3.2 Trapdoor Group Private Information Retrieval

PIR allows a user to retrieve data from a server without revealing which data is re-
trieved. For PRISM, we make use of a simple and efficient PIR mechanism as previ-

ously suggested by Trostle and Parrish [38]. As this mechanism is just a building block
for PRISM, we will only give a summary of its mode of operation and rationale.

Overview: Matrix M is a ¢ x t matrix of elements in Zy stored at a server. For
example, N = 2 for a binary matrix. User U is only interested in receiving elements
of the k" row in M, but the server must not learn k. The idea is now that I/ sends
two “types” of values to the server. For each row that I/ is not interested in, he sends a
value of the “first” type. For the one row that I/ is interested in, he sends a single value
of the “second” type. To prevent the server from distinguishing between the two types
of values, U blinds each value with a blinding factor b. This blinding factor can later
be removed by U/. The server now performs simple additions with received values and
elements stored in M. The result is sent back to &/ who removes the blinding factor and
determines the values of the row of his interest.

Preparation: Assume U/ is interested in row k. U chooses a group Z,,, with a prime
p of m bits. U also chooses a random b € Z,, and ¢ random values a; € Z,. Therewith,
U computes t values e; < % such that: ey, := 1+a;-NandVi # k : e; := a;-N.

Finally, I/ computes a; := b-e; mod p and sends the «; to the server. Other values
(p,m,b,{e;}, {a;}) remain secret. The server treats «; as large integers and performs
the following integer operations, i.e., without any modulo.

Server computation: Let u be the vector u := (a, ..., ay). The server computes
the matrix product v and sends it back to U,

t t
V= (51,...,@3) =u-M= (Zai-./\/li,l,...,Zai~Mi¢).
=1 ii=1

Result analysis: Upon receipt, in order to “un-blind” values, &/ computes the ¢
inverse values z; := 3; - b~! mod p. Now, U can conclude that z; mod N equals the
it" element of the kt" row in M. Therewith, I/ has retrieved the ¢ elements of the k"
row of M in a privacy-preserving fashion. Note the linearity for two /3; and /3] received
during different PIR runs: 8; - b= + 3/ -b~1 = (B; + 8!) - b= mod p. That is, the
sum of two individually un-blinded vectors equals un-blinding the sum of two received
vectors v, v’. We will later use this linearity during PRISM’s reduce phase.

Security rationale: Security and privacy of this protocol are based on the trapdoor
group assumption. With only knowledge of «;, but not secret trapdoor p, it is com-
putationally hard for the server to infer any information about low order bits, i.e., the
modulo of z or ¢;, cf., Trostle and Parrish [38].

Discussion: Again, we stress that this particular PIR scheme is an exchangeable
building block. In general, any of the “traditional” PIR techniques based on group ho-
momorphic encryption [29, 34] is suited for use within PRISM. We have chosen Trostle
and Parrish [38] only due to the straightforward way to implement it (Section 6). Other
PIR schemes might reduce the (already small) overhead, but this is out of scope here.

4 PRISM Protocol

PRISM comprises three parts: upload of data into the cloud, the MapReduce search,
and the result analysis where the user decides whether the word has been found. We
will briefly give an overview about each part.

1.) Upload. During upload, U encrypts each word (of a logfile) using symmetric
encryption. Ciphertexts are stored in a file, and this file is sent to the MapReduce cloud.
The cloud automatically splits large files and distributes splits (InputSplits) among map-
per nodes. We use a standard blockcipher (AES) to perform ciphering of words. How-
ever, to ensure privacy as of Definition 2, plaintext is modified before encryption using
a “stateful cipher” construction. Therewith, I/ can still search for some word w, but the
cloud cannot compute statistics about ciphertexts.

2.) Search. Eventually, I/ wants to search his encrypted files for some word w.
Therefore, U sends implementations of “algorithms” for the map and reduce phases to
the MapReduce cloud, and the cloud executes these on uploaded data. For example,
U sends Java “.class” files for the mappers and Java “.class” files for reducer nodes.
MapReduce distributes these implementations to each mapper and reducer, respectively.
PRISM'’s rationale is to transform the word search problem into a set of small PIR
instances. To do so, each mapper, scanning through its locally stored InputSplit, creates
a binary matrix. Ciphertexts in the InputSplit are assigned to individual elements in
that matrix. If a ciphertext is present in an InputSplit, its corresponding element in the
matrix is set to either “0” or “1””. Using private information retrieval techniques, PRISM
can extract the value of a single element in the matrix with the mapper being totally
oblivious to which element is extracted. Consequently, ¢/ can specify which element
to extract in a privacy-preserving way. All mappers send their obliviously extracted
elements as key-value pairs to reducers. Reducers simply sum up received values and
return sums to . Therewith, neither mappers nor reducers can learn any information
about which ciphertext ¢/ was interested in.

3.) Result analysis. Finally, I/ receives an encrypted sum for each of the originally
uploaded files from reducers. U/ can decrypt them and decide which of the files contain
w. However, due to the probability of “collisions” in matrices, i.e., two different cipher-
texts can be assigned to the same element, and due to ambiguities of received sums, I/’s
decision whether w is inside some file might be wrong. Therefore, PRISM repeats the
above process in a total of ¢ so called “rounds”. In each of the rounds, a new matrix is
generated, elements are set to “1” or “0” depending on the round number, and results
are returned as described. This reduces the probability of ¢/ making incorrect decisions.

Initialization: Before the actual uploading, initially, and only once, I/ has to exe-
cute KeyGen. In PRISM, KeyGen outputs secret S := {K, N, p}, where | K|, |N|, |p|
are specified by security parameter s. K is a symmetric key, and /N and p are Trapdoor
Group PIR parameters as presented in Section 3.2.

4.1 Upload

Overview. In our scenario, cloud user ¢/ continuously logs customer access and sends
logfiles to the cloud. Each day, U starts using a new logfile. For simplicity, we assume
that entries logged by U are simple words. Each logfile is encrypted word by word using
a “stateful cipher” E'x, and resulting ciphertexts are written to a file, respectively. The
encrypted files are sent to the cloud.

Definition 3 (Stateful Cipher). Given standard symmetric encryption Ex with key K,
e.g., AES, we extend E to a stateful cipher by adding “counters” -y, that count the
history of inputs w;. Each time E encrypts w;, counter ,,, is increased by one.

Input: words w;
Output: ciphertexts C; uploaded to cloud

1 Initialize all 7y to 0;
2 foreach word w; do

3 Yw,; 1= get (w;); //from hash table
4 Yw; = Yw; + 1

5 insert (w;i, yw;); //into hash table
6 | Ci:=Exk,(wi,Vw,);

7 upload C; ;

s end

Algorithm 1: “Stateful Cipher” example and upload to MapReduce.

In conclusion, a stateful cipher is a cipher that knows how often it has encrypted a
specific plaintext. The following presents one trivial stateful cipher construction used
in PRISM to encrypt before uploading.

Stateful Cipher Example (see Algorithm 1): For simplicity, user { uses a secret
key K to derive a different key for each day d, e.g., Kj := HMAC g (d).

For each day, {/ maintains a hash table containing the list of counters -,,, in U’s
local storage. At the beginning of each day, U/ initializes all counters to 0, i.e., ., = 0.
Now, for each logentry w; that should be stored in the cloud, ¢/ computes ~,,, and
increases 7, by 1. Then, U computes ciphertext C; := Eg,(w;, Vu,). User U sends
ciphertext C; to the cloud that stores it in this day’s file. For the (AES) encryption
Ex, (Wi, Y,),) denotes an unambiguous pairing of inputs. We discuss the reason for
using a “stateful cipher” over using, e.g., a CBC mode of encryption in Section 5.1.

Summarizing, with respect to Definition 1, Encrypt in PRISM takes K to derive
a separate key K for each file to be encrypted. Actual encryption of each file is per-
formed word by word using the stateful cipher and key K4, so & := {Fr,,...,Er,}
where Er, = {Ek, (W1, %w0,), - - -, Ex;(W|L;): Yo,) }- Upload in PRISM can be re-
garded as simply sending the encrypted files £ to MapReduce.

4.2 Search

User U wants to search a set of files for word w within a period of time. For ease of
understanding, we will restrict our description below to PRISM working on a single file
specified by the user, i.e., the file of day d. With multiple files, all files will be separately
(but in parallel) processed with PRISM exactly like with a single file.

U sends map and reduce implementations of PRISM to MapReduce, and the map
phase starts. In the following, we describe the PRISM algorithms for, first, the mappers
and in Section 4.2 the reducers. We would like to stress that the PRISM algorithms,
e.g., Java “.class” files, are not encrypted and not specially protected against a curious
cloud. Even though mappers and reducers know what operations they perform, they
cannot deduce any private information about stored data or details about the search.

Overview. Before scanning through its local InputSplit, a mapper node creates a
matrix with all elements initialized to “0”. PRISM’s main idea is that while the mapper
scans the ciphertexts in its InputSplit, each ciphertext is assigned to one position, a
certain element in the matrix by computing a hash of the ciphertext. Additionally, for
each ciphertext, the mapper computes a single bit hash, and if the hash output bit is “1”,

the mapper puts a “1” in the matrix at the assigned position. The idea is that user / can
also compute the position in the matrix and the one bit hash output for a word w he is
looking for. Roughly speaking, ¢/ now queries the mapper for the value of that bit in the
matrix using private information retrieval. If the bit retrieved from the mapper differs
from the bit computed by U, then U/ can decide, e.g., that w is not in this InputSplit.

Problem is that due to the limited size of the matrix and the properties of the hash
function, there might be collisions in the assignment process. That is, by chance there
can be two different ciphertexts being assigned with the same position in the matrix.
By chance, the bit retrieved by ¢/ can therefore be unrelated to w. This problem is
amplified by the fact that I/ does not only receive a single bit for a single InputSplit,
but a combination (the sum) of all bits from all mappers working on InputSplits. To
mitigate this problem, PRISM repeats generation and filling of matrices a total of ¢
rounds. Also, setting an element in a matrix to “1”” depends on the round number. After
q rounds, the probability that the information I/ retrieved from this mapper is unrelated
to w therefore decreases, and I/ can finally decide whether w is inside this file.

Definition 4 (PIR Matrix). A binary t x t matrix M witht = 2°,i € N is called a PIR
matrix. The mapper uses M to implicitly perform the privacy-preserving word search.

Definition 5 (Candidate Position). For each ciphertext C; in an InputSplit, the can-
didate position (X;,Y;) of C; in M is computed by (X;||Y;) := |Cil, .., ., Here,
|-)s10s,) denotes truncation after 2 - log, (t) bits. So, the first log, t bits of C; de-
termine X;, and the second log, t bits determine ;.

Definition 6 (PIR Input). If U is interested in a specific element (X,)) in M, he
computes PIR input {a1, ag, ..., a4}, where ay :=b- (1 + ax - N) mod p, and
Vi # X,a; := b-(a; - N) mod p. Random values b and a; are chosen as for the
Trapdoor Group PIR scheme presented in Section 3.2.

Definition 7 (Column Sum). The column sum o; of the it" column of PIR matrix M

is defined as
g; 1= E Qy,

Migize,i=1
where Mi<j<i; = 1 denotes the entries in the i" column of M that are set to 1.

Note that additions in this definition are integer additions.

The above computation of column sums is simply a digest of the PIR technique
by Trostle and Parrish [38]. In short, if a mapper computes such a column sum on a
given PIR matrix M and given PIR inputs «, it is impossible for the mapper to derive
(X,). U, however, can compute whether My y = 1, because My y = 1iff (o -b~1
mod p) mod 2 = 1 holds.

It is important to point out that not only a mapper can compute a candidate posi-
tion for some ciphertext in its InputSplit, but also &/ can compute candidate positions.
More precisely, as I is looking for w, he can compute F(w, 1) and candidate position
(X|Y) == [E(w,1)],,,,, (- If w has been uploaded into a particular InputSplit at least
once, then this InputSplit contains at least £/(w, 1) (maybe also E(w, 2), E(w, 3),...).
Therefore, it is sufficient for I to search for F(w,1). We will now give detailed de-
scriptions of PRI.SM’s Map and Reduce algorithms.

Query preparation — User To start, / chooses parameters ¢,q € N, where ¢ de-
termines the size of the PIR matrix and ¢ the number of rounds. For day d that I/
wants to search for w, he determines key Ky := HMACk (d) and the target candidate
position (X||Y) = |Ex,(w, 1)), 10, 2+ To prepare PIR, U computes ¢ PIR Inputs
{a1,aa,...,a:} as described above. U sends all « as part of the following map algo-
rithm implementation to the cloud.

The above preparation of PIR Input depending on w represents PrepareQuery of
Definition 1 in PRISM. The algorithm’s output () is the PIR Input. PRISM’s imple-
mentation of Process, i.e., the cloud’s operation on the encrypted file using a query)
comprises the following cloud-side Map as well as the whole cloud-side reduce below.

Map Details — Cloud On the cloud side, all mappers process PRISM in parallel, each
of them on its own, locally stored InputSplit of the current file. More precisely, a mapper
executes Algorithm 2. Initially, the mapper generates ¢ PIR matrices M;, where each
element is initially set to 0. We will now write M, x y to denote an element (X',)) in
matrix M;.

The mapper node scans its local InputSplit consisting of ciphertexts {C1, ..., Cy}.
For each ciphertext C;, the mapper creates a key-value pair (¢, C;). Then, the mapper
fills matrices M;,1 < < q. For pair (¢, C;),

— the mapper computes candidate position (X;|[;) == [Ci],.,.., (-

— the mapper puts in PIR matrix M, in element M x, y,, a “17, if the bit bit; :=
|h(Cs,7)], = 1. Here, h denotes a cryptographic hash function and “,” again an
unambiguous pairing of inputs. If bit; = 0, element M x, y, remains untouched.
This means that entries in M can flip from O to 1, but never from 1 back to 0.

After all ¢ PIR matrices are filled, the mapper computes for each matrix the ¢ column
sums o1<j<t,1<i<q based on U’s input {cvq, . .., o, }: values oy, with corresponding el-
ement M; ;, ; set to “1” are simply added. Finally, the mapper outputs intermediate key-
value pairs (k,v). The key comprises the name of the file of the InputSplit this mapper
was working on, e.g., the file name could be day d, and the number of the column sum
of M. The value consists of a list of the ¢ column sums. These intermediate key-value

pairs will now be input for the reducers during the Reduce phase.

Reduce Phase — Overview Recall that there are ¢ InputSplits and therefore ¢ mappers.
A single reducer receives from all the ¢ mappers working on the same file all their ¢
column sums for the same column. The reducer simply adds these received sums and
writes the result into a file which is sent back to U/.

Reduce Phase — Details For all key-value pairs [({FILE, i},{0; 1, ..., 0 4})] using the
same {FILE, i} as key, the MapReduce framework designates the same reducer. This
reducer receives from all ¢ different mappers working on the same file all intermediate
key-value pairs with the same key. That is, a reducer receives c pairs which we rewrite
as ({FILE7 Z}, {Ui,1,17 - 7Ui,q,1})7 ey ({FILE, Z}, {Ui,l,ca ey Uz’,q,c})~

Here, for a given o; ; 1., 4, 1 < ¢ < ¢, denotes the column, j, 1 < j < g, denotes the
round, and k, 1 < k < ¢, the InputSplit.

Input: pairs (i, C;), values {a1, ..., 00}
Output: intermediate key-value pairs (k, v)

1 forl:=1to gdo

2 | INITIALIZE M;

3 end

4 SCANTHROUGHINPUTSPLIT;

s foreach pair (i,C;)do //Fill

matrices Input: reducers’ files FILE

6 (X||Ys) == LCiJQ,logz Y Output: decision whether w € FILE

7 for j:=1togdo 1 foreach file FILE do

8 bit; := [h(Cs, 7)) 2 for i := 1to ¢ do

o if bit; = 1 then 3 if [7(C,i)], =1 then

10 ‘ Mj,/y“yi =1, 4 U reads SFILE,Y,i5

11 end - pL
5 S = (SFILE,y,l b

i; endend mod p) mod N

14 for/:=1togdo //g rounds 6 gj/_zl'_;lt] rosee

15 for j:=1totdo //Compute . if 5; = O then

column sums 8 OUTPUT w ¢ FILE;

16 041 = E/\Amskgtd:l Ak //Contradiction

17 end

18 end 9 break;

19 forj:=1totdo //Intermediate 10 end

(k,v) pairs 11 end

20 (k:, ’U) ::({FILE, j},{aj,l, ey O’j7q}); 12 end

21 OuTpUT (k,v); 13 OUTPUT w € FILE;

22 end 14 end

Algorithm 2: Computation of matrices M Algorithm 3: U/ decides w € FILE

Using integer addition, reducer computes ¢ “final PR sums” Sy g ;5 := 22:1 O ks
1 < j < g, and stores values {Spig, 1,-- -, SFiLE,i,q} INt0 an output file R. To summa-
rize, spig,i,; represents the sum of column sums of all the mappers of one particular
column ¢ in PIR matrix j. This concludes the cloud’s Process algorithm in PRISM.
The output file R is downloaded by U/.

4.3 Result Analysis

The only piece left is the Decode algorithm of Definition 1 which we will describe in
the following. For each outsourced file (day d), user I/ retrieves an output file generated
by reducers. Now, U analyzes retrieved files’ content to finally conclude which of the
outsourced files contain w (using S). Again for ease of understanding, we restrict our
description to the analysis of the result generated from PRISM on a single outsourced
file called FILE. U repeats this process with all other results from the other files accord-

ingly.

Definition 8 (Collision). Assume U is looking for w, so C = Ek (w,1). Similar
to hash functions, a collision in PIR matrix M denotes the case of an event where
the candidate position (X',)") of another ciphertext C' # C matches the candidate
position (X||Y) = | E(w,1)] of win M. That is, | C| =|C]

2-logg (t) 2-logo (t) 2-logg (t) ©

Definition 9 (One-Collision). A one-collision is the event where in an InputSplit a ci-
phertext C' # Er,(w, 1) puts a 1 into the same candidate position in M as Ex,(w, 1).

Overview: The rationale for the result analysis protocol of PRISM is to observe
the candidate position of C' over g rounds to mitigate the effect of one-collisions. Of
particular interest will be rounds where |h(C,4)|, = 1.

First, &/ un-blinds all values received from reducers. Based on the result, ¢/ distin-
guishes two cases.

Case 1.) If a reducer, reducing for a specific file FILE, has returned the value 0 for
C’s candidate position, then U knows for sure that all mappers have output O for this
candidate position. Consequently, the candidate position in matrix M of each mapper
is 0. Therefore, C' has not been in any of the InputSplits of FILE, and U reasons w &
FILE. If C' would have been in one InputSplit, then at least the mapper working on this
InputSplit would have returned a 1 in this round.

Definition 10 (Contradiction). Let w be the word U is looking for, and C'its cipher-
text. If in some round i, |h(C,1)|, = 1 holds, and the reducer for file FILE sends U a
value of 0 then this is called a contradiction.

In case of such a contradiction, I/ for sure knows that w is not in file FILE.

Case 2.) If, however, this reducer returns a value > 0, then w was in at least one
InputSplit or a one-collision has occurred in at least one InputSplit. User ¢/ can neither
decide w ¢ FILE nor w € FILE with absolute certainty.

U’s strategy is to keep the probability for one-collisions low and run multiple rounds
q, such that eventually a contradiction occurs (= U decides w ¢ FILE), or, if no con-
tradiction occurs, U decides w € FILE with only a small error probability P,;.

Details: I/ executes Algorithm 3. For each file, U/ is only interested in row J>
of matrices M, as they can refer to candidate position ()3 ,)7), only. Therefore, U
keeps values {SFILE,S;,p NN SFlLE,ji,q} only and discards the rest. In each round where
[h(C,i)], = 1, un-blinds sp, . 5 ; to get value s; := > 7_, bit;. If s; = 0, then we
have a contradiction, and I/ can infer w ¢ FILE. If none of the s; values has been 0
after all the ¢ rounds, then I/ will decide w € FILE. U will be wrong with P,,,.

Note that, although PIR matrices are binary matrices, U sets N > c to cope with
the larger possible values that sums might take due to collisions.

In conclusion, U’s strategy can be summarized by: output w ¢ FILE, if Ji,s; = 0
or output w € FILE, if Vi, s; # 0. We will compute I/’s error probability Pe,, for the
latter case and dependencies between P, and values ¢ and ¢ in Section 5.2.

Saving computation: To save some computation in PRISM, we can modify the
hash-based mechanism that determines whether to put a “1” or a “0” in a certain element
in M. Recall that the first 2 - loga(¢) bit of a ciphertext C' are used to determine its
position (element) in M. However, instead of computing an expensive hash function
|h(Ci, 5)], to get a single bit in round j, we can simply replace the hash and take C’s
bit on position (2 - logs(t) + 7). Assuming that cipher F has good security properties
(each bit of C'is “1” with probability %), this results in the same property as using the
hash: eventually two different ciphertexts that collide in M will differ and lead to a
contradiction. We use this computation reduction in our evaluation in Section 6.

5 PRISM Analysis

5.1 Privacy

We will now show why PRISM is privacy-preserving. The main rationale behind our
proof is to show that pairs of output generated by both our stateful cipher construc-
tion Ex (w;, Y,) (Section 4.1) and the PIR-based search mechanism (Section 4.2) are
computationally indistinguishable for .A. Below, we assume a sufficiently large security
parameter s and probabilistic polynomial time adversaries \A.

Theorem 1. PRISM is a privacy-preserving cloud word search scheme assuming pseu-
dorandom properties for E and the trapdoor group property of the PIR scheme.

Proof (Sketch). Assume there would be an adversary A with Pr(GAME(A) = 1) >
% + €(s), i.e., A has non-negligible advantage over guessing. As PRISM generates &,
and Qy, independently from each other, this would indicate that .4 has non-negligible
advantage over guessing in determining b from either &, or Q (or both).

We will now show with the following two lemmas that this is impossible.

Lemma 1. In PRISM, any pair of sequences of ciphertexts (files Er, and Er) gen-
erated by a pair of sequences of words (files L and L') is computationally indistin-
guishable for A, assuming E is a pseudorandom permutation and “,” an unambiguous
pairing of inputs.

Proof (Sketch). First, note that our stateful-cipher uses a different random key for each
file. In a learning phase, A makes a number of queries to two stateful-cipher oracles
encrypting with two different keys Ky, K. Then, A prepares word w, submits to a
challenge oracle and gets back E, (w,Vp.w), b € {0,1}. A has to output b correctly
with only negligible advantage over guessing.

However, we now show by using the hybrid argument [28] that the distributions
generated by Ex, (w, ;) are computationally indistinguishable for A. That is, pairs
Ex,(w,Y0,w), Ex, (w,71,) are distinguishable with only negligible advantage over
guessing). As “” is an unambiguous pairing, we now write w; instead of (w, i w).
Our hybrid distributions are: (1.) PRPxk,(w}), (2.) RPk,(w}), (3.) RFk,(w}), (4.)
RFk, (w}), (5.) RPk, (w)), and (6.) PRPk, (w}). “PRP” means pseudorandom per-
mutation, “RP” random permutation, and “RF” random function.

(1.)-(2.) and (5.) - (6.): by definition of pseudorandom permutation, the probability
to distinguish PR Pk (w}) from RPx (w}) is negligible.

(2.)- (3.) and (4.) - (5.): the probability to distinguish a random permutation from a
random function is negligible, cf., Section 3.6.3 in Katz and Lindell [28].

(3.) - (4.): If A observes RFk,(w() = RF, (w}) for a pair w{, w}, then this only
indicates a collision in RF, and RF, . Even if A queries the same w multiple times,
output RFk, (w, 70,w) of RFk, (w, 71,.») Will always be different as counters increase.
If RFk, (or RFk,) outputs the same value twice (unlikely), this only indicates a col-
lision in RFk, (or RFk,). The advantage over guessing in distinguishing RF's, (w{)
from RF, (w}) is zero.

A’s advantage over guessing in distinguishing pairs E,, F'1/ is negligible. a

Lemma 2. Based on the trapdoor group assumption (“TGA”), PRISM’s PIR-search
produces computationally indistinguishable pairs of queries Q).

Proof (Sketch). Assume A submits two words w1, ws to an oracle. The oracle picks
b € {0,1} and returns Q; := {a; ; :=b-e;;, mod p,...,q;, :=b-e;, mod p},
with Chx, = lt+ax, -N,Vi# X € = a;-N.Here, &X; := | Ex (w;, 1)

a; are chosen randomly. A has to output b with non-negligible advantage over guessing.

Jiogs (1> and

However, we will now show that any pair of sequences of « values is computa-
tionally indistinguishable for A. The proof is a direct implication of the security of
the PIR protocol, based on TGA: for all adversaries A, Pr[A(b - e1,...,b-e;) =
LSB(ey,...,et)] = €(s). That is, given b - e;, the probability that A computes low
order bits of e; mod N (“LSB”) is negligible [38].

Assume that A can distinguish sequences Qp = {w;} and Q1 = {a;,;} with
non-negligible advantage. This would violate TGA as follows. First, note that besides
Q,x,, @1,x, all elements in both sequences {ay ;} and {1 ;} are created in the same
way (multiplication of b with a random number). Therefore, besides o x,, @1, x,, any
pair (o,) € {ap;} U{aq,;} is computationally indistinguishable for A. If A can still
distinguish between sequences {ap;} and {aq ;}, then A can determine with non-ne-
gligible probability &} or A7 and thus value ¢ withe; =1 mod N, violating TGA. O

5.2 Statistical Analysis

We now discuss how U chooses parameters ¢ and ¢ to get a certain error probability
P.,;. This probability describes the chance that, despite w ¢ FILE, U wrongly outputs
w € FILE after ¢ rounds without a contradiction, cf., Algorithm 3. Let n be the number
of ciphertexts in one InputSplit, n := %
stored in the cloud is (c-n). We consider for simplicity only rounds where | h(C,)|, =
1, cf., Algorithm 3. With h a cryptographic hash, [A(C,)], = 1in ¢’ ~ 4 rounds.
While inserting any ciphertext, the collision probability is Peollision = t% The

The total number of ciphertexts

probability for a one-collision is Pyye—collision ‘= L colpsion. If qu is not inside an Input-
Split, the probability that, after inserting the n ciphertexts of that InputSplit into M, the
candidate pOSitiOH is not set to 1 is PInputSplit,no70nefcollision = (1 - Ponefcollision)n-

If w & FILE, i.e., in none of the InputSplits, the probability that the candidate posi-
tion is not set to 1 in any IHPUtSplit is Pcontradiction = (PInputSplit,nofonefcollision)c'
This is the probability that a contradiction occurs in a single round. If w ¢ FILE, the
probability that a contradiction occurs in at least one round is Peontradiction,q—rounds ‘=
1- (1 - Pcontradiction)q~

After ¢ rounds without a contradiction, ¢/ automatically decides that w is in FILE.
In case that w ¢ FILE, and no contradiction occurs in ¢ rounds, U is therefore wrong
with Pepp :=1 — Pcontradiction,q—rounds = (1 - (1 - #)cn)q.

Given a certain file size, the size of InputSplits, and the blocksize of the symmetric
cipher, U computes c and n. Therewith, I/ can target a false-positive probability by ap-
propriately selecting ¢ and g. We evaluate this using a real-world scenario in Section 6.

6 Evaluation

To show its real-world feasibility, we have implemented and evaluated PRISM with the
scenario described in the introduction. The source code is available for public down-
load [1]. We received 16 days of log data from May 2010 from a small local Internet
provider. This provider logs and retains all customers’ DNS resolve requests for possi-
ble forensic analysis and intrusion detection. Log data is split into files on a daily basis.
Each file contains one day of logged 3-tuples: timestamp, customer IP (anonymized by
provider for regulatory matters), hostname. The scenario for our evaluation is to use
PRISM to upload this data encrypted to MapReduce and perform a search for specific
hostnames in a privacy-preserving manner. This is useful for, e.g., “passive DNS anal-
ysis” to determine at which day certain command-and-control centers of botnets have
been accessed by customer machines, cf., Bilge et al. [5]. The goal of our experiments
was to analyze the computational overhead induced by PRISM’s privacy mechanism,
i.e., the additional time consumed by PRISM over non-privacy-preserving MapReduce.

6.1 Setup

For the 16 days, the log data contains ~ 3-10% log entries, i.e., = 2-107 per file/day. The
total space required by all files uploaded into MapReduce using PRISM is 27 GByte,
on average 1.7 GByte per file.

Our experiments have been performed on a small “cloud” comprising 1 master com-
puter and 9 slaves. Computers featured a 2.5 GHz Pentium Dual Core and 4 GByte of
RAM, running a standard desktop installation of Fedora 11. With this hardware config-
uration, a total of 18 CPUs were available for maps and reduces. We installed Hadoop
version 0.20.2 on our cloud. Being aware that tailoring MapReduce’s configuration pa-
rameters can have a huge impact on performance, we use the standard, out-of-the-box
configuration of Hadoop 0.20.2 without any configuration tweaks. Performance tuning
is out of scope of this paper. Similarly, as the InputSplit size is recommended to be be-
tween 64 MByte and 128 MByte, we chose Stnputsplic = 96 MByte (InputSplits must
be dividable by 3 - 32 Byte, since log entries are 3-tuples).

In addition to the evaluation with 96 MByte InputSplits, we also performed a second
measurement with larger InputSplits of 120 MByte. We expected a slightly improved
performance of PRISM due to the fact that for the larger files the total number of Input-
Splits c reduced to less than our 18 available CPUs. Therewith, no costly (re-)scheduling
takes places, and mappers do not have to process 2 InputSplits sequentially.

Finally, to put timing results into perspective, we implemented and measured a triv-
ial, non-privacy-preserving MapReduce search called Baseline. Baseline search con-
sists of an empty map phase, where mappers simply scan over InputSplits and compare
each word of the InputSplit with a predetermined one, but do not generate any key-value
pairs. Only at the end of the map phase, a single intermediate key-value pair per map-
per (e.g., “found”) is sent to reducers. Reducers discard this key-value pair and write
empty files to disk. This trivial baseline only serves in deducing the overhead implied
by PRISM, not taking MapReduce specific delays due to rescheduling, speculative exe-
cution of backup tasks etc. [17, 35] into account. Note that linear scanning through the
entire InputSplit is mandatory, as we assume our data to be unordered and unsorted.

Table 1. Parameters ¢, q to achieve Pe,r < 0.01.

File size (GByte)
0.451.21]1.32]1.36/1.38[1.45|1.52|1.67|1.78|1.932.00[2.08|2.09|2.14[2.21[2.25
t 210 211 212
q|100 60 | 80 20

For the private information retrieval algorithm, we set m = 400 as suggested by
Trostle and Parrish [38] for good security. Our Java implementation is a naive, straight-
forward implementation using Java’s Biglnteger without any performance optimiza-
tions. As symmetric encryption cipher, we used AES with 256 Bit blocksize from the
GNU Crypto Library V2.0.1 [20]. As individual DNS entries occurred way less than
216 times per day, we reserved |y| = 2 Bytes and truncated entries longer than 30 Byte
down to the last 30 Byte. Because the size of input |w; |+ |7, | is less than E’s blocksize
(using standard padding for w;), concatenation provides an unambiguous pairing.

Simulating U/, we computed n and ¢ using blocksize, InputSplit size Stnputspiit,»
and individual file size Sgj. Assuming that { targets an error probability of P, <
0.01, we derived ¢ and ¢. Table 1 summarizes parameters (¢, ¢) computed for each file
individually. Compared to g, we observed that parameter ¢ has a much higher impact
on P, but a comparatively lower impact on computations. Therefore, we increased
preferably ¢ than ¢. Higher values for (¢,) will achieve even smaller values for Pe,,,
but Table 1 shows the computationally “cheapest” combination of (¢, g).

6.2 Results

Computational overhead at the cloud is low as indicated by Figure 1 (PRISM’s timing
results). We have sorted the 16 files based on their size in an increasing order, i.e, the
size of the smallest log file we received from the Internet provider was 0.45 GByte, the
largest one was 2.25 GByte. PRISM’s execution time was clocked on each file 6 times,

T l l l l l T T T T T T T T T T
of ! A
SLi AN VOO WO S
fre! A A A A
PRISM-96 EXX= | i i i [
Baseline-96 ewzzrz . 5 [B 1H
= PRISM-120 wewsses © & = & & 39 T
S Baseline-120 S -]'g: I & : :}-,_E | Bt
: : : : : :_]: . &agx-—i éfgf 3} .
= 8L A % | f;kk,?j,of S ok o
o @ I 1E R Bk op R e
E : : :] kTR ok K o :};5;
Fo b GalaRl Mo e Rl Rae N
3L ' i3 SRESENS B SRS RN RN
B - X <x>.__?--<x>=.x~<>-».5_<>~
B 4k aal sl ShoRl) R
o 3 o ok el L I R
S o Ok oI ok P ol
1 o SRESElS M SRR
% SRR RRs SRR BRI ERSRE S RS
olkk i & 4 5 R RO SO RS R REO BRI RIS
O AN O D O A XD DO XN D
AN AN NSRRI IR A S ¥ N Q¥ ¥

File Size (GByte)
Fig. 1. Wall clock timings for PRISM and Baseline, with Stnputsplit = 96 and 120 MByte.

respectively, and Fig. 1 shows the average. For each file, Fig. 1 shows two stacked
boxes, respectively: the first one for 96 MByte and the second one for 120 MByte
InputSplit size. Each of the stacked boxes comprises, first, the baseline timing and,
second, the additional time required to run PRISM. To give trust into the evaluation,
Fig. 1 also shows 95% confidence intervals drawn right next to each box.

Timings shown in Fig. 1 are “wall clock” timings. This captures the complete time
elapsed from submitting the PRISM map and reduce classes and starting the job until
the end of the reduce phase. In the real-world, wall clock time reflects the time a cloud,
e.g., Amazon [2], would charge a user U. In conclusion, the additional overhead over
the trivial Baseline MapReduce jobs was on average 11% with a 95% confidence inter-
val of +3. The largest overhead seen was 24% over Baseline. This overhead is mostly
computational overhead, as there is no difference in disk access between Baseline and
PRISM and network volume increases only little by sending slightly larger values dur-
ing “Reduce”. These results do not only show the feasibility of PRISM in practice, but
also demonstrate the low overhead implied by PRISM over the non-privacy preserving
MapReduce job. We claim that a performance optimized (not based on Java BigInteger)
implementation improves performance significantly and furthermore reduces overhead.

The simple increase from 96 MByte InputSplit size to 120 MByte InputSplit size
has reduced wall clock times for MapReduce jobs by 9% on average (95% confidence
interval of +4). Files of size smaller than 2 GByte are split into < 18 InputSplits, and
both jobs, PRISM and Baseline, are processed completely in parallel. This indicates
that a careful configuration of Hadoop MapReduce’s many system parameters, hand-
crafted and specific to the scenario and jobs to be executed, will lead to substantial
performance improvements. This also indicates that in a cloud with more CPUs than
in our small setup, the increased number of CPUs will enable to configure way smaller
InputSplits being processed in parallel. Substantially smaller InputSplits will be benefi-
cial for the overall performance of PRISM or any MapReduce job. However, increasing
the number of InputSplits also implies a performance penalty due to (re-)scheduling
and coordination activities of the central job tracker, cf., Pavlo et al. [35], so a trade-off
has to be found. MapReduce configuration optimizations are, however, out of scope.

To better understand the cloud’s computational overhead, we also measured the
computation time for a PRISM mapper. On a single CPU, execution of an isolated
PRISM map function on a single InputSplit is ca. 9 times slower than Baseline (9.3
for 96 MByte and 9.1 for 120 MByte, 95% confidence interval of £0.1). While this
seems to be a lot, we remark that 1.) this map overhead is constant for an InputSplit and
does not depend on or scale with the total size of the data, 2.) there is a lot of potential
to improve our map implementation, 3.) this overhead is obviously amortized by other
MapReduce aspects such as the Reduce phase and also disk latency, network overhead
etc., and 4.) a user is charged for the total system time, i.e., the wall clock time.

Computational overhead at the User is also low in PRISM: per file, the prepara-
tion of, e.g., 2'2 « values for the underlying PIR scheme is barely measurable (=~ 200
ms) on a PC with 2.5 GHz CPU. During result analysis, / automatically discards all
received values that he is not interested in, i.e., all besides sgy g,y 1<i<q. For these ¢
values, a total of ¢ Java BigInteger multiplications with modulo have to be performed.
For our examples with ¢ < 100, this was not measurable at less than 1 ms.

Memory consumption for ¢/ is, on the one hand, constant; ¢/ only stores the 256 bit
AES key K. On the other hand however, the cloud user /’s memory consumption scales
linearly with O(X), i.e., the number of different words. This is due to the construction
of our stateful cipher that stores counters < in a hashtable. In our straightforward im-
plementation with Java’s standard Hashtable, memory consumption of this hashtable
was 548 MByte for the largest log file. While this is certainly a lot of RAM, we con-
jecture this to be available on PC hardware — moreover, as there is a large potential for
performance tuning with such data structures.

Communication overhead for PRISM is dominated by the underlying PIR scheme.
U sends, besides .class files once, only the ¢ « values per file to the cloud. For example,
with ¢ = 2'2 and m = 400 Bit, this computes to 200 KByte per file. The response
from the cloud is, for each round, ¢ values of size m. The most expensive configuration
in terms of communication in our experiments has been t = 2!, ¢ = 100; this results
in &~ 5 MByte communication overhead. Note that communication complexity in the
underlying PIR scheme by Trostle and Parrish [38] is linear in the square root of the
total table size, i.e., O(t). This can be further reduced by using recursive PIR queries
to O(t¢), for any € > 0 [29]. Those optimizations as well as amortization techniques
discussed by Ostrovsky and Skeith [34] are out of scope.

In conclusion, PRISM is very lightweight for a user using standard PC hardware.
Discussion: On a larger cluster in a more professional environment (hundreds or
even thousands of CPUs [25]), all files will be processed in parallel. As shown in Fig. 1,
total time for the 2 GByte file is ~ 350 s. However, already ~ 340 s are required by
MapReduce just to “scan” through the various InputSplits, see Baseline. Such ineffi-
ciency with non-optimal configurations has been observed before, and our results are
along the lines of Pavlo et al. [35]. Here, a “grep”-like MapReduce job on 1 TByte of
data took ~ 1,500 s on 50 CPUs which would be ~ 20 times faster than our Base-
line. However, Pavlo et al. [35] use a slightly tuned configuration and moreover a more
efficient scanning through InputSplits (100 Byte text values instead of 32 Byte binary
values in our case) which is known to lead to significant performance increases [27].

7 Related Work

Private Information Retrieval: Private Information Retrieval (and similarly oblivious
transfer and oblivious RAM) has received a lot of attention [9, 13, 19, 22, 29, 33, 34,
36]. In PIR, a user retrieves a specific data from a database. The only “privacy” goal
in PIR is access privacy whereby the server should not discover which data a user is
interested in. Note that PIR does not ensure privacy of data in the database. PRISM,
however, focuses on searching for a word and uses PIR only as a tool.

Searchable Encryption: With searching on encrypted data techniques [6], user pri-
vacy is guaranteed thanks to the encryption of the queries and the stored data. However,
PRISM offers higher privacy guarantees since in existing searchable encryption solu-
tions [4, 6-8, 10, 16, 21, 32, 37], the result (“found” or “not found”) originating from a
query is known to the adversary; therefore as opposed to PRISM, standard searchable
encryption techniques do not ensure qguery privacy. Moreover, existing mechanisms

cannot be easily extended to leverage from a parallelized cloud setup: while in theory
the search on encrypted data itself could be run in parallel on subsets of data, today’s
solution do not support the combination (aggregation) of results (as in a reduce phase).
To conclude, PRISM not only ensures both storage privacy and query privacy, but also
enables the aggregation of results originating from intermediate parallelized operations.

8 Conclusion

PRISM is the first privacy-preserving search scheme suited for cloud computing. That
is, PRISM provides storage and query privacy while introducing only limited overhead.
PRISM is specifically designed to leverage parallelism and efficiency of the MapRe-
duce paradigm. Moreover, PRISM is compatible with any standard MapReduce-based
cloud infrastructure (such as Amazon’s), and does not require modifications to the un-
derlying system. Thanks to this compatibility, PRISM has been efficiently implemented
on an experiemental cloud computing environment using Hadoop MapReduce. Besides
a throughout analysis, performance of PRISM has been evaluated on that environment
through search operations in DNS logs provided by an ISP. PRISM’s overhead over
non-privacy-preserving search is only 11% on average, acertaining its efficiency.

References

[1] PRISM source code, 2012. http://www.ccs.neu.edu/~blass/prism.tgz.

[2] Amazon. Elastic mapreduce, 2010. http://aws.amazon.com/
elasticmapreduce/.

[3] Apache. Hadoop, 2010. http://hadoop.apache.org/.

[4] SM. Bellovin and W.R. Cheswick. Privacy-enhanced searches using encrypted
Bloom filters, 2007. http://mice.cs.columbia.edu/getTechreport.php?
techreportID=483.

[5] L. Bilge, E. Kirda, C. Kriigel, and M. Balduzzi. Exposure: Finding malicious domains
using passive dns analysis. In Proceedings of 18th Annual Network and Distributed System
Security Symposium, pages 195-211, San Diego, USA, 2011. ISBN 1891562320.

[6] D. Boneh, G. DiCrescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with
keyword search. In Proceedings of Eurocrypt, pages 506522, Barcelona, Spain, 2004.

[7] D. Boneh, E. Kushilevitz, and R. Ostrovsky. Publickey encryption that allows pir queries.
In Proceedings of Advances in Cryptology, pages 50—67, Santa Barbara, USA, 2007. ISBN
978-3-540-74142-8.

[8] G. Brassard, C. Crépeau, and J.-M. Robert. All-or-nothing disclosure of secrets. In Pro-
ceedings of Advances in Cryptology, pages 234-238, Santa Barbara, USA, 1986.

[9] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In Proceedings of Advances in Cryptology, pages 402—
414, Prague, Czech Republic, 1999. ISBN 3-540-65889-0.

[10] Y.-C. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote en-
crypted data. In Proceedings of Applied Cryptography and Network Security, pages 442—
455, 2005. ISBN 3-540-26223-7.

[11] Chief Information Officer’s Council. Proposed security assessment & authorization for
u.s. government cloud computing, 2010. http://www.digitalgovernment.com/
media/Knowledge—-Centers/asset_upload_file652_2491.pdf.

[12] Chief Information Officer’s Council. Privacy recommendations for the use of cloud com-
puting by federal departments and agencies, 2010. http://www.cio.gov/.

[13] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
Proceedings of Symposium on Foundations of Computer Science, pages 41-51, Milwaukee,
USA, 1995.

[14]

[15]
[16]

(7]
[18]
[19]
[20]
(21]
(22]
(23]
(24]
[25]
[26]

(27]
(28]
(29]

(30]

(31]
(32]
(33]
[34]

(35]

[36]

(37]
(38]

Cloud Security Alliance. Security guidance for critical areas of focus in cloud comput-
ing, 2009. https://cloudsecurityalliance.org/guidance/csaguide.
v2.1l.pdf.

Cloud Security Alliance. Top cloud computing threats, 2010. https://
cloudsecurityalliance.org/topthreats/csathreats.vl.0.pdf.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: im-
proved definitions and efficient constructions. In Proceedings of Conference on Computer
and Communications Security, CCS, pages 79-88, Alexandria, USA, 2006.

J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In
Proceedings of OSDI, pages 137-150, San Francisco, USA, 2004.

EU. Eu information management instruments, 2010. http://europa.eu/.

Y. Gertner, Y. Ishai, and E. Kushilevitz. Protecting data privacy in private information
retrieval. In Proceedings of Symposium on Theory of Computing, pages 151-160, Dallas,
USA, 1998. ISBN 0-89791-962-9.

GNU. The gnu crypto project, 2011. http://www.gnu.org/software/.

E.-J. Goh. Secure indexes. Cryptology ePrint Archive Report 2003/216, 2003. http:
//eprint.iacr.org/2003/216.

O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious ram. Jour-
nal of the ACM, 45:431-473, May 1996. ISSN 0004-5411.

S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270-299, 1984. ISSN 0022-0000.

Google. Google apps for government, 2010. http://googleenterprise.
blogspot.com/2010/07/google—apps—for-government .html.

Hadoop. Powered by hadoop, list of applications using hadoop mapreduce, 2011. http:
//wiki.apache.org/hadoop/PoweredBy.

C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key cryp-
tosystems. In Proceedings of International Conference on Information and Communication
Security, pages 2—12, Sydney, Australia, 1999. ISBN 3-540-66682-6.

D. Jian, B.C. Ooi, L. Shi, and S. Wu. The performance of mapreduce: An in-depth study.
Proceedings of the VLDB Endowment, 3(1):472-483, 2010.

J. Katz and Y. Lindell. Introduction to modern cryptography. Chapman & Hall/CRC, 2008.
ISBN 978-1-58488-551-1.

E. Kushilevitz and R. Ostrovsky. Replication is not needed: single database,
computationally-private information retrieval. In Proceedings of Symposium on Founda-
tions of Computer Science, pages 364—-373, Miami Beach, USA, 1997.

J.Li, A. Wang, C. Wang, N. Cao, K. Ren, and W. Lou. Fuzzy keyword search over encrypted
data in cloud computing. In Proceedings of INFOCOM Mini-Conference, pages 441-445,
San Diego, USA, 2010. ISBN 978-1-4244-5838-7.

D. McCullagh. Fbi wants records kept of web sites visited, 2010. http://news.cnet.
com/8301-13578_3-10448060-38.html.

W. Ogata and K. Kurosawa. Oblivious keyword search. Journal of Complexity — Special
issue on coding and cryptography, 20:356-371, April 2004. ISSN 0885-064X.

R. Ostrovsky and W. Skeith. Private searching on streaming data. In Proceedings of Ad-
vances in Cryptology, pages 223-240, Santa Barbara, USA, 2005.

R. Ostrovsky and W.E. Skeith. A survey of single-database private information retrieval:
techniques and applications. In Proceedings of conference on Practice and theory in public-
key cryptography, pages 393—411, Beijing, China, 2007. ISBN 978-3-540-71676-1.

A. Pavlo, E. Paulson, A. Rasin, D.J. Abadi, D.J. DeWitt, S. Madden, and M. Stonebraker.
A comparison of approaches to large-scale data analysis. In Proceedings of International
Conference on Management of Data, pages 165-178, Rhode Island, USA, 2009.

R. Sion and B. Carbunar. On the computational practicality of private information retrieval.
In Proceedings of Network and Distributed Systems Security Symposium, pages 1-10, San
Diego, USA, 2007.

D.X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data.
In Proceedings of Symposium on Security and Privacy, pages 44-55, Berkeley, USA, 2000.
J. Trostle and A. Parrish. Efficient computationally private information retrieval from
anonymity or trapdoor groups. In Proceedings of Conference on Information Security, pages
114-128, Boca Raton, USA, 2010. ISBN 978-3-642-18177-1.

